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Background: Viral load (VL) suppression is key to ending the global HIV epidemic, 
and predicting it is critical for healthcare providers and people living with HIV 
(PLHIV). Traditional research has focused on statistical analysis, but machine 
learning (ML) is gradually influencing HIV clinical care. While ML has been used 
in various settings, there’s a lack of research supporting antiretroviral therapy 
(ART) programs, especially in resource-limited settings like Guinea. This study 
aims to identify the most predictive variables of VL suppression and develop ML 
models for PLHIV in Conakry (Guinea).

Methods: Anonymized data from HIV patients in eight Conakry health facilities 
were pre-processed, including variable recoding, record removal, missing 
value imputation, grouping small categories, creating dummy variables, and 
oversampling the smallest target class. Support vector machine (SVM), logistic 
regression (LR), naïve Bayes (NB), random forest (RF), and four stacked models 
were developed. Optimal parameters were determined through two cross-
validation loops using a grid search approach. Sensitivity, specificity, predictive 
positive value (PPV), predictive negative value (PNV), F-score, and area under the 
curve (AUC) were computed on unseen data to assess model performance. RF 
was used to determine the most predictive variables.

Results: RF (94% F-score, 82% AUC) and NB (89% F-score, 82% AUC) were the 
most optimal models to detect VL suppression and non-suppression when 
applied to unseen data. The optimal parameters for RF were 1,000 estimators and 
no maximum depth (Random state = 40), and it identified Regimen schedule_6-
Month, Duration on ART (months), Last ART CD4, Regimen schedule_Regular, 
and Last Pre-ART CD4 as top predictors for VL suppression.

Conclusion: This study demonstrated the capability to predict VL suppression 
but has some limitations. The results are dependent on the quality of the data 
and are specific to the Guinea context and thus, there may be limitations with 
generalizability. Future studies may be to conduct a similar study in a different 
context and develop the most optimal model into an application that can 
be tested in a clinical context.

KEYWORDS

HIV, antiretroviral therapy, viral load, machine learning, prediction, classification, 
algorithm

OPEN ACCESS

EDITED BY

Farah Kidwai-Khan,  
Yale University, United States

REVIEWED BY

Kavitha Chandra,  
University of Massachusetts Lowell, 
United States
Abhimanyu Banerjee,  
Illumina (United States), United States

*CORRESPONDENCE

Degninou Yehadji  
 degninou.yehadji@fulbrightmail.org

RECEIVED 10 June 2024
ACCEPTED 14 February 2025
PUBLISHED 19 March 2025

CITATION

Yehadji D, Gray G, Vicente CA, Isaakidis P, 
Diallo A, Kamano SA and Diallo TS (2025) 
Development of machine learning algorithms 
to predict viral load suppression among HIV 
patients in Conakry (Guinea).
Front. Artif. Intell. 8:1446876.
doi: 10.3389/frai.2025.1446876

COPYRIGHT

© 2025 Yehadji, Gray, Vicente, Isaakidis, 
Diallo, Kamano and Diallo. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 19 March 2025
DOI 10.3389/frai.2025.1446876

https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1446876&domain=pdf&date_stamp=2025-03-19
https://www.frontiersin.org/articles/10.3389/frai.2025.1446876/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1446876/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1446876/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1446876/full
mailto:degninou.yehadji@fulbrightmail.org
https://doi.org/10.3389/frai.2025.1446876
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1446876


Yehadji et al. 10.3389/frai.2025.1446876

Frontiers in Artificial Intelligence 02 frontiersin.org

Introduction

Human immunodeficiency virus (HIV) has become one of the 
global health and development challenges since its recognition and 
report of first cases in the 1980s, and its impacts include social, 
cultural, psychological, economic and political issues (Mann, 1987). 
Despite the global mobilization to end the HIV epidemic, there are 
remaining challenges that limit the impact of the efforts. The United 
Nations’ program on HIV/AIDS (UNAIDS) established the 90-90-90 
strategy, aiming for 90% of people living with HIV (PLHIV) to 
be  aware of their status, 90% of those diagnosed to initiate 
antiretroviral therapy (ART), and 90% of those on ART to have viral 
loads (VL) suppressed below levels of detection, by 2020 (UNAIDS, 
2014). These goals show that viral suppression represents a key to 
ending the global HIV epidemic. The aim of clinical management of 
HIV is long-term viral suppression. Given the importance of viral 
suppression in HIV clinical management and epidemic control, it 
would be of great utility to be able to predict it among PLHIV through 
the continuum of care: (i) HIV diagnosis, (ii) linkage to HIV medical 
care, (iii) receipt of HIV medical care, (iv) retention in medical care, 
and (v) achievement and maintenance of viral suppression (Gardner 
et al., 2011). For healthcare providers and PLHIV, predicting viral 
suppression could help comply with treatment and possibly adjust 
treatment to prevent virologic failure. That is where ML could 
contribute to a better monitoring of patients under ART.

Several studies have been conducted to identify factors of viral 
suppression among PLHIV. These studies identified factors such as 
gender, marital status, age, added body mass index, treatment regimen, 
clinical stage of the infection at the time of ART initiation, duration on 
ART, treatment adherence, active Tuberculosis, initial fasting glucose, 
alcoholism, smoking, facility type, baseline CD4 count, and recent 
CD4 count, availability of a daily caregiver, social isolation, high 
stigma, and belief that there is a cure for the acquired immunodeficiency 
syndrome (AIDS) (Sinai et al., 2019; Ssemwanga et al., 2020; Njuguna 
et al., 2020; Maina et al., 2020; Hicham et al., 2019; Desta et al., 2020; 
Chhim et  al., 2018; Rangarajan et  al., 2016; Lokpo et  al., 2020; 
Sunkanmi et al., 2020; Bulage et al., 2017). These factors can be grouped 
into several categories such as social and demographic, behavioral, 
structural and clinical factors, and provide an orientation for the choice 
of variables to include in a predictive model for viral load suppression.

With the growing availability of data in clinical settings, machine 
learning (ML) is being used for several purposes such as diagnosis, 
patient outcome prediction, personalized care, drug discovery, clinical 
trial, radiology and radiotherapy, smart electronic health records, and 
epidemic outbreak prediction. ML is categorized into supervised and 
unsupervised learning algorithms. Supervised learning algorithms are 
developed to predict or classify known outcomes with sets of predictors. 
When outcomes are unknown, unsupervised learning algorithms are 

used to partition samples into distinct groups where individuals of the 
same group have similar characteristics. Logistic regression (LR), 
decision trees (DT), boosted trees (BT), random forests (RF), naïve 
Bayes (NB), support vector machines (SVM), nearest neighbors (K-NN), 
and neural networks (NN) are some of the popular supervised learning 
algorithms (Mastoli, 2019). Classification tasks are the cornerstone of 
ML applications in healthcare. They can be  used to predict patient 
outcome, diagnose, or inform treatment decisions. Given the variety of 
classification algorithms available, one of the challenges is to select the 
most suitable algorithms for healthcare datasets (Weng, 2020).

Most studies focused on using statistical analysis to identify 
factors of HIV care outcomes such as VL suppression (Sinai et al., 
2019; Ssemwanga et al., 2020; Njuguna et al., 2020; Maina et al., 2020; 
Hicham et al., 2019; Desta et al., 2020; Chhim et al., 2018; Rangarajan 
et al., 2016; Lokpo et al., 2020; Sunkanmi et al., 2020; Bulage et al., 
2017). However, HIV clinical care and research are not outside the 
trend of ML applications in healthcare. Although statistical analysis 
continues to be the prevalent application model, the use of ML is 
progressively expanding to encompass practical tools for clinical use 
to facilitate clinical decision-making (Bisaso et al., 2017).

Several studies conducted globally have utilized ML and other 
methodologies to predict VL. Some studies were based on HIV 
simulation models and others were conducted in clinical research 
setting (Hillmann et al., 2020; Bisaso et al., 2017; Lutz et al., 2021). Yet, 
research is scarce in existing literature focusing on the use of ML to 
assist in the treatment and management of ART programs, especially 
in resource-limited settings (Seboka et al., 2023), such as in Guinea. 
Such studies were conducted only in a couple of African countries 
such as Ethiopia and South Africa (Seboka et al., 2023; Maskew et al., 
2022; Mamo et al., 2023).

Therefore, this study was conducted to determine the most 
predictive variables of VL suppression for PLVIH and develop ML 
models for prediction of VL suppression among PLHIV in Conakry 
(Guinea), using their baseline and follow-up demographic and 
clinical data.

Methodology

Study dataset

The study was conducted on a cohort of HIV patients managed in 
eight healthcare facilities supported by Médecins Sans Frontières 
(MSF), which is implementing a project aiming at the reduction of 
mortality and morbidity of PLHIV in Conakry (Guinea).

Disidentified patient data were extracted from the Three 
Interlinked Electronic Register (TIER.Net) used by the MSF’s HIV/TB 
Project in Conakry, Guinea (Table 1). The TIER.Net is designed with 
modules to capture patient-level data on HIV counseling and testing 
(HCT), pre-ART and ART services (Osler et al., 2014). The data set 
contains 20 variables with 30,205 total records, including 20,878 (69%) 
women, and 9,327 (31%) men. In terms of the regimen schedule, 10% 
(3,032) were on a 3-month schedule, 26% (7,957) on a 6-month 
schedule, and 64% (19,216) on a regular schedule. Prior ART, 83% 
(25,104) were naïve, meaning they had never received antiretroviral 
drugs before being included in the cohort. Regarding their method 
into ART, 67% (20,275) were new, and 16% (4,750) were transferred. 
The last pre-ART stage data showed 8% (2,539) at stage 1, 10% (2,903) 

Abbreviations: AIDS, Acquired immunodeficiency syndrome; ART, Antiretroviral 

therapy; AUC, Area under the curve; CD4, Count of cluster of differentiation 4 

lymphocytes; CPT, Cotrimoxazole prophylactic therapy; HIV, Human 

immunodeficiency virus; LR, Logistic regression; ML, Machine learning; MSF, 

Médecins Sans Frontières; NB, Naïve Bayes; PLHIV, People living with HIV; PNV, 

Predictive negative value; PPV, Predictive positive value; RF, Random forest; SVM, 

Support vector machine; TB, Tuberculosis; TPT, Tuberculosis preventive treatment; 

VL, Viral load.
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at stage 2, 35% (10,662) at stage 3, and 5% (1,555) at stage 4. The 
variables in the dataset are mixed numerical and categorical.

Data cleaning and pre-processing

Some variables were recoded into new ones and some records 
were removed for not meeting criteria (Duration on ART less than 
3 months, and missing VL). These actions were taken for data cleaning 
at this step before further data exploration and preparation (Table 2).

The above-described processes returned a dataset of 21 variables 
with 13,529 records. The majority of variables have full records, but 
some others, namely, Baseline CD4, Last Pre-ART CD4, Last ART 
CD4, Last Pre-ART Stage, Stage at ART Start, TB Treatment Started, 
Age At ART Start, TB Status At Last Visit, CPT at ART Start, and 
Duration on ART have missing values ranging between 1% and 59%.

The cleaned dataset was split into training and test sets (test 
size = 30%), as recommended by Sidey-Gibbons and Sidey-Gibbons 
(2019). The following actions were taken during pre-processing: 
discretization of categorical variables, correction of class imbalance 
(88% in the positive class in the training dataset), and imputation of 
missing variables. Small categories were aggregated into a single 
category for independent variables. Specifically, categories with 
frequencies less than 1.50% were combined into an “Other” category 
to ensure sufficient sample sizes for statistical analysis and modeling 

(Supplementary Table S3). Additionally, nominal categorical variables 
were discretized by converting them into dummy variables. For the 
target variable, class imbalance was corrected by performing a simple 
bootstrapping technique which consisted of oversampling the 
minority category (“VL Suppressed” = No; number of samples = 8,392; 
random state = 5). Missing values imputation was performed with 
K-NN (K = 5) which was chosen for its capability to produce 
estimations close to reality and preserve the associations in the dataset 
(Sania et al., 2020). After the train/test split, the training and test sets 
were pre-processed separately to prevent information leakage from the 
training to the test set, and bootstrapping on the minority class was 
performed on the training set only (Mierswa, 2017).

The data preparation processes returned a training set and a test 
set of 45 numerical variables with 16,793 records in the training set 
(including bootstrap replicates) and 4,054 records in the test set. 
Understandably, VL suppression is notably higher in the test set 
(88.73%) compared to the training set (50.03%).

Modeling

Eight classifiers were developed: four individual classifiers (SVM, 
RF, NB, and LR) and four stacked classifiers using combinations of the 
four classifiers (Cortes and Vapnik, 1995; Ho, 1995; Hand and Yu, 
2001; Hosmer and Lemeshow, 2000; Wolpert, 1992). Linear SVM 
failed to converge, so only a non-linear kernel, namely, a radial basis 
function (RBF) kernel was used (Schlkopf and Smola, 2001). The 
Newton–Cholesky method was the solver used for the LR, as it is 
adapted to the large size of the training set and the binary classification 
task (Bräuninger, 1980).

The approach of 10 × 10 cross validation was used for 
hyperparameter tuning and for estimating the generalization 
performance of models. In the inner loop, a grid search was performed 
over a predefined range of hyperparameters for each model, to identify 
the optimal model configuration for individual models. This grid 
search systematically explored the hyperparameter space to identify 
the best-performing configurations. Specifically, a 10-fold cross-
validation as used to evaluate each combination of hyperparameters 
within the grid (Claesen and De Moor, 2015). In the grid search the 
penalty C and gamma parameters were used for SVM, the number of 
estimators and maximum depth were used for RF, and the maximum 
iteration parameter was used for LR. NB, as a probabilistic classifier 
with no hyperparameters, it was not subject to grid search (Table 3).

In the outer loop, and following identification of the best model 
configuration from the grid search, a second round of 10-fold cross-
validation was conducted on a 10% random subset of the training data 
(1,679 samples) to assess the variance of the selected model (Cawley 
and Talbot, 2010; Stone, 1974). The random state was set to 40 to 
ensure reproducibility of the results. Mean accuracies for each model 
configuration were calculated, along with their 95% confidence 
intervals (95% CI) (Table 3). Finally, the best performing models were 
applied to the unbalanced test dataset (n = 4,054) to estimate accuracy 
on unseen data.

After developing the SVM, RF, NB and LR algorithms, they were 
input into four other stacked classifiers, aiming at leveraging the 
performance of the individual classifiers. The output of three 
individual classifiers were stacked as inputs (classifiers) to the fourth 
one used as classifier to compute the final prediction (meta classifier): 

TABLE 1 List of variables extracted from the TIER.Net.

Category Variables

Demographic

Gender, Age At ART Start, Current Age

Clinical

Gender, Regimen schedule, Prior ART, Method into ART, 

Baseline CD4, Last Pre-ART CD4, Last ART CD4, Last Pre-

ART Stage, Stage at ART Start, TB Treatment Started, TPT 

Outcome, Regimen At Baseline, Last ART Prescription, 

Second Line Start Date, TB Status At Last Visit, CPT at ART 

Start, Duration on ART (months), Last ART VL Count

Structural

Facility

Gender: The biological classification of patients as male or female; Age At ART Start: The age 
of the patient when they began ART; Current Age: The patient’s age at the most recent data 
point or clinical visit; Regimen Schedule: The specific timing and dosage plan of 
antiretroviral therapy (ART) medications; Prior ART: Indicates whether the patient has 
previously received ART before enrolling into the cohort; Method into ART: The process 
through which the patient was introduced to ART (new, meaning following testing or 
referral from another program); Baseline CD4: The CD4 cell count at the start of ART, 
indicating immune system strength; Last Pre-ART CD4: The CD4 count measured 
immediately before starting ART; Last ART CD4: The most recent CD4 count recorded 
while the patient is on ART; Last Pre-ART Stage: The stage of HIV progression before 
starting ART; Stage at ART Start: The stage of HIV progression at the time the patient began 
ART; TB Treatment Started: Indicates whether tuberculosis treatment was initiated; TPT 
Outcome: The result of tuberculosis preventive therapy; Regimen At Baseline: The initial 
combination of ART drugs prescribed to the patient; Last ART Prescription: The most recent 
ART drug prescription given to the patient; Second Line Start Date: The date when the 
patient began a second-line ART regimen, usually due to failure of the initial treatment; TB 
Status At Last Visit: The patient’s tuberculosis status during their most recent clinical visit; 
CPT at ART Start: Indicates whether the patient was on Cotrimoxazole prophylaxis therapy 
when they began ART; Duration on ART (months): The total number of months the patient 
has been on ART; Last ART VL Count: The most recent viral load measurement, indicating 
the amount of HIV in the blood; Facility: The healthcare facility where the patient receives 
their ART treatment, which may impact the quality of care.
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[inputs = (LR, NB, RF), meta classifier = SVM]; [inputs = (LR, NB, 
SVM), meta classifier = RF]; [inputs = (LR, SVM, RF), meta 
classifier = NB]; [inputs = (NB, SVM, RF), meta classifier = LR].

RF was used to determine the variables importance in predicting 
VL suppression. The feature importance attribute was fitted on the RF 
classifier to determine the most predictive variables of VL suppression. 
A summary plot of the variables, ranked by their importance scores 
displayed the importance of each variable based on the RF model.

Evaluation

The performance of each of the four individual algorithms and the 
four stacked algorithms was measured on the test set using sensitivity, 

specificity, predictive positive value (PPV), predictive negative value 
(PNV), F-score, and area under the curve (AUC) as evaluation metrics 
(Rainio et al., 2024). The F-score combines positive predictive value 
(precision) with sensitivity and is a relevant metric to assess the 
models’ capability to predict the target positive class (VL 
Suppressed = 1) (Christen et al., 2023). In clinical practice, predicting 
suppressed viral load is equally important as predicting 
non-suppressed viral load. Thus, in addition to F-score, AUC, which 
also considers the negative class (VL Suppressed = 0), was considered 
in the models’ evaluation (Fawcett, 2006). Determining the best 
performing model consisted in finding the optimal balance between 
F-score and AUC.

In summary, the ML pipeline developed for this study is presented 
in Figure 1.

TABLE 2 Data cleaning tasks performed on the original dataset.

Procedure Variable Task description Rational

Variable recoding

VL Suppresseda (Target variable) Use Last ART VL Count to create a binary 

variable indicating VL suppression (Yes/No)

A threshold of <1,000 RNA copies/mL is used to define 

suppressed viral load (WHO, 2016)

Second Line Treatmenta Use Second Line Start Date to create a 

binary variable indicating if patient is on 

second line treatment (Yes/No)

Reported date is indicative that patient is on second line 

treatment

Baseline CD4, Last Pre-ART CD4 

Count, and Last ART CD4 Count

Bin CD4 values into 100-unite ranges CD4 <200 cells/μL is the threshold of immunologic failure

Age At ART Start, Current Age Bin ages into 5-year age groups 5 years is a common interval for age groups creation

Duration on ART (months) Bin Duration on ART (months) into 

6-month categories

Decision is taken to categorize at each semester

Record removal

VL Suppressed Remove records with missing values VL Suppressed is the target variable. Thus, only non-missing 

records will be kept in the final dataset

Duration on ART (months) Remove records with values <3 The minimum timeline to expect viral suppression after ART 

initiation is 06 months (Ali and Yirtaw, 2019). Decision was 

made to consider 3 months after ART initiation

Current Age Remove records with values <18 Because of ethical considerations, under-18 patients were not 

included

Missing values imputation

TPT Outcome Fill missing values as No treatment Missing TPT Outcome is indicative that patient is not under TPT 

treatment

VL, viral load; ART, antiretroviral therapy; TPT, tuberculosis preventive treatment; CD4, count of cluster of differentiation 4 lymphocytes; TPT, tuberculosis preventive treatment.
aNewly generated variable.

TABLE 3 Summary of parameter optimization on balanced subset.

Algorithm Default parameters Parameters optimized and 
values considered

Best parameters Mean accuracy 
(95% CI)

SVM Kernel = RBF

Random state = 40

C: 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

Gamma: 0.5, 0.6, 0.7, 0.8, 0.9

C = 10

Gamma = 0.9
0.75 (0.74–0.77)

RF
Random state = 40

Number of estimators: 500, 1,000, 1,500, 2000

Maximum depth: None, 10, 30, 50, 70, 90, 100

Number of estimators = 1,000

Maximum depth = None
0.82 (0.80–0.83)

NB Not applicable Not applicable None 0.72 (0.70–0.76)

LR Random state = 40

Solver = Newton–Cholesky

Maximum iteration: 100, 200, 300, 400, 500, 

600, 700, 800, 900
Maximum iteration = 100 0.75 (0.74–0.77)
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Results

The RF’s feature importance revealed that, Regimen schedule_6-
Month, Duration on ART (months), Last ART CD4, Regimen 
schedule_Regular, Last Pre-ART CD4, Second Line Treatment_Yes, 
Baseline CD4, Current Age, Age At ART Start, and Last ART 
Prescription_1T3E were the top 10 most predictive variables for VL 
suppression. The complete overview of feature importance based on 
the RF model is presented on Figure 2.

As depicted in Table 3, SVM was initially set with an RBF kernel 
and a random state of 40. From the “C” parameter values in the range 
of 10 to 100 and gamma values from 0.5 to 0.9 that were optimized, 
the best performance was achieved with C = 10 and gamma = 0.9, 
yielding a mean accuracy of 0.75 [95% CI (0.74–0.77)] on the 
balanced training dataset. RF was initially set with a random state of 
40 and optimized over the number of estimators ranging from 500 to 
2000, and the maximum tree depth, with options of None or values 
from 10 to 100. The optimal model was found with 1,000 estimators 
and no limit on the maximum depth, achieving a mean accuracy of 
0.82 [95% CI (0.80–0.83)] on the balanced training dataset. NB, 
which does not have applicable parameters to optimize, achieved a 
mean accuracy of 0.72 [95% CI (0.70–0.76)] on the balanced training 
dataset. Lastly, LR, initially set with a random state of 40 and using 
the Newton–Cholesky solver, was optimized over the maximum 
number of iterations, ranging from 100 to 900. The optimal model 
was found with a maximum of 100 iterations, resulting in a mean 
accuracy of 0.75 [95% CI (0.74–0.77)] on the balanced 
training dataset.

The models’ evaluation metrics showed that SVM, RF, [(LR, NB, 
RF), SVM], [(LR, NB, SVM), RF], [(LR, SVM, RF), NB], and [(NB, 

SVM, RF), LR] performed highly based on F-score for the positive 
class (94%) when applied to the unbalanced test dataset. NB and LR 
performed lower with F-scores of 89% and 85%, respectively 
(Table 4).

Unsurprisingly, given the level of class imbalance, AUC scores 
did not concur. SVM, [(LR, NB, RF), SVM], [(LR, NB, SVM), RF], 
and [(LR, SVM, RF), NB] showed poor performances—not better 
than random guesses, with AUCs between 50% and 54%, while 
[(NB, SVM, RF), LR] performed moderately with 73% AUC 
(Figure 3).

RF (82% AUC), NB (82% AUC), and LR (84% AUC) stood out 
with the highest AUCs. Considering additional metrics, RF yielded 
higher sensitivity (97%) and F-score (94%), highlighting its strength 
in correctly classifying positive classes and achieving a balanced 
precision-recall performance. However, its specificity was low at 
28%. NB model showed a moderate sensitivity (85%) and a higher 
specificity (56%) relative to RF. Although LR showed the highest 
specificity (75%), its sensitivity was the lowest (76%) (Table 4).

Aiming at finding the best balance between the capability to 
predict the positive class (VL suppression) as well as predicting the 
negative class (VL non-suppression), AUC has been weighted in for 
its indication in discriminating between the target classes. 
Moreover, in a cohort where the non-suppressed VL is the minority 
class, it is critical to select a model that can detect it, meaning a 
model with a high specificity. Looking for the best balance between 
F-score and AUC, RF (94% F-score, 82% AUC) and NB (89% 
F-score, 82% AUC) are the algorithms that are optimal for 
predicting both classes. As illustrated in Table 3, RF had a lower 
model variance and a higher accuracy than NB when applied to the 
balanced dataset.

FIGURE 1

Workflow of the ML for prediction of VL suppression among HIV patients in Conakry, Guinea.
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FIGURE 2

Receiver operating characteristic curves of the individual and stacked models developed, when applied to the unbalanced test dataset.

TABLE 4 Summary confusion matrixes and evaluation metrics of the individual and stacked models developed, when applied to the unbalanced test 
dataset.

Model Predicted 
positive

Predicted 
negative

Sensitivity Specificity PPV PNV F-score

SVM

Actual positive 3,597 0 1 0 0.89 1 0.94

Actual negative 456 1 — — — — —

RFa

Actual positive 3,480 117 0.97 0.28 0.91 0.52 0.94

Actual negative 328 129 — — — — —

NBa

Actual positive 3,064 533 0.85 0.56 0.94 0.33 0.89

Actual negative 200 257 — — — — —

LR

Actual positive 2,748 849 0.76 0.75 0.96 0.29 0.85

Actual negative 115 342 — — — — —

(LR, NB, RF), SVM

Actual positive 3,480 117 0.97 0.28 0.91 0.52 0.94

Actual negative 328 129 — — — — —

(LR, NB, SVM), RF

Actual positive 3,597 0 1 0 0.89 1 0.94

Actual negative 456 1 — — — — —

(LR, SVM, RF), NB

Actual positive 3,597 0 1 0 0.89 1 0.94

Actual negative 456 1 — — — — —

(NB, SVM, RF), LR

Actual positive 3,498 99 0.97 0.27 0.91 0.55 0.94

Actual negative 334 123 — — — — —

PPV, predictive positive value; PNV, predictive negative value.
aAlgorithms with the optimal balance between F-score and AUC.
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Discussion

The performances produced by the NB (AUC = 82%) and RF 
(AUC = 82%) models developed in this study are comparable to those 
obtained in other studies, where the AUCs varied between 63% and 
83% (Revell et  al., 2012; Revell et  al., 2013; Petersen et  al., 2015; 
Kamal et al., 2021). For example, Revell et al. (2012) developed a RF 
model to predict VL reduction using data from North America, 
Western Europe and Australia. After excluding the genotype variable, 
implementing a model improvement strategy, and testing on data 
from Romania, the model produced an AUC equal to 83%. Revell 
et al. (2013) also developed models that can predict VL suppression 
without a genotype and evaluated their applicability in resource-
limited settings. The models were trained using data from well-
resourced countries and evaluated data from well-resourced countries 
mixed with data from Southern Africa, India, and Romania. The 
models achieved an AUC of 76%–77% with the test samples from 
well-resourced countries, 58%–65% with samples from Southern 
Africa, 63% with samples from India, and 70% with samples 
from Romania.

Petersen et al. (2015) used data from US cohorts and applied a 
super learner algorithm for classifying virologic failure. The results 
showed that AUC was 78 and 79% for virologic failures at >1,000 

copies/mL or >400 copies/mL thresholds, respectively. Kamal et al. 
(2021) developed a RF to predict viral rebound from medication 
adherence and clinical data in Switzerland, which produced an 
average AUC of 65%. It can be observed that some of these models 
performed poorer (63%), while the top performing yielded exactly 
83% AUC as in this project. Models tested by Revell et al. (2013) in 
different contexts produced lower performances as compared to 
testing with dataset from the setting where the training sets 
were collected.

A couple of similar studies have been conducted in Africa. 
Maskew et al. (2022) applied ML to viral suppression in South African 
HIV treatment cohorts and obtained a performance of 76% 
AUC. Mamo et  al. (2023) developed various ML algorithms for 
predicting virological failure using HIV treatment cohort data from 
Gondar Comprehensive and Specialized Hospital in Ethiopia. Among 
these algorithms, the RF outperformed with nearly 100% AUC 
(0.9989), although with a smaller sample size and just 141 instances 
in the minority class. Seboka et  al. (2023) also developed several 
algorithms with data from HIV treatment cohorts from Gedeo Zone 
Public Hospitals in Ethiopia and found that eXtreme Gradient 
Boosting (XGB) and RF performed as the best algorithms for viral 
load prediction with 99% AUC, also with a small sample size (minority 
class: n = 140).

FIGURE 3

Feature importance based on the RF model developed to predict VL suppression among HIV patients in Conakry, Guinea.
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The input variables used for these models are included in this 
project with additional variables such as age, tuberculosis prevention 
and treatment, and health facility. The variables used in the study are 
also in line with those found in studies conducted to identify factors 
of viral load suppression, with the exception of treatment adherence, 
marital status, initial fasting glucose, alcoholism, smoking, availability 
of a daily caregiver, belief that there is a cure for AIDS, social isolation, 
high stigma, and body mass index (Sinai et al., 2019; Ssemwanga et al., 
2020; Njuguna et al., 2020; Maina et al., 2020; Hicham et al., 2019; 
Desta et al., 2020; Chhim et al., 2018; Rangarajan et al., 2016; Lokpo 
et al., 2020; Sunkanmi et al., 2020; Bulage et al., 2017). HIV genotype 
was not available in the dataset, but Revell et al. (2012) demonstrated 
that it is possible to develop models without it and obtain results that 
perform as those developed with it.

The results of this study have some limitations. The data used for 
model building were collected in the specific context of Conakry 
(Guinea). It has been demonstrated that performance may be reduced 
while testing in a different context, and consequently, results in this study 
may not be maintained if the models are evaluated in different settings 
(Revell et al., 2013). Exploring the applicability of the results in different 
settings would be a relevant inquiry. Moreover, the results are dependent 
on the quality of the data used. The missing data imputation applied may 
have induced increased performance estimates of the models. TU Dublin 
ethical clearance was contingent on binning numeric attributes to ensure 
a greater level of anonymity, thus further reducing the information quality 
of the data. The LR chosen in this study may also be affected by its specific 
limitations: it requires independence of observations, absence of 
multicollinearity among the independent variables, and linearity of 
independent variables and log odds, which cannot be  assured with 
clinical data.

This study is limited to exploring ML algorithms with the most 
predictive variables, the optimal parameters, and the top performing 
model. The development phase of the CRISP-DM methodology was 
not addressed in this study, and thus the results are not readily usable 
in clinical practice.

Conclusion

SVM, RF, NB, LR and four stacked classifiers using combinations 
of the four individual ones were developed. Their evaluation showed 
that SVM, RF, [(LR, NB, RF), SVM], [(LR, NB, SVM), RF], [(LR, 
SVM, RF), NB], [(NB, SVM, RF), LR] yielded high performances 
based on F-score for the positive class (94%). When weighting in 
AUC, RF (94% F-score, 83% AUC) and NB (89% F-score, 82% AUC) 
presented the optimal balance between F-scores and AUCs. This 
means that the RF and NB are the top performing algorithms in a way 
that they can be  used to detect both VL suppression and 
non-suppression. With these models, the proportions of suppressed 
VL and non-suppressed VL that can be detected are 97% and 28% for 
RF, and 85% and 56% for NB.

The optimal parameters found were C = 10 and gamma = 0.9 for 
SVM (Kernel = RBF, Random state = 40), Number of estimators = 1,000 
and no maximum depth for RF (Random state = 40), Maximum 
iteration = 100 for LR (Random state = 40, Solver = Newton–Cholesky), 
and the default parameters were maintained for NB. With RF, Regimen 
schedule_6-Month, Duration on ART (months), Last ART CD4, 

Regimen schedule_Regular, Last Pre-ART CD4, Second Line Treatment_
Yes, Baseline CD4, Current Age, Age At ART Start, and Last ART 
Prescription_1T3E were identified as the top predicting variables 
associated with VL suppression.

The possible future direction of this study is evaluating the models 
on data from different contexts to assess generalizability. Moreover, as 
RF and NB are the most relevant models, they can be developed into 
an application that can be tested in a clinical context.
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