Skip to main content

ORIGINAL RESEARCH article

Front. Artif. Intell.
Sec. Machine Learning and Artificial Intelligence
Volume 7 - 2024 | doi: 10.3389/frai.2024.1508821
This article is part of the Research Topic Machine Learning for CyberSecurity View all 6 articles

Explainable correlation-based anomaly detection for Industrial Control Systems

Provisionally accepted
  • Eötvös Loránd University, Budapest, Hungary

The final, formatted version of the article will be published soon.

    Anomaly detection is vital for enhancing the safety of Industrial Control Systems (ICS). However, the complicated structure of ICS creates complex temporal correlations among devices with many parameters. Current methods often ignore these correlations and poorly select parameters, missing valuable insights. Additionally, they lack interpretability, operating efficiently with limited resources, and root cause identification. This study proposes an explainable correlation-based anomaly detection method for ICS. The optimal window size of the data is determined using Long Short-Term Memory Networks -Autoencoder (LSTM-AE) and the correlation parameter set is extracted using the Pearson correlation. A Latent Correlation Matrix (LCM) is created from the correlation parameter set and a Latent Correlation Vector (LCV) is derived from LCM. Based on the LCV, the method utilizes a Multivariate Gaussian Distribution (MGD) to identify anomalies. This is achieved through an anomaly detection module that incorporates a threshold mechanism, utilizing alpha and epsilon values. The proposed method utilizes a novel set of input features extracted using the Shapley Additive explanation (SHAP) framework to train and evaluate the MGD model. The method is evaluated on the Secure Water Treatment (SWaT), Hardware-in-the-loopbased augmented ICS security (HIL-HAI), and Internet of Things Modbus dataset using precision, recall, and F-1 score metrics. Additionally, SHAP is used to gain insights into the anomalies and identify their root causes. Comparative experiments demonstrate the method's effectiveness, achieving a better 0.96% precision and 0.84% F1-score. This enhanced performance aids ICS engineers and decision-makers in identifying the root causes of anomalies. Our code is publicly available at a GitHub repository : https://github.com/Ermiyas21/Explainable-correlation-AD.

    Keywords: anomaly detection, Correlation, Explainable, Industrial control system, Root Cause Analysis

    Received: 09 Oct 2024; Accepted: 23 Dec 2024.

    Copyright: © 2024 Belachew and Lendák. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Ermiyas Birihanu Belachew, Eötvös Loránd University, Budapest, Hungary

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.