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Sleep disorder detection has greatly improved with the integration of machine

learning, o�ering enhanced accuracy and e�ectiveness. However, the labor-

intensive nature of diagnosis still presents challenges. To address these, we

propose a novel coordination model aimed at improving detection accuracy

and reliability through amulti-model ensemble approach. The proposedmethod

employs amulti-layered ensemblemodel, starting with the careful selection of N

models to capture essential features. Techniques such as thresholding, predictive

scoring, and the conversion of Softmax labels into multidimensional feature

vectors improve interpretability. Ensemble methods like voting and stacking are

used to ensure collaborative decision-making across models. Both the original

dataset and one modified using the Synthetic Minority Oversampling Technique

(SMOTE) were evaluated to address data imbalance issues. The ensemble

model demonstrated superior performance, achieving 96.88% accuracy on the

SMOTE-implemented dataset and 95.75% accuracy on the original dataset.

Moreover, an eight-fold cross-validation yielded an impressive 99.5% accuracy,

indicating the reliability of the model in handling unbalanced data and ensuring

precise detection of sleep disorders. Compared to individual models, the

proposed ensemble method significantly outperformed traditional models. The

combination of models not only enhanced accuracy but also improved the

system’s ability to handle unbalanced data, a common limitation in traditional

methods. This study marks a significant advancement in sleep disorder detection

through the integration of innovative ensemble techniques. The proposed

approach, combining multiple models and advanced interpretability methods,

promises improved patient outcomes and greater diagnostic accuracy, paving

the way for future applications in medical diagnostics.
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1 Introduction

Sleep is a physiological necessity that may revitalize and
repair the body. Furthermore, obtaining high-quality sleep is
essential for maintaining good health (Šušmáková, 2004; Thorpy,
2017). Numerous physical and emotional health issues can
result from poor sleep (Walker, 2017). In traditional sleep
evaluation, the patient is required to sleep in a testing room
and sensors are connected to their bodies to measure biological
signals, such as electroencephalogram (EEG), Electrooculography,
Electromyography (EMG), etc. (Hafezi et al., 2020). Trained sleep
technologists, whether experts or licensed, can accurately pinpoint
sleep issues by analyzing physiological data collected from patients
through Polysomnography (PSG) to find sleep stage intervals and
irregularities that may be signs of sleep disorders. The American
Academy of Sleep Medicine’s sleep scoring guidelines were used in
this process (Berry et al., 2012).

However, a range of sleep-related problems such as sleep apnea
(Mostafa et al., 2019), insomnia (Shahin et al., 2017), and REM
sleep behavior disorder (RBD) (Lee et al., 2022) can diminish
sleep quality. A multitude of detrimental health issues, such as
daytime sleepiness (Shernazarov, 2023), headaches (Jansen et al.,
2019), and weakened immunity, can all be made more likely by
sleep disturbances. As sleep disorders are rising, it is crucial to
identify these issues through thoroughmonitoring of sleep patterns
accurately (Bazilio et al., 2019).

The problem revolves around the crucial role of sleep
in maintaining good health and the rising prevalence of
sleep disorders like sleep apnea and insomnia. Conventional
diagnostic procedures have significant limitations, including high
costs and inconvenience due to the time-consuming process
of attaching multiple sensors. Additionally, sleep technologists
need to manually annotate and interpret PSG recordings, which
encompass extensive data.

Electrocardiography (ECG) is a physiological signal that can
reflect cardiac activity (Hafezi et al., 2020; Hilal et al., 2023). ECG
is considered an alternative physiological source for healthcare
technology because it has the most informative signal, including
cardiac rhythm, breathing activity, and ECG-derived respiratory
activity (Tripathi et al., 2022). ECG has been used in specific
research to automatically identify sleep abnormalities, such as
sleep apnea (Erdenebayar et al., 2019; Bernardini et al., 2021) and
insomnia (Shahin et al., 2018). All these factors, including personal
characteristics like gender, age, and employment status, as well as
metrics such as sleep duration, subjective sleep quality assessments,
daily physical activity levels, stress levels, BMI categories, blood
pressure readings, resting heart rates, and daily step counts, can
serve as predictors for sleep disorders (Ayanaw et al., 2022).
LeCun et al. (2010) suggested different machine learning-based
detection techniques for a single sleep problem from one or more
input sources. Numerous machine learning and deep learning
techniques, including Support Vector Machines (SVM), Artificial
Neural Networks (ANN), and Convolutional Neural Networks
(CNN), were employed in these investigations. This research also
used manually created feature sets that were retrieved utilizing
standard machine-learning techniques. Nonetheless, research that
uses multiclass classification and can automatically classify sleep
disorders ought to be mandated.

Traditional sleep disorder diagnostic procedures, such as
PSG, are expensive and labor-intensive, limiting their scalability
and usefulness. Machine learning and ensemble learning
present a viable alternative, enabling for the study of large
datasets to reveal complex patterns and predictors of sleep
disorders. The addition of a new sleep disorder dataset improves
diagnostic accuracy, while ensemble learning approaches increase
resilience and dependability. By using these developments, we
may transform sleep disorder detection, provide doctors with
relevant information, and ultimately enhance patient outcomes.
Our sleep disorder detection study is motivated by the severe
health consequences associated with diseases such as sleep
apnea, insomnia, and other disorders. These illnesses can cause
various health consequences, including cardiovascular disease
and cognitive impairment, affecting general well-being. Since,
traditional diagnostic approaches, such as polysomnography
testing, are costly and time-consuming, also have access
restrictions; consequently, there is a need for non-invasive,
cost-effective detection technologies. Our study builds upon these
foundational works by introducing a novel coordination model
that utilizes ensemble learning techniques to further enhance
diagnostic reliability and effectiveness. The model demonstrates
remarkable performance by adopting a multi-layered ensemble
approach and innovative methodologies such as thresholding and
predictive scoring. The method effectively addresses challenges
associated with unbalanced data through techniques like SMOTE
evaluation. These findings represent a significant advancement
in the field, promising improved diagnostic capabilities and,
ultimately, better patient outcomes.

The contribution of the study on Sleep disorders can be
summarized as follows:

• The ensemble model consistently achieves high accuracy,
establishing it as a reliable and powerful diagnostic tool for
healthcare professionals.

• With softmax labels and comprehensive feature analysis, the
model enhances understanding of sleep-related conditions,
benefiting healthcare providers and patients.

• Demonstrating precision across various classes, including
insomnia, sleep apnea, and regular sleep, the model showcases
its versatility and applicability in diverse clinical scenarios.

• Setting a precedent for integrating machine learning into
healthcare, the model demonstrates the potential of data-
driven approaches to revolutionize diagnostics and improve
patient outcomes.

2 Related works

Fifty to seventy million Americans suffer from sleep disorders
such as sleep apnea, parasomnias, and hypersomnias (Hillman
et al., 2006). For the diagnosis of sleep disorders, overnight
polysomnography (PSG), which includes EEG brain monitoring,
is crucial. PSG can be automated by the recent development
of complex neural network learning algorithms and large
physiological datasets, opening access to expert-level sleep analysis.
SleepNet, a deployable annotation tool for sleep staging, is based on
sleep EEG neural networks. SLEEPNET employs a deep recurrent
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neural network that was trained on PSGs from more than 10,000
patients at the MGH Sleep Laboratory, one of the largest datasets
for sleep physiology. Similar to expert-expert IRA, SLEEPNET
achieves human-level annotation on an independent test set of
1,000 EEGs with 85.76% accuracy and 79.46% algorithm-expert
inter-rater agreement (IRA) (Biswal et al., 2017). Both research
endeavors (Fraiwan and Lweesy, 2017; Koolen et al., 2017) seek
to streamline the analysis of neonatal sleep states using EEG
recordings. The initial study demonstrates an overall accuracy of
80.4%, while the second study surpasses this with an accuracy
of 85%. Moreover, it achieves a sensitivity of 83% and specificity
of 87% in distinguishing between quiet and active sleep epochs.
Radha et al. (2021) trained a deep recurrent neural network
to classify sleep stages (wake, rapid-eye-movement, N1/N2, and
N3) using electrocardiogram (ECG) data from 292 subjects and
584 recordings. The domain and decision combination transfer
learning technique yielded the best results (Cohen’s kappa of 0.65
± 0.11, accuracy of 76.36 ± 7.57%), surpassing PPG and ECG
baselines. The performance of this PPG-based 4-class sleep stage
categorization surpasses any found in existing literature, marking a
significant advancement and bringing home sleep stage monitoring
closer to clinical application. Classifying sleep states serves as an
initial step in screening for sleep disorders. However, manually
performing this task is laborious and time-intensive for specialists.
Many studies examined automated polysomnogram signal analysis.
They found that support vector machines with radial basis function
and random forest can predict sleep stages and feature-based neural
networks with state-of-the-art performance (Sekkal et al., 2022).

The first deep learning method for sleep stage classification
was introduced by Chambon et al. (2018). It uses all multivariate
and multimodal polysomnography (PSG) inputs (EEG, EMG, and
EOG) and learns end-to-end without spectrogram computing or
manual feature extraction. The initial stage of each method is
learning linear spatial filters to increase the signal-to-noise ratio
using an array of sensors. On the other hand, the representation of
a softmax classifier is given by the last layer. Several spatiotemporal
distribution insights for signals of interest derive from their
investigation: they use six EEGs with two EOG (left and right) and
three EMG chin channels for the best classification performance
with balanced accuracy.

Rempe et al. (2015) presented a semiautomated method for
evaluating rodent sleep disorder using EEG and EMG signals.
Manual scoring by eye inspection is time-consuming and uses
arbitrarily segmented epochs. Using principal component analysis
and naïve Bayes classification with EEG and EMG inputs, this
system was verified using human-scored data from C57BL/6J and
BALB/CJ mice. The machine scoring method correctly detected
wake and slow-wave sleep (SWS) states in over 89% of epochs.
The algorithm correctly detected most rapid-eye-movement sleep
(REMS) epochs, but some were misclassified as SWS or wake.
Koch et al. (2014) proposed a new data-driven technique that
uses spectral EEG, EOG, and ocular correlation in 1-s windows.
The model is evaluated on controls, PLM, iRBD, and Parkinson’s
patients. Optimized with 50 participants and validated on 76
patients, the model has 68.3% subject-specific accuracy and
67.2%–70.1% group-specific accuracy. This computer is capable of
analyzing EEGs in real time. For offline analysis, specific samples

are stored on disk following continuous visual, analog, and tabular
data analysis. Pattern recognition predicts sleep-awake phases using
wave frequency distribution. An independent channel can confirm
results. Averaging and clustering disk samples permit statistical
EEG signal comparisons. Using dexmedetomidine as a prototype
drug, it predicted deep hypnotic levels with 81% accuracy and
0.89 AUC (Nagaraj et al., 2020). The strategy significantly increases
sleep stage classification accuracy and explains multi-class labeling
of univariate EEG signals by identifying key signal components.
They tested the approach on the sleep-EDF dataset and achieved
86.8% accuracy. With the fewest examples, essential sleep stage
N1 classification accuracy was 16.3% greater than state-of-the-art
machine learning (Dutt et al., 2023).

TinySleepNet (Supratak and Guo, 2020) introduced an efficient
deep-learning network and a novel end-to-end training strategy
for automatic sleep stage grading using raw single-channel EEG
data. Due to fewer model parameters, their model requires less
training data and processing. Their training strategy influences
data augmentation to shield the model from time axis shifts and
prevent sleep stage memory. Seven public sleep datasets with
different scoring criteria, recording channels, and settings were
tested. Yan et al. (2021) proposed an end-to-end deep learning
architecture using raw polysomnographic recordings to automate
sleep assessment. The model uses 2D-CNNs to automatically
learn features from multi-modality inputs and a “squeeze and
excitation” block to recalibrate channel-wise feature responses.
A softmax classifier makes Final sleep stage predictions using
the learned representations. SHHS and Sleep-EDF public sleep
datasets with different channels are used to evaluate the model.
Their findings revealed that their model achieved an accuracy
of 85.2% on the SHHS dataset and 85% accuracy on the
Sleep-EDF dataset. The deep learning model with convolutional
neural networks and long short-term memory units performed
well. Werth et al. (2020) assessed three datasets of 34 preterm
children and 18,018 meticulously annotated 30-s sleep episodes.
These annotations included active, quiet, intermediate, awake,
and caretaking sleep states. The study explored four recurrent
neural network architectures for two, three, and all-state analyses.
Specifically, a sequential network was compared with gated
recurrent unit and long- and short-term memory models. ResNet,
ResNext, and other architectures also utilized residual connections
to enhance depth. Notably, the essential sleep active and quiet,
demonstrated a kappa value of 0.43 ± 0.08. Goshtasbi et al. (2022)
proposed SleepFCN, which uses multi-scale feature extraction
(MSFE) and residual dilated causal convolutions (ResDC) for
feature extraction and temporal sequence encoding. After this, one-
sized kernel convolutional layers replace dense layers to construct
the fully convolutional neural network. Since sleep stages are
unevenly distributed, they weight our loss function by the number
of samples in each class. SleepFCN was tested using the Sleep-EDF
and SHHS datasets.

Using dexmedetomidine as a prototype drug, it predicted deep
hypnotic levels with 81% accuracy and 0.89 AUC (Nagaraj et al.,
2020). The strategy significantly increases sleep stage classification
accuracy and explains multi-class labeling of univariate EEG signals
by identifying key signal components. They tested the approach on
the sleep-EDF dataset and achieved 86.8% accuracy in detecting
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five sleep stages. With the fewest examples, essential sleep stage
N1 classification accuracy was 16.3% greater than state-of-the-art
machine learning (Dutt et al., 2023). In a different dataset, Chen
et al. (2022) investigated combining z-scoring with deep learning.
Using 12 three-hour EEG/EMG recordings from sleeping mice,
the open-source program Accusleep identified sleep states using
a combination of z-scoring and deep learning via a convolutional
neural network. Cohen’s k with an accuracy range of 0.66–0.71%
and 85–92%.

The strategy significantly increases sleep stage classification
accuracy and explains multi-class labeling of univariate EEG
signals by identifying key signal components. They tested the
approach on the sleep-EDF dataset and achieved 86.8% accuracy
in detecting five sleep stages. With the fewest examples, essential
sleep stage N1 classification accuracy was 16.3% greater than state-
of-the-art machine learning (Dutt et al., 2023). In Sathyanarayana
et al. (2016), multilayer perceptrons (MLP), convolutional neural
networks (CNN), simple Elman-type recurrent neural networks
(RNNs), long short-term memory (LSTM-RNN), and a time-
batched variant of LSTM-RNN (TB-LSTM) are compared with
conventional logistic regression. According to the results, deep
learning models performed better than conventional logistic
regression. Notably, CNN outperforms logistic regression overall
under the ROC curve by 0.9449—46% better than the prior. It also
showed the highest specificity and sensitivity.

Loh et al. (2020) discussed the importance of sleep for well-
being and the rise of sleep disorders worldwide. Sleep analysis
is essential for recognizing sleep problems, but skilled visual
interpretation creates variability. A Programmed Diagnostic Tool
(PDT) based on artificial intelligence, notably deep learning (DL),
for timely sleep disturbance diagnosis is proposed to address this.

Masood et al. (2018) developed a system that trains deep
learning models using MDT measurements. This setup enables
prompt detection and isolation of network anomalies or cell
outages, thereby reducing the self-healing duty cycle of Self-
Organizing Network (SON). After reviewing the recent methods
outlined in Table 1, illustrating various approaches within
this domain alongside the corresponding research gaps or
challenges encountered during their implementation, we found
inspiration to address these gaps and bridge the existing divides.
Concerns were raised regarding studies conducted in controlled
environments, imbalanced datasets, and movement artifacts,
indicating opportunities for improvement in real-world sleep
pattern understanding and algorithm robustness. These gaps
motivated our work to address these challenges and advance sleep
analysis methodologies.

3 Methodology

Ensemble learning has been performed through the use of
random forest, SVM, logistic regression, KNN, XGBoost, and
voting classifier. Representation is a crucial aspect of this process.
This suggests that the ensemble learning technique involves
combining the predictions of multiple machine learning models,
including random forest, SVM, logistic regression, KNN, XGBoost,
and a voting classifier. Figure 1 depicts the intricate structure of the
proposed model utilized in our sleep disorder detection technique.

TABLE 1 Comprehensive comparative analysis: strengths and weaknesses

of current approaches in several domains.

References Focused
methods

Signals
used

Challenges/
research gap

Zhang et al.
(2021)

Deep CNN-LSTM ECG signals Has limitations,
including
challenges in
detecting hypopnea
events, scoring
transition epochs,
and plans for future
enhancements in
discriminating
arousal and
non-event epochs

Shahin et al.
(2017)

DNN, DNN-HMM EEG Lacked scope of
other sleep
disorders

Jarchi et al.
(2020)

SVM, LSVM,
Autocarousel,
Random Forest,
KNN, XGB, and
multilayer
perceptron

ECG and
EMG

Absent a greater
variety of biosignals

Hafezi et al.
(2020)

CNN + LSTM +
Fully connected
Layer

Tracheal
movements

The investigation is
carried out in a
controlled
environment.

Hafezi et al.
(2019)

Portable system
based on
accelerometer,
CNN, RNN +
LSTM, CNN +
LSTM, and
recording tracheal
motions

NA Imbalanced dataset
and movement
artifacts

3.1 Dataset description

Broader factors related to sleep and daily routines were covered
by 13 columns that comprise the Sleep Health and Lifestyle dataset.
Physical activity, stress levels, age, sex, occupation, blood pressure,
heart rate, daily steps, sleep duration, quality, and presence or
absence of sleep disorders were all included in the dataset.
Comprehensive investigations of cardiovascular health, lifestyle
factors, sleep disorders and sleep metrics are made possible by
key features of the dataset. Many details are provided by dataset
columns, including BMI category, blood pressure readings, resting
heart rate, daily step count, sex, age, occupation, sleep length,
subjective sleep quality ratings, and presence or absence of sleep
disorders. The sleep disorder column, for example, lists “None” for
those without a specific sleep disorder, “Insomnia" for those with
trouble falling or staying asleep, and “Sleep apnea" for those with
breathing problems. dangerous to their health.

3.2 Dataset analysis and discussion

Figure 2 illustrates the distribution of the stress levels
categorized by occupation. The dataset encompasses 11 distinct
occupational categories, which include accountants, doctors,
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FIGURE 1

Comprehensive workflow illustrating the architecture for sleep disorder detection.

engineers, lawyers, managers, nurses, sales representatives,
salespersons, scientists, software engineers, and teachers. Notably,
the analysis reveals that lawyers exhibit the highest incidence
of stress level 5, whereas sales representatives report the lowest
occurrence of stress. Also, Doctors and Engineers have almost
every aspects of stress level.

Figure 3 provides a comprehensive view of the distribution
of sleep disorders based on sex. This visual representation
offers valuable insights into the prevalence and patterns of
sleep-related issues within different sex groups. Analyzing the
distribution illustrated in the figure can significantly enhance our
understanding of the nuanced aspects of sleep disorders, facilitating
the development of tailored interventions or strategies.

3.3 Data preprocessing processes

In the preprocessing phase, a collection of sophisticated
methodologies was utilized to improve the caliber of the dataset.
To preserve the original distribution while adjusting numbers to

fit inside a certain range, we utilized the Min-Max Scaler. This
was especially advantageous considering the varied magnitudes
and existence of anomalies in our dataset. Equation 1 is the Min-
max formula, where m represents the new value, x represents the
original cell value, xmin represents the minimum value of the
column, and xmax represents the maximum value of the column.

m =
(x− xmin)

(xmax− xmin)
(1)

To address the issue of missing values, particularly in time
series data, we usedmany techniques, such as mean imputation and
standardization. These measures not only addressed the missing
data in our dataset but also established a stronger and more
consistent basis for future analysis. Standardization is the process of
transforming the signal of each data channel into a random variable
with a mean of 0 and a variance of 1. This is achieved by using the
sample mean (m) and sample variance (s), as shown in Equation 7.

After undergoing preprocessing efforts, the dataset was refined,
balanced, and ready to be seamlessly integrated with machine
learning models. Figure 4 shows a graphical depiction of the
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FIGURE 2

A comprehensive view of the distribution of sleep disorders based on occupation.

FIGURE 3

A comprehensive view of the distribution of sleep disorders based on gender.

balanced data. The dataset exhibited a pronounced imbalance, with
17.8% representing Insomnia, 18.1% for Apnea, and a substantial
majority of 64.1% corresponding to “None” class. This imbalance
posed a risk of model bias toward the majority class, potentially

compromising performance on the minority classes. Subsequently,
the Synthetic Minority Over-sampling Technique (SMOTE) was
applied, successfully achieving a balanced distribution across all
three classes, each accounting for 33.3% of the dataset. The
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FIGURE 4

Graphical representation of balanced and imbalanced data distribution.

introduction of synthetic samples through SMOTE effectively
mitigated the initial imbalance, providing the model with a more
equitable representation of each class. This balanced dataset is
anticipated to enhance the model’s training, reducing the risk of
bias toward any specific class and improving its generalization
capabilities. The equal distribution among classes ensures that the
model can make predictions across all categories with increased
accuracy and fairness. These thorough measures emphasize our
dedication to guaranteeing the excellence and dependability of the
data supporting our assessments. We carefully partitioned our data
to provide a rigorous assessment of our model. For the purpose of
training, we assigned 70% of the dataset. The validation set, which
accounted for 20% of the data. The testing set, which made up
10% of the dataset. A series of critical steps has been implemented
to ensure the effectiveness of our analysis. Initially, Figure 5 were
utilized to visualize and identify potential outliers within our
dataset, as outliers can significantly influence the accuracy of our
predictive models. Following this, feature engineering techniques
were applied to extract meaningful information from our data and
enhance the predictive power of our models. Subsequently, outliers
were removed from the dataset and the dataset was increased
to mitigate their potential impact on model performance. By
incorporating these steps into our analysis pipeline, accurate and
reliable models are aimed at developing for the detection and
diagnosis of sleep disorders.

The suggested approach for detecting sleep disorders utilizes
an advanced voting classifier that combines four distinct machine
learning algorithms: random forest, support vector machine
(SVM), K-nearest neighbors (KNN), and XGBoost. This ensemble
strategy is designed to enhance predictive performance by
combining the strengths of multiple models.

The process begins with the training phase, where each base
classifier is trained individually on the same training dataset.
During this step, the Random Forest model learns to make
predictions based on decision trees, SVM builds a hyperplane for
classification, KNN categorizes samples based on the majority class
of its nearest peers, and XGBoost, an optimized version of gradient

boosting, focuses on reducing errors by learning from previous
iterations.

Once the models are trained, the testing phase is initiated,
where each classifier predicts the class of new, unseen test samples.
For each test instance, class probabilities are generated by the
models. These probabilities represent the likelihood of the sample
belonging to each possible class (e.g., sleep disorder or non-
disorder). In the voting mechanism, the ensemble combines
the predictions of all four models. The class probabilities from
Random Forest, SVM, KNN, and XGBoost are averaged using
an equal weight voting strategy. This means that for each test
sample, the final prediction is calculated by taking the mean of
the probabilities from each classifier. The class with the highest
aggregated probability is selected as the final predicted label.

By integrating different models through this majority voting
system, the ensemble reduces the risk of overfitting that may arise
from using a single model while also taking advantage of the
complementary strengths of each algorithm. For example, Random
Forest is known for robustness against overfitting, SVM performs
well with clear margins between classes, KNN is effective in
handling noise, and XGBoost excels in handling complex datasets
with non-linear relationships. This ensemble model thus provides
a more reliable and accurate prediction for sleep disorder detection
with the detailed procedure outlined in Algorithm 1.

3.4 Proposed model

Figure 6 of our approach involves selecting N models to form
the baseline model representation. Subsequently, we follow amulti-
layered process for predictive scoring and threshold determination.
To enhance the interpretability of the results, we employ softmax
labels, converting them into multidimensional feature vectors. A
more thorough comprehension of the underlying patterns and
relationships in the data is made possible by this transformation.
In the final stages, we leverage ensemble techniques, specifically
voting and stacking. Among these, the voting classifier emerges
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FIGURE 5

Boxplot analysis showing di�erences between genders across di�erent trait data structures.

as the optimal choice, effectively combining the strengths of
individual models. This strategic ensemble approach ensures a
robust and accurate predictive framework, demonstrating superior
performance compared to individual models. Through this
comprehensive workflow, our methodology not only refines the
predictive capabilities of the baseline models but also underscores
the importance of ensemble strategies in achieving enhancedmodel
performance.

3.5 Our ensemble approach

Our work used a sophisticated ensemble of machine learning
techniques, including Random Forest, Support Vector Machine
(SVM), k-Nearest Neighbors (kNN), and XGBoost. The ensemble
is organized using a voting approach, with each model contributing
to the final decision.

ŷensemble = MajorityVote(ŷRF, ŷSVM, ŷkNN, ŷXGBoost) (2)

3.5.1 Random forest
The random forest technique exploits the power of many

decision trees to produce predictions that are both reliable and
precise. To select random subsets of the training data using
bootstrap sampling, a set of decision trees is constructed during the
training phase. To ensure diversity, each tree is constructed using
a distinct subset of features at each node. In the prediction phase,
each tree “votes” for a particular class; the category that receives
the most votes is selected as the winner. Random Forest has a
reputation for handling a wide range of features and delivering top-
notch results on multiple datasets. It combines multiple decision
trees, and the final prediction probability for class y is determined
by averaging the probabilities from individual trees:

PRF(y) =
1

T

T
∑

i=1

Pi(y) (3)

where T is the number of trees in the Random Forest.
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Require: Training data Dtrain = {(Xi,yi)}
N
i=1, where

Xi ∈ R
d and yi ∈ {0,1, . . .,K − 1}

Require: Test data Dtest = {Xj}
M
j=1 Ensure Predicted

labels ŷj for Dtest State Train Base Models:

1: Random Forest:

2: Train Random Forest classifier RF on Dtrain

3: Support Vector Machine (SVM):

4: Train SVM classifier SVM on Dtrain

5: K-Nearest Neighbors (KNN):

6: Train KNN classifier KNN on Dtrain

7: XGBoost:

8: Train XGBoost classifier XGBoost on Dtrain

9: Combine Predictions Using Voting Classifier:

10: For each test sample Xj:

11: Obtain Predictions:

12: pRF(Xj)← Predict(RF,Xj)

13: pSVM(Xj)← Predict(SVM,Xj)

14: pKNN(Xj)← Predict(KNN,Xj)

15: pXGBoost(Xj)← Predict(XGBoost,Xj)

16: Aggregate Predictions: State Compute class

probabilities from each classifier:

17: PRF(Xj) = Probability(RF,Xj)

18: PSVM(Xj) = Probability(SVM,Xj)

19: PKNN(Xj) = Probability(KNN,Xj)

20: PXGBoost(Xj) = Probability(XGBoost,Xj)

21: Voting Mechanism: State aggregate probabilities

using majority voting:

22: Pvote(Xj) = 1
4(PRF(Xj) + PSVM(Xj) + PKNN(Xj) +

PXGBoost(Xj))

23: Predict Final Label:

24: ŷj ← Argmax(Pvote(Xj))

25:

26: Return: Predicted labels {ŷj}
M
j=1

Algorithm 1. Advanced voting classifier combining random forest, SVM,

KNN, and XGBoost.

3.5.2 Support vector machine
The state-of-the-art classification technique Support Vector

Machine (SVM) finds the best hyperplane in the feature space
to partition the classes. SVM finds the support vectors—the data
points that are closest to the hyperplane—and determines the
hyperplane that maximizes the margin between classes during the
training phase. By mapping data into high-dimensional space,
the kernel trick enables SVM to handle both linear and non-
linear segmentation. SVM classifies new data points according
to their position on the hyperplane during prediction. SVM
works particularly well in high-dimensional spaces in situations
where distinct class boundaries are required. Support Vector
Machines (SVM) classify data points by finding the hyperplane that
maximizes the margin between classes. The decision function for
SVM is:

fSVM(x) = sign

(

n
∑

i=1

αiyiK(x, xi)+ b

)

(4)

where αi are the coefficients, yi are the class labels, K is the kernel
function, and b is the bias term.

3.5.3 K-nearest neighbors
A straightforward and intuitive method for classification is

k-nearest neighbors, or KNN. All training examples are stored
in memory by KNN during training. When a new data point is
met during the prediction phase, KNN determines the distance
between the new point and each training example. Based on these
distances, it then chooses the k nearest neighbors and classifies
the new location by majority vote among its neighbors. The
simplicity and effectiveness of kNN in detecting local patterns
in data is well recognized. Although it may be susceptible to
misinformation or additional features. k-Nearest Neighbors (kNN)
classifies data points based on the majority class among their
k nearest neighbors. The prediction probability for class y is
given by:

PkNN(y) =
1

k

k
∑

i=1

δ(y− yi) (5)

where k is the number of neighbors, and δ is the Dirac delta
function.

3.5.4 XGBoost classifier
XGBoost is a popular and sophisticated algorithm known

for its predictive modeling capabilities. Gradient boosting is thus
used to build sequential decision trees, each tree correcting the
mistakes from the previous one. XGBoost uses gradient boosting
to reduce residual error during training by changing the weights
of misidentified examples. The sum of the predictions from each
tree gives the final prediction during the prediction phase. Because
XGBoost is so good at identifying complex links in data, it is
often used in both real-world and machine learning competitions.
An ensemble learning technique called Extreme Gradient Boosting
(XGBoost) combines the predictions of different decision trees.
The prediction probability for class y is obtained by summing the
contributions from all trees:

PXGB(y) =
ntrees
∑

i=1

fi(x) (6)

where ntrees is the number of trees in the XGBoost model, and fi(x)
represents the output of the i-th tree.

x̃ =
(x− µ)

σ
(7)

The Table 2 provides a comprehensive comparison of
various machine learning models alongside their respective
hyperparameters. Each row delineates a distinct model,
including Random Forest, SVM, KNN, and XGBoost, while
the corresponding columns detail the specific hyperparameters
utilized in their configuration. Notable details include the
number of estimators, criterion for splitting, maximum depth
of trees, and other parameters crucial for model optimization.
For instance, Random Forest employs parameters such as the
number of estimators and the maximum depth, while SVM
relies on parameters like the regularization parameter and
kernel type. Similarly, KNN incorporates parameters like the
number of neighbors and algorithm type, whereas XGBoost
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FIGURE 6

Proposed architecture of ensemble model utilizing voting classifier for sleep disorder detection.

TABLE 2 An analysis of hyperparameters and how they help to maximize

model performance.

Model Hyper-parameter

Random
forest

n_estimators = 321, random_state = 42, criterion = “gini”,
max_depth = 7, min_samples_split = 0.9, min_samples_leaf =
0.9, bootstrap = True, n_jobs = –1

SVM C = 1.0, kernel = “poly”, degree = 5, gamma = “scale”

KNN n_neighbors = 5, weights= “uniform,” algorithm = ”kd-tree”,
n_jobs= –1

XGBoost n_estimators = 249, random_state = 65, objective =
“multi:softmax,” max_depth = 7, min_samples_split = 0.7,
min_samples_leaf = 0.9, n_jobs = –1

utilizes parameters such as the number of boosting rounds
and maximum depth of trees. This table serves as a valuable
resource for understanding the intricate configurations of
each model, facilitating informed decision-making in the
selection and fine-tuning of machine learning algorithms for
various tasks.

4 Results and experiments

4.1 Result analysis

Figure 7 depcits the feature importance analysis that provides
valuable insights into the factors influencing sleep disorders,
as observed in our proposed model aimed at enhancing
accuracy. Notably, blood pressure emerges as the most
crucial determinant, closely followed by BMI. Surprisingly,
occupation secures the third position, as depicted in the
figure. This thorough analysis of the 11 dataset features,
encompassing variables such as age, gender, and heart rate,
underscores gender as the least influential factor among them.
These findings underscore the pivotal roles of blood pressure
and BMI in our model’s predictive capability for addressing
sleep disorders.

4.1.1 Performance metrics
Various standard evaluation metrics, such as accuracy,

precision, recall, and F1-score, were employed to assess the system’s
performance. Accuracy, defined as the ratio of correctly classified
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FIGURE 7

Feature importance analysis for our ensemble model, showing the contribution of each feature to the model’s prediction performance.

TABLE 3 Performance metrics for various models before smote.

Model Train Acc Test Acc Average precision Average recall Average F1-score

CatBoost 93.20 91.13 0.93 0.90 0.91

Gradient boost 93.36 90.34 0.95 0.97 0.92

SVM 88.80 87.96 0.93 0.89 0.90

XGBoost 94.28 91.13 0.96 0.91 0.93

Logistic regression 90.81 89.95 0.92 0.90 0.90

KNN 93.54 92.40 0.95 0.92 0.93

Ensemble model 95.75 94.96 0.96 0.96 0.96

TABLE 4 Performance metrics for various models after smote.

Model Train Acc Test Acc Average precision Average recall Average F1-score

Cat boost 94.88 93.18 0.94 0.93 0.93

Gradient boost 94.86 90.15 0.96 0.94, 0.93

SVM 89.33 87.88 0.91 0.92 0.91

XGBOST 94.86 92.42 0.95 0.93 0.92

Logistic regression 89.33 88.64 0.92 0.91 0.90

KNN 94.92 93.76 0.94 0.91 0.92

Our Ensembled 96.88 95.95 0.98 0.97 0.97

samples to the total number of samples in the dataset, was utilized
in the evaluation process:

Accuracy =
TP + TN

TP + FP + TN + FN
(8)

In summary, the number of true positive samples is represented
by TP, true negative samples are denoted as TN, false positive
samples are identified as FP, and false negative samples are
quantified as FN.

Precision is the ratio of true positive samples to the total
number of positive samples predicted by the model:

Precision =
TP

TP + FP
(9)

Recall, was calculated as the ratio of true positive samples to the
total number of positive samples present in the dataset:

Recall =
TP

TP + FN
(10)

The F1-score is the harmonic mean of precision and recall and
provides a balanced measure of the model’s performance:

F1− score = 2
Precision ∗ Recall

Precision+ Recall
(11)
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FIGURE 8

ROC curve depicting the true positive rates of logistic regression, XGBoost, CatBoost, KNN, and Gradient Boosting models for sleep disorder

classification.

Table 3 presents the performance metrics for various machine
learning models trained on a standard dataset. The CatBoost model
achieved a training accuracy of 93.20%, test accuracy of 91.13%,
average precision of 0.93, average recall of 0.90, and an average F1-
score of 0.91. Similarly, other models such as Gradient Boost, SVM,
XGBoost, Logistic Regression, KNN, and Ensemble models were
evaluated based on their accuracy, precision, recall, and average
F1-score metrics.

Table 4 displays the results of applying the Synthetic Minority
Over-sampling Technique (SMOTE) to the dataset. In this table,
the Cat Boost model achieves a training accuracy of 94.88%, test
accuracy of 93.18%, average precision of 0.94, average recall of
0.93, and an average F1-score of 0.93. Comparatively, it shows
improvements in various metrics for most models, indicating that
SMOTE positively impacts the model performance. Notably, our
Ensemble model demonstrates a higher average F1-score of 0.97
in the SMOTE-applied dataset than 0.96 in the standard dataset.
This suggests that SMOTE contributed to better generalization and
overall performance in handling imbalanced datasets.

ROC curves, as shown in Figure 8, are utilized in binary
classification scenarios to assess and compare the performance

of classification models. They are precious in situations where
the balance between sensitivity and specificity and the impact of
different classification thresholds needs to be carefully considered.
The curve illustrates the accurate favorable rates of various models,
including KNN, XGBoost, CatBoost, Logistic Regression, Gradient
Boosting, and our Ensemble model. Notably, our Ensemble model
outperforms the others across all three classes: 0 class with a rate
of 0.93, 1st class with 0.95, and 2nd class with an impressive 0.97,
corresponding to sleep apnea, insomnia, and none, respectively.
Confusionmatrices, as illustrated in Figure 9, serve as a cornerstone
for evaluating the performance of machine learning models in
sleep disorder detection. It provides a comprehensive breakdown of
predictions, enabling a detailed assessment of the model’s strengths
and weaknesses in classifying different types of sleep disorders
and negative cases. Quantifying errors and categorizing predictions
offer valuable insights into model biases and imbalances, guiding
optimization strategies. Additionally, the confusion matrix makes
it easier to calculate critical performance metrics that are essential
for assessing the efficacy of the model and improving its
classification abilities, including accuracy, precision, recall, and F1-
score. In the end, this iterative process in sleep medicine that
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FIGURE 9

Confusion matrix illustrating the classification results of logistic regression, XGBoost, CatBoost, KNN, and Gradient Boosting models for sleep

disorder detection.

is guided by the confusion matrix improves patient care and
diagnostic accuracy.

The Table 5 outlines the performance metrics of a classification
model across various classes after applying SMOTE, including
None, Apnea, and Insomnia. These metrics, comprising Precision,
Recall, and F1-score, indicate the model’s effectiveness in correctly
identifying instances belonging to each class. Notably, the class
Apnea showcases exceptional precision, boasting a value of 0.99,
which signifies a high accuracy in the model’s predictions for this
particular class. Additionally, the None and Apnea classes exhibit
a recall rate of 0.98, indicating the model’s ability to identify a
significant portion of actual instances within these classes. Despite
variations in precision and recall across classes, all classes maintain
a consistent F1-score of 0.97, suggesting a uniform balance between
precision and recall. Overall, while the model demonstrates strong
performance across all classes, the notably high precision in
the Apnea class underscores the model’s efficacy in accurately
predicting instances of this condition.

The Table 6 provides an overview of performance metrics for
a classification model before applying SMOTE across different
classes, namely None, Apnea, and Insomnia. These metrics
include Precision, Recall, and F1-score, which are fundamental
in accurately evaluating the model’s ability to classify instances
within each class. Notably, the Apnea class exhibits the highest

TABLE 5 Performance metrics after sprint.

Class Precision Recall F1-score

None 0.97 0.98 0.97

Apnea 0.99 0.97 0.97

Insomnia 0.97 0.97 0.97

TABLE 6 Performance measures prior to SMOTE.

Class Precision Recall F1-score

None 0.97 0.95 0.96

Apnea 0.99 0.96 0.97

Insomnia 0.96 0.97 0.96

precision value of 0.99, indicating a high level of accuracy in
the model’s predictions for this particular class. Additionally, the
None class demonstrates a recall rate of 0.95. In contrast, the
Apnea class achieves a recall rate of 0.96, suggesting the model
can effectively identify a substantial portion of actual instances
within these classes. Moreover, all classes maintain consistent
F1 scores, with values ranging from 0.96 to 0.97, highlighting a
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balanced performance in precision and recall. The Table 7 presents
the performances of various models across ten different folds.
The models compared include Catboost, GradientBoost, SVM,
XGBoost, Logistic Regression, KNN, and the Proposed Model.
Each row represents a fold number, and each column represents
a specific model. The metrics provided include precision scores for
each model on each fold. Notably, the ProposedModel consistently
achieves high precision scores across all folds, ranging from 0.895 to
0.995. Additionally, XGBoost and the ProposedModel demonstrate
competitive performance, consistently achieving precision scores
above 0.9 across most folds. Conversely, logistic regression
consistently exhibits lower precision scores than other models.
Overall, the table provides a comprehensive comparison of model
performance, allowing for insights into the effectiveness of different
algorithms across various folds.

4.2 Comparitive analysis of various work

Table 8 provides a comparative overview of methodologies
employed in sleep disorder detection, detailing the techniques,
signal types, and corresponding accuracies. Studies by Yadav
et al. (2023) and Jarchi et al. (2020) utilized Decision Trees and
various methods like SVM and Random Forest, respectively, with
accuracies ranging from 72% to 93%. Zhang et al. (2021) achieved
an accuracy of 96.1% with a Deep CNN-LSTM model, while Lee
and Kim (2018) and Peng and Kou (2023) obtained accuracies of
69.25% and 86.63% using GRU networks and AlexNet, respectively.
Notably, our proposed Ensemble model outperforms others with
an accuracy of 96.88%, underscoring its effectiveness in detecting
sleep disorders. This highlights the diversity of approaches in the
field, with Ensemble modeling emerging as a promising method for
improved accuracy.

4.3 Explainable artificial intelligence (XAI)

A widely used technique is SHAP (Shapley Additive
Explanations) used to understand machine learning model

output. By indicating how each feature contributed to the final
prediction, it aids in the interpretation of model results.

The SHAP bar plot as depicted in Figure 10, derived from a
comprehensive analysis of 11 features, including occupation, BMI,
blood pressure, sleep duration, stress level, daily steps, heart rate,
gender, age, and physical activity level, offers valuable insights
into the dependencies associated with sleep-related conditions—
insomnia, sleep apnea, or none. Notably, occupation emerges
as a significant contributor to insomnia, suggesting a strong
association between specific work-related factors and the likelihood
of experiencing insomnia. Concurrently, BMI stands out as a
critical factor linked to sleep apnea, indicating that individuals with
higher BMI levels may be more susceptible to this sleep disorder.
The significance of other features underscores the complexity of
the relationships influencing sleep conditions. The SHAP analysis
provides a nuanced understanding of the impact of each feature,
offering a model-agnostic perspective on the importance of these
variables in predicting various sleep-related outcomes.

5 Discussion

The presented ensemble model for sleep Disorder detection
represents a significant advancement in predictive modeling,
leveraging a strategic combination of diverse machine learning

TABLE 8 Comparative evaluation of the proposed and existing works.

References Focused
methods

Used data Accuracy

Yadav et al. (2023) Decision tree ECG and EMG 93%

Jarchi et al. (2020) LSVM, ras ECG and EMG 72%

Zhang et al. (2021) Deep
CNN-LSTM

ECG signals 96.1%

Lee and Kim (2018) GRU network EOG signals 69.25%

Peng and Kou (2023) AlexNet ECG signals 86.63%

Our proposed model Our ensemble
model

Health &
Lifestyle

96.88%

TABLE 7 Comparing the 10-fold cross-validation results of the proposed and implemented models.

Fold Catboost GradientBoost SVM XGBoost Logistic regression KNN Proposed model

1 0.897 0.895 0.865 0.895 0.515 0.802 0.895

2 0.775 0.775 0.776 0.775 0.505 0.735 0.775

3 0.865 0.865 0.835 0.8655 0.685 0.796 0.865

4 0.823 0.823 0.823 0.823 0.643 0.779 0.823

5 0.965 0.965 0.923 0.965 0.707 0.965 0.965

6 0.929 0.925 0.932 0.929 0.694 0.826 0.932

7 0.895 0.895 0.867 0.863 0.505 0.855 0.893

8 0.866 0.863 0.967 0.865 0.784 0.800 0.995

9 0.925 0.942 0.931 0.889 0.686 0.932 0.953

10 0.929 0.925 0.835 0.929 0.721 0.835 0.969
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FIGURE 10

Showcasing dependencies associated with sleep-disorder related conditions, with additional insights into Explainable Artificial Intelligence (XAI).

techniques. Ensemble, which includes a voting classifier, k-
nearest neighbors (kNN), random forest, support vector
machine (SVM), logistic regression, and XGBoost, each
provides a distinct approach to improving overall predictive
performance. By successfully integrating various decision-
making processes, the voting and stacking strategies lessen
overfitting, bias, and variance—all prevalent in standalone
models. Its ability to handle noisy physiological information
and adapt to complex, non-linear sleep apnea patterns accounts
for its higher performance, guaranteeing more reliable and
accurate predictions.

The ensemble’s mechanism involves a meticulous integration
of decision-making processes from each model, facilitated by
voting and stacking techniques. The ensemble excels in discerning
intricate patterns indicative of sleep-related conditions, achieving
a remarkable accuracy rate of 96.88%. This high accuracy
underscores the effectiveness of combining diverse models to
overcome the challenges posed by sleep disorder detection.
The interpretability of results is enhanced through softmax
labels, providing valuable insights into the features contributing
to predictions. Our efforts to diagnose sleep disorders are
driven by the urgent need to address the significant adverse
effects of sleep disorders on human health and well-being.
Chronic leg movement disorder, sleep apnea, insomnia, and
other sleep disorders can lead to many health problems, such
as heart problems, memory loss, and reduced quality of life.
Polysomnography tests are expensive and time-consuming in
traditional diagnostic methods, which limits access to diagnosis
and treatment. Our exploration into detection tools for sleep
problems stems from their profound impact on individuals’ health
and overall well-being. Sleep difficulties can result in cognitive
impairment, hindered performance in daily tasks, emotional

fluctuations, and compromised stress management. Moreover, they
are often associated with an elevated risk of mental health issues
like depression and physical illnesses such as diabetes and obesity.
We aim to mitigate the detrimental effects of sleep problems
by implementing efficient detection systems. The ensemble
model’s scalability and computing viability are essential for
practical uses. Although integrating several algorithms in ensemble
models always increases computational costs, these difficulties
can be lessened by using hardware accelerators like GPUs
and TPUs and strategies like model pruning and compression.
These improvements guarantee that the model can satisfy the
requirements for practical use. The ensemble model’s resilience
across various datasets or unseen data is crucial. Sophisticated data
augmentation and cross-validation techniques are incorporated to
guarantee generalizability during training. The model’s capacity
to adjust to unknown situations is further reinforced by
using domain adaptation techniques and broadening the dataset
to encompass a variety of physiological and demographic
characteristics. This guarantees steady functioning under a range of
real-world circumstances.

However, like any model, the ensemble has its limitations. One
notable limitation is the dependence on the quality and diversity
of the training data. If sufficiently representative, the model
may generalize to unseen cases. Additionally, the interpretability
of ensemble models, while improved compared to individual
models, may still need to be improved in fully understanding
the intricate relationships between features. For future directions,
refining the ensemble model by incorporating more advanced
deep-learning architectures could further enhance its ability to
capture complex patterns. Moreover, expanding the dataset to
include a more diverse range of demographic and physiological
factors could contribute to a more comprehensive understanding
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of sleep-related conditions. Regarding model details, the ensemble
mechanism combines individual models’ outputs through a voting
classifier. Each model’s decision-making process is weighted
based on its contribution to the overall accuracy. The accuracy
of 96.88% is achieved through the collaborative strength of
the ensemble, showcasing its robustness in identifying sleep
disorder events.

6 Conclusions

The presented ensemble model for sleep disorder detection,
utilizing machine learning techniques such as Random Forest,
SVM, logistic regression, KNN, XGBoost, and a voting
classifier, demonstrates a high accuracy of 96.88%. The model’s
interpretability, achieved through softmax labels and a thorough
analysis of 11 features, enhances understanding of sleep-
related conditions. While celebrating its success, it is crucial
to acknowledge limitations related to training data quality
and ensemble decision interpretation. The model contributes
significantly to healthcare by providing a powerful diagnostic
tool, and future work should focus on refining and expanding
its capabilities. Through our proposed methodology, we want
to attenuate the negative impacts of sleep disorders, improve
overall health outcomes, and promote well-being by managing
them through effective identification. The precision achieves
across various classes, including insomnia, sleep apnea, and
none, underscores its versatility. Despite its success, ongoing
efforts are necessary to address real-world deployment and data
generalization challenges. This ensemble model is a promising step
forward in machine learning and healthcare, offering a reliable
tool for accurately diagnosing sleep disorders. In conclusion, the
ensemble model achieves superior accuracy in sleep disorder
detection and provides valuable insights into the underlying
patterns. Its strategic combination of models, interpretability, and
high accuracy make it a promising tool for healthcare professionals.
As we look to the future, addressing limitations and incorporating
advancements in deep learning will further solidify the ensemble’s
position as a leading solution in sleep disorder diagnosis.

Data availability statement

The datasets presented in this study can be found in
online repositories. The names of the repository/repositories and
accession number(s) can be found at: https://www.kaggle.com/
datasets/uom190346a/sleep-health-and-lifestyle-dataset.

Author contributions

MM: Conceptualization, Methodology, Validation, Writing –
original draft. SN: Formal analysis, Methodology, Software,
Writing – original draft. MA: Conceptualization, Methodology,
Validation, Writing – original draft. MH: Formal analysis,
Investigation, Validation,Writing – review & editing. MU: Funding
acquisition, Validation, Visualization, Writing – review & editing.
MK: Data curation, Investigation, Methodology, Writing – review
& editing. MFM: Conceptualization, Investigation, Supervision,
Writing – review & editing.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Acknowledgments

The authors would like to thank the Advanced Machine
Intelligence Research Lab (AMIR Lab) for its supervision and
resources.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation
of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Ayanaw, T., Temesgen, M., Azagew, A. W., and Ferede, Y. M. (2022). Sleep quality
and associated factors among adult hypertensive patients attending a chronic follow up
care clinic in Northwest Amhara regional state referral hospitals, northwest Ethiopia.
PLoS ONE 17:e0271072. doi: 10.1371/journal.pone.0271072

Bazilio, D. S., Bonagamba, L. G., Moraes, D. J., and Machado, B. H.
(2019). Cardiovascular and respiratory profiles during the sleep-wake cycle of rats
previously submitted to chronic intermittent hypoxia. Exp. Physiol. 104, 1408–1419.
doi: 10.1113/EP087784

Bernardini, A., Brunello, A., Gigli, G. L., Montanari, A., and Saccomanno,
N. (2021). Aiosa: an approach to the automatic identification of obstructive
sleep apnea events based on deep learning. Artif. Intell. Med. 118:102133.
doi: 10.1016/j.artmed.2021.102133

Berry, R. B., Brooks, R., Gamaldo, C. E., Harding, S. M., Marcus, C., Vaughn, B.
V., et al. (2012). The AASM manual for the scoring of sleep and associated events.
Rules, Terminology and Technical Specifications. Darien, IL: American Academy of
Sleep Medicine, 176.

Frontiers in Artificial Intelligence 16 frontiersin.org

https://doi.org/10.3389/frai.2024.1506770
https://www.kaggle.com/datasets/uom190346a/sleep-health-and-lifestyle-dataset
https://www.kaggle.com/datasets/uom190346a/sleep-health-and-lifestyle-dataset
https://doi.org/10.1371/journal.pone.0271072
https://doi.org/10.1113/EP087784
https://doi.org/10.1016/j.artmed.2021.102133
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Mostafa Monowar et al. 10.3389/frai.2024.1506770

Biswal, S., Kulas, J., Sun, H., Goparaju, B., Westover, M. B., Bianchi, M. T., et al.
(2017). Sleepnet: automated sleep staging system via deep learning. arXiv [Preprint].
arXiv:1707.08262. doi: 10.48550/arXiv.1707.08262

Chambon, S., Galtier, M. N., Arnal, P. J., Wainrib, G., and Gramfort, A. (2018).
A deep learning architecture for temporal sleep stage classification using multivariate
and multimodal time series. IEEE Trans. Neural Syst. Rehabil. Eng. 26, 758–769.
doi: 10.1109/TNSRE.2018.2813138

Chen, W., Zhang, X., Miao, H., Tang, M. J., Anastasio, M., Culver, J., et al. (2022).
Validation of deep learning-based sleep state classification. MicroPubl. Biol. 2022:643.
doi: 10.17912/micropub.biology.000643

Dutt,M., Redhu, S., Goodwin,M., andOmlin, C.W. (2023). Sleepxai: an explainable
deep learning approach for multi-class sleep stage identification. Appl. Intell. 53,
16830–16843. doi: 10.1007/s10489-022-04357-8

Erdenebayar, U., Kim, Y. J., Park, J.-U., Joo, E. Y., and Lee, K.-J. (2019).
Deep learning approaches for automatic detection of sleep apnea events
from an electrocardiogram. Comput. Methods Programs Biomed. 180:105001.
doi: 10.1016/j.cmpb.2019.105001

Fraiwan, L., and Lweesy, K. (2017). “Neonatal sleep state identification
using deep learning autoencoders,” in 2017 IEEE 13th International Colloquium
on Signal Processing its Applications (CSPA) (Penang: IEEE), 228–231.
doi: 10.1109/CSPA.2017.8064956

Goshtasbi, N., Boostani, R., and Sanei, S. (2022). Sleepfcn: A fully convolutional
deep learning framework for sleep stage classification using single-channel
electroencephalograms. IEEE Trans. Neural Syst. Rehabil. Eng. 30, 2088–2096.
doi: 10.1109/TNSRE.2022.3192988

Hafezi, M., Montazeri, N., Saha, S., Zhu, K., Gavrilovic, B., Yadollahi, A., et al.
(2020). Sleep apnea severity estimation from tracheal movements using a deep learning
model. IEEE Access 8, 22641–22649. doi: 10.1109/ACCESS.2020.2969227

Hafezi, M., Montazeri, N., Zhu, K., Alshaer, H., Yadollahi, A., Taati, B.,
et al. (2019). “Sleep apnea severity estimation from respiratory related movements
using deep learning,” in 2019 41st Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC) (IBerlin: EEE), 1601–1604.
doi: 10.1109/EMBC.2019.8857524

Hilal, A. M., Al-Rasheed, A., Alzahrani, J. S., Eltahir, M. M., Al Duhayyim,
M., Salem, N. M., et al. (2023). Competitive multiverse optimization with deep
learning based sleep stage classification. Comput. Syst. Sci. Eng. 45, 1249–1263.
doi: 10.32604/csse.2023.030603

Hillman, C. H., Motl, R. W., Pontifex, M. B., Posthuma, D., Stubbe, J. H.,
Boomsma, D. I., et al. (2006). Physical activity and cognitive function in a cross-
section of younger and older community-dwelling individuals. Health Psychol. 25:678.
doi: 10.1037/0278-6133.25.6.678

Jansen, C., Penzel, T., Hodel, S., Breuer, S., Spott, M., Krefting, D., et al.
(2019). Network physiology in insomnia patients: assessment of relevant changes
in network topology with interpretable machine learning models. Chaos 29.
doi: 10.1063/1.5128003

Jarchi, D., Andreu-Perez, J., Kiani, M., Vysata, O., Kuchynka, J., Prochazka, A.,
et al. (2020). Recognition of patient groups with sleep related disorders using bio-signal
processing and deep learning. Sensors 20:2594. doi: 10.3390/s20092594

Koch, H., Christensen, J. A., Frandsen, R., Zoetmulder, M., Arvastson, L.,
Christensen, S. R., et al. (2014). Automatic sleep classification using a data-
driven topic model reveals latent sleep states. J. Neurosci. Methods 235, 130–137.
doi: 10.1016/j.jneumeth.2014.07.002

Koolen, N., Oberdorfer, L., Rona, Z., Giordano, V., Werther, T., Klebermass-
Schrehof, K., et al. (2017). Automated classification of neonatal sleep states using EEG.
Clin. Neurophysiol. 128, 1100–1108. doi: 10.1016/j.clinph.2017.02.025

LeCun, Y., Kavukcuoglu, K., Farabet, C. (2010). “Convolutional networks and
applications in vision,” in Proceedings of 2010 IEEE international symposium on circuits
and systems (Paris: IEEE), 253–256. doi: 10.1109/ISCAS.2010.5537907

Lee, D. A., Lee, H.-J., Kim, H. C., and Park, K. M. (2022). Application of machine
learning analysis based on diffusion tensor imaging to identify REM sleep behavior
disorder. Sleep Breath. 26, 633–640. doi: 10.1007/s11325-021-02434-9

Lee, W., and Kim, Y. (2018). “Interactive sleep stage labelling tool for diagnosing
sleep disorder using deep learning,” in 2018 40th Annual International Conference of
the IEEE Engineering in Medicine and Biology Society (EMBC) (Honolulu, HI: IEEE),
183–186. doi: 10.1109/EMBC.2018.8512219

Loh, H. W., Ooi, C. P., Vicnesh, J., Oh, S. L., Faust, O., Gertych, A., et al. (2020).
Automated detection of sleep stages using deep learning techniques: a systematic
review of the last decade (2010-2020). Appl. Sci. 10:8963. doi: 10.3390/app10248963

Masood, U., Asghar, A., Imran, A., and Mian, A. N. (2018). “Deep learning
based detection of sleeping cells in next generation cellular networks,” in 2018 IEEE
Global Communications Conference (GLOBECOM) (Abu Dhabi: IEEE), 206–212.
doi: 10.1109/GLOCOM.2018.8647689

Mostafa, S. S. Mendonça, F., G. Ravelo-García, A., Morgado-Dias, F. (2019). A
systematic review of detecting sleep apnea using deep learning. Sensors 19:4934.
doi: 10.3390/s19224934

Nagaraj, S. B., Ramaswamy, S. M., Weerink, M. A., and Struys, M. M. (2020).
Predicting deep hypnotic state from sleep brain rhythms using deep learning: a data-
repurposing approach. Anesth. Analg. 130:1211. doi: 10.1213/ANE.0000000000004651

Peng, C.-C., and Kou, C.-Y. (2023). “Sleep disorder classification using
convolutional neural networks,” in IFIP International Conference on Artificial
Intelligence Applications and Innovations (Cham: Springer), 539–548.
doi: 10.1007/978-3-031-34111-3_45

Radha, M., Fonseca, P., Moreau, A., Ross, M., Cerny, A., Anderer, P., et al.
(2021). A deep transfer learning approach for wearable sleep stage classification with
photoplethysmography. NPJ Digit. Med. 4:135. doi: 10.1038/s41746-021-00510-8

Rempe, M. J., Clegern, W. C., and Wisor, J. P. (2015). An automated sleep-state
classification algorithm for quantifying sleep timing and sleep-dependent dynamics of
electroencephalographic and cerebral metabolic parameters. Nat. Sci. Sleep 7, 85–99.
doi: 10.2147/NSS.S84548

Sathyanarayana, A., Joty, S., Fernandez-Luque, L., Ofli, F., Srivastava, J.,
Elmagarmid, A., et al. (2016). Sleep quality prediction from wearable data using deep
learning. JMIR mHealth uHealth 4:e6562. doi: 10.2196/mhealth.6562

Sekkal, R. N., Bereksi-Reguig, F., Ruiz-Fernandez, D., Dib, N., and Sekkal, S. (2022).
Automatic sleep stage classification: from classical machine learning methods to deep
learning. Biomed. Signal Process. Control 77:103751. doi: 10.1016/j.bspc.2022.103751

Shahin, M., Ahmed, B., Hamida, S. T.-B., Mulaffer, F. L., Glos, M., Penzel, T., et al.
(2017). Deep learning and insomnia: assisting clinicians with their diagnosis. IEEE J.
Biomed. Health Inform. 21, 1546–1553. doi: 10.1109/JBHI.2017.2650199

Shahin, M., Mulaffer, L., Penzel, T., and Ahmed, B. (2018). “A two stage approach
for the automatic detection of insomnia,” in 2018 40th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society (EMBC) (Honolulu, HI: IEEE),
466–469. doi: 10.1109/EMBC.2018.8512360

Shernazarov, F. (2023). The problem of insomnia causes of sleep disorder, remedies
at home. Sci. Innov. 2, 79–84.

Supratak, A., and Guo, Y. (2020). “Tinysleepnet: an efficient deep learning model
for sleep stage scoring based on raw single-channel EEG,” in 2020 42nd Annual
International Conference of the IEEE Engineering inMedicine& Biology Society (EMBC)
(Montreal, QC: IEEE), 641–644. doi: 10.1109/EMBC44109.2020.9176741

Šušmáková, K. (2004). Human sleep and sleep EEG.Meas. Sci. Rev. 4, 59–74.

Thorpy, M. (2017). Sleep disorders medicine.

Tripathi, P., Ansari,M., Gandhi, T. K.,Mehrotra, R., Heyat,M. B. B., Akhtar, F., et al.
(2022). Ensemble computational intelligent for insomnia sleep stage detection via the
sleep ECG signal. IEEE Access 10, 108710–108721. doi: 10.1109/ACCESS.2022.3212120

Walker, M. (2017). Why We Sleep: The New Science of Sleep and Dreams. London:
Penguin UK.

Werth, J., Radha, M., Andriessen, P., Aarts, R. M., and Long, X. (2020). Deep
learning approach for ecg-based automatic sleep state classification in preterm infants.
Biomed. Signal Process. Control 56:101663. doi: 10.1016/j.bspc.2019.101663

Yadav, P. K., Singh, U. K., Kovilpiaali, J. J. A., and Tamilarasi, R. (2023). “Sleep
disorder detection using machine learning method,” in 2023 2nd International
Conference on Automation, Computing and Renewable Systems (ICACRS)
(Pudukkottai: IEEE), 1530–1532. doi: 10.1109/ICACRS58579.2023.10404662

Yan, R., Li, F., Zhou, D. D., Ristaniemi, T., and Cong, F. (2021). Automatic
sleep scoring: a deep learning architecture for multi-modality time series. J. Neurosci.
Methods 348:108971. doi: 10.1016/j.jneumeth.2020.108971

Zhang, J., Tang, Z., Gao, J., Lin, L., Liu, Z., Wu, H., et al. (2021). Automatic detection
of obstructive sleep apnea events using a deep CNN-LSTM model. Comput. Intell.
Neurosci. 2021. doi: 10.1155/2021/5594733

Frontiers in Artificial Intelligence 17 frontiersin.org

https://doi.org/10.3389/frai.2024.1506770
https://doi.org/10.48550/arXiv.1707.08262
https://doi.org/10.1109/TNSRE.2018.2813138
https://doi.org/10.17912/micropub.biology.000643
https://doi.org/10.1007/s10489-022-04357-8
https://doi.org/10.1016/j.cmpb.2019.105001
https://doi.org/10.1109/CSPA.2017.8064956
https://doi.org/10.1109/TNSRE.2022.3192988
https://doi.org/10.1109/ACCESS.2020.2969227
https://doi.org/10.1109/EMBC.2019.8857524
https://doi.org/10.32604/csse.2023.030603
https://doi.org/10.1037/0278-6133.25.6.678
https://doi.org/10.1063/1.5128003
https://doi.org/10.3390/s20092594
https://doi.org/10.1016/j.jneumeth.2014.07.002
https://doi.org/10.1016/j.clinph.2017.02.025
https://doi.org/10.1109/ISCAS.2010.5537907
https://doi.org/10.1007/s11325-021-02434-9
https://doi.org/10.1109/EMBC.2018.8512219
https://doi.org/10.3390/app10248963
https://doi.org/10.1109/GLOCOM.2018.8647689
https://doi.org/10.3390/s19224934
https://doi.org/10.1213/ANE.0000000000004651
https://doi.org/10.1007/978-3-031-34111-3_45
https://doi.org/10.1038/s41746-021-00510-8
https://doi.org/10.2147/NSS.S84548
https://doi.org/10.2196/mhealth.6562
https://doi.org/10.1016/j.bspc.2022.103751
https://doi.org/10.1109/JBHI.2017.2650199
https://doi.org/10.1109/EMBC.2018.8512360
https://doi.org/10.1109/EMBC44109.2020.9176741
https://doi.org/10.1109/ACCESS.2022.3212120
https://doi.org/10.1016/j.bspc.2019.101663
https://doi.org/10.1109/ICACRS58579.2023.10404662
https://doi.org/10.1016/j.jneumeth.2020.108971
https://doi.org/10.1155/2021/5594733
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

	Advanced sleep disorder detection using multi-layered ensemble learning and advanced data balancing techniques
	1 Introduction
	2 Related works
	3 Methodology
	3.1 Dataset description
	3.2 Dataset analysis and discussion
	3.3 Data preprocessing processes
	3.4 Proposed model
	3.5 Our ensemble approach
	3.5.1 Random forest
	3.5.2 Support vector machine
	3.5.3 K-nearest neighbors
	3.5.4 XGBoost classifier


	4 Results and experiments
	4.1 Result analysis
	4.1.1 Performance metrics

	4.2 Comparitive analysis of various work
	4.3 Explainable artificial intelligence (XAI)

	5 Discussion
	6 Conclusions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher's note
	References


