
Frontiers in Artificial Intelligence 01 frontiersin.org

AI-assisted human clinical 
reasoning in the ICU: beyond “to 
err is human”
Khalil El Gharib 1†, Bakr Jundi 2†, David Furfaro 3 and 
Raja-Elie E. Abdulnour 2*
1 Division of Pulmonary and Critical Care Medicine, Rutgers Robert Wood Johnson Medical School, 
New Brunswick, NJ, United States, 2 Division of Pulmonary and Critical Care Medicine, Brigham and 
Women’s Hospital and Harvard Medical School, Boston, MA, United States, 3 Division of Pulmonary 
and Critical Care Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 
Boston, MA, United States

Diagnostic errors pose a significant public health challenge, affecting nearly 
800,000 Americans annually, with even higher rates globally. In the ICU, these 
errors are particularly prevalent, leading to substantial morbidity and mortality. 
The clinical reasoning process aims to reduce diagnostic uncertainty and establish 
a plausible differential diagnosis but is often hindered by cognitive load, patient 
complexity, and clinician burnout. These factors contribute to cognitive biases 
that compromise diagnostic accuracy. Emerging technologies like large language 
models (LLMs) offer potential solutions to enhance clinical reasoning and improve 
diagnostic precision. In this perspective article, we explore the roles of LLMs, such 
as GPT-4, in addressing diagnostic challenges in critical care settings through a 
case study of a critically ill patient managed with LLM assistance.
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Introduction

Diagnostic error is a public health concern. It is estimated that nearly 800,000 Americans 
die or are permanently disabled by diagnostic error in various clinical settings each year 
(Newman-Toker et al., 2024). Globally, the incidence of diagnostic error is likely even higher 
as access to basic diagnostic testing resources can be limited in low-resource contexts, resulting 
in diagnostic delays for life-threatening diseases (Newman-Toker et al., 2024). Central goals 
of the initial clinical reasoning process are to reduce diagnostic uncertainty and communicate 
a plausible differential diagnosis for safe and effective patient care. However, the process 
frequently faces a variety of challenges including cognitive load, high patient complexity, and 
burnout leading to inefficiencies and diagnostic errors (National Academies Press, 2015). All 
these factors predispose clinicians to cognitive biases. Burnout may lead to an ‘availability bias’, 
wherein a clinician defaults to a familiar diagnosis rather than considering a broader range of 
possibilities, as it requires less mental effort. Addressing these challenges is crucial to mitigate 
reliance on heuristic shortcuts and improve diagnostic accuracy.

Critically ill patients are particularly prone to the harms from diagnostic errors, and by 
some estimates the prevalence of diagnostic error in patients admitted from the emergency 
department (ED) to the ICU exceeds 40% (Aaronson et  al., 2020; Bergl et  al., 2018). In 
addition, a meta-analysis demonstrated that ICU patients are twice as likely to have major 
misdiagnoses when compared to the patients admitted to the medical wards (Shojania et al., 
2003). Moreover, it is estimated that up to 30% of patients with a diagnostic error in the ICU 
die secondary to this error (Auerbach et al., 2024). There is a critical need to uncover new 
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approaches in clinical diagnosis and reasoning to improve patient 
outcomes, especially in the ICU. In this perspective article, we delve 
into the role of large language models (LLM) to address this important 
unmet clinical need as a framework to enhance the paradigm of 
human clinical reasoning in the ICU.

Methods to improve diagnosis by 
enhancing clinical reasoning

The National Academy of Medicine describes improving diagnosis 
in healthcare as a “moral, professional, and public health imperative” 
(Singh and Graber, 2015). It articulated eight objectives to improve 
diagnosis, many of which target clinical reasoning, support clinical 
decision-making, and encourage cognitive forcing strategies and 
checklists (National Academies Press, 2015). Existing cognitive 
reasoning tools, such as reflection strategies or checklists result in 
clinically important improvements in diagnostic accuracy; however 
the overall impact is limited (Staal et al., 2022). In recent years, LLMs 
have been an emerging tool used in clinical settings with the goal of 
having a more meaningful effect (Lee et al., 2023). Although Artificial 
Intelligence (AI) tools have been used in healthcare for many decades, 
most have been trained on narrow datasets and provide support in 
specific contexts. In contrast, LLMs are generative AI tools trained on 
a vast text corpus. Therefore, by “hacking the operating system of 
human civilization” (Williams, n.d.), LLMs can provide support in 
many language-dependent domains, including medicine. In recent 
years, several LLMs have been developed, including BERT, XLNet, 
Pathways Language Model (PaLM), Open Pretrained Transformer 
(OPT), and the most globally used GPT (OSF, n.d.). The sheer number 
of parameters and the size of the training data of modern LLMs have 
opened many opportunities to support human cognitive tasks in the 
workplace (Thirunavukarasu et al., 2023). Currently, LLM applications 
are already being leveraged by clinicians as these new tools showed 
broad use cases, from drafting pre-authorization documents to 
transcribing and summarizing encounter notes (Lee et al., 2023; Locke 
et al., 2021). As such, LLMs have the potential to assist in many of the 
obstacles to diagnostic excellence in the ICU.

Emerging diagnostic reasoning 
properties of LLM

Providing high-quality responses to medical questions requires an 
understanding of the medical context, recollection of pertinent 
knowledge, and human-like reasoning (Singhal et  al., 2023). To 
validate the reasoning capabilities of LLMs in this domain, 
investigators tested them with licensing examinations (Singhal et al., 
2023; Jin et al., 2020; Suchman et al., 2023). The results indicated that 
while their performance did not excel in certain assessments, they 
reached the requisite in others (Kung et al., 2023; Nori et al., 2023). 
Beyond answering test questions, LLMs have been evaluated for 
assessing patient scenarios and providing guidance about diagnosis 
and clinical reasoning (Liu et al., 2024). A recent study assessed the 
ability of LLMs’ to answer questions within critical care by extracting 
and responding to clinical concepts from the MIMIC III dataset, 
which contains medical information on patients admitted to critical 
care units (Liu et  al., 2024). GPT-4 demonstrated superior 

performance compared to its predecessors, including GPT and 
LLaMA, providing answers that were relevant, clear, logical and more 
complete (Liu et al., 2024).

Research on LLMs’ diagnostic processes is advancing. When 
compared to human diagnosis, mixed results were seen with simple 
medical cases (Rao et al., 2023), complex cases (Kanjee et al., 2023) 
and gerontic ones (Shea et al., 2023), suggesting that with clinician-
guided prompting and appropriate data input (Cabral et al., 2024), 
models could become more reliable. More recently, clinicians 
presented with challenging medical cases from the New England 
Journal of Medicine were compared in terms of their responses with 
and without LLM assistance. The LLM-assisted responses were more 
comprehensive and appropriate than those generated solely with 
textbooks and internet searches, highlighting the potential of these 
models as assistive tools in clinical decision-making (McDuff et al., 
2023). When clinicians were provided with LLM support, their 
diagnostic accuracy improved, as these models could articulate 
clinical reasoning arguments assessed by validated rubrics. In 
situations where human clinicians and GPT-4 were given cases with 
unstructured data and asked to produce problem representations, 
clinical reasoning, and differential diagnoses, GPT-4 demonstrated 
better clinical reasoning with a similar level of diagnostic accuracy 
compared to humans (Cabral et al., 2024).

However, literature on LLMs’ capabilities in resolving critical care 
cases is limited. Critically ill patients often present with serious and 
complex multi-organ involvement, and require simultaneous 
diagnostic investigation and therapy, which makes the application of 
LLMs to these real-world situations fraught with difficulty. Herein, 
we present a case study of the diagnostic process of LLMs in a patient 
in the ICU at the Brigham and Women’s Hospital to assess their 
potential to enhance human diagnosis.

Case study

A 61-year-old female with a history of hypertension, breast 
cancer status post bilateral mastectomy in 4 years prior to 
presentation, and recurrent ovarian cancer complicated by 
chemotherapy-induced thrombocytopenia, presenting with a 
five-day history of nausea, vomiting, diarrhea with poor oral intake, 
and three days of headache, altered mental status, confusion, slurred 
speech, and gait instability. The patient initially presented to an 
out-of-state hospital and was diagnosed with a urinary tract infection 
and was treated with intravenous fluid and piperacillin-tazobactam 
and was then sent home with a prescription for ciprofloxacin. The 
patient presented to her primary oncology provider the day after 
discharge where she was referred to the ED for further evaluation. 
The physical examination at the ED was notable for tachycardia, 
facial myoclonus, gait instability, and lower back tenderness. Labs 
demonstrated leukocytosis with a white blood cell of 36 K/uL, AST 
148 U/L / ALT 81 U/L, ALP 328 U/L. Urinalysis revealed pyuria. 
Computed tomography (CT) of the head demonstrated no acute 
findings. The patient was admitted to the hospital. The next day, the 
patient had a fever with maximum temperature of 101.5F with 
worsening tachycardia and new oxygen requirement of 2 L nasal 
cannula to maintain oxygen saturation at >90%. The patient then 
developed worsening respiratory failure requiring emergent 
intubation shortly after undergoing computed tomography 
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pulmonary angiogram for concerns for a pulmonary embolus. The 
patient was transferred to the ICU after intubation for further 
management. On hospital day 3, anti-microbials were broadened to 
Vancomycin/Cefepime/Ampicillin/Acyclovir per neurology 
recommendations to empirically treat meningitis while awaiting 
lumbar puncture. The next day, brain magnetic resonance imaging 
was negative for acute abnormality. Electroencephalogram revealed 
moderate bilateral cerebral dysfunction consistent with 
encephalopathy. Lumbar puncture was performed on hospital day 4 
and yielded colonies of Listeria monocytogenes and blood cultures 
from two days prior also grew Listeria monocytogenes. A summary 
of the timeline of events is presented in Figure 1. More details of the 
events are presented in Supplementary material.

Discussion

In Figure 1, we present the clinical course of the patient from the time 
they initially presented to the out-of-state hospital until the time of the 
final diagnosis. Using GPT-4, we  provided a prompt (see 
Supplementary material) to instruct the model on providing a clinical 
summary with the top 10 differential diagnoses, additional diagnostic 
tests a physician should obtain, and initial management based on the 
history and physical written by the physician in the electronic medical 
record. The full response from GPT-4 is provided in 
Supplementary material. As indicated in red, the GPT-4 response 
recommended performing a lumbar puncture upon presentation at the 
ED and initiating broad-spectrum anti-microbials, including vancomycin, 
cefepime, ampicillin, and acyclovir, which was delayed by 48 h in the real-
life scenario. This suggests a clinical utility of using LLM models in the 
care of critically ill patients to enhance our clinical reasoning and 
diagnostic processes, ultimately aiming to improve patient care.

In Figure 2, we highlight potential targets where LLMs can assist 
in the care of the critically ill. During the initial patient evaluation, 
physicians spend a significant amount of time reviewing patients’ 
previous diagnostic work-ups, which can sometimes be overwhelming. 

GPT-4 can aid in reviewing a patient’s history to identify potential 
diagnostic anchoring biases (McDuff et al., 2023). Additionally, LLMs 
could assist in triaging and prioritizing patients who need immediate 
intervention based on the acuity of their presentations. In addition, 
GPT-4 can help organize and summarize patient data, including 
history, lab results, and imaging, to provide clinicians with a concise 
overview (McDuff et al., 2023). GPT-4 can also provide differential 
diagnosis suggestions based on the presented symptoms and test 
results, helping to ensure that clinicians consider less common 
diagnoses they may have overlooked alongside the more common 
ones. In situations where complex management questions arise, GPT-4 
can serve as an educational resource, providing quick access to relevant 
guidelines and literature (McDuff et al., 2023). While it cannot replace 
human compassion, GPT-4 can offer support to healthcare workers 
under stress by providing a space to quickly debrief or reflect on 
difficult cases, which may help manage the emotional toll of healthcare 
work (Tu et al., 2024).

While the proof-of-concept case presented here demonstrates 
the potential benefits of LLMs, we  acknowledge the limitations 
inherent in using a single case study to justify the broader application 
of LLMs in clinical reasoning. It is essential to approach the use of 
LLMs with caution, recognizing their limitations and potential 
biases. LLMs are trained on extensive datasets that may include 
biased information, leading to skewed responses. Additionally, the 
complexity of medical decision-making, characterized by nuanced 
and context-specific knowledge, can be challenging for LLMs, which 
rely heavily on pattern recognition rather than deep understanding. 
LLMs can also produce hallucinations, generating plausible-
sounding but incorrect information, which can be dangerous in a 
clinical setting. Moreover, ethical and legal implications must 
be carefully considered, including potential malpractice issues and 
the necessity of informed consent for patients. Developing robust 
regulatory frameworks will be  crucial to responsibly harness the 
potential of LLMs in clinical practice. Further research is needed to 
evaluate the effectiveness and safety of LLMs in supporting ICU 
clinical reasoning.

FIGURE 1

Timeline graphic comparing the clinical course of a patient as managed by clinicians (black) versus the recommendations made by GPT-4 (green).
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Conclusion

Humans err, and errors are expensive and harmful in the healthcare 
setting. Diagnostic error remains a hidden epidemic in the ICU. It is 
time for the critical care community to acknowledge the gravity of the 
issue and recognize the potential for emerging technologies like LLMs 
to serve as pivotal allies in the ICU. The proof-of-concept case study 
presented here, along with the proposed integration of GPT-4 into the 
clinical workflow, has demonstrated the potential advantages and 
enhancements to diagnostic accuracy that LLMs can offer. As we find 
ourselves on the brink of a new era in medicine, it is becoming 
increasingly clear that the judicious use of AI, exemplified by LLMs, 
can usher in a paradigm shift toward more precise, efficient, and 
compassionate care in the ICU. To fully realize this potential, it is 
essential to educate physicians in the use of LLMs to augment their 
diagnostic and clinical reasoning skills. With ongoing research, 
refinement, and integration, LLMs could well become an indispensable 
component of critical care, mitigating the risk of diagnostic errors and 
elevating the standard of patient care to unprecedented heights.
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