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Deep learning in gonarthrosis 
classification: a comparative 
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Purpose: This study aims to classify Kellgren–Lawrence (KL) osteoarthritis stages 
using knee anteroposterior X-ray images by comparing two deep learning (DL) 
methodologies: a traditional single-model approach and a proposed multi-
model approach. We addressed three core research questions in this study: (1) 
How effective are single-model and multi-model deep learning approaches in 
classifying KL stages? (2) How do seven convolutional neural network (CNN) 
architectures perform across four distinct deep learning tasks? (3) What is 
the impact of CLAHE (Contrast Limited Adaptive Histogram Equalization) on 
classification performance?

Approach: We created a dataset of 14,607 annotated knee AP X-rays from three 
hospitals. The knee joint region was isolated using a YOLOv5 object detection 
model. The multi-model approach utilized three DL models: one for osteophyte 
detection, another for joint space narrowing analysis, and a third to combine 
these outputs with demographic and image data for KL classification. The 
single-model approach directly classified KL stages as a benchmark. Seven CNN 
architectures (NfNet-F0/F1, EfficientNet-B0/B3, Inception-ResNet-v2, VGG16) 
were trained with and without CLAHE augmentation.

Results: The single-model approach achieved an F1-score of 0.763 and 
accuracy of 0.767, outperforming the multi-model strategy, which scored 0.736 
and 0.740. Different models performed best across tasks, underscoring the 
need for task-specific architecture selection. CLAHE negatively impacted most 
models, with only one showing a marginal improvement of 0.3%.

Conclusion: The single-model approach was more effective for KL grading, 
surpassing metrics in existing literature. These findings emphasize the 
importance of task-specific architectures and preprocessing. Future studies 
should explore ensemble modeling, advanced augmentations, and clinical 
validation to enhance applicability.
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Background

Gonarthrosis, or knee joint degeneration, is a condition that 
causes movement restriction, stiffness, and pain, impacting quality of 
life, especially in older adults. It affects approximately 13% of women 
and 10% of men over the age of 60, and its incidence is increasing due 
to global aging trends, particularly in developed countries (Alkan 
et al., 2014; Shamekh et al., 2022). The key factors involved in its 
development include age, weight, comorbid diseases such as 
rheumatoid arthritis, trauma and genetic factors (Haberal et al., 2021; 
Osteoarthritis, 2023).

The diagnosis of gonarthrosis typically involves standing weight-
bearing (WB) antero-posterior (AP) X-rays, which are considered the 
gold standard (Tiulpin et  al., 2018). Magnetic resonance imaging 
(MRI) is more sensitive and specific than other methods, but X-rays 
remain a more economical and practical choice in clinical settings 
(Newman et al., 2022). Early treatment of gonarthrosis can prevent 
disease progression, but patients in advanced stages often require 
surgery. Gonarthrosis is recognized by the World Health Organization 
(WHO) for its role in increased mortality and rehabilitation necessity 
(Osteoarthritis, 2023).

The Kellgren–Lawrence (KL) system, the most prevalent 
radiological staging system for gonarthrosis, divides conditions into 
five stages (0–4) based on criteria such as joint space narrowing (JSN) 

and osteophyte formation. This staging system is somewhat subjective 
and semiquantitative (Kohn et al., 2016).

In light of the inherent subjectivity associated with the KL grading 
system, advancements in artificial intelligence present a considerable 
opportunity to mitigate these challenges. Advances in artificial 
intelligence have shown potential in improving the accuracy and 
standardization in medicine by leveraging extensive datasets to 
discern complex patterns, thus enhancing diagnostic precision and 
reducing human errors (Alowais et al., 2023).

Related work and contributions

Numerous researchers have employed various artificial 
intelligence techniques to perform KL grading from AP knee 
radiographs. For instance, Olsson et  al. developed a model using 
CNNs that takes images as input and outputs KL grades (Olsson et al., 
2021). Similarly, Wang et al., Antony et al., and Chen et al. focused on 
cropping the knee joint area (region of interest) before training their 
models (Wang et al., 2021; Antony et al., 2017; Chen et al., 2019). 
Studies by Li et al. (2023) and Wang et al. (2021) have particularly 
highlighted the importance of preprocessing images by cropping the 
region of interest, showing that this step can significantly enhance 
model performance. Table  1 presents a comparison of studies 

TABLE 1 Comparative analysis of studies with direct CNN approaches for KL classification.

Study Approach Dataset Dataset 
size

X-ray 
position

Used 
architectures

ROI F1 
score

Accuracy Precision Recall

Our 

study

Direct CNN 

Approach

Self-created 

dataset, 

labeled by 

orthopedic 

surgeons

14,607 AP

NfNet F0,

NfNet F1,

EfficientNet B0,

EfficientNet B3,

Inception ResNet 

V2,

VGG16

Yes 0.763 0.767 0.760 0.767

Antony 

et al. 

(2017)

Direct CNN 

Approach

OAI and 

MOST 

datasets

7,366 AP
Custom CNN 

network
Yes 0.610 0.603 0.610 0.630

Olsson 

et al. 

(2021)

Direct CNN 

Approach

Self-created 

dataset, 

labeled by 

orthopedic 

surgeons

6,103
AP, lateral, 

and oblique
ResNet Yes

Not 

specified
Not specified

KL 0: 0.88

KL 1: 0.75

KL 2: 0.61

KL 3: 0.71

KL 4: 0.78

KL 0: 

0.97

KL 1: 

0.96

KL 2: 

0.92

KL 3: 

0.92

KL 4: 

0.84

Chen 

et al. 

(2019)

Direct CNN 

Approach
OAI dataset 4,130 AP

ResNet, VGG, 

DenseNet, Inception
Yes

Not 

specified

VGG-19-

Ordinal:

Manually 

detected knee 

joints: 0.696

Automatically 

detected knee 

joints: 0.704

Not specified
Not 

specified
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employing direct CNN models for the detection and classification of 
knee osteoarthritis using the Kellgren–Lawrence system. It includes 
details about the datasets, imaging techniques, and specific CNN 
architectures used.

Building on these foundational techniques, subsequent research 
has delved into more complex methods of analyzing knee radiographs 
for osteoarthritis evaluation. The initial exploration of combining 
features from different regions to evaluate osteoarthritis was 
conducted by Tiulipin et  al. They explored the use of a Siamese 
network to analyze features from both sides of the knee, processing 
each half independently with separate CNNs (Tiulpin et al., 2018). Lee 
et al. combined five different CNN models to enhance prediction 
accuracy (Lee and Kim, 2023), and Wei Li et al. input both AP and 
lateral knee radiographs into their CNN model for KL grading (Li 
et al., 2023). Khalid et al. enhanced feature extraction with CNNs by 
employing Principal Component Analysis (PCA) to eliminate 
unnecessary features before training a Feed Forward Neural Network 

(FFNN) to perform KL grading (Khalid et al., 2023). Yoon et al. went 
further by defining four regions of interest (ROIs) to assess 
osteoarthritis presence or absence and quantified joint space to classify 
osteophyte presence or absence, thus providing a comprehensive 
model to evaluate osteoarthritis and KL grades (Yoon et al., 2023). 
Table  2 outlines advanced approaches for knee osteoarthritis 
detection, featuring multi-model strategies, ensemble methods.

Building on these advancements, our study primarily aims to 
enhance KL grading accuracy through a novel multi-model AI 
approach that incorporates both demographic data and clinical 
assessments. Our research is structured into two main subsections: the 
first applies a multi-model strategy to combine outputs from models 
analyzing osteophytes and JSN with demographic data and image; the 
second employs a traditional single-model approach for direct 
comparison. This structure will allow us to assess whether the multi-
model approach with demographic information can outperform 
conventional methods in terms of diagnostic accuracy and reliability.

TABLE 2 Comparative analysis of studies with advanced approaches for KL classification.

Study Approach Dataset Dataset 
size

X-ray 
position

Used 
architectures

ROI F1 
score

Accuracy Precision Recall

Our 

study

Multi-model 

strategy 

combining 

model outputs 

with 

demographic 

data and 

images

Self-created 

dataset, 

labeled by 

orthopedic 

surgeons

14,607 AP

NfNet F0,

NfNet F1,

EfficientNet B0, 

EfficientNet B3

Yes 0.736 0.767 0.735 0.740

Lee and 

Kim 

(2023)

Ensemble of 5 

models

KneeXray 

dataset
8,260 AP

VGGNet, DenseNet, 

ResNet, TinyNet, 

EfficientNet, 

MobileNet, 

Xception, ViT

No 0.78 0.7705 0.79 0.71

Yoon 

et al. 

(2023)

Automated 

quantification 

of JSN and 

detection of 

osteophytes, 

KL grade 

classification

Osteoarthritis 

Initiative 

(OAI)

44,193
AP and 

Rosenberg

HRNet, RetinaNet, 

NASNet
Yes – 0.830

KL 0 & 1: 1.00

KL 2: 0.63

KL 3: 0.77

KL 4: 0.89

KL 0 & 1: 

0.80

KL 2: 

0.91

KL 3: 

0.74

KL 4: 

0.94

Li et al. 

(2023)

Deep learning 

algorithm for 

detecting knee 

OA based on 

multi-view 

images and 

prior knee 

knowledge

Self-created 

dataset, 

labeled by 

radiologists

4,200
AP and 

lateral
U-Net, ResNet-50 Yes 0.970 0.970 0.970 0.970

Khalid 

et al. 

(2023)

Feature 

extraction with 

CNNs and 

PCA before KL 

grading with 

FFNN

OAI and Rani 

Channamma 

datasets

9,786 AP
FFNN, ResNet-101, 

VGG-19
Yes

0.99–

0.98
0.98–0.98 – –

https://doi.org/10.3389/frai.2025.1413820
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Yayli et al. 10.3389/frai.2025.1413820

Frontiers in Artificial Intelligence 04 frontiersin.org

In training all models, image preprocessing involved cropping the 
region of interest, following the successful strategies of Li et al. and 
Wang et  al. an object detection model was trained specifically to 
extract the ROI (Wang et al., 2021; Li et al., 2023).

Another significant contribution of our study is evaluating 
different model architectures to compare their performance for each 
specific task. We selected NfNet, EfficientNet, Inception-ResNet-v2, 
and VGG16 models for our transfer learning approach, chosen for 
their impressive performance in the ILSVRC competition and their 
distinctive architectural features (Brock et al., 2021). Details of these 
models are provided under the model selection section in the 
Materials and Methods.

Our third research question centers on comparing the performance 
of models trained with and without Contrast Limited Adaptive Histogram 
Equalization (CLAHE) in medical imaging. Building on the work of Pizer 
et al. (1990), who demonstrated how CLAHE enhances image clarity 
through localized histogram equalization in segmented regions using the 
Rayleigh distribution, and inspired by Mehdizadeh et al. (2023), who 
reported improvements in diagnostic accuracy for digital periapical 
radiographs, we explore the potential benefits of CLAHE for KL grading 
in osteoarthritis. Further influenced by Hayati et al. (2023), who observed 
variable effects of CLAHE across different model architectures in diabetic 
retinopathy classification, our study conducts experiments with two 
distinct augmentation sets—one incorporating CLAHE and one without. 
This approach allows us to systematically assess CLAHE’s influence on 
the performance of our models.

The objectives of our study can be summarized by the following 
research questions:

 • RQ1: Does the proposed multi-model approach incorporating 
demographic inputs outperform the traditional single-
model approach?

 • RQ2: Which CNN model architecture yields the most 
successful results?

 • RQ3: Does the application of CLAHE during image preprocessing 
enhance model performance?

Methods and materials

Study design

Our study employed two main experimental approaches outlined 
in Figure 1:

 1 Proposed multi-model approach: In this experiment, separate 
deep learning models were initially trained to identify specific 
pathological features, including joint narrowing and the 
presence of osteophytes. Subsequently, an integrated model 
was developed, combining these findings with the original 
knee X-ray images and demographic data (age and sex of 
the patient).

 2 Single-model approach: The objective of this experiment was 
to evaluate the performance of deep learning models trained 
solely for direct KL grading from knee X-ray images. This 
approach served as a benchmark for comparison with the 
proposed multi-model approach.

FIGURE 1

Simplified flowchart depicting two comparative experiments in our study for predicting KL stages of osteoarthritis.
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To fulfill these objectives, our study included the training of deep 
learning models for four distinct cases as outlined above. Different 
model architectures were employed for each case to facilitate a 
comparative analysis of their performance. Additionally, to investigate 
the potential impact of the CLAHE method on image preprocessing, 
each model was trained using two different augmentation sets, one of 
which included CLAHE preprocessing.

In the Results section, we present the training outcomes for the 
four CNN models. Detailed evaluations of each model’s training 
process and performance metrics are provided in the 
subsequent subsections.

Patient selection and data security

The database of Başkent University Hospital and its three affiliated 
hospitals were included in the study. A total of 20,378 knee X-ray 
images were taken between 2015 and 2021 from patients aged 18 and 
100 years and were captured using seven different devices from four 
different manufacturers (Fuji, Kodak, Siemens, Philips). Images were 
excluded based on criteria such as presence of knee implants (3,670 
images), not-standing position (1,005), fractures (910), foreign objects 
(102), poor quality (84), and unsuitability for KL grading (552), 
resulting in 14,607 images for analysis. Among these patients, 41% 
were male (average age 55.8 years), and 59% were female (average age 
57.7 years). The selection of patients based on the centers and their 
demographic distribution is presented in Figure 2 and Table 3. All data 
were anonymized and stored securely. Transfers between institutions 
carried out using 256-bit encrypted hard drives to ensure privacy 
and compliance.

Labeling of radiographs

The radiographs underwent labeling by three board-certified 
orthopedic surgeons, as detailed in a prior study. Two of these 
surgeons boasted more than a decade of experience, while the third 
had over 20 years of arthroplasty expertise.

We used the open-source CVAT software on our self-hosted 
servers to ensure secure and flexible data access (Sekachev et al., 2020). 

This choice enabled labelers to work seamlessly via a web browser, 
while also safeguarding data through the avoidance of external transfers.

We processed images of both extremities, separating them (as 
illustrated in Figure 3A) to ensure each knee could be individually 
annotated by the labelers. Each image was binarized by assigning a full 
pixel value to non-zero pixels. To remove artifacts, such as markers or 
noise, erosion and dilation processes were applied. After isolating the 
primary anatomical structure, the upper  and lower midpoint 
coordinates were calculated and averaged to define a centerline. Using 
this centerline, each image was divided into two halves, with the 
opposite half blacked out in each image. This approach allowed clearer 
focus on each extremity and enhanced annotation accuracy.

The annotations included marking each radiograph for the KL 
gonarthrosis stage, presence of implants, osteophytes, and suitability for 
inclusion. Each labeler was capped at annotating 300 images per day to 
maintain precision. Through this process, a total of 552 radiographs were 
excluded based on predetermined criteria, as represented in Figure 2.

The final labels were determined as the average of assessments 
made by all three labelers, are concisely summarized in Table  4, 
showcasing the distribution of labels.

Image preprocessing

The image processing step is applied to enhance the performance 
of the deep learning model and achieve better results. We conducted 
image preprocessing in two steps before starting model training: 
cropping the joint areas in the radiographs and applying dynamic 
image augmentation techniques during model training (Figures 3B,C).

Automatic detection of knee joint

We employed YOLOv5m model architecture, a member of the 
YOLO (You Only Look Once) family renowned for its rapid and 
accurate object detection capabilities (Jocher et al., 2022).

We created a mini dataset consisting of 500 randomly selected 
radiographs, adhering to radiologist standards for valid knee joint 
segmentation. This segmentation includes the area from the upper end 
of the tibia to the lower end of the femur, centering the cartilage in the 

FIGURE 2

Flowchart detailing the dataset construction process for our study, including exclusion criteria and the number of radiographs considered at each 
hospital.
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image and potentially including parts of the fibula (Wang et al., 2021). 
The knee joint regions were annotated with bounding boxes. We divided 
the dataset into three parts: 300 for training, 100 for validation, and 100 
for testing. We present model training results in Results section.

This custom-trained YOLOv5m model was subsequently applied 
to all the radiographs in our study, eliminating irrelevant anatomical 
structures and ensuring standardized image sizes throughout the 
dataset. The impact of this targeted cropping, transforming images 
from their pre-cropped to post-cropped state, is depicted in Figure 3B.

Image augmentation

Image augmentation, a technique for diversifying the training 
dataset, enhances our model’s ability to generalize. This process is 
critical for reducing overfitting and improving model learning in a 
more generalized manner (Perez and Wang, 2017; Shorten and 
Khoshgoftaar, 2019).

Initially, we ensured that the input image sizes for each model 
matched those used during their original pretraining by applying a 
resizing process. Our study utilized two distinct augmentation sets, 

which were applied dynamically during the model training phase. A 
significant feature of our augmentation approach was the 
implementation of the contrast limited adaptive histogram equalization 
(CLAHE) technique. The parameters for our augmentation sets, 
including the application of CLAHE, are presented in Table 5, and 
examples of the augmented images are shown in Figure 3C.

Data splitting

Our study employed two AI modeling methodologies, as detailed 
in Figure 1. To ensure robust and consistent evaluation across all tasks, 
a dedicated test set was separated at the beginning and held constant for 
use across the four tasks. This consistent test set provided a standardized 
basis for comparing model performances across different approaches.

FIGURE 3

Image preprocessing stages. (A) Application of image processing methods for labeling, creating individual images for each extremity. (B) Use of an 
object detection model for precise cropping of the region of interest, ensuring consistency across all radiographs. (C) Examples of images post-
augmentation.

TABLE 4 Distribution of labels within the dataset used in the study.

Hospital 
1

Hospital 
2

Hospital 
3

Total

Included images 

count

10.438 3.470 699 14.607

KL Stage 0 242 8 8 258

KL Stage 1 3,188 1,325 283 4,807

KL Stage 2 3,442 275 264 5,031

KL Stage 3 2,163 1,336 107 2,796

KL Stage 4 1,403 526 37 1,715

Osteophyte + 4,610 1,064 206 5,883

Osteophyte − 5,828 2,406 493 8,724

Joint narrowing 

+

4,726 1,125 196 6,047

Joint narrowing 

−

5,712 2,345 503 8,560

TABLE 3 Demographic distribution of patients from three different 
hospitals included in the study.

Hospital 
1

Hospital 
2

Hospital 
3

Total

Included images 

count

10.438 3.470 699 14.607

Men (%) 0.281 0.796 0.471 0.412

Men’s median age 53.132 59.261 51.006 55.827

Women (%) 0.719 0.204 0.530 0.588

Women’s median 

age

57.260 61.450 59.241 57.692
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The first methodology, a multi-model approach, consisted of two 
stages. In the first stage, separate models were trained to detect joint 
narrowing and the presence of osteophytes, each using 4,675 images 
for training and 1,168 for validation. In the second stage, a new AI 
model was trained to integrate the outputs of these initial models 
alongside the original images to produce final diagnostic outputs. This 
stage also used a distinct set of 4,675 training images and 1,168 
validation images. Testing for all three cases was conducted using the 
initially separated test set, enhancing the robustness and reliability of 
the final model’s performance across tasks.

The second methodology, a single-step approach, used 9,350 
images for training, 2,337 for validation, and tested on the same 2,920 
images as the multi-model approach.

We also ensured proportional representation of KL grades across 
all datasets to maintain balanced training and testing, ensuring that 
each stage had the same distribution across all subsets, as illustrated 
in Figure 4.

Model selection

In our study, we employed a transfer learning approach using 
models that have shown remarkable performance in the ImageNet 
Large Scale Visual Recognition Challenge (ILSVRC) (Brock et al., 
2021). We selected the NfNet, EfficientNet, Inception-ResNet-v2, 
and VGG16 models, which are known for their distinctive 
architectural features and robust performance across ImageNet’s 
dataset, which includes approximately 1.3 million training images, 

50,000 validation images, and 100,000 test images spread over 22,000 
categories. This choice was motivated by their proven capabilities in 
handling diverse and complex image data, making them ideal for our 
objective of classifying KL stages in knee X-ray images.

 • NfNet: Known for its high performance and architecture that 
omits normalization layers, NfNet utilizes adaptive gradient 
clipping for effective training without batch normalization (Brock 
et al., 2021). We trained NfNet-F0 and NfNet-F1 models.

 • EfficientNet: Prioritizes computational efficiency and 
performance by introducing a scaling method for network 
dimensions and adopting the Swish activation function (Tan and 
Le, 2019). We trained EfficientNet-B0 and EfficientNet-B3 models.

 • Inception-ResNet: This model combines the ability of the 
Inception architecture to capture complex patterns with ResNet’s 
residual connections, balancing performance and computational 
cost (Szegedy et al., 2016).

 • VGG16: VGG16 features a deep structure effective for large-scale 
image classification and has demonstrated superior 
generalizability across various tasks and datasets (Simonyan and 
Zisserman, 2014).

Training protocols

We utilized the PyTorch Image Models (timm) library, an open-
source collection of state-of-the-art image models, pretrained 
weights, and utility scripts designed for training, inference, and 

TABLE 5 Parameters and their respective values for the data augmentation sets applied in our experiments.

RandomBrightnessContrast ShiftScaleRotate ISONoise HorizontalFlip CLAHE Normalize

p Limits p Limits p Limits p Limits p Limits

Augmentation 

1

0.5 Brightness limit:

−0.3, 0.3

Contrast limit:

−0.3, 0.3

Brightness by max:

False

0.5 Shift: 0, 

0.2

Scale: 

−0.2, 0.4

Rotate: 

−15, 15

0.3 Intensity: 

0, 1

Color 

shift: 0.2, 

0.5

0.5 – Mean:

(0.485, 0.456, 

0.406)

Std:

(0.229, 0.224, 

0.225)

Test Set 

Augmentation 

for 

Augmentation 

1

Mean:

(0.485, 0.456, 

0.406)

Std:

(0.229, 0.224, 

0.225)

Augmentation 

2

0.5 Brightness limit:

−0.3, 0.3

Contrast limit:

−0.3, 0.3

Brightness by max:

False

0.5 Shift: 0, 

0.2

Scale: 

−0.2, 0.4

Rotate: 

−15, 15

0.3 Intensity: 

0, 1

Color 

shift: 0.2, 

0.5

0.5 – 1 Clip 

limit: 4,4

Tile grid 

size: 8,8

Mean:

(0.485, 0.456, 

0.406)

Std:

(0.229, 0.224, 

0.225)

Test Set 

Augmentation 

for 

Augmentation 

2

1 Clip 

limit: 4,4

Tile grid 

size: 8,8

Mean:

(0.485, 0.456, 

0.406)

Std:

(0.229, 0.224, 

0.225)
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validation in PyTorch (Wightman et al., 2023). Training was executed 
on NVIDIA Tesla V100 16 GB GPUs, which supported the 
computationally intensive demands of our protocols. Due to the 
variable distribution of data within our dataset, weighted sampling 
was implemented across all training iterations by enabling the 
relevant argument in the training function, allowing the model to 
give more focus to underrepresented data classes. This approach 
ensures that each class contributes proportionally to the learning 
process, thereby enhancing model effectiveness on less common 
data samples.

Each model was trained for 100 epochs using a learning rate of 
10−4 and the Adam optimizer for efficient optimization. The models 
were stabilized using the weights from the best-performing epoch to 
ensure optimal performance.

Statistical analysis

In our study, we  assessed model performance using several 
key metrics.

Accuracy, defined as the proportion of true results (both true 
positives and true negatives) among the total number of cases 
examined, measured how well the model correctly identifies both 
positive and negative outcomes.

Precision (positive predictive value) and recall (sensitivity) 
evaluated the model’s ability to identify true positives and all relevant 
cases, respectively. We  also calculated the weighted F1-score to 
balance precision and recall in our imbalanced datasets.

The area under the receiver operating characteristic (ROC) curve 
(AUC), ranging from 0.5 (no better than chance) to 1.0 (perfect 
discrimination), gauged the model’s discriminative ability across 
various KL grade stages.

The confusion matrix detailed the counts of true positives, false 
positives, and false negatives. These metrics collectively enhanced our 
understanding of the models’ diagnostic accuracy, crucial for the 
statistical analysis in our study.

The Kappa statistic, which ranges from −1 (no agreement) to 1 
(perfect agreement), helped quantify the agreement between 
predicted and actual classifications; Kappa values are interpreted as 
follows: no agreement beyond chance (0.0), slight (0.01–0.20), fair 
(0.21–0.40), moderate (0.41–0.60), good (0.61–0.80), and excellent 
(0.81–1.0). A higher Kappa value suggests a high level of agreement 
with the ground truth, indicating the model’s reliability. This metric 

helps determine the practical applicability of our models in real-
world settings, guiding improvements in model training 
and selection.

Results

Knee joint area detection

The model underwent training on the subset for 20 epochs within 
the PyTorch framework using transfer learning techniques. To 
maintain consistency across the dataset, images were resized to a 
uniform 640 × 640 pixels using the bicubic interpolation method 
provided by OpenCV’s Python module, cv2.

For the transfer learning phase, we initialized our model weights 
with those from models pretrained on the comprehensive COCO 
dataset. This approach allowed us to leverage the extensive variety of 
object recognition patterns present in COCO, enabling more robust 
feature detection in our radiographs.

To ensure high precision in our ROI detection, we established a 
confidence threshold of 0.80. Post-training, the YOLOv5m model 
demonstrated its ability to accurately identify the ROIs, achieving a 
mean Intersection over Union (mIoU) score of 0.92. This score reflects 
the model’s high reliability in detecting relevant anatomical features. 
Notably, the accuracy of detecting the knee region reached 100% in 
our test set.

We initially started our ROI detection experiments with YOLOv5 
and, upon achieving the required performance, did not find it 
necessary to train newer versions of the YOLO family.

Multi-model approach for KL stage 
prediction

Osteophytosis presence classification using an AI 
model

In this section, we  evaluated the ability of various CNN 
architectures to detect osteophytes, training them with two 
distinct augmentation sets with the aim of identifying the most 
successful model for integration into a multi-model detection 
system. We’ve meticulously compiled the training parameters, 
image resolutions, and a full spectrum of performance metrics 
and Kappa coefficient, which are detailed in Table 6. The AUC 

FIGURE 4

Distribution of dataset utilized in model trainings with two different approaches.
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values and ROC curves that provide insights into each model’s 
discrimination ability are presented in Figure 5A. The F1-scores 
of the trained models are presented in Figure 5B.

Results indicate that models trained without the CLAHE method 
(Augmentation1) consistently excelled across all architectures. 
According to Kappa and AUC metrics, all models demonstrated a 
strong agreement with ground truth.

The Inception ResNet v2 model, which achieved the highest 
f1-score of 0.919 and Kappa score of 0.831, displayed superior 
consistency and reliability. Therefore, for its robustness and accuracy, 
this model was selected for integration into our multi-model 
framework. The corresponding confusion matrix for this model can 
be  found in Figure  6, underscoring its statistically significant 
alignment with the ground truth.

Joint narrowing presence classification AI model
In this section, we  evaluated various CNN architectures for 

osteophyte detection. The models were trained using two distinct 
augmentation sets with the aim of identifying the most successful 
model for integration into a multi-model detection system. 
We meticulously compiled training parameters, image resolutions, 
and a comprehensive range of performance metrics, including the 
Kappa coefficient, as detailed in Table 7. Additionally, AUC values and 
ROC curves providing insights into each model’s discrimination 
ability are presented in Figure 7A. The F1-scores of the trained models 
are presented in Figure 7B.

The key finding was that models trained without the CLAHE 
method (Augmentation1) consistently outperformed those trained 
with it across all architectures, except for efficientnet-b3. According to 

TABLE 6 Details of model configurations and evaluation results for osteophyte presence classification.

Model configuration details Model evaluation metrics

Model 
architecture

Augmentation 
set

Image 
size 

(pixels)

Accuracy Precision Recall Weighted 
f1_score

Kappa 
coefficient

dm_nfnet_f0 Augmentation 1 192, 192 0.916 0.917 0.916 0.917 0.826

dm_nfnet_f0 Augmentation 2 192, 192 0.886 0.891 0.886 0.883 0.754

dm_nfnet_f1 Augmentation 1 224, 224 0.917 0.917 0.917 0.917 0.827

inception_resnet_v2 Augmentation 1 299, 299 0.919 0.919 0.919 0.919 0.831

inception_resnet_v2 Augmentation 2 299, 299 0.880 0.890 0.880 0.876 0.738

tf_efficientnet_b0 Augmentation 1 224, 224 0.903 0.904 0.903 0.903 0.796

tf_efficientnet_b0 Augmentation 2 224, 224 0.874 0.875 0.874 0.874 0.737

tf_efficientnet_b3 Augmentation 1 288, 288 0.903 0.903 0.903 0.903 0.797

tf_efficientnet_b3 Augmentation 2 288, 288 0.892 0.895 0.892 0.891 0.770

vgg16 Augmentation 1 224, 224 0.910 0.911 0.910 0.910 0.810

FIGURE 5

Performance evaluation of models for osteophyte classification. (A) Comparative ROC curves and AUC values. (B) F1-score plot for various models.
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TABLE 7 Details of model configurations and evaluation results for joint space narrowing presence classification.

Model configuration details Model evaluation metrics

Model 
architecture

Augmentation 
set

Image 
size

Accuracy Precision Recall Weighted 
f1_score

Kappa 
coefficient

dm_nfnet_f0 Augmentation1 192, 192 0.889 0.888 0.889 0.888 0.767

inception_resnet_v2 Augmentation1 299, 299 0.889 0.889 0.889 0.889 0.770

inception_resnet_v2 Augmentation2 299, 299 0.879 0.880 0.879 0.878 0.746

tf_efficientnet_b0 Augmentation1 224, 224 0.887 0.888 0.887 0.887 0.767

tf_efficientnet_b0 Augmentation2 224, 224 0.877 0.879 0.877 0.875 0.739

tf_efficientnet_b3 Augmentation1 288, 288 0.879 0.882 0.879 0.879 0.752

tf_efficientnet_b3 Augmentation2 288, 288 0.883 0.884 0.883 0.882 0.754

vgg16 Augmentation1 224, 224 0.893 0.893 0.893 0.892 0.775

vgg16 Augmentation2 224, 224 0.880 0.884 0.880 0.878 0.745

Kappa and AUC metrics, all models demonstrated strong agreement 
with the ground truth.

Based on these results, the VGG16 model trained with 
Augmentation1 achieved the highest F1-score of 0.892 and Kappa 
score of 0.775, indicating superior consistency and reliability. This 
model was deemed the most suitable for classifying JSN due to its high 
accuracy and robust performance. Consequently, it was selected for 
integration into our multi-model framework. The corresponding 
confusion matrix for this model can be found in Figure 8, further 
highlighting its statistically significant alignment with the ground truth.

Multi-input Kellgren–Lawrence grading AI model
In this analysis, we assessed the performance of a multi-input model 

designed to determine the KL stages. This model synthesizes various 
inputs including demographic information (age and sex), probabilities 
from osteophyte detection and joint space narrowing models, alongside 

X-ray images. We utilized an array of CNN architectures, each tested 
with two different data augmentation techniques, including one that 
incorporates CLAHE. Notably, certain models, including VGG16, 
Inception-ResNet-v2, and NFNet F1 under Augmentation 2, could not 
be implemented due to their computational complexity exceeding the 
capabilities of the available hardware. Consequently, we were unable to 
obtain and report the performance results for these models.

The performance of trained models was thoroughly assessed 
using multiple metrics, including accuracy, precision, recall, 
weighted F1 score, and Kappa value, detailed in Table  8. The 
F1-scores of the trained models are presented in Figure  9. Our 
analysis demonstrated that augmentation set without CLAHE 
achieved better results for all models, according to F1-scores and 
Kappa coefficients. The NfNet F0 model proved to be exceptionally 
effective, achieving the highest F1-score of 0.736 and a Kappa 
coefficient of 0.638 among the tested models when trained with 
Augmentation1. This F1-score indicates a commendable balance 
between precision and recall, signifying that the model is effective 
at correctly identifying true positives while minimizing false 
positives and negatives, which is crucial in medical diagnostics. The 
Kappa coefficient of 0.638 suggests a substantial agreement between 
the model’s predictions and the ground-truth labels, exceeding what 
would be expected by chance alone. The confusion matrix for this 
model is visually depicted in Figure 10.

Single-model approach for KL stage 
prediction

In the second phase of our investigation, we employed transfer 
learning techniques to train a series of deep learning models using 
knee X-rays, aiming to predict the Kellgren–Lawrence (KL) stages of 
gonarthrosis. The configurations of the models, including the specific 
augmentation strategies utilized and their corresponding performance 
metrics are detailed in Table 9. The F1-scores of the trained models 
are presented in Figure 9.

Our findings indicate that models trained with the first set of 
augmentations, which excluded CLAHE (referred to as 
Augmentation1), consistently surpassed those trained with the second 
augmentation set (Augmentation2). The predictive performance of 

FIGURE 6

Confusion matrix for the Inception_ResNet_v2 model trained with 
Augmentation1, highlighting its effectiveness in osteophyte presence 
classification.
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these models is further illustrated through the macro-average AUC 
and ROC curves presented in Figure  11. Specifically, the models 
utilizing Augmentation1 demonstrated high consistency in 
performance, as reflected by closely aligned F1-scores and 
Kappa coefficients.

Notably, the ‘dm_nfnet_f1’ model from the NfNet series, trained 
using Augmentation1, achieved the highest overall accuracy and 
F1-score, at 76.7 and 76.3%, respectively. Further insights into this 
model’s classification capabilities are illustrated through a confusion 
matrix in Figure 12. In contrast, employing CLAHE in the training 

process (Augmentation2) with the same CNN architecture resulted in 
a substantial decline in model performance, with the F1-score 
reducing dramatically to 30.1%.

Figure 10 presents a comparative graph of the weighted F1-scores 
for CNN models trained using both single-model and multi-model 
approaches to stage KL progression. The graph illustrates the 
performance metrics of models trained with two distinct augmentation 
sets: Augmentation1 and Augmentation2. It’s evident from the graph 
that single-model approaches with Augmentation1 (represented by 
the light-green line) maintain relatively stable F1-scores across 
different models. Conversely, the performance declines markedly for 
the single-model approach with Augmentation2 (dark-green line), 
particularly for the ‘dm_nfnet_f1’ model. In contrast, multi-model 
approaches exhibit a consistent performance irrespective of the 
augmentation set used (indicated by red lines), sustaining higher 
weighted F1-scores than the single-model with Augmentation2. The 
error bars represent the variability in the F1-scores, indicating the 
precision of the model performance estimates.

Discussion

In our study, we  assessed two distinct AI approaches for KL 
grading: a single-model method using only X-ray images and a multi-
model strategy that integrates osteophyte detection, joint space 
narrowing (JSN) assessment, and demographic data. The single-model 
approach demonstrated superior performance across various 
architectures, achieving a significant 2.7% higher F1-score compared 
to the multi-model strategy in the best-performing models. This 
suggests that the simpler single-model approach may be more effective 
in extracting and leveraging the features relevant to KL grading, as 
shown in Figure  9, where models trained without CLAHE 
performed best.

Furthermore, models directly performing five-level classification 
(single-model approach) were observed to be more successful. This could 

FIGURE 7

Performance metrics for models in JSN presence classification (A) Comparative ROC curves and AUC values. (B) F1-scores for the models.

FIGURE 8

Confusion matrix for the VGG16 model using Augmentation1, 
showcasing its superior performance in classifying joint narrowing 
presence.
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TABLE 8 Details of model configurations and evaluation results for the multi-input model training in KL gonarthrosis grading, incorporating inputs of 
image, age, gender, osteophyte prediction, and joint space narrowing prediction.

Model configuration details Model evaluation metrics

Model 
architecture

Augmentation 
set

Image 
size 

(pixels)

Accuracy Precision Recall Weighted 
f1_score

Kappa 
coefficient

dm_nfnet_f0 Augmentation1 192, 192 0.740 0.735 0.740 0.736 0.638

dm_nfnet_f0 Augmentation2 192, 192 0.739 0.732 0.739 0.734 0.636

dm_nfnet_f1 Augmentation1 224, 224 0.655 0.728 0.655 0.679 0.548

tf_efficientnet_b0 Augmentation1 224, 224 0.732 0.724 0.732 0.727 0.627

tf_efficientnet_b0 Augmentation2 224, 224 0.690 0.701 0.690 0.687 0.562

tf_efficientnet_b3 Augmentation1 288, 288 0.735 0.730 0.735 0.731 0.632

tf_efficientnet_b3 Augmentation2 288, 288 0.728 0.720 0.728 0.723 0.623

FIGURE 9

Weighted F1-Scores of Models with Different Architectures and Augmentation Techniques. The primary difference between Augmentation 1 and 
Augmentation 2 is the inclusion of CLAHE in the preprocessing pipeline for Augmentation 2.

be due to the fact that contemporary CNN architectures are already 
proficient in feature extraction, and adding demographic data along with 
specific information from additional models on osteophytes and joint 
space narrowing may have introduced bias into the multi-models.

According to our findings, all models trained with the single-model 
approach outperformed those from similar studies in the existing 
literature. This superior performance could potentially be attributed to the 
unique characteristics of our self-created dataset or the optimality of our 
model parameters. Our dataset, meticulously labeled by expert orthopedic 
surgeons, might possess qualities that particularly align well with the 
features our models are conditioned to recognize.

Furthermore, the best-performing models in single and multi-
model approaches achieved kappa scores above 0.6, indicating a 

substantial agreement with the ground truth. This highlights that both 
methods, despite their performance differences, are reliable and could 
be clinically viable.

In our architecture-specific findings, NfNet consistently emerged 
as the most effective, performing well in both single and multi-input 
model configurations. Inception ResNet v2 and VGG16 excelled in the 
tasks of osteophyte presence and joint narrowing prediction, 
respectively. The close performance of other models suggests that 
multiple architectures have the potential to achieve high accuracy in 
these tasks, depending on the specific setup and implementation.

A pivotal aspect of our research was the exploration of 
different data augmentation sets while keeping other training 
parameters constant. Contrary to several previous studies 
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advocating the benefits of CLAHE for enhancing model 
performance, our results consistently showed that models trained 
without CLAHE outperformed those that included it. This might 
indicate that CLAHE, by overly processing images, could disrupt 
the natural learning processes of sophisticated models, leading to 
overfitting on non-representative image features.

The significant decrease in the F1 score observed in the CNN 
model trained using the single-model approach with the NfNet f1 
architecture may be attributed to overfitting, potentially induced by 
the application of CLAHE. Unlike the NfNet F0 model, theNfNet 
NfNet F1’s increased complexity and higher number of parameters 
might make it more susceptible to overfitting. This aspect highlights 
the need for careful consideration of model complexity when applying 
image enhancement techniques like CLAHE. Further research should 

explore this phenomenon in detail to better understand the trade-offs 
between model complexity and generalization capabilities in medical 
imaging tasks.

To summarize our key findings:

 • We introduced a custom YOLOv5m detection model tailored for 
high-accuracy knee joint detection.

 • Our self-created dataset allowed our single-model NfNet F0 to 
surpass performance metrics reported in existing literature.

 • The single-model approach consistently outperformed our 
proposed multi-model strategy.

 • NfNet F0 generally showed the highest success in our tests, while 
EfficientNet B0 often displayed lower performance.

 • Except in one case, the application of CLAHE degraded the 
performance across all models.

These outcomes suggest that in the development of AI models for 
medical diagnostics, the choice and configuration of data 
preprocessing methods are as critical as the selection of the model 
architecture itself. This underscores the importance of a tailored 
approach to both data handling and model training to optimize 
diagnostic accuracy and model reliability.

While our multi-model framework was conceptually aimed at 
harnessing multiple sources of information—such as osteophyte 
detection, joint space narrowing outcomes, and demographic 
factors—our findings indicate that this approach did not surpass the 
simpler single-model strategy. One likely explanation is the challenge 
of data fusion: the sub-model outputs and demographic data may not 
have been optimally weighted or integrated, leading to partial 
redundancy or incomplete synergy in the final prediction. This can 
manifest as overfitting, where the model relies on spurious patterns 
stemming from sub-model inaccuracies rather than genuinely 
complementary features. For instance, our observation that including 
osteophyte and JSN predictions did not enhance KL staging suggests 
that these auxiliary signals introduced excessive complexity or noise.

Future research could improve multi-model approaches by 
employing attention mechanisms, learned gating networks, or joint 

FIGURE 10

Confusion matrix of the NfNet_F0 model using Augmentation1, 
displaying its top performance in multi-input KL grading.

TABLE 9 Details of model configurations and evaluation results for training models in directly KL stage classification.

Model configuration details Model evaluation metrics

Model 
architecture

Augmentation 
set

Image 
size

Accuracy Precision Recall Weighted 
f1_score

Kappa

dm_nfnet_f0 Augmentation1 192, 192 0.764 0.764 0.764 0.763 0.675

dm_nfnet_f0 Augmentation2 192, 192 0.616 0.665 0.616 0.614 0.475

dm_nfnet_f1 Augmentation1 224, 224 0.767 0.76 0.767 0.763 0.676

dm_nfnet_f1 Augmentation2 224, 224 0.286 0.544 0.286 0.301 0.218

inception_resnet_v2 Augmentation1 299, 299 0.756 0.75 0.756 0.752 0.662

inception_resnet_v2 Augmentation2 299, 299 0.52 0.621 0.52 0.528 0.368

tf_efficientnet_b0 Augmentation1 224, 224 0.744 0.746 0.744 0.744 0.646

tf_efficientnet_b0 Augmentation2 224, 224 0.649 0.688 0.649 0.66 0.531

tf_efficientnet_b3 Augmentation1 288, 288 0.755 0.751 0.755 0.751 0.661

tf_efficientnet_b3 Augmentation2 288, 288 0.63 0.69 0.63 0.635 0.5

vgg16 Augmentation1 224, 224 0.734 0.736 0.734 0.729 0.633

vgg16 Augmentation2 224, 224 0.578 0.638 0.578 0.585 0.439
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training protocols that explicitly align sub-model features. Likewise, a 
deeper investigation into how demographic and radiographic features 
interact at different fusion layers could mitigate overfitting and reveal 

more meaningful synergies. Ultimately, refining these fusion strategies 
may help bridge the gap between multi-model comprehensiveness and 
the robust simplicity of a single end-to-end CNN.

The role of bias, ethics, and 
multimodal clinical data in AI-based 
osteoarthritis classification

One of the biggest challenges in classification studies based on 
semi-objective criteria, such as Kellgren–Lawrence gonarthrosis 
grading, is achieving the most accurate labeling of the data. Inter- and 
intra-observer reliability has always been a matter of debate, and the 
impartiality of the labelers directly affects the accuracy of the results. 
In our study, the data were labeled by three experienced orthopedic 
surgeons, who routinely evaluate radiographs in daily practice and 
have direct exposure to degenerative findings during surgery. To 
minimize bias, a consensus approach was employed, with 
disagreements resolved by majority voting. Furthermore, the dataset 
includes images from multiple imaging devices and demographic 
groups, reducing potential biases related to imaging variability or 
population diversity. While orthopedic surgeons may be thought to 
favor surgical intervention, studies on interobserver reliability 
suggest that their evaluations remain consistent and reliable, 
mitigating such concerns.

In our study, data obtained from three different hospitals and 
eight different X-ray devices over an eight-year period were used to 

FIGURE 11

Comparative weighted ROC curves for deep learning model architectures trained with Augmentation Set 1, used in KL gonarthrosis staging.

FIGURE 12

Confusion matrix for the dm_nfnet_f1 model trained with 
Augmentation1, showcasing its top performance in KL gonarthrosis 
staging.
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ensure impartiality and increase dataset diversity. This approach aims 
to enhance the generalizability of our findings and their relevance to 
real-life clinical scenarios. While the development of AI algorithms 
as a decision support system for radiologists is expected to reduce 
workload, it may also influence radiologists’ objective decision-
making, potentially leading to ethical concerns. It is important to 
note that while radiological classification is a critical factor in 
treatment decisions, it is not the sole determinant. Incorporating 
additional clinical data, such as the patient’s age, weight, and 
treatment expectations, alongside radiological findings, would 
contribute to more balanced and impartial decision-making processes.

Limitations

 1 Model parameter optimization: To optimize each model for the 
task, it would have been ideal to experiment with multiple 
parameter configurations and select the most effective 
combination. However, due to time constraints, we were unable 
to conduct extensive hyperparameter tuning for each model.

 2 Hardware limitations in multi-model approach: The models in 
the multi-model approach required more complex 
architectures. While we were able to train models with fewer 
parameters, our hardware could not support training models 
with a larger number of parameters, limiting the comparison 
of models we could experiment with.

 3 Specificity to KL staging: Our study focused solely on the 
staging system, not incorporating other relevant staging systems 
that might provide a broader understanding of gonarthrosis.

 4 Black-box nature of CNN: The CNN models used classify 
images without elucidating the specific features or locations 
related to osteophyte presence and JSN, limiting the depth of 
analysis compared to segmentation-focused techniques.

 5 Objective measurements: We did not quantify the medial or 
lateral joint space areas, relying instead on clinically evaluated 
radiographs. This approach might affect the precision of our joint 
space assessments due to the lack of standardized radiography.

 6 Radiographic scope: Only AP views were included, omitting 
the comprehensive three-dimensional aspects of the knee 
structure. As a result, conditions like lateral and patello-femoral 
joint arthrosis could not be assessed.

 7 Clinical validation: The algorithms were not compared directly 
with clinical assessments by doctors, focusing instead on model 
development. Clinical validation against professional medical 
evaluations is planned for future research.

 8 Exclusion criteria: Radiographs showing implants near the 
joint area were excluded, potentially limiting the application of 
our findings to the broader spectrum of patients, particularly 
those with posttraumatic arthrosis or implant.

Future directions

Future studies could consider ensemble modeling, which 
combines outputs from multiple models to increase stability and 
accuracy. Additionally, implementing automated segmentation 
techniques for more refined ROI extraction may enhance 
predictive accuracy, especially in complex cases with 
overlapping features.

Further research could explore advanced augmentation techniques 
beyond CLAHE, such as elastic deformations to mimic anatomical 
variations or random rotations to account for minor positional shifts 
in X-rays. These methods may help improve model robustness by 
introducing naturalistic variability without altering core image features.

Conclusion

In summary, our study introduces a pioneering approach to knee 
joint assessment through a two-tiered AI model using X-ray imagery, 
deep learning, and patient data. Initially, our models efficiently 
predicted KL stage using osteophyte formation and JSN indices. 
However, the multi-model strategy did not outperform the simpler 
single-model approach, indicating the need for further optimization.

Unique to our research is the development of a diverse custom 
dataset, collated from various hospitals and X-ray machines, offering a 
broad and unbiased perspective. This approach enhances the study’s 
robustness and sets a new standard in dataset creation for orthopedic 
AI research.

However, the reliance of the study on the subjective KL grading 
system introduces potential biases, emphasizing the need for ongoing 
research and validation with more diverse datasets to confirm the 
effectiveness and applicability of our models in real-world scenarios.

Overall, while our study marks progress in AI for orthopedic 
assessments, continuous research and validation are vital to refine 
these methods for practical clinical use, contributing to advancements 
in patient care in orthopedics.
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