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Background and objective: Very preterm infants are highly susceptible to

Neurodevelopmental Impairments (NDIs), including cognitive, motor, and

language deficits. This paper presents a systematic review of the application of

Machine Learning (ML) techniques to predict NDIs in premature infants.

Methods: This review presents a comparative analysis of existing studies from

January 2018 to December 2023, highlighting their strengths, limitations, and

future research directions.

Results: We identified 26 studies that fulfilled the inclusion criteria. In addition,

we explore the potential of ML algorithms and discuss commonly used data

sources, including clinical and neuroimaging data. Furthermore, the inclusion of

omics data as a contemporary approach employed, in other diagnostic contexts

is proposed.

Conclusions: We identified limitations and emphasized the significance of

employing multimodal data models and explored various alternatives to address

the limitations identified in the reviewed studies. The insights derived from this

review guide researchers and clinicians toward improving early identification and

intervention strategies for NDIs in this vulnerable population.

KEYWORDS

machine learning, preterm infants, neurodevelopmental impairment, NDIs prediction,

NDIs prognosis

1 Introduction

In this paper, we explore key topics related to preterm infants. We will review which

factors are associated with long-term NeuroDevelopmental Impairments (NDIs) in this

high-risk population and evaluate machine learning models applied to predict NDIs in

very preterm infants (VPIs).

Very preterm infants are defined as those born before 32 weeks of gestation, and are

exposed to a higher risk of NDIs. Early extrauterine life is associated with comorbidities

and brain injury (George et al., 2018) which impact the long-term outcomes of very

preterm infants (Franz et al., 2009). These patients require special care and interventions

in the Neonatal Intensive Care Unit (NICU) to increase survival rates without NDIs.
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These interventions include respiratory and cardiovascular

support and parenteral nutrition among others (Di Fiore et al.,

2016). Patients are also exposed to painful procedures, such

as venipuncture or heel stick for blood analysis (Ochiai et al.,

2016), and are frequently handled for different procedures such as

imaging (e.g., point-of-care ultrasonography, magnetic resonance

imaging, ultrasound) (Hand et al., 2020), and hemodynamic

and neurophysiologic monitoring (e.g. amplitude-integrated

electroencephalography) (El-Dib et al., 2022).

Very preterm infants are at a higher risk of developing short-

and long-term adverse neurodevelopmental outcomes, such as

cognitive, motor, visual, and hearing impairments, compared with

their full-term counterparts (Chung et al., 2020; Adams-Chapman

et al., 2018). These NDIs are related to multiple antenatal, perinatal,

and postnatal factors (Rogers and Hintz, 2016).

Several studies have considered clinical features as risk factors

for NDIs, providing a better understanding of potential pathways

to adverse outcomes in very preterm infants. Prenatal factors

include maternal infections (Leviton et al., 2016), drug abuse

(Manuck et al., 2014), hypertension (Nakamura et al., 2021), and

malnutrition (Leviton et al., 2016; Vohr et al., 2017). Perinatal

factors include lower gestational age (Salas et al., 2016; Larsen et al.,

2022), sex (higher risk in males) (Agarwal et al., 2018), low five

minute Apgar score (Khorram et al., 2022), high scores in scales

such as the Clinical Risk Index for Babies (CRIB) score (Lodha

et al., 2009). Comorbidities include necrotizing enterocolitis (Matei

et al., 2020), early and late onset sepsis (Flannery et al., 2022),

bronchopulmonary dysplasia (Ambalavanan et al., 2012), patent

ductus arteriosus (Edstedt Bonamy et al., 2017), retinopathy of

prematurity (Molloy et al., 2016) and brain injury (Rand et al.,

2016; Glass et al., 2018). Moreover, other factors like long-term

medical requirements and access to supportive therapies, which

are associated with the patient’s family socioeconomic status, might

also influence NDIs (Rogers andHintz, 2016; Benavente-Fernández

et al., 2019, 2020).

Cranial Ultrasound (cUS) and Magnetic Resonance Imaging

(MRI) help identify and monitor brain injury and have been

widely investigated to identify early neuroimaging biomarkers that

could be potential predictors for NDIs (Hintz et al., 2015; George

et al., 2021; Parikh, 2016). Brain injury includes germinal matrix-

intraventricular hemorrhage (Bolisetty et al., 2014), white matter

injury (Schneider and Miller, 2019; Peyton et al., 2017; Kwon

et al., 2014) with cUS being the most widely used tool because

it is non-invasive, low cost, and available at the bedside. Brain

injury detected via cUS is considered a significant predictor of

NDIs in very preterm infants (Campbell et al., 2021; Wu et al.,

2019; Law et al., 2021; Beunders et al., 2022). On the other hand,

MRI is a neuroimaging technique that captures a detailed image of

brain tissues and provides a better delineation of deep and cortical

structures (Rogers and Hintz, 2016), which in turn makes MRI

another valuable tool for NDIs risk prediction (Hintz et al., 2015;

Schneider and Miller, 2019; Cayam-Rand et al., 2019; Kline et al.,

2020).

Early and accurate diagnosis of NDIs in very preterm infants

can provide a unique opportunity to improve short- and long-term

clinical outcomes. Identifying the factors associated with later NDIs

in VPIs can provide valuable knowledge to clinicians, leading to

the design and application of neuroprotective strategies and early

intervention. These neuroprotective therapies can benefit long-

term neurodevelopmental outcomes (Jarjour, 2015; Crilly et al.,

2021).

The prediction of later NDIs in very preterm infants is

challenging. Clinicians usually use different scales, such as the

Hammersmith Infant Neurological Examination (HINE) (Haataja

et al., 1999), Neonatal Behavioral Assessment Scale (NBAS)

(Brazelton and Nugent, 1995) and the General Movement

Assessment (GMA) (Prechtl, 2001; Dubowitz et al., 1999), among

others. In addition to clinical assessments, different methods

have been studied and have demonstrated good potential for

predicting NDIs in very preterm infants, such as early visuospatial

attention (Beunders et al., 2021), and the visual tracking neonatal

neurobehavior assessments (McGowan et al., 2022).

Artificial Intelligence (AI) is a rapidly evolving field that

is transforming healthcare in many ways, including neonatal

healthcare. The use of AI in the NICU can potentially improve

patient outcomes, reduce treatment costs, and enhance the

efficiency of care delivery. There are different aspects where AI

is being implemented at NICUs including early diagnosis and

outcome prediction (Son et al., 2022; Raimondi et al., 2018; Vats

et al., 2022), monitoring (Lyra et al., 2022), neuromonitoring

(O’Sullivan et al., 2023; Moghadam et al., 2021), and neuroimaging

(Gruber et al., 2022; Shen et al., 2023). These studies are

only examples of the potential of AI in neonatal healthcare,

which is expected to lead to improvements in the diagnosis,

treatment, and outcomes of preterm infants in a way that is

both faster and more reliable. Machine Learning (ML), which is

a branch of AI, has emerged as a powerful tool for predicting

NDIs. By leveraging advanced algorithms and analyzing large-

scale neuroimaging data, these techniques offer valuable insights

into identifying early risk factors and accurately forecasting the

likelihood of NDIs in individuals. These predictive models can

assist healthcare professionals in making informed decisions,

developing personalized interventions, and improving outcomes

for individuals at high risk of NDIs (Bowe et al., 2023a; van Boven

et al., 2022; Baker and Kandasamy, 2022).

Overall, although significant advances have been made in

this field, there remains a need for consensus on strategies and

methodologies (Baker and Kandasamy, 2022). One of the strategies

currently applied is multimodal data integration (MDI). MDI is

defined as the integration of various data types that, complement

each other and provide significant information regarding a state,

and MDI can potentially enhance the predictive power of ML

models compared to a single data modality (Boehm et al., 2022).

Multimodal data integration involves the combination of

heterogeneous information sources, such as electronic health

records (e.g., prenatal and postnatal factors, sociodemographic

data), neuroimaging data derived from MRI and ultrasound

(e.g., morphometrics, volumetrics, structural and functional

connectomes), electroencephalogram data (e.g., raw EGG

traces) and omics data (e.g., DNA methylation, transcriptomic

data, protein expression). Each of these modalities requires

distinct preprocessing and feature extraction techniques. The

subsequent merging of these information sources provides a

holistic understanding of the individual’s condition, enabling
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an accurate diagnosis, better clinical decision-making, and

personalized treatment (Cui et al., 2023). Multimodal ML

models can improve prediction accuracy by providing robust

and reliable prediction models. By combining multiple data

sources, multimodal models can identify complex patterns and

relationships that may not be evident from a single data source.

The integration of diverse data sources can potentially facilitate

the identification of disease subtypes and enable the exploration of

novel treatments for these conditions.

In this systematic review, we aimed to identify studies that

employed ML algorithms to predict NDIs in very preterm infants

and address the following key questions:

1. Which ML models have been utilized?

2. Which evaluation metrics were used to assess these

ML models?

3. Do multimodal machine learning techniques exhibit

superior performance compared to unimodal

techniques in predicting neurodevelopmental

impairments in very preterm infants?

4. What are the main limitations of these

research studies?

This study aimed to comprehensively review the current

state-of-the-art ML techniques for predicting NDIs in very

preterm infants. We hypothesized that multimodal machine

learning techniques will demonstrate superior predictive

performance compared with unimodal techniques in predicting

neurodevelopmental impairment in very preterm infants. We

provide a summary of recent research in this area and a discussion

of the challenges and limitations encountered. The remainder of

this paper is structured as follows: Section 2 outlines the protocol

used in the literature review and the selection criteria. Section

3, provides an in-depth analysis and comparison of the selected

studies and their results. Section 4, discusses the advantages of

multimodal data integration, presenting a critical discussion of the

findings and analyzing challenges and potential future strategies

in this field. Finally, in Section 5, we describe the conclusions of

this review.

2 Materials and methods

2.1 Search criteria

This systematic review was conducted according to the

Preferred Reporting Items for Systematic Review and Meta-

Analysis (PRISMA) guidelines and was registered in PROSPERO

on November 26th, 2023 (CRD42023483014). In alignment with

the established best practices for systematic reviews, we conducted a

comprehensive literature search using the following four databases:

PubMed, Scopus, Web of Science, and IEEE Xplore. These

databases were selected to ensure a wide range of relevant

studies, thereby maximizing the best outcomes in this systematic

review. The selected databases are well known across the scientific

community and are described as follows.

• PubMed: A comprehensive database specializing in

biomedical and life science literature, provided by

TABLE 1 Search terms.

Database Query

PubMed ((((“Infant, Premature” OR “Infant, Extremely

Premature”) OR “Infant, Very Low Birth Weight”) OR

“Cognitive Dysfunction”) OR “Psychomotor

Disorders”) AND “Machine Learning”

Scopus Infant, OR premature OR cognitive AND machine

learning

Web of

Science

Very Preterm OR Cognitive ANDMachine Learning

OR Very Preterm ANDMachine Learning ANDmotor

IEEE Xplore Very Preterm ANDMachine Learning AND Cognitive

OR Very Preterm ANDMachine Learning ANDmotor

U.S. National Institutes of Health, National Library of

Medicine (NIH/NLM).

• Scopus: An extensive database encompassing interdisciplinary

scientific research provided by Elsevier.

• Web of Science: Database scientific research covering a wide

range of multidisciplinary fields provided by Clarivate.

• IEEE Xplore: A database focused on engineering and

technology scientific research published by Institute of

Electrical and Electronics Engineers (IEEE).

Our search criteria were developed through collaborative

consensus, integrating clinical expertise, computer science insights,

and the authors’ domain knowledge to identify research articles

addressing our questions effectively. Furthermore, in this review,

we defined multimodal data models as those that incorporate

multiple data types, such as clinical, neuroimaging, and omics data.

The search criteria for each database are presented in Table 1.

2.2 Selection criteria

The literature inclusion criteria (IC) were as follows:

• IC1: publication date between January 2018 and

December 2023.

• IC2: research conducted in English.

• IC3: published in a peer-reviewed journal.

• IC4: focusing on multimodal or unimodal machine learning

techniques for neurodevelopmental outcome prediction.

• IC5: addressing the prediction of neurodevelopmental

impairment in very preterm infants (≤ 32 weeks) in

longitudinal studies with follow-up until 18 months to 2 years

corrected age.

The flow diagram illustrating the literature selection is

presented in Figure 1. Following the initial search, we identified

a total of 1,877 research articles. Duplicate records were

removed, and studies focused on cognitive decline in adults

(e.g., Alzheimer’s disease) were excluded using automated tools.

After these exclusions, 1,341 articles remained. Two authors

then independently screened these articles based on their

abstracts, identifying 21 research studies that met the inclusion

criteria. Additionally, seven more studies meeting the inclusion
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FIGURE 1

Flow diagram illustrating the literature selection process in accordance with PRISMA guidelines.

criteria were identified through alternative methods, such as

citation searching.

3 Results

In this study, our primary objective was to evaluate whether

multimodal ML techniques perform better than unimodal

ML techniques in predicting NDIs in very preterm infants.

Furthermore, we specifically focused on the key limitations of

the included studies. We categorized three primary drawbacks:

(1) the absence of integrated multimodal data in the models;

(2) the persistent challenge of limited sample sizes, a common

constraint in clinical research; and (3) the oversight in integrating

prior knowledge, including aspects such as feature selection or the

utilization of pre-trained models.

Most of the studies included in this review focused on very

preterm infants (≤ 32 weeks of gestational age) and extremely

preterm infants (≤ 28 weeks of gestational age). Moreover,

neurodevelopmental assessments were performed, such as the

Bayley Scales of Infant and Toddler Development-Third Edition

(Bayley-III) (Bayley, 2006), Denver Developmental Screening

Test II (Frankenburg et al., 1992), Mullen Scales of Early

Learning (Mullen et al., 1995) and Kyoto Scale of Psychological

Development (Ikuzawa et al., 2002). In most of the studies,

these neurodevelopmental assessments were performed at 2 years

corrected age, whereas in one study, they were conducted at

36 months. The characteristics from the included articles were

extracted and synthesized in Table 2. This table cover a range

of attributes, such as the data modalities used, type of NDIs,

methods, results, cohort size, and drawbacks. Figure 2 summarizes

predictive models for neurodevelopmental impairments in very

preterm infants, highlighting the type of NDI, data modalities used,

and AI models.

3.1 Multimodal vs. unimodal models for
predicting NDIs in very preterm infants

Research on very preterm infants for predicting NDIs using

heterogeneous data and implementingMachine Learning (ML) and

Deep Learning (DL) methods has mainly focused on integrating

clinical data and MRI-based data. Some studies that have used

multimodal data integration have utilized DL architectures (LeCun

et al., 2015). Such is the case of the study conducted by He

et al. (2020), a deep neural network and deep transfer learning

neural network techniques were employed, utilizing clinical,

demographic, and brain connectome data to predict cognitive,

motor, and language impairments. Their model took advantage

of both supervised and unsupervised learning for annotated and

non-annotated data during model training by incorporating both

supervised and unsupervised learning. The initial deep neural

network prototype was pre-trained using supervised learning

on 884 older children and adults diagnosed with autism. Later,

the model was re-trained in an unsupervised manner using

291 VPIs, fine-tuned, and validated with supervised learning

on 33 VPIs. Their findings demonstrated that the multimodal
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TABLE 2 Literature review.

Ref. Data
modalities

NDIs Methods Results Cohort
size

Main drawbacks

Multi-
modal

Sample
size

Prior
knowledge

Ali et al. (2022) Brain functional connectome Cognitive Self-training Deep Neural Network Acc:71.0%, Sen:70.4%, Spe:71.5%,

AUC:0.75

103 x x x

Bowe et al. (2023b) Clinical and sociodemographic data Cognitive Logistic Regression, Random Forest,

Support Vector Machine, Gradient

Boosting

AUROC: 0.77, Sen:0.93, Spe:0.46, 1062 x

Brown et al. (2019) Brain structural connectome Cognitive and

motor

Lasso regression Motor r=0.44, AOC:14.00, Acc:72.50

Cognitive r=0.44, AOC:15.36, Acc:59.50

168 x x

Chen et al. (2020) Brain structural connectome Cognitive Transfer Learning Enhanced

Convolutional Neural Network

Bal.Acc:74.5%, Spe:78.7%, Sen:70.2%,

AUC:0.75

110 x x x

Chen et al. (2022) Brain structural connectome Cognitive Connectome-Inception Deep

Convolutional Neural Network

Acc:81.6%, Spe:83.6%, Sen:78.3%,

AUC:0.81

80 x x x

Demirci et al.

(2023)

Perinatal and longitudinal data Mental and

psychomotor

Random Forest classifier Bal.Acc mental: 72%, Spe:54.8%,

Sen:88.7%, Bal.Acc psychomotor: 73%,

Spe:51.7%, Sen:93.9%,

1109 x x

Girault et al. (2019) White matter connectome Cognitive Dense neural network Acc 83.8% 37 x x

He et al. (2018) Brain functional connectome data Cognitive Stacked Sparse Autoencoder based

Artificial Neural Network framework

Acc:70.6%, AUC:0.76, Sen:70.1%,

Spe:71.2%

28 x x

He et al. (2020) Clinical, demographic data and brain

connectome

Cognitive, motor

and language

Deep transfer learning neural network Cognitive AUC:0.86, Language

AUC:0.66, Motor AUC:0.84

291 x

He et al. (2021) Structural and functional brain

connectome, clinical data

Cognitive, motor

and language

Deep multimodal learning model Cognitive Acc:88.4%; Language

Acc:87.2%; Motor Acc:86.7%

261 x x

Janjic et al. (2020) MR spectroscopy and DTI Cognitive and

motor

Single-hidden-layer feedforward

neural networks (fNNs)

Sen:100%, Spe:100%, PPV:100%,

NPV:99.1%

127 x x x

Juul et al. (2023) Clinical and demographic data Cognitive, motor

and language

Bayesian Additive Regression Trees AUROC:0.87, Sen:84.6%, Spe:72.3% 692 x

Kline et al. (2020) Brain morphometric, volumetrics

biomarkers from MRI and clinical

features

Motor Lasso regression and multivariable

linear regression

Regional cortical surface area p=0.30 to

0.57; subcortical volumes p=0.29 to 0.55;

cortical curvature -0.26 to -0.43.

75 x

Li et al. (2022) Quantitative brain maturation and

geometric features from structural MRI

Cognitive Ontology-guided Attribute

Partitioning-Ensemble Learning

Acc:71.3%, Sen:70.6%, Spe:72.6%,

AUC:0.74

110 x x

Li et al. (2023) Brain structural connectomes Motor
Semisupervised graph

convolutional network

Acc:68.0%, Bal.Acc:66.7%, Sen:63.1%,

Spe:70.2%, AUC:0.69

224 x x x

Ouyang et al. (2020) Regional cortical microstructure

markers from diffusion MRI

Cognitive, motor

and language

Support vector regression (SVR) and

leave-one-out cross-validation

Cognitive-r=0.53; Language-r=0.47;

Motor-r=0.1,

46 x x x

(Continued)
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TABLE 2 (Continued)

Ref. Data
modalities

NDIs Methods Results Cohort
size

Main drawbacks

Multi-
modal

Sample
size

Prior
knowledge

Pagnozzi et al.

(2023)

Brain morphometrics and clinical data Cognitive, motor

and language

Lasso regression Motor r=0.51; Cognitive r=0.48;

Language r=0.36;

181 x

Raghuram et al.

(2022)

Mean velocity in the vertical direction,

median, standard deviation, and

minimum quantity of motion

Cerebral palsy Multivariable regression Sen:55%, Spe:80%, PPV:26%, NPV:93%,

C-statistic:0.74

252 x x x

Routier et al. (2023) Brain function and structure

information, perinatal and postnatal

risk factors

No or moderate

NDIs, death or

severe NDIs.

Classification and regression tree Acc:87.2%, Spe:88.0%, Sen:86.4%,

AUC:91.7, NPV:85.5, PPV:89.5

109 x

Saha et al. (2020) Fractional anisotropy maps derived

from diffusion MRI

Motor Convolutional Neural Network

(CNN)

Mean Sen:70%, Mean Spe:74%, Mean

AUC:72%, F-score:68%, Mean Acc:73%

77 x x x

Schadl et al. (2018) White matter microstructure derived

from DTI

Cognitive and

motor

Logistic regression with feature

selection and leave-one-out

cross-validation

Cognitive-Sen:100%, Spe:100%, AUC:1;

Motor-Sen:90%, Spe:86%, AUC:0.91

60 x x x

Ushida et al. (2023) Clinical data Cognitive, cerebral

palsy

Six ML models including gradient

boosting decision tree (GBDT)

GBDT AUROC: 0.750 13,751 x x

Valavani et al.

(2021)

Clinical, demographic data and

diffusion MRI features

Language Boruta, ReliefF expRank, Random

Forest variable importance

Bal.Acc:91%, Sen:86%, Spe:96%, 89 x

Vassar et al. (2020) Structural MRI and white matter

microstructure from DTI

Language Multivariate logistic regression with

feature selection and leave-one-out

cross-validation

Sen:89%, Spe:86%, AUC:0.916 102 x x x

Wagner et al. (2022) Clinical data and MRI-based radiomics Cognitive, motor

and language

Elastic Net Cognitive-AUROC:0.79;

Motor-AUROC:0.83;

Language-AUROC:0.64

166 x x

Wang et al. (2023) Early amplitude-integrated EEG & raw

EEG

Cognitive and

motor

Support vector regression model,

histogram-based gradient boosting

classification model

Bal.Acc:0.77 to 0.81 369 x x x

AUC: area under the curve, AOC: area over the curve, AUROC: area under the receiver operating curve, Acc: accuracy, Bal. Acc: balanced accuracy, EEG: electroencephalogram, Spe: specificity, Sen: sensitivity, PPV: positive predictive value, NPV: negative predictive

value.
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FIGURE 2

Overview of predictive models for neurodevelopmental impairments in very preterm infants. This figure summarizes findings from a systematic

review, highlighting the types of neurodevelopmental impairments, data modalities used, and common artificial intelligence models employed in

predicting outcomes for very preterm infants. Created in BioRender. Ortega, A. (2024) https://BioRender.com/o15o656.

data model exhibited superior performance compared with their

counterpart unimodal models: connectome features and clinical

feature-based models.

Moreover, a study by He et al. (2018) proposed an Artificial

Neural Network (ANN) (Rumelhart et al., 1986), to predict

cognitive impairment in VPIs. They perform feature selection using

a Stacked Sparse Autoencoder (SSAE) and outcome prediction

using a Support Vector Machine (SVM) (Cortes and Vapnik,

1995). The framework included an unsupervised SSAE model

that utilized functional connectome data from 884 participants

in the autism brain imaging data exchange database. The SVM

classifier was employed for cross-validation using a group of 28

very preterm infants to predict cognitive deficits. They found that

using 90 regions of interest in the brain functional connectome

data, they were able to obtain notable accuracy. In addition, the

multimodal model outperformed other baseline models: clinical

features, raw functional connectome features, and PCA with

top components (Jolliffe, 2002). Furthermore, He et al. (2021),
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employed a deep multimodal learning model that uses structural

and functional brain connectome data alongside clinical features

to predict cognitive, motor, and language impairments. The

model comprised a feature extractor and a fusion classifier, which

efficiently discriminated across high-dimensional data types. This

study also highlighted the advantages of themultimodal data model

over the unimodal models: functional connectome, structural

connectome, and clinical feature-based model.

The study of Pagnozzi et al. (2023) proposed a method

that aimed to identify early MRI biomarkers. For their model,

they included advanced structural MRI pre-processing steps to

standardize the data and the state-of-the-art human connectome

pipeline. The authors used the Least Absolute Shrinkage and

Selection Operator (LASSO)model to predict cognitive, motor, and

language impairments. Moreover, they included covariates (clinical

features) in their models to compare different combinations ofMRI

features and covariates. Their findings suggest that the model that

incorporates both data types outperforms the model that is based

only on covariates.

Moreover, Kline et al. (2020), conducted a research study

with the objective of developing a pipeline that extracts brain

volumetrics and cortical morphometrics from structural MRI data.

The authors applied the LASSO model to identify the most

effective predictive biomarkers for motor development in VPIs.

The researchers discovered that certain brain structures, such as

the regional cortical surface area, displayed a positive association

with motor development, whereas subcortical volumes exhibited a

negative association. Additionally, the authors utilized multivariate

regression analysis to identify specific structures, including

thalamic volume, temporal lobe curvature, insula curvature, as

independent predictors biomarkers of motor development. They

found that models with both morphometrics and key covariates

(clinical features) obtained better results than models with

only morphometrics.

Routier et al. (2023) conducted a study to apply a multimodal

model that combined unsupervised multivariate, classification, and

regression tree analyses (CART). The study used brain structure

and function data derived from cUS and electroencephalography

(EEG), and perinatal and postnatal risk factors. Their aim was to

predict two distinct outcome categories: favorable outcomes (no or

moderate NDIs) and adverse outcomes (death or severe NDIs) in

extremely preterm infants. They compared the different unimodal

models against the multimodal model. Their findings showed that

the multimodal model led to a significant increase in prediction

accuracy compared with unimodal models: perinatal, postnatal,

brain structure, and brain function-based models.

Furthermore, Wagner et al. (2022) implemented an Elastic

Net model and leave-one-out cross-validation that used radiomics

features derived from MRI and clinical features to predict motor,

cognitive, and language outcomes in VPIs at 18 months and

33 months, and 4.5 years. The proposed multimodal model was

compared with unimodal models, and the results indicated that

using both features outperformed the unimodal models: MRI-

based radiomics, gestational age, and a clinical features-based

model. The research by Valavani et al. (2021) aimed to predict

language deficiency outcomes based on multimodal data, including

diffusion tensor imaging (DTI), clinical, and demographic features.

They compared different selection algorithms including Random

Forest, Boruta, and ReliefF expRank. Moreover, they identified

eight clinical characteristics and imaging biomarkers that best

predicted language impairment. Their results indicated that the

multimodal model obtained a higher balanced accuracy, which

outperformed the unimodal models.

3.2 Sample size

A common limitation encountered among the selected studies

was the sample size, which is a well-known disadvantage of

training machine learning models in clinical studies (Riley and

Collins, 2023). The included studies in this review, only two had

a considerable size cohort (Ushida et al., 2023; Bowe et al., 2023b;

Demirci et al., 2023; Juul et al., 2023, while the rest of the studies had

a population below of n=300. The longitudinal design of studies,

examining the short and long-term effects of preterm birth offers

invaluable insights into the trajectory of health outcomes over

their life course. However, such studies are inherently challenged

by attrition, where participants may drop out over time, thereby

compromising the cohort size.

Attrition rates are influenced by various factors, including

socioeconomic status and maternal education level. Additionally,

it was observed that both healthy and unhealthy participants were

likely to drop out (Teixeira et al., 2021). These losses to follow-

up not only skew the representativeness of the sample but also

introduce biases into the model’s predictions, compromising the

validity of the findings.

3.3 Prior knowledge

Healthcare data are inherently complex, and they involve

numerous parameters that often result in a large number of

features but with a small sample size. As dimensionality increases,

the likelihood of individuals carrying specific combinations of

these features decreases, creating blind spots–contiguous regions

of feature space without any observations (Acosta et al., 2022;

Berisha et al., 2021). This phenomenon is known as the “curse of

dimensionality” (Bellman and Kalaba, 1959).

Various techniques are available to address this challenge, such

as feature extraction and feature selection techniques. Furthermore,

different approaches to dimensionality reduction in multimodal

healthcare data have been reviewed by Acosta et al. (2022),

highlighting methods that can learn abstract representations of

clinical and biological data.

Using domain knowledge for feature engineering and selection

ensures that the most relevant features are emphasized, which

enhances the model’s predictive power (Acosta et al., 2022).

Feature selection in the context of predicting NDIs in very preterm

infants has been used in clinical and sociodemographic data,

demonstrating its usefulness for building effective predictive

models. The study by Bowe et al. (2023b) aimed to construct

a prediction model with various 90 variables, including

sociodemographic and clinical information related to pregnancy,

delivery, and neonatal care. These variables were selected based

on the contents of the Swedish Neonatal Quality Register, existing
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literature, plausible hypotheses, and expert input. Moreover,

Routier et al. (2023), highlighted the use of variable selection for

perinatal and postnatal risk factors as unimodal prognostic models,

as well as the research by Kline et al. (2020) that used key clinical

features (male sex, gestational age, and global injury score on

structural MRI) in their prediction model.

In addition, Juul et al. (2023) demonstrated feature selection

by comparing models with different sets of features. They

compare a 5-clinical feature model, 21 pre-selected clinical

features, and hypothesis-free variable selection using a Bayesian

Additive Regression Trees (BART) model. However, the model that

obtained better results was the hypothesis-free variable selection.

Furthermore, Valavani et al. (2021), which constructed a model

with DTI-derived and clinical and demographic features and

performed feature selection. This selection was based on existing

literature that correlates biological and environmental factors with

neurocognitive outcomes in very preterm infants.

In the neuroimaging context, the research by Kline et al.

(2020) predicted NDIs based on brain volumetrics and cortical

morphometrics derived from structural MRI. They applied prior

knowledge on the selection of cortical morphometrics by selecting

four features known to be altered in prematurity: surface area,

gyrification index, sulcal depth, and inner cortical curvature.

Moreover, Pagnozzi et al. (2023) approach which integrated early

brain morphometrics derived from structural MRI with key clinical

covariates, which were highlighted in their study as important

drivers of the results. Furthermore, Brown et al. (2019) identified

anatomical subnetworks of the human connectome derived from

diffusion magnetic resonance imaging. Their model is based on

previous work and introduces novel connectivity priors. The

conducted experiments validate the hypothesis that incorporating

prior knowledge improves the prediction accuracy.

Pretrained models leverage prior knowledge by typically

being trained on large, accessible datasets. This is particularly

advantageous in fields like clinical studies, where data scarcity can

impede the training of ML models due to limited sample sizes. For

instance, Chen et al. (2020), developed a model comprising two

modules: a pre-trained deep convolutional neural network (CNN),

which utilizes supervised learning on 1.2 million images from the

ImageNet database, and a shallow CNN, which underwent training

and refinement using VPIs brain connectome data.

Furthermore, Girault et al. (2019) developed their model based

on white matter connectome derived from diffusion MRI. The

model was first trained with full-term born infants and then applied

to preterm infants. In their study, He et al. (2018) trained the model

using unsupervised learning on brain connectome data from 884

subjects in the Autism Brain Imaging Data Exchange (ABIDE)

database. Subsequently, cross-validation was performed on 28

very preterm infants. Additionally, He et al. (2020) incorporated

supervised pre-training on 884 children and adults diagnosed

with autism, which were also sourced from the ABIDE database.

Subsequently, the model was re-trained unsupervised using data

from very premature infants.

The study by Li et al. (2022) presents the Ontology-

guided Attribute Partitioning (OAP) method, which is intended

to improve feature subset delineation. This method was used

to develop an ensemble learning framework for predicting

cognitive NDIs using quantitative structural magnetic resonance

imaging. Their methodology incorporates prior-defined ontologies

describing brain parcellation and geometry/maturation. Their

findings underscore the effectiveness of ontologies in terms

of enhancing predictive modeling compared to traditional

ML models.

4 Discussion

This study highlights the diverse machine learning and

deep learning models employed to predict neurodevelopmental

outcomes in very preterm infants. These include conventional

methods like Random Forest (RF), Lasso, Elastic Net, Support

Vector Regression (SVR) and logistic regression, alongside

advanced techniques such as convolutional neural networks

(CNN), deep neural networks (DNN) and feedforward neural

networks (fNNs) among others. These models are particularly

suited for analyzing neuroimaging data, the most common type of

data modality alongside clinical data. Many studies demonstrate

their potential, offering enhanced predictive accuracy and the

ability to integrate complementary data sources. It is important

to note that various metrics are used to evaluate the effectiveness

of ML/DL models in this domain, depending on whether the

objective involves classification or regression into predicting

NDI scores. Metrics are chosen based on the specific task,

with common measures including accuracy, balanced accuracy,

sensitivity, specificity, F1 score, R-squared, AUC, and ROC AUC,

each offering insights into model performance.

The hypothesis that multimodal models outperform unimodal

models is supported by several studies, which demonstrate

improved performance when multiple data modalities are

used compared to single-modality approaches, as discussed

in Section 3.1. However, achieving broad consensus on this

finding remains challenging due to the limited availability

of public datasets and the variability in testing conditions,

which complicates direct comparisons across studies. Despite

these efforts, current multimodal ML models for predicting

neurodevelopmental impairments in very preterm infants remain

relatively limited. Nonetheless, research indicates that multimodal

data models generally outperform unimodal models, reinforcing

the significance of integrating multiple data types for more accurate

predictions into diagnosing NDIs.

Even with the considerable results obtained by the included

studies featured in Section 3, these studies share several drawbacks,

such as a small sample size, the absence of prior knowledge, and the

lack of external validation. In this context, it is crucial to evaluate

the robustness and effectiveness of these models through external

validation on larger cohorts.

Developing machine learning models for predicting NDIs still

faces various challenges that need to be addressed to improve the

models and enable their implementation in healthcare institutions.

Second, beyond data acquisition, another challenge is the

imbalance in datasets. Due to the scarcity of patients with specific

diseases or conditions within a particular cohort, the diseased

population is significantly smaller than the healthy population. ML

models learning from imbalanced datasets may be biased toward

the majority class, leading to inaccurate predictions and sub-

optimal performance for the minority class. Data augmentation
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techniques are highly valued under these conditions and have been

already implemented before (Xiao et al., 2018; Chlap et al., 2021).

Transfer learning (TL) has also emerged as an approach for

tackling imbalanced datasets. TL involves using pre-trained models

or learned representations to enhance the performance of a new

task with limited data. One of the advantages of TL is that it

enables the transfer of knowledge from one healthcare institution

to another, especially in cases where data sharing is limited due to

privacy concerns. By training models on larger and more diverse

datasets across different institutions and fine-tuning them on

local data, healthcare organizations can benefit from the collective

knowledge and experiences captured in the models without the

necessity of sharing data.

Foundation models are ML models trained on large data,

typically using self-supervised learning techniques, and can be

adapted to different tasks. One remarkable feature of foundation

models is their adaptability. Foundation models can learn from a

diverse range of data types, such as text, images, and audio; when

these models are fine-tuned on specific datasets, they can apply

their generalized knowledge to specific domains.

These foundation models have proven highly effective

in generating notable models with applications in healthcare

(Bommasani et al., 2021). Significant advances in applications

have been observed in the analysis fMRI (Caro et al., 2024),

electronic medical records (Guo et al., 2023) and omics data

(Dalla-Torre et al., 2023). Moreover, healthcare data are inherently

multimodal, encompassing various types of data per individual.

Thus, multimodal foundation models present a promising

approach to enhance outcomes in this field (Bommasani et al.,

2021; Lu et al., 2022).

The application of foundation models in healthcare has notably

demonstrated their versatility; however, their potential in neonatal

healthcare remains unexplored. Future studies in this area could

pave the way for significant advancements by developing predictive

models tailored to neonatal healthcare. These models could help in

early diagnosis, potentially improving outcomes in this field.

Moreover, one notable limitation observed in the reviewed

studies was the absence of external validation. External validation

is a crucial step in model development because it assesses the

generalizability of the model beyond the original dataset and

determines its performance in different settings. It is essential to

test the model’s effectiveness in additional sites, considering the

variations in equipment and assessments that may exist across

different datasets. Without external validation, it is challenging to

determine the model’s reliability and applicability in real-world

scenarios. Replicating studies remains a challenge, as demonstrated

by Gondová et al. (2023), who were unable to reproduce the

results of the reference study conducted by Ouyang et al.

(2020), highlighting the difficulties in implementing and validating

these models.

One approach that can be applied to external validation

procedures is federated learning. Federated learning (FL) is

a decentralized ML approach that allows multiple parties to

collaboratively train a shared model without sharing their

data, thereby ensuring data privacy and reducing the need for

data transmission to a central server. This approach has been

successfully applied in various healthcare studies (Antunes et al.,

2022; Pfitzner et al., 2021; Rieke et al., 2020).

In addition, the use of synthetic patient data can significantly

impact the pace of research and model development (Goncalves

et al., 2020). Synthetic data have been proposed as a way to

augment limited real data because it is difficult to complement

scarce real data when obtaining datasets (Perez and Wang, 2017).

Additionally, there have been explorations into using synthetic

data for transfer learning from synthetic to real data, to improve

ML algorithms in healthcare. Models such as Multimodal Neural

Ordinary Differential Equations (MultiNODEs) (Wendland et al.,

2022), Generative Adversarial Networks (GAN) (Yang et al., 2019),

and diffusion models (Kotelnikov et al., 2023) have demonstrated

successful application of these methods.

Regardless of the different techniques and frameworks available

to overcome such challenges, future research should also focus

on regulation and collaboration among healthcare institutions.

Increasing the sample size in population studies will become

feasible with enhanced support for data collection, long-term

patient follow-up studies, and integration of regional and national

collaborative initiatives for sharing data and collectively validating

models to ensure their efficacy across diverse cohorts (Ngiam

and Khor, 2019; Agrawal and Prabakaran, 2020). Additionally,

establishing standardized protocols and data-sharing agreements

can streamline research, improve data quality, and encourage

innovation. By overcoming these obstacles, collaborative efforts

are needed to advance the field by driving progress toward

improving healthcare, especially in high-risk populations such as

very preterm infants.

4.1 ML models for predicting NDIs using
multimodal data, beyond neuroimaging
and clinical features

A common factor identified across the included studies was

the absence of omics data for predicting NDIs in very preterm

infants. Analyzing omics data collections can be highly valuable

for identifying previously understudied significant variables that

may have a significant impact on NDIs (Khodosevich and Sellgren,

2023), as displayed in Figure 3. Multimodal data integration

with the inclusion of omics features provides complementary

information about a given state, leading to precise data-driven

predictions (Li et al., 2016). This approach has been successfully

employed in the study of diverse and complex diseases, such as

cancer (Lipkova et al., 2022), Alzheimer’s disease (Venugopalan

et al., 2021), and neuropsychiatric disorders (Ghosal et al., 2021).

Moreover, the authors concluded that their ML models combining

these different layers of data were more accurate in terms of

prediction than those based only on clinical variables, as it enable

a comprehensive understanding of complex systems from multiple

perspectives and levels.

4.1.1 Omics biomarkers associated with NDIs in
preterm infants

Potential genetic biomarkers of the risk of neurodevelopmental

outcomes in preterm infants have also been considered in previous

studies, such as the cases of the MET, NRG3, and SLC6A4 genes.
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FIGURE 3

Multimodal machine learning model. Created in BioRender. Ortega, A. (2025) https://BioRender.com/t71k910.

These genes have been studied and found to be consistently

associated with neurodevelopmental outcomes. This can lead to a

risk profile of preterm infants (Blair et al., 2016). Furthermore, IL6R

gene polymorphism has been characterized for psychomotor delay

in preterm infants (Clark et al., 2018). FKBP5 gene polymorphism

has also been characterized to contribute to the effects of early

procedural repetitive stress on neurodevelopment in very preterm

infants (D’Agata et al., 2017). Epigenetic mechanisms have also

gained significance in NDIs research in preterm infants. DNA

methylation plays an important role in brain development; thus,

these epigenetic patterns may decode the basis of fetal brain

development (Spiers et al., 2015).

Research studies have identified potential epigenomic

predictors of cerebral palsy in newborns. A study indicated

methylation of CSRP1 and USP44 genes in patients diagnosed

with cerebral palsy born preterm compared with those born

preterm without cerebral palsy (Massaro et al., 2021). Moreover,

one study identified that microRNAs (miRNAs) such as miR-

1469 and non-coding RNAs (ncRNAs) like NCRNA00171 and

NCRNA00028 were significantly associated with cerebral palsy

in newborn patients in their study cohort (Bahado-Singh et al.,

2019). Additionally, it has been postulated that epigenetic

modifications, such as the methylation of SLC6A3, can influence

the neurodevelopment of impairments in preterm infants. In

the study of Arpón et al. (2018) methylation levels of SLC6A3

were evaluated in relation to BSID-III in preterm patients at

the age of 24-36 months. Another study identified 10 gene

bodies and promoters of protein-coding genes related to neural
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development and function in preterm infants (Sparrow et al.,

2016). In addition, another study conducted an epigenome-wide

association study (EWAS) in preterm infants and identified target

genes related to neurodevelopmental disorders (Wheater et al.,

2022).

5 Conclusions

Machine Learning techniques have shown promising results in

predicting NDIs in very preterm infants. In particular, multimodal

data models have demonstrated significant results over unimodal

data models. However, there are still challenges that need to be

addressed to improve the models and implement them effectively

in healthcare institutions. The reviewed studies lack external

validation, which is crucial for assessing the generalizability of the

MLmodels beyond the original dataset. External validation tests the

model’s effectiveness in different settings, considering variations in

equipment and assessments across datasets.

Addressing the challenges of imbalanced datasets, external

validation, and privacy concerns, along with exploring approaches

like transfer learning and synthetic data, can significantly improve

ML models for predicting NDIs in very preterm infants and

enhance healthcare outcomes. Moreover, collaborative efforts

among healthcare networks can help address challenges related to

thorough, continuous, and accurate data analysis. By combining

resources, sharing data, and collectively validating models,

healthcare networks can drive progress, especially in critical patient

populations like very preterm infants.
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