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Multi-label attribute recognition is a critical task in computer vision, with

applications ranging across diverse fields. This problem often involves detecting

objects with multiple attributes, necessitating sophisticated models capable

of both high-level di�erentiation and fine-grained feature extraction. The

integration of object detection and attribute recognition typically relies on

approaches such as dual-stage networks, where accurate predictions depend

on advanced feature extraction techniques, such as Region of Interest (RoI)

pooling. To meet these demands, an e�cient method that achieves both

reliable detection and attribute classification in a unified framework is essential.

This study introduces an innovative MTL framework designed to incorporate

Multi-Person Attribute Recognition (MPAR) within a single-model architecture.

Named MPAR-RCNN, this framework unifies object detection and attribute

recognition tasks through a spatially aware, shared backbone, facilitating e�cient

and accurate multi-label prediction. Unlike the traditional Fast Region-based

Convolutional Neural Network (R-CNN), which separately manages person

detection and attribute classification with a dual-stage network, the MPAR-

RCNN architecture optimizes both tasks within a single structure. Validated

on the WIDER (Web Image Dataset for Event Recognition) dataset, the

proposed model demonstrates an improvement over current state-of-the-

art (SOTA) architectures, showcasing its potential in advancing multi-label

attribute recognition.

KEYWORDS

attribute recognition, convolution neural network, human attribute recognition, multi-

task learning, object detection

1 Introduction

The task of human analysis is fundamental for real-time understanding of individuals

in various scenarios. It demands highly detailed human features at the pixel level and

involves several cognitive processes, such as detection, segmentation, and estimation

(Poulose et al., 2022). In real-time deployment of models, balancing both accuracy and

speed is essential for effective algorithm performance. A model’s ability to function in real-

time environments depends heavily on these two factors as they create a critical ecosystem

for its applications. The advancements in convolutional neural networks (CNNs) have

made the extraction of human or object features from images not only faster but also more
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precise, facilitating more sophisticated real-time analysis (Edriss

et al., 2024). Recently, CNN-based object detection algorithms

have evolved into two main approaches. The first is the two-stage

approach, where a regional proposal network is integrated with a

CNN, as seen in the R-CNN model proposed by Girshick et al.

(2014). This approach first identifies potential regions of interest

and then uses CNNs to further analyze those areas. In contrast,

the second approach is the single-stage method, which simplifies

object detection into a regression problem. Models such as You

Only Look Once (YOLO), as introduced by Bochkovskiy et al.

(2020), detect objects in a single pass, offering improved speed for

real-time applications.

The introduction of R-CNN marked a pivotal advancement,

leveraging a large CNN to examine suggested areas, which

influenced the development of subsequent multi-stage algorithms.

The R-CNN’s structure and capabilities contributed to making

CNN-based object detection a mainstream approach. This

breakthrough enabled models to achieve high precision while

also adapting to the fast-paced needs of real-time applications,

significantly advancing the field of object detection. In 2015, Fast

R-CNN, developed by Girshick (2015), built on the original R-

CNN architecture by separating the fully connected layer’s output

into two distinct vectors: one for bounding box (BBox) regression

and another for classification scores using softmax. This approach

introduced the region of interest (RoI) pooling layer, which was

based on the spatial pyramid pooling (SPP) layer from SPP-Net.

The incorporation of RoI pooling solved challenges related to

both object classification and bounding box regression, marking a

significant advancement in object detection. In addition, Fast R-

CNN optimizes storage by saving interpretations and detections

in cache memory and replacing singular value decomposition

(SVD) with softmax, thereby reducing storage space and enhancing

processing speeds. Following Fast R-CNN, dual-stage networks

such as Mask R-CNN (He et al., 2017) were developed to

improve human detection by predicting both boundary boxes

and class-aware mask predictions in parallel using extensive

convolutional layers. This evolution paved the way for MTL

techniques, as explored by Zhu and Wu (2021) which leverage

shared representations across tasks to address both time and

memory constraints in real-world applications. This single-model

approach enables highly efficient and accurate real-time detection

in dynamic environments, making it especially valuable for

applications requiring rapid processing.

The motivation to advance human analysis lies in the need

for accurate, real-time understanding of individuals in various

dynamic scenarios. This requires pixel-level precision for tasks

such as detection, segmentation, and estimation, especially in

challenging conditions such as low lighting and overlapping

objects. Effective algorithms must balance high accuracy with

processing speed to support real-time deployment. Convolutional

neural networks (CNNs) have significantly improved human

analysis by enhancing both speed and precision. Innovations such

as Fast R-CNN and multi-task learning (MTL) have further refined

these methods, making sophisticated human analysis feasible

in demanding real-world settings. MPAR-RCNN framework

enhances multi-person detection by visualizing bounding boxes

and attribute details. The framework integrates a region proposal

network (RPN) for efficient image parsing and region prediction.

Unlike traditional methods such as selective search, RPN utilizes

neural networks to generate proposals directly from feature

maps, significantly accelerating detection. By optimizing these

region proposals, MPAR-RCNN delivers faster and more precise

human detection, making it a powerful tool for applications in

various complex scenarios. The contributions of the study are

listed below:

1. A novel MPAR-RCNN framework is introduced, which subdues

the challenges of gradient loss for previous MTL frameworks.

2. An effective MTL pipeline is implemented with a single shared

backbone and experimented with various backbones being

cognizant of the number of parameters and their mAP levels.

3. Additional ablation studies were performed with different

augmentation techniques and other changes in hyperparameters

with different datasets to illustrate the flexibility of MPAR-

RCNN.

The layout of the study encompasses as follows: Section 2

portraits the details of the related works, and the proposed

methodology is elaborated in Section 3. Section 4 contains the

experimental settings of the proposed Model and its datasets and

performance metrics used. The results and their discussion is given

in Section 5. Section 6 contains the details of the ablation studies,

and Section 7 mentions the conclusion and intended future works.

2 Related works

In this section, the different methods of OD, along with existing

human attribute recognition architectures, are discussed. The state

of art models is mentioned and compared with the desideratum of

MTL frameworks.

2.1 Single stage v/s multi-stage object
detection

OD is a process that involves identifying and categorizing

objects in an image, and labeling them with a rectangular bounding

box (BBox) to indicate their location. There are twomain categories

of OD frameworks. The first category generates region proposals

and then classifies each proposal into different object types. The

second category views OD as a classification or regression problem,

using a unified framework to determine the category and position

of an object.

The majority of the region proposal-based approaches, some of

which are correlated with one another, include R-CNN (Gkioxari

et al., 2015), Faster R-CNN (Ren et al., 2015), and Mask R-

CNN (He et al., 2017). Regression or classification-based methods

include MultiBox (Liu et al., 2016), G-CNN (Song et al., 2019),

Single Shot multibox Detector (SSD) (Liu et al., 2016), and

Yolov4 (Bochkovskiy et al., 2020). Faster RCNN uses anchors

to bridge the gap between these two approaches. One-stage

object detectors are faster but struggle with small objects or

objects with unusual shapes (Liu et al., 2016). The MPAR-

RCNN framework uses a detection head with different architecture
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to improve the classification and detection of objects using

region-based methods. Fast R-CNN is used to extract image

features, and the RoI pooling layer is used to feed the fully

connected layer. MPAR-RCNN framework performs OD and

attribute recognition together with fewer parameters compared

to single stage OD and attribute recognition. Table 1 provides a

comparison of the differences between MPAR-RCNN and other

frameworks. Overall, effective OD frameworks are essential for

a wide range of applications, from self-driving cars to facial

recognition technology.

2.2 Human attribute parsing

It has become common to describe human beings using

a set of characteristics known as attributes. Human attribute

parsing techniques focus on identifying body parts or sections

that are closely connected to the features and calculate attributes

associated with them to distinguish their properties. The human

attribute parsing method is useful for tasks such as person re-

identification, person retrieval, person detection, and attribute-

based representations. However, due to various vantage points

or lighting situations, the visual appearances of the same person

may differ noticeably across many perspectives. To overcome

this, human attribute parsing methods first identify high-level

characteristics that remain the same for most of the time frames

in all scenarios for the same people, such as their clothing,

and then use them to match the identities of samples. It

has been established that people’s characteristics directly affect

detection abilities. Some techniques use body language, either

through body poses or by focusing on the torso, leg, or head

areas, to predict future behavior. Others analyze the appearances

of both people and their surroundings to better understand

the scenarios.

Human semantic parsing (Moghaddam et al., 2021) is a

technique that helps locate different attributes of a human body by

extracting the contours of various parts of the body. To do this, a

pre-trained parsing model is used that interprets each pixel of the

image. Xia et al. (2017) proposed a fully connected CRF framework

that incorporates human instance clustering and joint labeling. In

this framework, an approximated pose information is used by a

fully connected layer for further processing. However, due to the

time and cost it takes to produce ground truth data, there may be

a lot of label noise. Mordan et al. (2021) have also studied joint

pedestrian detection and attribute recognition, which is similar to

the suggested approach.

Performing detection using a multi-stage multi-head approach

makes the planned MTL network forward pass time-consuming.

They also integrate attributes in a multi-stage manner, but MPAR-

RCNN advances this strategy by learning around these attributes

and adding a normalization in backpropagation to address gradient

scale problems during training. The proposed framework uses

the WIDER-Attribute (Jia et al., 2024) dataset, which has 14

binary attributes.

TABLE 1 High-level comparison of OD with attribute recognition (AR) and multi-task learning (MTL) frameworks using standard datasets.

Category Architecture Backbone Function Params MACs Dataset BBox Attributes

(M) (G) (AP) (mA)

Attribute

recognition

R*-CNN (Gkioxari et al.,

2015)

16-Layer CNN AR WIDER-

Attribute

80.5

DHC (Li et al., 2016) 16-Layer CNN - - 81.3

VeSPA (Sarfraz et al., 2017) Inception v1 17 3.5 82.4

ResNet-101+MTL+CRL

(Dong et al., 2017)

ResNet-101 60 127 84.7

ResNet-SRN (Dong et al.,

2017)

ResNet-107 - - 86.2

SEA (Sarafianos et al., 2018) ResNet-101 45 8 86.4

Inception-V3 (Szegedy et al.,

2016)

Inception v3 24 6 85.86

SA (Kalayeh and Shah, 2019) Inception v3 24 6 87.58

Multi task

learning

HEIR-RCNN (Yang et al.,

2020a)

ResNet50-FPN OD + HPD 36 215.88 COCO

Human Parts

36.8

RP-RCNN (Yang et al.,

2020b)

ResNet50-GSE-FPN OD + HPS 57.59 740.53 COCO 44.1

Multitask CenterNet (Heuer

et al., 2021)

Hourglass-104 OD + FLD + KPD 60.81 - COCO 8.42

MPAR-RCNN - Small MogaNet OD + AR 8.42 52.6 WIDER 56.5 91.73

MPAR-RCNN - Medium MogaNet OD + AR 14.8 64.8 WIDER 60.06 92.27

MPAR-RCNN - Large MogaNet OD + AR 26 168.35 WIDER 61.4 93.98

COCO and WIDER-Attribute datasets are commonly used for evaluating different architectures with their different functions like OD with object segmentation (OD + OS). Other functions

include human part segmentation (HPS), human part detection (HPD), and key point estimation (KPD). Bold values indicate metrics obtained using this approach.
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2.3 Multi-task learning frameworks

MTL (Crawshaw, 2020) is a technique that aims to optimize

the distribution of the learning capacity across multiple tasks

to improve their performance and minimize the computational

demands. However, recent studies (Kokkinos, 2017) have shown

that the benefits of MTL are not always consistent and depend on

the specific objectives of the tasks. To achieve an optimal transfer

between tasks, the system must be customized to the particular

target objectives. MTL is effective in improving autonomous

vehicle resilience to adversarial attacks (Rasouli and Tsotsos,

2019), a critical safety issue. There are two primary approaches

to implementing MTL. Some methods aim to enhance the

network structures (Misra et al., 2016) or increase the degree

of task sharing. On the other hand, leverage the learning loss

weights of any given architecture to balance tasks (Chen et al.,

2018), or manipulate gradients to minimize negative transfer.

In the MPAR-RCNN framework, MTL has been successfully

implemented using the logit gradients from the convolution layers

to reduce the computations with minimal accuracy loss while using

dual-stage networks.

3 Proposed methodology

The architecture of multi-person attribute recognition region

convolutional neural networks (MPAR-RCNN) is illustrated in

Figure 1. In this section, we will explain each functionality of this

architecture, which is used for detecting multiple persons with

various attributes in a multi-task environment.

3.1 Backbone

The input sequence images are first fed into the embedding

stem to regulate the feature resolutions. Assuming the input image

in H×W resolutions, features of the four stages are in 4× 4, 8× 8,

16× 16, and 32× 32, resolution respectively. Then, the embedded

feature flows into multi-stage gated aggregation consisting of two

branches: the aggregation branch and the context branch. The

aggregation branch is responsible for generating gate weights. The

context branch performs multi-scale feature extraction through

convolution with different kernel sizes and different hole sizes,

thereby capturing multi-order interactions of context. It is worth

noting that the outputs of the two branches use the SiLU activation

function (SILU has both Sigmoid gating effect and stable training

characteristics).

3.2 Box prediction block

The fully convolutional network known as the region proposal

network (RPN) predicts object limits and objectness scores at

each place simultaneously. The RPN is fully trained to produce

excellent region suggestions that indicate where to search and

where the object is located. With a broad range of scales and

aspect ratios, region suggestions can be predicted with efficiency

using RPNs. It makes use of anchor boxes as references at various

aspect ratios and scales. Regression references can be envisioned

as a pyramid-shaped method that circumvents the need to count

images or filters with different aspect ratios or sizes. R-CNN extracts

these boxes–known as regions–from an image by using selective

search. First, the R-CNN labels the bounding boxes and class

labels of the extracted region proposals (e.g., anchor boxes can also

be considered as region proposals) from the input image. Next,

each region proposal is subjected to forward propagation using

CNN to extract its features. The class and bounding box of each

region proposal are then predicted using the attributes of that

region proposal.

3.3 Attribute prediction block

RoIAlign is an operation for extracting a small feature map

from each RoI in detection and segmentation-based tasks. It

removes the harsh quantization of RoI Pool, properly aligning

the extracted features with the input. To avoid any quantization

of the RoI boundaries, RoIAlign uses bilinear interpolation to

FIGURE 1

Architecture pipeline of MPAR-RCNN framework with MTL. It contains the regional proposed network with a detection and attributes head for

recognition. Reproduced with permission from ‘Recognize Complex Events From Static Images by Fusing Deep Channels’ by Xiong et al via Web

Image Dataset for Event Recognition [WIDER], https://paperswithcode.com/dataset/wider, licensed under CC BY-SA 4.0.
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FIGURE 2

Sample images of WIDER-Attribute in di�erent scenarios. Reproduced with permission from ‘Recognize Complex Events From Static Images by

Fusing Deep Channels’ by Xiong et al via Web Image Dataset for Event Recognition [WIDER], https://paperswithcode.com/dataset/wider, licensed

under CC BY-SA 4.0.

FIGURE 3

Sample image from WIDER-Attribute dataset with attribute recognition. Reproduced with permission from ‘Recognize Complex Events From Static

Images by Fusing Deep Channels’ by Xiong et al via Web Image Dataset for Event Recognition [WIDER], https://paperswithcode.com/dataset/wider,

licensed under CC BY-SA 4.0.

compute the exact values of the input features at four regularly

sampled locations in each RoI boundary, and the result is then

aggregated (using max or average). RoIAlign is used for parsing

the ROI-based features for objects with the help of C4 convolution

layer. The features are upscaled and given to the convolution

layer succeeded by the global average pooling layer to extract the

logit bits for the attribute head. These features are then passed to

the fully convolutional (FC) layers to get the probability values

to produce the accurate attributes after a certain threshold value.

The WIDER-Attribute dataset is used for training in the proposed

model. This dataset contains 14 binary person attributes some of

which include gender, clothes, facemasks, and other accessories.

In the MTL pipeline, the detection and attributes are jointly used

and the computation values of gradients are highly reduced while

getting over a percentage increase compared to the SOTAmodels. A

n× n spatial window of the input convolutional feature map serves

as the input for this tiny network.

3.4 Loss function

The MPAR-RCNN is an MTL pipeline with a dual-stage

network which indicates that the overall single loss function of

the framework is the sparse softmax cross entropy. The loss at

different stages of theMPAR-RCNN framework can be summarized

as regression loss, bounding box loss, and attribute loss.
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TABLE 2 Attribute-based dataset partitioning for training and testing in

object detection.

Attributes Train Validation Test

Male presenter 12,979 3,140 16,769

Longhair 5,148 1,212 6,428

Sunglass 1,179 244 1,378

Hat 5,235 1,172 6,994

Tshirt 4,994 1,217 5,820

Longsleeve 10,743 2,429 13,888

Formal 1,690 292 2,119

Shorts 3,385 985 4,278

Jeans 1941 372 2,354

Longpants 8,355 1,908 10,888

Skirt 2,340 510 2,884

Facemask 780 154 1,010

Logo 6,111 1,491 8,367

Stripe 1,207 331 1,808

3.4.1 Regression loss
The loss from the detection head can be segmented into the

Regression Loss Lreg and the Huber loss Lhuber . The regression loss

is formulated as follows:

Lreg =

D
∑

i=1

|yi − xi| (1)

where x and y are D dimensional vectors, and yi denotes the value

on the ith dimension of y.

3.4.2 Huber loss
One often used metric to quantify the discrepancy

between expected and actual results in regression situations

is the Huber loss. The average squared difference

between the actual and projected values is what this

metric measures.

Lhuber =

{

1
2 (y− f (x))2 for

∣

∣(y− f (x)
∣

∣ ≤ δ

δ
∣

∣(y− f (x)
∣

∣− 1
2 δ) otherwise

(2)

where δ is the number of BBoxes from the detection head, and

f (x) and y are the predicted box and the ground truth (GT) label,

respectively.

3.4.3 SoftMax cross entropy loss (attribute)
The loss function of the attribute head is the softmax cross

entropy and is defined as follows:

σ (Ezi) =
ezi

∑K
j=1 e

zj
for i = 1, 2, . . . ,K (3)

where K is the number of attributes, and Ezi is the i
th attribute label.

MPAR-RCNN framework considers regression loss, Huber

loss, and attribute loss together to measure the overall performance

of the model. The loss function of the MPAR-RCNN is formulated

as the absolute summation of all the three loss functions as

Ltotal = Lreg + Lhuber + Lattr (4)

4 Experiments

4.1 Datasets

WIDER-Attribute is a pedestrian dataset containing 14

different classes of categories to each person. The sample image

fromWIDER is shown in Figures 2, 3.

There are other attribute datasets such as JAAD, PARSE-27K,

and Berkeley Attributes of People. The proposed framework is

designed for detection with attributes, and it is evaluated and

trained on the WIDER-Attribute dataset. This dataset has more

explicit people and event descriptions. Researchers are able to study

the advantages of modern person context thanks to the profusion of

various visuals and human annotations. 28,345 annotated images

are used for the training and validation sets whereas 29,179

individuals for the test set. The split is shown in Table 2. The

training and validation set is used for training, and the test set is

used to assess the performance in accordance with post-processing.

4.2 Evaluation metrics

Mean average precision (mAP) and mean accuracy (mA)

are the primary evaluation metric used for object detection,

segmentation, and attribute recognition. The positive threshold is

set as 0.5 for evaluating the average precision (AP). ThemAP values

are calculated over recall values from 0 to 1 based on the four

metrics of the confusion matrix and intersection over union (IoU).

Higher values of IoU indicate that the predicted BBox is close to the

ground truth annotations. The precision value depends on the true

positives of the correct predictions. For attributes, individual mA

values are calculated and shown in Tables 1, 3.

4.3 Experimental settings

4.3.1 Training
The MPAR-RCNN was trained using the Pytorch framework

in an NVIDIA Tesla V100 engine. The input size of the

image was 512 x 512. The augmentations used are RandomFlip,

RandomMirror, RandomRotate, and RandomCrop. Hue and

saturation augmentations are used to assign random colors to

objects and to ensure that model will be trained to identify sharp

edges instead of only colors. The images are blurred using Gaussian

Distribution to reduce the effect of noise. The proposed model

is trained with MogaNet as the baseline model(backbone). It was

trained for 100 epochs with learning rate of 1e-4 and weight decay
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TABLE 3 Evaluation of attribute-wise comparison of our proposed framework with 10 di�erent methods and their backbones.

WIDER-attribute

Fast-
RCNN

(Girshick,
2015)

R-CNN
(Gkioxari
et al.,
2015)

DHC (Li
et al.,
2016)

ResNet101
(He et al.,
2016)

CAM (Guo
et al.,
2017)

SEA
(Sarafianos

et al.,
2018)

Inception-
V3

(Szegedy
et al.,
2016)

SA
(Kalayeh
and Shah,
2019)

MPAR-RCNN

MPAR-
RCNN -
small

MPAR-
RCNN -
medium

MPAR-
RCNN -
large

Male presenter 94 94 94 94 95 96 95.6 96.64 92.69 92.37 92.37

Longhair 81 82 82 85 85 88 86.98 89.25 86.11 91.15 91.15

Sunglass 60 62 64 69 71 74 70.56 78.31 95.36 95.29 96.29

Hat 91 91 92 91 94 93 92.87 95.04 91.01 90.61 90.61

tShirt 76 76 78 80 78 83 83.36 84.77 86.51 87.47 90.47

Longsleeve 94 95 95 96 96 96 96.71 97.64 86.69 88.22 92.22

Formal 78 79 80 83 81 85 83.82 85.38 97.19 97.05 94.05

Shorts 89 89 90 91 89 93 91.96 93.87 92.54 92.34 92.34

Jeans 68 68 69 78 75 81 79.6 81.76 91.28 91.07 92.07

Longpants 96 96 96 95 96 96 97.18 97.74 94.68 94.56 94.56

Skirt 80 80 81 82 81 85 85.74 87.65 98.57 97.15 98.55

Facemask 72 73 76 74 73 78 76.51 79.18 88.10 89.78 93.78

logo 87 87 88 89 88 90 91.07 90.87 94.98 94.92 94.92

Stripe 55 56 55 65 60 68 70.15 68.04 88.52 88.18 95.78

mAP 80 80.5 81.3 85 82.9 86.4 85.86 87.58 91.73 92.27 93.98
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FIGURE 4

Pipeline for data processing: input MRI image processed on a GPU machine using preprocessing techniques for enhanced analysis. Reproduced with

permission from ‘Recognize Complex Events From Static Images by Fusing Deep Channels’ by Xiong et al via Web Image Dataset for Event

Recognition [WIDER], https://paperswithcode.com/dataset/wider, licensed under CC BY-SA 4.0.

of 5e-5. The momentum is set to 0.9. Adam optimizer is used

to minimize the loss function effectively. Experimental setup is

depicted in Figure 4.

4.3.2 Implementation
In MPAR-RCNN, the input image is first preprocessed by

reshaping and normalized. The features extracted from the

backbone architecture are passed to the RPN network detection

head. This returns the label logits and box logits. Using RPN

anchors, the prediction boxes are decoded and top K proposals

are generated. Here, “K” is the number of objects in the image

panel. The proposed BBox is forwarded to the Fast R-CNN head

for accurate detection of humans or objects. After the post-

processing steps, the detection head returns the final bounding

boxes and the probability values with labels for objects or humans

in this case. For attribute head, the features are taken from

the same convolution layer as MPAR-RCNN by using an MTL

pipeline, to the ROIAlign network, for the accurate localization

of the attributes of the object or humans. The features are then

upscaled using another convolution network and passed to the

attribute head. The collective fully convolutional (FC) network is

referred to as attribute head. This returns the final attributes for

the given input image pixel. The proposed work is depicted in

Algorithm 1.

5 Results and discussion

The MPAR-RCNN is validated by applying distinctive

frameworks and diverse functionalities, including OD, attribute

recognition (AR), and MTL. The datasets used for testing the

architectures with various backbones were COCO and Wider-

Attribute datasets. It has bounding box detection values along with

their mA values of the attributes. MPAR-RCNN is conjecturally

using detection plus attributes in an MTL framework. The average

precision (mAP) of the BBox, as well as the mA values of the

attributes, is equally important always keeping the deal-breaker

on par, i.e., the number of parameters and MACs of architectures.

Table 1 depicts the comparison between the OD, AR, and the

existing best metrics for MTL networks.

5.1 Global detection metric

For OD, Faster-RCNN and Fast-RCNN were used to evaluate

as they are the best dual-stage networks that yield robust results.

R-CNN (Gkioxari et al., 2015), deep hierarchical contexts (DHC)

(Li et al., 2016), VeSPA (Sarfraz et al., 2017), a refined ResNet101

(He et al., 2016), SEA (Sarafianos et al., 2018), inception V3

(Szegedy et al., 2016), and symbiotic augmentation (SA) (Kalayeh

and Shah, 2019) architectures are analyzed for AR to determine
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Input: Person Detection and Attributes Dataloader

D, ground truth labels y, MPAR-RCNN model is

initialized with weights w, total number of epochs

E, Stochastic Gradient Descent Optimizer O

Output: Final Bounding Box and Attribute

Predictions of the model

1: E← 100

2: for epoch← 0 to E do

3: for batch ∈ D do

4: ⊲ Batch contains input image I, Anchors A and

ground truth tables y

5: I,A,y← batch

6: ⊲ Pass the input data to Moganet backbone to

extract M_backbone to extract the feature maps F

7: F← M_backbone(batch)

8: ⊲ Pass the features to Box Prediction Block

(BPB) which has proposal Network R and Detection

Head FR, which predicts the final boxes B and Labels

L

9: Proposals P← R(F)

10: B,L← FR(P)

11: ⊲ Calculate the Box Loss LBox

12: LBox ←
∑

(yi − Bi)

13: ⊲ Pass resnet C5 feature to Attribute

Prediction Block(APB) which results the predicted

attribute Attr

14: Attr← APB(C)

15: ⊲ Calculate the Attribute Loss Lattr

16: Lattr(Z)← ezi/
∑

ezi

17: ⊲ Apply the Optimizer O and calculate the

gradients

18: end for

19: end for

Algorithm 1. Multiple person multi - person attribute recognition.

their mean accuracy (mA) via the WIDER-Attribute dataset. The

most recent MTL frameworks, including Mask RCNN (He et al.,

2017), Parsing RCNN (Yang et al., 2019), HEIR-RCNN (Yang et al.,

2020a), and RP-RCNN (Yang et al., 2020b) with two separate

backbones, are compared with the proposed architecture. Different

tasks were carried out for each of these MTL frameworks, for

example, Mask RCNN used OD as well as object segmentation

(OS). In SRN, samples from the test set were utilized to estimate

training performance, and the validation set was incorporated

into the training (resulting in 20% additional training data). In

SEA, they re-implemented the network by training with only

the training data and tested with only the test set found a

difference of 1.2 in their overall mAP. This value was considered

as only 20% of the testing data was reduced. Table 3 it is

confident enough to argue that the proposed shared backboneMTL

framework usingMogaNet achieves 1.5 times better results than the

previous benchmarks. The observation from Table 3 is depicted in

FIGURE 5

Proposed MPAR-RCNN framework shows increased mAP values for

many attributes comparing with SA (Kalayeh and Shah, 2019)

architecture.

Figure 5. There is a significant increase in mAP values for many

attributes including “sunglass”, “tshirt”, “f ormal”, “jeans”, “skirt”,

“f acemask”, “logo”, “stripe”. It proves that the proposed network

architecture is capable to achieve more than the existing methods

or at least trying to level with just tangible differences. However,

the model might not accurately anticipate attribute classes when

one item is obscured by another. This limitation is highlighted

in Figure 6.

This section contains learning activities based on the

evaluation of the testing set and the union of the training and

validation sets. As far as SOTA models are compared, there

is no other study that addresses both detection and attribute

recognition using an MTL framework; thus comparison with

definite models cannot be compared objectively. Due to this,

a small modification is done to MPAR-RCNN, i.e., an in-

depth analysis is done to match other research in the next

section as accurately as possible. The next section gives a

detailed attribute comparison of SOTA architectures using the

WIDER-Attribute dataset.

5.2 Comparisons with state of the art

The proposed framework is evaluated with all the existing

SOTA throughout the years and the latest models involving

MTL networks as mentioned in the literature survey. All the

architectures are evaluated on the Wider-Attribute dataset with

detection and attribute recognition. It has been used as baselines,

namely, Fast-RCNN (Girshick, 2015), R-CNN (Girshick et al.,

2014), DHC (Li et al., 2016), VeSPA (Sarfraz et al., 2017), CAM

(Guo et al., 2017), and fine-tuned ResNet101 (He et al., 2016)

frameworks. Note that DHC and R-CNN have the advantage of

additional spatial and temporal information (for example, scenario

context or object parts) that eventually explains the boost in

their performance.
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FIGURE 6

Highlighting the model’s flaw in case of one object occluded by other. Reproduced with permission from ‘Recognize Complex Events From Static

Images by Fusing Deep Channels’ by Xiong et al via Web Image Dataset for Event Recognition [WIDER], https://paperswithcode.com/dataset/wider,

licensed under CC BY-SA 4.0.

FIGURE 7

Representation of the output visualization of MPAR-RCNN framework which has the capability of detecting multiple persons with attributes.

Reproduced with permission from ‘Recognize Complex Events From Static Images by Fusing Deep Channels’ by Xiong et al via Web Image Dataset

for Event Recognition [WIDER], https://paperswithcode.com/dataset/wider, licensed under CC BY-SA 4.0.

FIGURE 8

Quantitative output visualization of proposed MPAR-RCNN model. Reproduced with permission from ‘Recognize Complex Events From Static

Images by Fusing Deep Channels’ by Xiong et al via Web Image Dataset for Event Recognition [WIDER], https://paperswithcode.com/dataset/wider,

licensed under CC BY-SA 4.0.
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5.2.1 Quantitative analysis
A fair quantitative comparison of all the existing architectures

with the proposed work is displayed in Table 3. The viewpoints

and attributes were parallelly predicted in the VeSPA. The model

did not use the WIDER dataset to train its attribute sub-network,

and hence, the attribute-wise mA values are missing from the

table. Hence for overall comparison, the mAP metrics of all the

TABLE 4 Comparison of proposed MPAR-RCNN network with di�erent

backnones.

OD comparison

Backbone Params BBox

AP(0.5:0.95) AP(0.5) AP(0.95)

Resnet50 45 57.8 78.1 52.6

Swin 52 60.98 82.3 57.2

MogaNet 26 61.4 84.6 58.6

SOTA architectures are used. From Table 3, the MPAR-RCNN

is seen to show more than a 3% increase in overall mAP

values than the existing SOTA methods. Symbiotic augmentation

(SA) outputs one mask per activation channel. Therefore, it

combines distinct semantic mappings to obtain the ideal mask

for each channel. SA uses the attribute prediction output logits

to direct the semantic segmentation, hence explaining the high

performance before the MPAR-RCNN. The accuracy and the

number of parameters trade-off are circumvented, after giving the

top priority to the MPAR-RCNN MTL framework. The in-depth

analysis of MPAR-RCNN projects that it achieves high benchmarks

for attributes such as “Sunglasses”, “T-shirt”, “Formal”, “Jeans”,

“Skirt”, “facemask”, “logo”, and “stripe”. The output visualization

of the MPAR-RCNN Framework is shown in Figure 7. Figure 8

shows that the model can be generalized across different datasets.

An eye-level view can detect up to 8–10 people in a single

image. With an elevated view, approximately 7-9 people can be

detected, while a pole-mounted view can also detect 7-9 people.

However, it is important to note that the accuracy of attributes

may vary.

FIGURE 9

Heatmap of the correlation matrix for WIDER-Attribute dataset.

TABLE 5 Testing and evaluation of MPAR-RCNN variation with di�erent augmentations and sizes.

MPAR-RCNN with di�erent variations and augmentations

Baseline Additional layer [attribute head] Augmentation BBox AP(0.5:0.95) Attributes (mAP)

X 59.02 92.57

X X 61.3 93.44

X X X 61.4 93.98
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6 Ablation study

Several ablation studies were carried out to analyze the effects

of OD alone with the MPAR-RCNN with different backbones. The

learning and evaluation are done on the training and validation

set, respectively.

6.1 Attribute head analysis

Table 4 summarizes the average precision (AP) values of

gradient results ranging between 0.5 to 0.95 at their individual

primes. MPAR-RCNN is analyzed with different backbone and

specific number of parameters. Overall, the fork-sample version

definitely produces the greatest results when compared to all other

approaches. This is perhaps because just one task is taken into

account per example for each backward run, eliminating much

of the oversight and contributing noise. Hence, an additional

experiment was conducted with different augmentations and

substituting of the input size in the proposed network. The

MPAR-RCNN heatmap of the correlation matrix of the WIDER-

Attribute dataset is shown in Figure 9 and indicates its robust

strength on each attribute. The lowest score (black in color)

compares different attributes in the field. The heatmap explains the

imbalance of certain attributes present in the dataset and how each

attribute influences the detection with attributes in the proposed

MTL framework.

6.2 Enhanced prediction head

The refinement of the block is accommodated using MogaNet

backbone layer and with an increased input size of 512 × 512. The

bounding box AP and mAP values of different attributes of the

WIDER-Attribute dataset are used. The values showcase that even

with numerous attributes, the different augmentations techniques

such as hue, saturation levels, and Gaussian blur help the MPAR-

RCNN to achieve 93.98% accuracy level and 93.44% for only one

attribute head with input size 512× 512. These results confirm that

normalizing gradients at the initial level helps in upscaling several

tasks semantically. MPAR-RCNN would detect more attributes as

shown in Table 5.

7 Conclusion and future works

Over the years, academics and industrialists have researched

more on the detection of objects. Along with detection,

attribute recognition gave a more detailed description of the

objects. To attain both tasks in an optimized approach with

less inference time and the number of parameters and high-

performance metrics. A novel multi-tasking learning framework

is introduced known as MPAR-RCNN, which integrates OD

plus attribute recognition with a shared backbone using a dual-

stage network. With extensive experiments, MPAR-RCNN

has shown that it has outperformed the existing state of

the art by a marginal increase of over a percentage on

the WIDER-Attribute dataset. In further ablation studies,

MPAR-RCNN is benchmarked with different datasets and

augmentation techniques.

Since the MPAR-RCNN is a generic and flexible framework,

it can be incorporated with different backbones and other

architectures. However, in some cases, the model may not be able to

predict attribute classes correctly, for example, male presenter can

be detected as female presenter if the person is occluded. Deploying

MPAR-RCNN using transformers and graph neural networks can

be considered for future research works. Adding more attributes

and jointly learning for different scenarios like pedestrians with

attribute recognition in ADAS based systems is also viable as the

hardware in the autonomous vehicle has constraints regarding

memory and size restrictions.
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