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ChatGPT-generated content
using deep transformer models
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and Gayathri Singaram

Faculty of Science and Engineering, Anglia Ruskin University, Cambridge, United Kingdom

Introduction:The rapid advancement of AI, particularly artificial neural networks,

has led to revolutionary breakthroughs and applications, such as text-generating

tools and chatbots. However, this potent technology also introduces potential

misuse and societal implications, including privacy violations, misinformation,

and challenges to integrity and originality in academia. Several studies have

attempted to distinguish and classify AI-generated textual content from human-

authored work, but their performance remains questionable, particularly for AI

models utilizing large language models like ChatGPT.

Methods: To address this issue, we compiled a dataset consisting of both

human-written and AI-generated (ChatGPT) content. This dataset was then used

to train and evaluate a range of machine learning and deep learning models

under various training conditions. We assessed the e�cacy of di�erent models

in detecting and classifying AI-generated content, with a particular focus on

transformer-based architectures.

Results: Experimental results demonstrate that the proposed RoBERTa-based

custom deep learning model achieved an F1-score of 0.992 and an accuracy

of 0.991, followed by DistilBERT, which yielded an F1-score of 0.988 and an

accuracy of 0.988. These results indicate exceptional performance in detecting

and classifying AI-generated content.

Discussion: Our findings establish a robust baseline for the detection and

classification of AI-generated textual content. This work marks a significant

step toward mitigating the potential misuse of AI-powered text generation

tools by providing a reliable approach for distinguishing between human and

AI-generated text. Future research could explore the generalizability of these

models across di�erent AI-generated content sources and address evolving

challenges in AI text detection.

KEYWORDS

natural language processing, ChatGPT, large language models, Generative AI,

transformers, BERT, text classification

1 Introduction

The growth of Artificial Intelligence (AI) specifically Artificial Neural Networks

(ANN) tools has been one of the most significant technological advancements of the past

few decades. With the availability of massive amounts of data and the ever-increasing

computing power, AI has become a vital tool in solving complex problems and making

predictions across various industries. The advent of deep learning has revolutionized the

field of artificial intelligence (Aggarwal et al., 2022). Deep learning has led to significant

breakthroughs in areas such as computer vision, natural language processing, and speech

recognition. It has enabled the development of new applications such as autonomous

vehicles, virtual assistants, andmedical diagnostics. Despite its many benefits, there are also

potential adverse effects associated with this powerful tool (Helbing, 2019). AI applications

can be misused in various ways. Violation of privacy through AI-powered surveillance and
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facial recognition technologies, use of AI to automate social media

content moderation which can result in censorship and restrict

freedom of speech, use of AI to create fake news or deep-

fake videos, which could spread misinformation, shift the public

narrative and defame individuals are just some examples of the

adverse implications of Artificial Intelligence (Brundage et al., 2018;

Javadi et al., 2020; Khisamova et al., 2019).

AI-powered text generative tools aka chatbots are one of the

most important applications of deep learning. These tools rely on

natural language processing and machine learning algorithms to

understand and interpret user input and provide relevant responses

in real-time. Previously chatbots could only answer specific short

queries and hold small domain-restricted conversations. The

current GPT/BERT transformer-based model chatbots can analyze

long queries and generate lengthy responses in real-time, thanks to

the inherent mechanisms of the transformer-based models. They

can deal with various types of text content, including emails,

recipes, poems, meeting summaries, essays, and even algorithms or

code. Modern chatbots can analyse the context of a conversation,

learn from past interactions, and continuously improve their

responses, providing a more personalized and efficient experience

for the users (Adamopoulou andMoussiades, 2020; Arsenijevic and

Jovic, 2019). Chatbots can provide fast and convenient customer

support, handle multiple inquiries at once, are available 24/7, and

reduce business operational costs.

Despite the numerous benefits of these tools, they can be

misused in various ways. AI-powered text-generative tools can be

used for malicious purposes such as spreading false information,

promoting scams and phishing attacks, and fabricating assessment

solutions in academia. On top of that, there are significant concerns

regarding the reliability and correctness of the contents that are

sourced from these technologies (Kooli, 2023; Tlili et al., 2023).

As more people rely on these tools for generating content, it

hampers the creativity of individuals, the diversity of ideas, and

the credibility of cyberspace. Excessive use of AI-powered text

generation models in academic settings could negatively affect the

growth and development of students. Although these tools offer an

easy way to access information, they lack the credibility of peer-

reviewed books and scientific articles authored by subject experts.

Over-reliance on these tools leads to a lack of critical thinking skills

and independent learning among learners. In addition, it makes it

difficult to assess the quality and originality of the work submitted

by the students and evaluate their comprehension, which often

leads educators to resort to less accessible assessment methods such

as timed examinations and presentations (Bozkurt et al., 2023; Tlili

et al., 2023).

In this regard, this study aims to investigate the performance

of various machine learning/deep learning models and text

classification pipelines in detecting and classifying textual content

generated using AI. Our specific focus in this study is on the

textual content generated by OpenAI’s ChatGPT, which is widely

regarded as one of the most powerful and accessible tools in

this field. To realize this goal, we collected and compiled a large

dataset comprising both ChatGPT and human-generated textual

content in the field of computer science and networks. We used

this dataset to train several machine learning models including

Multinomial Naive Bayes, Support Vector Machines (SVM), K

Nearest Neighbor, RandomForest, and a number of state-of-the-art

deep learning models including a baseline Bidirectional Long

Short Term Memory (BiLSTM) model, DistilBERT (Sanh et al.,

2019), RoBERTa (Liu et al., 2019), and a custom deep model

and evaluate their performance in classification of AI-generated

(ChatGPT) textual content under various experimental setup and

hyperparameters.

The main contribution of this study is the collection and

compilation of a large dataset consisting of textual content, which

includes both ChatGPT-generated and human-generated question-

answers in the field of computer science, networks, and security.

This dataset has been made available publicly for research purposes

(for more details please refer to Section 3). This study particularly

focuses on the detection of AI-generated content in academia

particularly in the field of computer science to safeguard academic

integrity and detect plagiarism. Furthermore, this study contributes

to establishing a baseline for the detection and classification of

AI-generated textual content in academia using state-of-the-art

machine learning and deep learning models. This study also

offers a comparative analysis between the proposed classification

models and Turnitin’s AI plagiarism detector, one of the most

widely recognized solutions in the field, thus making an additional

contribution to the field. Exhaustive experiments are performed

to identify the right set of features, processes, algorithms, and

hyperparameters to optimize the proposed models.

The rest of the manuscript is structured as follows: Section 2

offers a closer look at the literature and investigates and scrutinizes

various related studies; Section 3 outlines the proposed dataset

structure, data collection, and compilation process; Section 4

explains the proposed method including different text mining

pipelines, classification models, their hyper-parameters, and

training regimes utilized in this research; Section 5 summarizes the

results of the study and finally, Section 6 provides the concluding

remarks.

2 Literature review

Textual content generation has gained substantial popularity

in recent years, primarily due to advancements in AI and

deep learning. Numerous commercial and open-source tools and

technologies are now readily available to facilitate the process of

generating plausible textual content. Despite the countless benefits

of these tools, they come with potential adverse side effects and can

be often misused. Therefore, it is crucial to study measures for the

identification of AI-generated content and address ethical concerns

to promote responsible and accountable practices in the field. This

is especially important when it comes to academia where integrity

and authenticity are crucial. Over the last decade, many studies

attempted to differentiate and classify AI-generated textual content

from original human-generated work. This section briefly outlines

some of these attempts and addresses their possible shortcomings.

A study by Tien and Labbé (2018), attempts to detect

computer/AI-generated sentences and short textual fragments

using Grammatical Structure (parse tree) Similarity (GSS). This

study particularly focuses on textual contents generated using

Probabilistic Context Free Grammar (PCFG), Recurrent Neural

Network (RNN), and Markov models. This research used multiple

PCFG corpora paired with the Jaccard similarity index to evaluate
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the performance of the proposed model. This model is claimed

to achieve an 80% positive detection rate and less than a 1% false

detection rate. A similar study by Labbé et al. (2016) investigates

the use of Markov Chain and PCFG approaches in the generation

of computer/AI-generated scientific texts, with a focus on the

SCIgen tool. They managed to successfully detect computer/AI-

generated contents by leveraging three different factors; vocabulary

richness, length and structure of sentences, and frequency of

word distribution with a combination of Inter-textual Distance

and Agglomerative Hierarchical Clustering algorithms. It was

concluded that computer/AI-generated SCIgen fails to diversify the

vocabulary depending on the situation, thereby making it easier for

detection.

In another study, Lavoie andKrishnamoorthy (2010) attempted

to detect academic papers generated using the SCIgen software.

This study primarily focuses on keywords occurrences in different

sections of the papers. First, it computes the title and abstract score

which denotes the frequency of occurrence of keywords in these

sections of the paper. Second, the word repetition score extracts

the top N most common words and Finally, the references score

denotes the occurrence of words in the citations mentioned in

the paper. Despite a limited sample size of 200 papers, this study

was claimed to be able to successfully detect computer-generated

scientific papers using K-Nearest Neighbor Algorithm. On the

downside, this model appears to be computationally expensive

while taking only a limited number of features into account for the

detection of computer-generated academic papers.

In a slightly different study, Nguyen-Son and Echizen (2018)

proposed a novel model for predicting computer-generated text

using noise and language fluency factors. This model was

deployed on 1,000 human-written English messages along with

1,000 Google-translated (computer-generated) Spanishmessages to

extract the fluency and noise features. The fluency features were

extracted by measuring N-grams and their frequency whereas,

the noise features were retrieved by extracting candidate noises,

spoken word noises, and unexpected noise words followed by

calculating the minimum edit distance of unexpected noise words.

Combining the two characteristics allowed the Sequential Minimal

Optimisation (SMO) classifier to classify computer-generated text

with up to 80.35% accuracy accurately. The detection of more

complex and longer computer-generated content may not be

possible as this study focuses on short text messages, which often

contain slang and untranslated phrases.

In another study, Nguyen-Son et al. (2017) proposed a new

method for recognizing computer-generated textual content using

statistical analysis to address shortcomings in their earlier work.

The frequency, complexity of phrases, and consistency of words

within a document were taken into account during the feature

extraction process. Nine distinct features were produced by these

three feature extraction techniques, and they were then utilized to

classify human-written textual content from computer-generated

counterparts. Logistic Regression, Support Vector Machine (SVM),

Sequential Minimal Optimisation (SMO), and Stochastic Gradient

Descent (SGD) classifiers were investigated in this research. It was

discovered that SVM with SGD achieved the highest accuracy

of 89.0% on the ancient Complex phrases feature alone. After

merging all the data, the model was able to reach an accuracy

of 98%. Due to the widespread use of Neural Language Models

in producing computer-generated text, it has become more

challenging to distinguish computer-generated text from content

written by humans which is necessary for many educational and

creative industries. A study by Ifeoluwa Adelani et al. (2019)

focused on the identification of fake product reviews in online e-

commerce and retail outlets. The research employed the GPT-2

Neural Language Model (NLM) to create numerous high-quality

reviews that aligned with a specific sentiment. The reviews were

then screened for undesired sentiments using a BERT-based text

classifier, which had an accuracy rate of 96%. Further, the study

analyzed the reviews with Grover, GLTR and OpenAI GPT-2

model, but was unable to achieve satisfactory results. A similar

study by Stiff and Johansson (2022) attempted to detect computer-

generated disinformation in news articles and social media posts.

This study evaluated a number of state-of-the-art Transformer-

based detection algorithms at various configurations. Authors

reported that themajority of these detectors are unable to generalize

and detect computer-generated short social media posts and are

vulnerable to basic adversarial attacks.

A number of other studies attempted to investigate how AI-

generated textual content can negatively impact academia and

how its adverse effects can be mitigated. A study by Abd-

Elaal et al. (2019) explored the use of Artificial Intelligence for

academic misconduct, plagiarism, falsification, and fabrication

of academic articles. This study shows how Automatic Article

Generator (AAG) tools use keywords, articles, or topics from users

to generate documents through the gradual propagation of the

related articles in the form of a knowledge tree. AAGs make

use of advanced natural language processing and deep learning

techniques to frame human-like sentences. This study indicates the

use of AAG tools in academia imposes challenges for evaluators

to understand the true potential of the students and researchers.

Similarly, Jiffriya et al. (2021) attempted to investigate the use of

AI in the context of plagiarism in academia. This study offers a

survey on plagiarism detection tools and techniques for computer

code and natural language. It classifies natural language into

four major categories based on the mode of corporal, type of

application, mode of service and language. They identified the

majority of plagiarism detection tools are suffering from three

major issues: firstly, the scope of detection, some tools compare

documents that are only present in their own repository while

others face issues with accessing password-protected databases on

the Internet. Secondly, analyzing paraphrased text is a challenge as

they use synonyms, rewording, and reordering. Finally, documents

translated from one language to another are hard to be detected

by plagiarism tools. This study suggests the need for more

advanced tools for detecting plagiarism in academia as AI-

powered computer-generated tools are getting more accessible

to students.

Many researchers attempted to investigate methods used

for identifying computer-generated textual content. A study by

Beresneva (2016) offers a systematic review of computer-Generated

text detection using machine learning techniques. Various methods

like frequency analysis, linguistic feature analysis, phrase analysis,

lexicographic feature analysis, and hidden style similarity have been

investigated and compared in this study. The author suggested
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characteristics of computer-Generated textual content are the

primary factor in finding the right detection model.

A study by Gruner and Naven (2005) offers a tool for

plagiarism detection that mainly relies on Morton’s Word Pattern

Ratios (Morton, 1978). The functionality of this tool can be

described in four sequential methods: Converting formatted text

into processable plain text, Testing the texts pairwise for each of

62 Morton’s Word Pattern rules, Comparing single test results

and counting the matches, and If the matching threshold is

reached, issue a warning. Promising findings in terms of stylometric

detection accuracy have been reported. However unorthodox

nature of this study, makes it difficult to compare it with

other literature. A similar study by Lukashenko et al. (2007)

discusses approaches to mitigate plagiarism and investigates tools

for detecting plagiarism. This study indicates that the majority of

the existing plagiarism detection approaches rely only on simple

statistical and frequency-based techniques. This study indicates,

while these tools perform well in finding similarities among

documents, they are not yet able to detect computer-generated

content.

A study by Arabi and Akbari (2022) proposed two methods

to identify extrinsic plagiarism. To minimize the search space,

this study used two stages of filtering at both document and

sentence levels based on the Bag of Word (BoW) technique.

The first method used a combination of pre-trained FastText

words embedding and TF-IDF to detect similarities while the

second method benefits WordNet ontology and weighting TF-IDF

techniques. Experimental results on the PAN-PC-11 corpus show

that the first method achieved 95.1% precision and the second

method 93.8% precision which evidences the advantage of the word

embedding method for automated plagiarism detection. A study

by Khaled and Al-Tamimi (2021) looks at academic plagiarism and

plagiarism detection approaches in a comparative study. A number

of plagiarism detection tools such as MOSS, Turnitin, DupliCheck,

and PlagScan have been investigated and compared. This study

concludes that paraphrasing, repetitive research, secondary source,

duplication, and verbatim are the most common types of academic

plagiarism. This study also outlines some challenges in plagiarism

detection including the absence of an accurate framework for

AI plagiarism detection that can reveal text segments for both

plagiarism detection.

There are several other studies (Khalil and Er, 2023; Apoorv

et al., 2020; Eissen and Stein, 2006; Potthast et al., 2010) that

concern the detection of AI-generated content for academic

plagiarism detection purposes, however, there is still a need for

further research and development in this area as AI technology

continues to evolve and improve. Current methods of detecting AI-

generated textual content may not be sufficient to keep up with the

sophistication and diversity of AI-generated content. Additionally,

as AI-generated content becomes more prevalent and accessible, it

may become increasingly difficult to distinguish between human-

generated and AI-generated content. Therefore, continued research

and development in this area is crucial to address these challenges

and ensure the integrity and reliability of information especially in

an academic context.

3 Transformer-based architectures:
BERT and GPT models

The superior performance of models like BERT and GPT

is rooted in the architecture of the transformer model, which

fundamentally relies on self-attention mechanisms and a feed-

forward network architecture. Unlike recurrent neural networks

(RNNs) and LSTMs, which process sequences in a stepwise

fashion and are constrained by the vanishing gradient problem

when handling long-range dependencies, transformers allow for

complete parallelization across the input sequence, significantly

increasing computational efficiency and scalability.

BERT is built upon a stack of identical transformer encoder

layers, each of which consists of multi-head self-attention followed

by a position-wise fully connected feed-forward network. The self-

attention mechanism allows the model to compute the importance

of each token relative to all other tokens in the input sequence,

capturing both local and global dependencies. The “multi-head"

aspect means that multiple attention distributions are learned

in parallel, allowing the model to focus on different parts of

the input simultaneously. This is crucial for understanding the

bidirectional context, which is one of BERT’s key innovations.

BERT’s architecture typically includes 12–24 encoder layers (or

“transformer blocks"), with each layer having 12 or 16 attention

heads, depending on the model size (BERT-base vs. BERT-large).

The hidden size of each layer is 768 for BERT-base and 1,024 for

BERT-large, with a corresponding number of parameters (110M for

BERT-base and 340M for BERT-large). The pre-training of BERT

involves tasks like Masked Language Modeling (MLM), where

random words are masked, and the model is trained to predict

them, and Next Sentence Prediction (NSP), which helps the model

understand sentence-level relationships.

GPT, on the other hand, employs a decoder-only transformer

architecture, optimized for autoregressive tasks. The model

processes the input text in a unidirectional fashion, where each

token attends only to the tokens preceding it in the sequence.

GPT’s transformer layers are similarly composed ofmulti-head self-

attention and feed-forward networks, but unlike BERT, GPT does

not include bidirectional context. This unidirectional nature allows

GPT to excel in generative tasks by predicting the next word in a

sequence based on the preceding words. GPT models like GPT-3

utilize up to 96 transformer layers, with a hidden size of 12,288

and over 175 billion parameters, enabling the model to generate

human-like text across a wide range of tasks. The use of LayerNorm

before each sub-layer and residual connections between layers

ensures stable gradient propagation and prevents degradation as

the model depth increases.

Both BERT andGPT architectures employ positional encodings

to retain information about the order of tokens, which is crucial

for tasks where word order impacts meaning. The transformer’s

reliance on self-attention allows these models to scale effectively

with larger datasets and deeper architectures, which, combined

with their pre-training on massive corpora and subsequent fine-

tuning on specific downstream tasks, results in state-of-the-art

performance in natural language understanding and generation.
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FIGURE 1

A random sample of the proposed dataset. ChatGPT-generated

entries are labeled as 1 while Human-generated entries are labeled

as 0.

4 Data collection process

In order to carry out this research, we have compiled a

dataset that consists of 509 descriptive question-answers about

common terminology, concepts and definitions in the field

of computer science, artificial intelligence, and cyber security.

These questions were answered using both human-generated

content andOpenAI’s ChatGPT engine. Human-generated answers

were collected from different computer science dictionaries and

encyclopedias including “Encyclopedia of Computer Science and

Technology" (Henderson, 2009) and “Encyclopedia of Human-

Computer Interaction” (Ghaoui, 2005). AI-generated content

in our dataset was produced by simply posting questions to

OpenAI’s ChatGPT and manually documenting the resulting

responses. A rigorous data-cleaning process has been performed

to remove unwanted Unicode characters, styling and formatting

tags. Although the focus of this study is mainly on the classification

of the AI-generated and Human-generated content, the question-

answers nature of this dataset allows additional possibilities for our

future research. To restructure our dataset for binary classification,

we combined both AI-generated and Human-generated answers

into a single column and assigned appropriate labels to each

data point (Human-generated = 0 and AI-generated = 1). This

creates our article-level dataset which consists of a total of 1,018

articles (answers), 509 AI-generated and 509 Human-generated.

Additionally, we have divided each article (answer) into its

sentences and labeled them accordingly. This is mainly to evaluate

the performance of classification models and pipelines when it

comes to shorter sentence-level data points. This constructs our

sentence-level dataset which consists of a total of 7,344 entries

(4,008 AI-generated and 3,336 Human-generated). Figure 1 shows

a random sample of the proposed dataset. Also, Figure 2 shows

class frequency count across both article-level and sentence-level

datasets.

In terms of length, the article-level dataset contains individual

articles ranging from 26 to 456 words, while the sentence-level

dataset includes sentences varying from 1 to 171 words. Figure 3

shows the probability distribution of data points length across

both article-level and sentence-level datasets. It can be seen that

on average, AI-generated sentences and articles tend to be longer

FIGURE 2

Class frequency count across both article-level (bottom) and

sentence-level (top) datasets. Class 0 represents Human-generated

contents while class 1 denotes AI-generated (ChatGPT) contents.

than their Human-generated counterparts. The proposed dataset

has been made publicly accessible and can be downloaded from

supplementary documents of this article.

5 Methodology

This study explores several NLP pipelines and supervised

classification models for the classification of OpenAI’s ChatGPT-

generated textual content. Classic supervised machine learning

models including Multinomial Naive Bayes, Random Forest,

Support VectorMachines (SVM), and K-Nearest Neighbors (KNN)

have been trained and tested under various parameters and training

regimes. Besides classic supervised machine learning models, a

number of deep learning-based models including a baseline Long

Short Term Memory (LSTM) model, DistilBERT (Sanh et al.,

2019), RoBERTa (Liu et al., 2019), and a custom model have been

investigated in this study. All models have been trained using

both article-level and sentence-level datasets to identify the impact

of document length on the model accuracy. Since these models

require different pre-processing, text mining, and feature extraction

pipelines, we have organized this section into two subsections

including classic machine learning models and deep learning models

as below:
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FIGURE 3

Probability distribution of data entries’ length across both

article-level (bottom) and sentence-level (top) datasets.

5.1 Classic machine learning models

Figure 4 shows the NLP pipeline and processes that this study

employed in order to transform the raw textual data into a vector

of syntactical and sentimental features suitable for the classification

process.

In this study, we used the popular Spacy pre-trained English

language pipeline which consists of Token to Vector, Part-of-

Speech Tagging, Dependency Parser, Attribute Ruler, Lemmatizer,

and Entity recognition components. The pipelined pre-trained

using OntoNotes Release 5.0, a large annotated corpus comprising

various genres of text including news, conversational telephone

speech, weblogs, Usenet newsgroups, broadcast, and talk shows.

The pipeline outputs a feature vector that will be fed into a number

of classification algorithms including Multinomial Naive Bayes,

Random Forest, Support Vector Machines (SVM), and K-nearest

neighbors (KNN) to segregate ChatGPT-generated textual data

from human-generated contents. The following section explains

each step in more detail.

5.1.1 Natural language processing pipeline
The following section elaborates on the NLP pipeline

components, hyperparameters, and procedures that we have

utilized to convert raw textual data into a vector of syntactic

features suitable for the classification task.

5.1.1.1 Tokenization and vectorization process

Tokenization is the process of breaking up a given text

into discrete elements called tokens and Vectorization converts

tokenized text data to numerical context-independent word vector

representations. We used trainable HashEmbedCNN.v2 model

which consists of a MultiHashEmbed embedding layer that uses

subword features to construct an embedding layer that embeds

lexical attributes using hash embedding. This layer concatenates

the results and passes them to subsequent MaxoutWindowEncoder

layers which encode context using four convolutions with Maxout

activation function, layer normalization and residual connections

(Vasiliev, 2020). An embedding size of 2,000 was used in this

process. This process outputs a vector representation in the form

of a tensor that can be used and called by upstream components of

the pipeline.

5.1.1.2 Part-of-speech (POS) tagging

POS Tagging includes the assignment of a label (Part-of-

Speech) to each word in a text which describes the grammatical

function of a word such as nouns, pronouns, verbs, adverbs,

etc. The tagger is built on top of the token-to-vector model

(HashEmbedCNN.v2), adding a linear layer with Softmax

activation to predict Part-of-Speech scores given the token vectors.

5.1.1.3 Syntactic dependency parsing

This analyzes the grammar of the sentence and identifies the

connection between words in the sentence, representing them

in the form of a tree known as syntactic dependency parsing.

The dependency parser is a trainable process which jointly learns

sentence segmentation and labeled dependency parsing and can

optionally learn to merge tokens that had been over-segmented

by the tokenizer. This study employs a variant of the non-

monotonic arc-eager transition-based dependency parser proposed

by Honnibal and Johnson (2015).

5.1.1.4 Token attribute mappings

A rule-based process that allows setting token attributes for

tokens identified by Matcher patterns that operates over tokens,

similar to regular expressions. The attribute ruler is typically used to

handle exceptions for token attributes and helps in a more accurate

classification of text.

5.1.1.5 Lemmatization

A non-trainable process that aims for assigning base forms to

tokens using rules based on part-of-speech tags, or lookup tables.

This study employs the Spacy Lemmatizer component In “lookup”

mode based on data available at Spacy (2023).
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FIGURE 4

The natural language processing pipeline used in conjunction with classic supervised machine learning models.

5.1.1.6 Named entity recognition

This trainable component includes a transition-based named

entity recognizer model (Lample et al., 2016) that identifies non-

overlapping labeled spans of tokens such as people, organizations,

places, etc and assigns the appropriate category.

5.1.2 Classification models
The following section elaborates on various classic supervised

machine learning algorithms and their respective hyperparameters

that we used in this study.

5.1.2.1 Multinomial Naive Bayes

Multinomial Naive Bayes is a variant of the Naive Bayes

algorithm that is particularly used for text classification. It models

the frequency of occurrence of features (ex: words/tokens) and

makes predictions based on their probabilities, assuming each

feature is independent of the others. Multinomial Naive Bayes is

suitable for NLP due to its ability to handle high-dimensional,

discrete data, such as word counts in text documents. It simplifies

complex language problems by assuming feature independence,

which makes it efficient for text classification tasks. In our

experiments, the smoothing parameter (alpha) is set to 1, and the

fit prior parameter is set to True.

5.1.2.2 Random Forest

Random Forest is an ensemble learning model that aggregates

multiple decision trees to perform classification. During the

training phase of this experiment, a random forest model with 100

trees and a maximum depth of 10 is employed. The algorithm

generates 100 decision trees, each built using a random subset of

data and features through feature bagging. Each tree includes up to

10 levels of decision nodes to reduce the computational process.

5.1.2.3 Support vector machines (SVM)

SVM is a supervised machine learning algorithm used for

both classification and regression applications. It separates classes

by finding the hyperplane (decision boundary) that maximizes

the margin between them. SVM is popular for NLP due to

its effectiveness in handling high-dimensional and its robustness

against overfitting. In this study, we used a degree 6 polynomial

kernel. The probability parameter (to enable probability estimates)

is set to True to remove class size bias and reduce overfitting.

5.1.2.4 K-nearest neighbors (KNN)

KNN is a supervised machine learning algorithm used for

classification or regression. KNN predicts a data point’s label based

on the labels of its “K" closest neighbors in the feature space. In

this research the K value is set to 15 (empirically) and the distance

metric is set to euclidean. KNN is popular for text classification,

sentiment analysis, and language modeling due to its capability in

capturing semantic similarity by using distance metrics in high-

dimensional space.

5.1.3 Training process and parameters
To investigate the impact of document length on classification

accuracy, all models have been trained and tested using both article-

level and sentence-level datasets. In both cases, the split ratio of

80–20% has been used from training and testing subsets. This

results in 875 articles in the training subset and 153 articles in

the test subset under the article-level setup. Meanwhile, in the
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sentence-based setup, the training subset includes 5,875 sentences

while the testing subset includes a total of 1,469 sentences. In

both scenarios “Human-generated" contents are labeled as 0 while

“Chat-GPT-generated" contents are labeled as 1. All subsets were

seeded and randomly shuffled for uniformity. Subsets were pickled

to maintain consistency and repeatability across experiments. In

both article-level and sentence-based setups, the language model

pipeline outputs a normalized vector of 300 dimensions with

514k unique vectors and 514k corresponding keys which is more

than adequate for the complexity and permutation of data in this

study. The feature vector will be fed into aforementioned classifiers

including Multinomial Naive Bayes, Random Forest, Support

Vector Machines (SVM), and K-nearest neighbors (KNN) to

segregate ChatGPT-generated textual data from human-generated

contents. Experiment results will be discussed in the Results and

Discussion section.

5.2 Deep learning models

In addition to classic machine learning models, this

study investigates several state-of-the-art deep learning model

performances for the classification of ChatGPT-generated textual

content from human-generated content. These models include a

baseline Long Short Term Memory (LSTM) model, DistilBERT

(Sanh et al., 2019), RoBERTa (Liu et al., 2019), and a custom

model based on RoBERTa. Models like RoBERTa and DistilBERT

have demonstrated high accuracy in text classification scenarios,

particularly for tasks that require distinguishing subtle differences

between text types. These models have been shown to outperform

traditional techniques in several studies (e.g., Devlin, 2018; Sanh

et al., 2019). All models have been trained using both article-level

and sentence-level datasets to identify the impact of document

length on the model accuracy. These models necessitate the

adoption of relatively different NLP processes, hyperparameters,

and pipelines, which will be elaborated in the subsequent section.

5.2.1 Preprocessing and vectorization layer
The preprocessing operation converts raw textual data into a

vector of syntactic features suitable for training and evaluating

deep learning models. It includes two major processes including

Text Vectorization and padding. Text Vectorization is a pre-

processing layer that simplifies the task of converting raw

text data into numerical representations that can be used as

input for deep learning models. It takes the input textual

data and performs a series of operations, such as tokenization,

standardization including lowercasing, punctuation removal, and

vocabulary creation. The Text Vectorization layer then transforms

the preprocessed text data into a sequence of integer indices

or dense vectors. It provides a convenient and efficient way to

preprocess text data and prepare it for further processing in

neural networks, however, it doesn’t take into account more

intricate language elements like morphological variations or

subword segmentation. Apart from DistilBERT model, we used

TensorFlow’s TextVectorization layer in combination with int

output mode parameter which assigns a special integer ID to each

token. The output_sequence_length parameter sets the length of the

output sequences to 200 words which is aligned with the average

length of articles in our dataset. If texts are shorter than this

length, they get padded with zeros; otherwise, they get truncated.

This ensures all sequences have uniform lengths for efficient and

unbiased model training. The maximum vocabulary length is set to

20,000 words empirically.

The DistilBERT model benefits from a custom tokenizer

that makes use of the WordPiece algorithm. This technique

breaks down words into subwords, enabling the model to

handle a wide range of vocabularies, including rare and out-

of-vocabulary words. Also, it provides better control over

morphological variations, enhancing the model’s overall efficiency

and performance. In this study, we used Keras’ DistilBertTokenizer

and DistilBertPreprocessor for DistilBERT deep model. We

employed distil_bert_base_en_uncased tokenizer preset, which is

optimized within a 6-layer DistilBERT model with 66 million

parameters where all input is lowercased. This model is pre-trained

on English Wikipedia and BooksCorpus using BERT as the teacher

model. Besides integer token IDs, the output sequence also includes

a list of special tokens including CLS which denotes the start of

the sequence token, SEP which represents the end of the sequence

token, and PAD which indicates padding tokens, meant to equalize

the sequence length across the input data.

5.2.2 Deep models
The following section elaborates on the model architecture and

hyperparameters of the employed deep learning models in this

study:

5.2.2.1 Bidirectional LSTM based Model

The bidirectional LSTM model consists of an embedding layer

which receives the preprocessed, vectorized and padded sequenced

from the TextVectorization preprocessing layer. This layer outputs

a 128-dimension vector. The embedding layer is followed by two

Bidirectional LSTM layers with 128 and 64 dimensions respectively.

Next, the model includes a 128-dimensional dense layer with relu

activation function, followed by a 20% Dropout layer and a final

one-dimensional dense layer with a sigmoid activation function.

The model has been paired with BinaryCrossentropy loss function

and Adam optimizer. Adaptive learning rate and early stopping

regularization mechanisms have been arranged to optimize neural

network training, enhancing model performance and preventing

overfitting. Figure 5 shows the conceptual Bidirectional LSTM

model architecture.

5.2.2.2 DistilBERT

DistilBERT, a condensed, speedy, cost-efficient, and lightweight

Transformer model, has been developed by distilling the BERT

base model. It features 40% fewer parameters than the bert-base-

uncased, allowing it to execute tasks 60% more rapidly, while still

retaining above 95% of BERT’s effectiveness as evaluated on the

GLUE language comprehension benchmark (Sanh et al., 2019).

We employed pretrained distil_bert_base_en_uncased tokenizer

preset, which is optimized within a 6-layer DistilBERT model

with 66 million parameters where all input is lowercased, paired

with distilbert-base-uncased pretrained model. The DistilBERT
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FIGURE 5

Bidirectional LSTM model architecture.

FIGURE 6

DistilBERT model architecture.

model which outputs a vector of 768 dimensions, is followed

by a 512-dimensional dense layer with relu activation function,

a 20% Dropout layer, and a final one-dimensional dense layer

with a sigmoid activation function. The pretrained DistilBERT

along with the top layers will be finetuned using the proposed

dataset during the training process. Figure 6 shows the conceptual

DistilBERT model architecture. The model has been paired

with sparse_categorical_crossentropy loss function and Adam

optimizer. Adaptive learning rate and early stopping regularization

mechanisms have been arranged to optimize model performance

and prevent overfitting. Hyperparameters are fined-tuned

empirically to maximize model accuracy.

5.2.2.3 RoBERTa

RoBERTa, an evolution of BERT, tweaks key hyperparameters,

discards the next-sentence pretraining and employs larger

mini-batches and learning rates for enhanced training efficacy.

RoBERTa includes minor tweaks to embeddings and pretrained

models setup. It employs a byte-level BPE tokenizer, similar to

GPT-2, and a bespoke pretraining method. RoBERTa doesn’t

require token_type_ids, instead, segments are separated by a

token, such as tokenizer.sep_token or </s>. The model enhances

pretraining by applying dynamic masking, permitting token

masking to vary across epochs, unlike BERT. Furthermore, it trains

with larger batches and uses BPE with bytes, accommodating

Unicode characters. For this experiment, we employed pretrained

roberta_base tokenizer preset, along with roberta_base_en

pretrained RoBERTa backbone, which is a 12 encoders layer,

case-sensitive model, consisting of 110 million parameters

trained on English Wikipedia, BooksCorpus, CommonCraw,

FIGURE 7

RoBERTa model architecture.

TABLE 1 Performance of classic supervised machine learning models

using sentence-level dataset.

Precision Recall F1-score Accuracy

Multinomial

Naive Bayes

0.665 0.884 0.759 0.690

SVM 0.820 0.848 0.833 0.813

Random

Forest

0.774 0.852 0.811 0.781

KNN 0.769 0.807 0.788 0.760

and OpenWebText. The RoBERTa model outputs a vector of

768 dimensions. A 10% Dropout layer, Flatten layer, a 512-

dimensional dense layer with relu activation function, and a

final one-dimensional dense layer with a sigmoid activation

function comprise the top layers of the RoBERTa model.

The pretrained RoBERTa along with the top layers will be

finetuned using the proposed dataset during the training process.

Similar to the DistilBERT model, RoBERTa has been paired

with sparse_categorical_crossentropy loss function and Adam

optimizer. Adaptive learning rate and early stopping regularization

mechanisms have been arranged to optimize model performance

and prevent overfitting. Hyperparameters are fined-tuned

empirically to maximize model accuracy. Figure 7 shows the

conceptual RoBERTa model architecture.

5.2.2.4 Custom Deep Model

The proposed Custom Deep Model works similarly to the

RoBERTa however instead of 12 encoders layers, it benefits from

four encoders layers only. On top of that, it uses parameter-

sharing across layers and a factorized embedding parameterization

to further reduce the model size. These changes reduce the model

size down to only 4 million parameters, making it considerably

faster than the RoBERTa with over 110 million parameters. The

proposed custom model uses the same pretrained BertTokenizer.

This model has been trained using English Wikipedia and

BooksCorpus and then finetuned using the proposed dataset.

The top layer architecture in this model is similar to the one

in RoBERTa model. Similarly, the proposed model has been

paired using sparse_categorical_crossentropy loss function and

Adam optimizer with adaptive learning rate and early stopping

regularization mechanisms to optimize model performance and

prevent overfitting.
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FIGURE 8

Confusion matrices of classic machine learning models using sentence-level dataset.

FIGURE 9

ROC curves of classic machine learning models using

sentence-level dataset.

6 Results and discussion

6.1 Classic machine learning models

Both classic and deep learning based models are trained

and tested on sentence-level and article-level datasets to identify

the impact of document length on the model accuracy. The

TABLE 2 Performance of classic supervised machine learning models

using article-level dataset.

Precision Recall F1-score Accuracy

Multinomial

Naive Bayes

0.816 0.783 0.8 0.810

SVM 0.92 0.932 0.926 0.928

Random

Forest

0.794 0.837 0.815 0.816

KNN 0.797 0.851 0.823 0.823

experimental setup and hyperparameters under each experiment

have been explained in the previous section. Table 1 shows the

performance of classic supervised machine learning models using

sentence-level datasets. Support Vector Machine (SVM) supervised

algorithm with F1-score and Accuracy of 0.833 and 0.813

respectively outperformed other classic classification algorithms

in this study. With a considerable margin, Random forest with

F1-score and Accuracy of 0.811 and 0.781 respectively was the

second-best performer among classic classification algorithms in

this study. As anticipated, Multinomial Naive Bayes with F1-

score and Accuracy of 0.759 and 0.690 was the worst performer

among classic classification algorithms in this experiment. Given

the average length of sentences in our sentence-level datasets

is less than 20 words, it is extremely challenging for any

supervised classification algorithm to segregate human-generated

from AI-generated (ChatGPT) contents due to the lack or even
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FIGURE 10

Confusion matrices of classic machine learning models using article-level dataset.

absence of discriminative features in shorter data points. Figure 8

illustrates confusion matrices of classic machine learning models

using sentence-level dataset. Although the overall result is not

promising, SVM shows a noticeable edge over other classification

algorithms in this experiment. Figure 9 displays ROC (Receiver

Operating Characteristic) curves of classic classification models

using the sentence-level dataset which implies the trade-off between

the sensitivity and specificity of the models that we tested in this

experiment.

Table 2 shows the performance of classic supervised machine

learning models using article-level dataset. A noticeable boost

across all classification metrics is evident when classifying the

article-level dataset. The article-level dataset provides substantially

larger data points, (approximately 180 words) allowing for

the emergence of more discriminative features within these

data points which enhances the accuracy of the classification.

Similar to sentence-level experiments, SVM with F1-score and

Accuracy of 0.926 and 0.928 respectively outperformed other

classic classification algorithms in this study. This time around,

KNN with F1-score and Accuracy of 0.823 was the second-best

performer in this experiment. Once again, Multinomial Naive

Bayes with F1-score and Accuracy of 0.80 and 0.810 was the

worst performer among classic classification algorithms in this

experiment. Figure 10 illustrates confusion matrices of classic

machine learning models using article-level dataset. As can be seen,

the overall results are significantly better than the experiments over

the sentence-level dataset and SVM shows a noticeable edge over

other classification algorithms. Figure 11 displays ROC curves of

classic classification models using the article-level dataset. Once

FIGURE 11

ROC curves of classic machine learning models using article-level

dataset.

again, a significant improvement across all performance metrics is

evident.

Although classic machine learning models, specifically SVM,

performed reasonably well with larger, article-level data points,

their performance significantly declined when it came to shorter,

sentence-level datasets, suggesting a significant potential for
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TABLE 3 Performance of deep learning models using sentence-level

dataset.

Precision Recall F1-score Accuracy

Bidirectional

LSTM

0.829 0.832 0.824 0.852

RoBERTa 0.946 0.959 0.954 0.957

Custom deep

model

0.977 0.971 0.981 0.983

DistilBERT 0.955 0.961 0.962 0.960

improvement. The following section will detail how state-of-

the-art deep learning-based models can surpass classic machine

learning model’s performance in the classification of AI-generated

(ChatGPT) content.

6.2 Deep learning models

Table 3 shows the performance of deep learning models using

sentence-level dataset. There is an immediate, noticeable boost

across all classification metrics when compared to the sentence-

level results obtained using classic machine learning models.

This demonstrates the superiority of pretrained deep learning

models over traditional machine learning models. The proposed

RoBERTa based custom deep model, outperformed other deep

learning models in sentence-level experiments, achieving an F1

score of 0.981 and an accuracy of 0.983, respectively. With some

margin, DistilBERT with F1-score and Accuracy of 0.962 and 0.960

respectively was the second-best performer in this experiment.

The base RoBERTa model, however, lagged marginally behind

DistilBERT, achieving an F1 score of 0.954 and an accuracy of 0.957.

Bidirectional LSTM with F1-score and Accuracy of 0.824 and 0.852

was the worst performer among deep learning models in sentence-

level experiments. Overall, deep learning models performed

exceptionally well considering the extremely challenging scenario

caused by smaller data points (less than 20 words) in sentence-

level experiments. Figure 12 illustrates confusion matrices of deep

learning models using sentence-level dataset. As can be seen, the

overall results are significantly better than similar experiments

using classic machine learning models. Figure 13 displays ROC

curves of deep learning models using the sentence-level dataset.

Once again, a significant improvement across all performance

metrics is evident.

Deep learning models can show their true potential When it

comes to larger data points in article-level dataset. The article-

level dataset offers significantly larger data points (around 180

words each) which allows the emergence of discriminative features

within these data points. Table 4 shows the performance of deep

learning models using article-level dataset. Once again, there is

a noticeable improvement across all classification metrics when

compared to similar experiments using classic machine learning

models. Similar to sentence-level experiments, The proposed

RoBERTa based custom deep model with F1-score and Accuracy

of 0.992 and 0.991 respectively outperformed other deep models

in this experiment. DistilBERT with F1-score and Accuracy of

0.988 was the second-best performer in this experiment. Similar

to sentence-level experiments, Bidirectional LSTM with F1-score

and Accuracy of 0.952 and 0.957 showed the least desirable

performance among deep learning models in this experiment.

Figure 14 illustrates confusion matrices of deep learning models

using article-level dataset. As can be seen, deep learning models

can perform exceptionally well using the article-level dataset. The

proposed RoBERTa based custom deep model misclassified only

a single data point in our test set. Figure 15 displays ROC curves

of deep learning models using the article-level dataset. Once again,

exceptional performance across all metrics is evident.

The experiment demonstrates that both classic and deep

learning models perform better when working with larger, article-

level datasets as opposed to sentence-level datasets. However, the

performance of deep learning models significantly outshines that

of classic machine learning models in both contexts. For classic

machine learning models, the Support Vector Machine (SVM)

algorithm showed the best performance in both dataset types,

yet struggled with shorter sentence-level data due to a lack of

discriminative features. In contrast, deep learning models exhibited

superior performance. Particularly, a custom model based on

RoBERTa stood out, achieving the highest classification accuracy in

both sentence and article-level datasets. This testifies deep learning

models’ ability in capturing complex patterns in data, making them

a preferable choice for the classification of AI-generated (ChatGPT)

content. Besides the aforementioned experiments, we attempted

to compare our best model performance with the Turnitin AI

writing detection feature. Turnitin, has been a leading solution for

plagiarism detection, with over 98% of top universities in the UK

using this tool. It scans academic work for plagiarism by comparing

the work to a large database of student work, publications, and

materials on the internet. Turnitin’s ability to detect AI-generated

content has made it a relevant benchmark in evaluating text

classification models for academic integrity, and it serves as

a comparison in our study due to its established effectiveness

in the academic domain. Figure 16 shows the confusion matrix

of Turnitin using the article-level dataset. Unlike the proposed

method, Turnitin is unable to investigate articles shorter than 300

words. This limitation significantly cripples its usefulness in many

scenarios. Due to this limitation, we are unable to investigate

Turnitin AI tool performance using our sentence-level dataset

which features shorter data points. Figure 16 also shows Turnitin

AI tool achieved a reasonably well False Negative (two misclassified

instances only). However, its performance drops when it comes

to False Positive (seven misclassified instances). Table 5 shows

Turnitin AI tool performance metrics and compares it against the

proposed RoBERTa-based custom deep model.

As part of our analysis, we examined misclassified samples to

identify patterns that may contribute to classification challenges.

Since the human-generated texts in our dataset originate

from formally published literature, they generally maintain

high linguistic quality, minimizing grammatical or spelling

errors. Therefore, we do not believe these issues provide any

meaningful clues for identifying human-generated content. Our

word frequency and similarity analysis revealed subtle differences

between AI-generated and human-written text, indicating that
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FIGURE 12

Confusion matrices of deep learning models using sentence-level dataset.

FIGURE 13

ROC curves of deep learning models using sentence-level dataset.

certain lexical and stylistic features impact classification, as further

supported by our examination of the average cosine and Jaccard

similarity indices between misclassified and correctly classified

texts for both AI-generated and human-generated content. The

results indicate that misclassified texts tend to exhibit higher overall

similarity between AI and human-generated classes. However, we

cannot confirm whether these similarities are the primary cause of

misclassification by our deep learning models. Table 6 summarize

TABLE 4 Performance of deep learning models using article-level dataset.

Precision Recall F1-score Accuracy

Bidirectional

LSTM

0.944 0.951 0.952 0.957

RoBERTa 0.978 0.981 0.981 0.980

Custom deep

model

0.989 0.991 0.992 0.991

DistilBERT 0.986 0.988 0.988 0.988

the similarity analysis between AI generated and human generated

contents for both misclassified and correctly classified samples.

6.3 Limitations in dynamic word
generation of AI models

Limitations in Dynamic Word Generation of AI Models:

While AI models such as RoBERTa and DistilBERT demonstrate

exceptional performance in detecting AI-generated content, there

remain inherent limitations in their ability to capture the

nuanced differences between dynamic word generation by AI

and human authors. AI-generated content, particularly from

large language models like ChatGPT, often lacks the depth of

contextual understanding and creativity that human writers bring

to their work. This results in subtle yet significant disparities

in narrative coherence, idiomatic expressions, and contextual
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FIGURE 14

Confusion matrices of deep learning models using article-level dataset.

FIGURE 15

ROC curves of deep learning models using article-level dataset.

relevance. Moreover, AI models may struggle with generating

highly dynamic or context-specific content, such as abstract

reasoning or emotionally charged writing, which often rely on

personal experience, culture, or intricate domain knowledge. These

limitations can affect the models’ ability to fully differentiate

between AI and human content, especially in tasks that require

more sophisticated and adaptable language use. Future iterations of

detection models will need to consider these limitations to improve

robustness in differentiating content, particularly in domains where

creativity and personal voice are critical.

FIGURE 16

Confusion matrix of Turnitin AI writing detection tool using

article-level dataset.

6.4 Limitations in model generalizability

While our dataset includes both AI-generated and human-

generated content, it is primarily focused on specific domains,

particularly computer science and networks. This limitation may

affect the generalizability of our findings to other fields or types
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TABLE 5 Performance comparison between the Turnitin AI detection

feature and our best model (RoBERTa-based custom deep learning

model) using the article-level dataset.

Precision Recall F1-score Accuracy

Turnitin AI

tool

0.948 0.950 0.957 0.955

Proposed

RoBERTa-

based custom

model

0.989 0.991 0.992 0.991

TABLE 6 Average Jaccard and Cosine similarity for correctly and

incorrectly classified instances of human-generated and AI-generated

text. Incorrectly classified instances exhibit noticeably higher similarity.

Correctly
classified
instances

incorrectly
classified
instances

Average cosine

similarity

0.167 0.197

Average Jaccard

similarity

0.023 0.031

of content, as language, writing styles, and contextual nuances

can vary significantly across different domains. Consequently,

the applicability of our proposed model may be restricted when

applied to areas outside of computer science, which could limit

its effectiveness in detecting and classifying AI-generated content

in diverse contexts. Acknowledging this constraint is crucial, as

it highlights the need for further research to validate the model’s

performance across a broader range of disciplines and content

types. Future studies should consider expanding the dataset to

include a more diverse array of domains to enhance the model’s

generalizability and robustness in various applications.

Also, the reliance on a specific set of AI-generated content,

namely OpenAI’s ChatGPT, presents a significant limitation in

this study. While there are several other AI models for generating

textual content, such as Google Gemini and Facebook LLaMA,

our research focused solely on ChatGPT due to its popularity

and widespread use. This narrow focus raises questions about

the adaptability of our model to outputs generated by other AI

systems, as different models may produce varied outputs due to

differences in their architectures. Consequently, the generated text

may vary significantly in terms of word frequency and intrinsic

statistical features, which could affect the model’s performance in

detecting and classifying content from these alternative generative

models. This limitation is inherently embedded in our dataset

and represents a constraint of our research, emphasizing the need

for further exploration of the model’s applicability across various

AI-generated content types.

Another worth-mentioning challenge in detecting AI-

generated text is the continuous evolution of generative models,

which refine their outputs to better mimic human writing. As

a result, the effectiveness of detection models may diminish

over time if not periodically updated. Our proposed model

demonstrates strong performance based on the data available at the

time of experimentation; however, we acknowledge that ongoing

retraining with newly generated text is essential to maintain

accuracy. This limitation is inherent to all classification models

in this domain, underscoring the need for adaptive strategies and

regular updates to ensure long-term robustness.

6.5 Limitations in detecting shorter text
entries

The study identifies a notable performance gap in detecting

shorter text entries, particularly within the sentence-level dataset.

While our models demonstrate strong efficacy with longer, article-

level data, their performance diminishes significantly when applied

to shorter samples. This reduction in performance is primarily

attributed to the lack of discriminative statistical features in shorter

data points, whichmakes it challenging for the models to accurately

classify content. This limitation is particularly relevant in real-

world scenarios, where shorter text entries are common. Notably,

this challenge is not exclusive to our proposed models; it is also

observed in commercial solutions like Turnitin, which requires

a minimum length of 300 words for its AI detection features

to function effectively. This emphasizes the inherent difficulty

of accurately detecting AI-generated content in brief texts, a

factor that urges further investigation and highlights the need for

developing models that can better address shorter entries.

7 Conclusion

The rapid advancement of AI, particularly artificial

neural networks, has created revolutionary breakthroughs

and applications, including text-generating tools or chatbots.

However, this powerful technology also brings with it potential

misuse and societal implications, such as violation of privacy,

misinformation, and challenges in academia. Hence, this research

aimed to investigate the performance of various machine learning

and deep learning models in detecting and classifying AI-generated

content, specifically focusing on the textual content generated

by OpenAI’s ChatGPT. A fairly large dataset of both human

and ChatGPT-generated content was compiled and utilized to

train and evaluate several machine learning and deep learning

models under different training regimes. Among the models

evaluated, the RoBERTa-based custom deep learning model

significantly outperformed other models in classifying content at

both the sentence and article levels. The main contributions of

this study include the creation and compilation of a large, diverse

dataset consisting of both human and AI-generated (specifically,

ChatGPT-generated) textual content in the field of computer

science and networks. This dataset is a crucial resource for training

and testing machine learning and deep learning models aimed at

distinguishing AI-generated content. This dataset is made publicly

available for the research community. Another key contribution

of this study is the comprehensive evaluation and comparison of

various classic machine learning and deep learning models on

the task of classifying AI-generated vs. human-generated content.

The study spans different types of models, from Support Vector

Machines and Random Forest to advanced deep learning models

like RoBERTa, DistilBERT, and BiLSTM. Our work establishes a
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robust baseline for the detection and classification of AI-generated

textual content, contributing a crucial step toward mitigating the

potential misuse of AI-powered text generation tools. Furthermore,

the dataset compiled for this research has been made publicly

available, serving as a valuable resource for future research in

this field. In conclusion, the ability to generate realistic and

contextually appropriate text raises concerns about the spread of

misinformation, manipulation, and malicious activities, where

individuals may exploit these technologies for deceptive purposes.

Moreover, detection tools and algorithms themselves are not

immune to misuse; they can be subjected to adversarial attacks,

where malicious actors manipulate inputs to evade detection,

undermining the very systems intended to ensure integrity. This

raises critical ethical issues, including the potential for biased or

inaccurate outcomes, unjust penalization of legitimate content,

and erosion of trust in both AI-generated and human-authored

texts. To address these challenges, it is essential for researchers,

educators, and policymakers to develop comprehensive guidelines

that promote responsible usage of AI technologies, fostering a

balanced approach that safeguards against misuse while harnessing

the benefits of innovation. The primary goal of our work was to

demonstrate the feasibility of accurately detecting AI-generated

content, establishing a foundation for future measures to address

the potential misuse of AI-powered text generation tools. While

our results do not directly prevent misuse, the development of

reliable detection tools is a crucial step toward managing such

risks. A high-performing detection model enables educators,

researchers, and online platforms to identify and differentiate

AI-generated content, helping to safeguard academic integrity,

reduce misinformation, and protect against privacy violations. This

capability is essential for addressing the societal challenges posed

by AI-driven text generation.

While current study demonstrates effective detection of AI-

generated text, our future work will focus on expanding the

dataset to include a broader range of disciplines, such as medicine,

healthcare, news, and humanities, to enhance the generalizability

of detection models. Additionally, we aim to develop advanced

classification techniques that can distinguish AI-generated text

using multiple leading generative models beyond OpenAI’s

ChatGPT. Another key direction involves analyzing which state-of-

the-art generative AI models produce content that is most human-

like, presenting greater challenges for detection. To support further

research in this field, we plan to publicly share the dataset used

in our future studies, fostering collaboration and innovation in

AI-generated text detection.
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