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Introduction: Diabetes prediction using clinical datasets is crucial for medical

data analysis. However, class imbalances, where non-diabetic cases dominate,

can significantly a�ect machine learning model performance, leading to biased

predictions and reduced generalization.

Methods: A novel predictive framework employing cutting-edge machine

learning algorithms and advanced imbalance handling techniques was

developed. The framework integrates feature engineering and resampling

strategies to enhance predictive accuracy.

Results: Rigorous testing was conducted on three datasets—PIMA, Diabetes

Dataset 2019, and BIT_2019—demonstrating the robustness and adaptability of

the methodology across varying data environments.

Discussion: The experimental results highlight the critical role ofmodel selection

and imbalance mitigation in achieving reliable and generalizable diabetes

predictions. This study o�ers significant contributions to medical informatics

by proposing a robust data-driven framework that addresses class imbalance

challenges, thereby advancing diabetes prediction accuracy.

KEYWORDS

diabetes detection, imbalance handling methods, imbalanced datasets, machine
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1 Introduction

Diabetes is a chronic disease that has reached epidemic proportions globally, affecting

∼537 million adults as of 2021, with projections indicating a rise to 783 million by 2045

(Saeedi et al., 2019). Characterized by the body’s inability to produce or effectively use

insulin, diabetes leads to elevated blood glucose levels, which, if not managed, can result

in severe complications such as cardiovascular disease, kidney failure, blindness, and lower

limb amputations (Demir et al., 2021). These complications diminish the quality of life for

millions of people and significantly increase healthcare costs, placing a considerable burden

on healthcare systems worldwide (Tomic et al., 2022).

Early detection of diabetes is critical for timely intervention, which can significantly

reduce the risk of these complications and improve patient outcomes (Jones et al., 2021).

By diagnosing diabetes early, patients can receive appropriate treatment, make necessary
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lifestyle adjustments, and closely monitor their condition,

preventing or delaying the onset of severe complications.

Early intervention is significant for stopping the progression

from prediabetes to type 2 diabetes, which affects a substantial

proportion of at-risk individuals (Kaur et al., 2020).

Traditional methods of diabetes detection, often reliant

on fasting blood glucose levels or HbA1c measurements,

have limitations, including the potential for late diagnosis

and the requirement for clinical visits (Park et al., 2020).

For many patients, particularly those in underserved or

remote areas, access to regular healthcare services is limited,

resulting in delayed diagnoses and treatment. Moreover, these

traditional diagnostic methods may not be sensitive enough

to detect diabetes at its earliest stages, when intervention can

be most effective, Ortiz-Martínez et al. (2022) highlighting

the urgent requirement for easy-to-access, precise and

earlier diagnostic solutions that can be deployed in a range

of healthcare environments including either primary care

or telemedicine.

However, in the past few years, machine learning (ML) has

emerged as a promising option, facilitating the deployment of

predictive models which allow the analysis of large-scale patient

data, thus predicting accurately and at an early stage who is

at risk of diabetes (Johnson, 2024). These models are game-

changers that could transform how we care for diabetes patients

with earlier diagnoses, customized treatment pathways and better

patient management. Yet their performance is often hindered by

the imbalance characteristic of medical datasets. Diabetic cases are

way lower in number than non-diabetics in such datasets, which

may make the models biased toward predicting the majority class

and also not that great when detecting the minority class (Johnson,

2024).

Patients can end up with a bad deal in this imbalance. If a

predictive model cannot predict those in the presumably early

stages of diabetes or high susceptibility to developing diabetes,

and these patients do not receive sufficient early interventions

to impede the deteriorating process. This means that they are

more likely to have the worst possible outcomes of unmanaged

diabetes, which could have been prevented if it had been presented

early and appropriately intervened (Gao et al., 2020). Therefore,

addressing the imbalance in diabetic datasets is not just a technical

challenge but a critical issue that directly impacts patient health

and outcomes.

Dealing with this disparity necessitates some clever approaches,

both in preprocessing data and choosing our model. Approaches

such as SMOTE (Synthetic Minority Over-sampling Technique),

ADASYN (Adaptive Synthetic Sampling), and its variants are

used to synthetically create samples of the minority class, making

the dataset balanced (Brandt and Lanzén, 2021). Also, ensemble

methods to reduce the complexity of decision trees and advanced

algorithms such as Random Forests, Gradient Boosting Trees, or

Support Vector Machines (SVM) have been experimented with to

classify data more effectively in imbalanced classes (Zhou et al.,

2023). These approaches enhance the accuracy of predictions and

ensure that the models are sensitive to the critical minority class,

thereby improving the chances of early detection and intervention

for at-risk patients.

This paper builds upon the foundation of work presented in

Abousaber (2024). This study aims to address these challenges

by systematically evaluating various machine learning techniques

across three distinct datasets: PIMA (Nelson et al., 2021),

Diabetic Dataset 2019 (Tigga and Garg, 2020), and BIT_2019

(Zhang et al., 2024). The datasets have their characteristics and

challenges, making them a rich set of benchmarks for testing

the generalizability of our methods. After undergoing advanced

preprocessing techniques and dealing with the imbalance, we

prepared data for model training. Various machine learningmodels

were then trained, and their performance was extensively assessed,

especially in correctly classifying the minority diabetic class.

Overall, this study aims to fill this gap between the increasing

necessity for early diabetic detection and the difficulties faced

with imbalanced datasets. We sought to create a comprehensive

framework using a large set of machine learning algorithms

and advanced preprocessing techniques, which led to improved

predictive performance and generalized models across diverse

populations for mortality. These insights could have marked

ramifications in the world of medical diagnostics, providing better

instruments for early-stage detection of diabetes and hence leading

to better patient prognosis and quality of life.

The following contributions highlight this research’s novelty

in advancing methodologies within medical informatics and

addressing key challenges in diabetes prediction:

1. Integrated Framework for Enhanced Modeling: This study

presents a framework that combines feature engineering

with resampling techniques (SMOTE, ADASYN, Borderline-

SMOTE) to address class imbalance, enhancing model accuracy

and stability.

2. High Accuracy with Optimized Ensemble Models: The

framework uses optimized ensemble models (Random Forest,

XGBoost, and LightGBM) with resampling to achieve balanced,

clinically relevant predictions.

3. Validated Across Diverse Datasets: Tested on benchmark

datasets (PIMA, Diabetes Dataset 2019, BIT_2019), the

framework demonstrates consistent effectiveness across varied

populations.

4. Significant Impact on Medical Informatics: This work

addresses class imbalance in diabetes prediction, supporting

early detection and aiding clinical decision-making to improve

patient outcomes.

The remainder of this paper is organized as follows.

Section 2 reviews the existing literature on machine learning

approaches for diabetes detection, focusing on the challenges

of imbalanced datasets. In Section 3, we introduce the datasets

utilized in this study—PIMA, Diabetic Dataset 2019, and

BIT_2019—and detail the preprocessing steps, including data

cleaning, feature engineering, the techniques employed to

handle class imbalance, and the various machine learning

models evaluated in this research and the training and

hyperparameter tuning strategies implemented to optimize

their performance. The overall work methodology is illustrated

in Section 4. The experimental results and discussion is

included in Section 5. Finally, Section 7 concludes the

paper by summarizing the key findings, discussing their
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implications for diabetic detection, and proposing directions

for future research.

2 Related work

Machine learning (ML) has become a cornerstone in diabetes

detection research, driven by the need for early diagnosis and

intervention. Early studies primarily employed simple models like

Logistic Regression and Decision Trees due to their interpretability

and ease of use. For example, Edlitz and Segal (2022) successfully

used Logistic Regression to pinpoint key risk factors, forming

a basis for more advanced models. However, these approaches

often struggled with the complex, non-linear relationships typical

of medical data, particularly in imbalanced datasets where non-

diabetic cases outnumber diabetic cases.

Researchers have increasingly turned to ensemble methods

such as Random Forests and Gradient Boosting to address

these limitations, which combine weak learners to enhance

classification. Palimkar et al. (2022) showed that Random Forests

can improve classification accuracy by reducing overfitting,

while Poria and Jaiswal (2022) highlighted Gradient Boosting’s

strength in capturing complex data relationships. SVMs have also

proven effective in diabetes prediction, with Tan et al. (2023)

demonstrating how feature selection with SVMs can significantly

improve performance. Meanwhile, Cheng et al. (2020) showcased

the potential of deep learning models to automate feature

extraction, outperforming traditional methods on large datasets.

A major obstacle in diabetes prediction is the imbalance in

datasets, where diabetic cases are far fewer than non-diabetic ones.

This can lead to biasedmodels that excel in identifying non-diabetic

cases but fail to detect diabetic ones. Resampling techniques like

SMOTE (Pears et al., 2014) and ADASYN (Zakariah et al., 2023)

have been widely adopted to address this. Aubaidan et al. (2024)

showed that SMOTE can improve model recall for minority classes,

while ADASYN, as used by Zakariah et al., adjusts sampling

based on instance difficulty, further enhancing model sensitivity to

diabetic cases.

Combining ensemble methods with resampling techniques

has also shown promise. Ganie et al. (2023) developed an

ensemble approach incorporating SMOTE to boost sensitivity and

classification performance in diabetic datasets. Hazarika and Gupta

(2022) introduced Density-Weighted Twin SVM (DWTWSVM),

assigning weights to minority class samples to reduce bias, which

proved highly effective in handling class imbalance throughmetrics

like F1-score and G-mean.

Despite these advances, systematic comparisons of different

imbalance-handling strategies across multiple diabetic datasets

remain limited. Our study addresses this gap by evaluating various

ML models, including Logistic Regression, Decision Trees, and

multiple ensemble techniques, alongside advanced resampling

methods across three prominent datasets: PIMA, Diabetes Dataset

2019, and BIT_2019. This approach aims to establish generalizable,

effective strategies for diabetes detection.

Interpretability is another crucial aspect in healthcare

applications, where model transparency is key for clinical adoption.

Chang et al. (2023) underscored this by using interpretable models

like Naïve Bayes, Random Forest, and J48 Decision Trees, showing

their value in clinical decision-making. Similarly, You and Kang

(2020a) demonstrated how SVM and Decision Tree models,

combined with correlation analysis, can aid in identifying diabetes

risk factors with a clear rationale.

More complex models like artificial neural networks (ANNs)

have also been explored. Lakhwani et al. (2020) proposed a three-

layer ANN with promising accuracy, while Bhargava et al. (2020)

improved KNN accuracy by introducing the Standard Deviation K-

Nearest Neighbor (SDKNN). Somwanshi (2021) further validated

SVM on the PIMA dataset, showing its effectiveness in clinical

prediction with standardized data preprocessing. Additionally,

Zhang et al. (2024) developed a non-invasive Back Propagation

Neural Network (BPNN) for diabetes diagnosis, achieving notable

improvements in accuracy, sensitivity, and specificity through

batch normalization.

In recent work, Uddin et al. (2024) demonstrated the

effectiveness of a multi-model approach combining Linear

Regression, Logistic Regression, KNN, Naïve Bayes, Random

Forest, SVM, and Decision Tree, achieving high accuracy across

the Diabetes Dataset 2019 and Pima Indian datasets by leveraging

SMOTE and other preprocessing techniques. This highlights the

necessity of balancing datasets to minimize false negatives and

maximize predictive accuracy in clinical applications.

Our study builds on these advancements by systematically

comparing ML models and imbalance handling methods across

multiple diabetic datasets, establishing a robust framework for

accurate, interpretable, and fair diabetes detection. This approach

highlights the significance of model selection and preprocessing

and sets a foundation for further development of reliable ML

models in medical diagnostics.

3 Datasets and preprocessing

3.1 Datasets

The datasets utilized in this study include the PIMA Indians

Diabetes Database (Nelson et al., 2021), the Diabetic Dataset 2019

(Tigga and Garg, 2020), and the BIT_2019 dataset (Zhang et al.,

2024). Each dataset presents unique characteristics and challenges,

making them suitable for evaluating the robustness of different

machine-learning models and preprocessing techniques.

3.1.1 PIMA Indians diabetes database
The PIMA Indian diabetes dataset, a benchmark dataset, is

provided by the National Institute of Diabetes and Digestive

and Kidney Diseases (NIDDK) in collaboration with the Applied

Physics Laboratory at Johns Hopkins University (Nelson et al.,

2021). It comprises 768 observations of female patients of PIMA

Indian heritage aged 21 years or older. The dataset includes eight

features: number of pregnancies (Pregnancies), plasma glucose

concentration after 2 hours in an oral glucose tolerance test

(Glucose), diastolic blood pressure (BloodPressure), triceps skinfold

thickness (SkinThickness), 2-h serum insulin (Insulin), body mass

index (BMI), a diabetes pedigree function reflecting family history

(DiabetesPedigreeFunction), and the patient’s age in years (Age). The

target variable, Outcome, indicates whether the patient has diabetes
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FIGURE 1

Box plot of selected features in the PIMA dataset showing distribution, variability, and outliers.

FIGURE 2

Box plot of selected features in the diabetic 2019 dataset showing distribution, variability, and outliers.
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FIGURE 3

Box plot of selected features in the BIT_2019 dataset showing distribution, variability, and outliers.

(1) or not (0). The dataset is imbalanced, with 268 positive cases and

500 negative cases. Figure 1 shows the distribution, variability, and

outliers of selected features in the PIMA dataset, providing insights

into feature spread and potential anomalies.

3.1.2 Diabetic dataset 2019
The Diabetic dataset 2019 consists of 520 observations,

incorporating more features than the PIMA dataset. It includes

traditional medical metrics like the number of pregnancies

(Pregnancies), plasma glucose concentration (Glucose),

systolic and diastolic blood pressure levels (BloodPressure),

body mass index (BMI), and a diabetes pedigree function

(DiabetesPedigreeFunction), along with age categorized into four

groups (Age) (Tigga and Garg, 2020). This data set also records

some lifestyles, including gender, family history of diabetes,

smoking status, drinking status, regular use of medication, physical

activity level, dietary habits, stress levels, urination frequency, etc,

and blood pressure levels. The binary target variable, Diabetic,

denotes diabetic (1) or non-diabetic (0) status, with an imbalanced

distribution of 170 diabetic cases and 350 non-diabetic cases.

Figure 2 illustrates the distribution, variability, and outliers of

selected features in the Diabetic 2019 dataset, offering a visual

summary of feature spread and identifying potential anomalies.

3.1.3 BIT_2019 dataset
The BIT_2019 dataset, collected by the Birla Institute of

Technology, Mesra, includes 952 observations. It features a

diverse set of attributes, including age (categorized into four

TABLE 1 Class distribution in the datasets.

Dataset Total
samples

Non-diabetic
samples

Diabetic
samples

PIMA Indians
diabetes

768 500 268

Diabetic dataset
2019

945 680 265

BIT_2019 905 642 263

groups), gender, family history of diabetes, presence of high

blood pressure, physical activity levels, body mass index, smoking

and alcohol consumption, hours of sleep and sound sleep,

regular medication use, frequency of junk food consumption,

stress levels, blood pressure levels, number of pregnancies,

prediabetes status, and urination frequency (Zhang et al., 2024).

The target variable, Diabetic, indicates whether the patient has

diabetes (1) or non-diabetic (0), with 320 diabetic cases and

632 non-diabetic cases, highlighting the dataset’s class imbalance.

Figure 3 displays a box plot analysis of selected features in the

BIT_2019 dataset, highlighting the range, central tendency, and

presence of outliers to reveal feature distribution characteristics

and variability.

As shown in Table 1, all three datasets exhibit significant

class imbalance, with the number of non-diabetic samples far

exceeding the number of diabetic samples in each case. This

imbalance challenges the development of machine learningmodels,

which may become biased toward the majority class. Various
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resampling techniques and preprocessing steps were applied to

ensure the models could accurately identify diabetic cases despite

the imbalance.

The datasets described in Table 1 are divided with an 80–20

split, where 80% of the samples are used for training, and 20%

are reserved for testing. This division aligns with the approach

adopted for the PIMA dataset as seen in Rajagopal et al. (2022),

Singh and Singh (2020), Kibria et al. (2022), and Chang et al. (2023).

Similarly, the diabetic dataset 2019 follows the same 80–20 division

as reported by Uddin et al. (2024), and the BIT_2019 dataset is also

partitioned into 80% training and 20% testing as stated in Zhang

et al. (2024).

3.2 Data preprocessing

Effective data preprocessing is crucial for enhancing machine

learning models, particularly when handling imbalanced datasets

(Karatas et al., 2020; Nelson et al., 2021). The preparation

procedures differed among the datasets to accommodate their

distinct attributes.

3.2.1 Handling missing values
Different strategies were employed to handle missing data

depending on the dataset:

• In the PIMA dataset, missing values in features like Glucose,

Insulin, and BMI were replaced with the median of the

respective feature, which is particularly effective for addressing

missing data in small datasets (Nelson et al., 2021).

• The Diabetic dataset 2019 required a more extensive

approach. Entries with significant missing data were removed

while missing values in categorical variables such as Age

and Physical Activity were imputed using the mode, and

continuous variables were imputed using the median.

• For the BIT_2019 dataset, instances with extensive missing

data were removed, and categorical variables were label

encoded. Missing values in continuous variables were also

imputed using the median to maintain dataset integrity.

3.2.2 Feature engineering and scaling
To enhance the predictive power of the models, polynomial

feature expansion was applied across all datasets to capture

potential non-linear relationships (Karatas et al., 2020).

Polynomial feature expansion generates new features by

creating combinations of existing features raised to a specified

power and their interactions. Given a dataset with features

x1, x2, . . . , xn, a polynomial expansion of degree 2 including the

transformations in Equation 7. This expansion allows the model to

learn interactions between features that are not linear, improving

its ability to capture complex patterns in the data.

Correlation: Following polynomial expansion, a correlation

matrix was computed to examine the relationships between the

newly generated features. The Pearson correlation coefficient rij

between any two features xi and xj is defined as:

rij =
cov(xi, xj)

σxiσxj
(1)

where cov(xi, xj) represents the covariance between features xi
and xj, and σxi and σxj are the standard deviations of xi and xj,

respectively.

To prevent multicollinearity features with a correlation

coefficient |rij| > 0.9 were considered highly correlated, and one

feature from each highly correlated pair was removed from the

dataset. This step helps to ensure that the model does not overfit

redundant information and maintains generalizability.

Scaling: After feature selection, StandardScaler was applied to

normalize the data:

Standard Scaling: x′i =
xi − µi

σi
(2)

where xi is the original feature value, µi is the mean of the feature,

and σi is the standard deviation of the feature. This scaling process

ensures that each feature contributes equally to themodel’s learning

process, particularly for distance-based algorithms such as SVM

and KNN.

3.2.3 Imbalance handling techniques
Given the inherent class imbalance in the datasets—where non-

diabetic cases often outnumber diabetic cases—various resampling

techniques were applied to address this issue (Rawat and Mishra,

2022; Sadeghi et al., 2022):

• ADASYN: The Adaptive Synthetic Sampling (ADASYN)

technique generates synthetic samples for the minority

class based on the data distribution. ADASYN focuses on

generatingmore synthetic samples for minority class instances

that are harder to learn. The number of synthetic samples

generated (G) is given by:

G = (X× 1)× ri × hi (3)

where X is the feature vector, 1 is the difference between

feature vectors of a minority and majority class instance, ri is

the ratio of minority to majority instances, and hi is a random

value between 0 and 1 (Alhudhaif, 2021).

• SMOTE: The Synthetic Minority Over-sampling Technique

(SMOTE) generates synthetic samples by interpolating

between existing minority class examples. For a feature vector

x from the minority class, SMOTE selects one of its nearest

neighbors xnn and generates a synthetic example as follows:

Synthetic sample = x+ (xnn − x)× δ (4)

where δ is a random number between 0 and 1 (Mansourifar

and Shi, 2020).

• Borderline-SMOTE: An extension of SMOTE, Borderline-

SMOTE focuses on generating synthetic samples for

minority class instances near the decision boundary

(borderline examples). The synthetic samples are generated

by interpolating between borderline examples and their
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nearest neighbors, ensuring that the decision boundary is

better defined. The sample generation follows the same

equation as SMOTE but is selectively applied to instances near

the decision boundary (Sun et al., 2023).

• RandomUnderSampler: This technique involves randomly

under-sampling the majority class to achieve balance. While

this approach can lead to information loss, it is useful when

the majority class is enormous compared to the minority class.

This method does not have a complex mathematical basis;

it simply reduces the size of the majority class by random

selection. The process can be described as:

X
sampled
majority ⊆ Xmajority, |X

sampled
majority| = |Xminority| (5)

where Xmajority represents the set of all instances belonging to

the majority class, and X
sampled
majority is a randomly selected subset

such that the size of this subset is equal to the size of the

minority class (Saylı and Başarır, 2022).

• SMOTEENN: The SMOTEENN technique combines SMOTE

with Edited Nearest Neighbors (ENN), which removes

samples misclassified by their neighbors after oversampling.

This combination allows for synthetic sample generation

and noise reduction in the dataset. The synthetic sample

generation within SMOTEENN follows the same equation as

SMOTE:

Synthetic sample = x+ (xnn − x)× δ (6)

Where δ is a random number between 0 and 1. The ENN

step iteratively removes misclassified examples (Ependi et al.,

2023).

3.3 Machine learning models

In this study, we employ a diverse set of machine learning

models, each selected for its unique strengths and suitability

for diabetic detection. From simple, interpretable algorithms to

complex state-of-the-art frameworks, our results provide a broad

assessment of predictive performance across methodologies.

Various machine learning models and classifiers are learned,

starting with Logistic Regression. This linear model provides the

probability of a given input vector being actual using the logistic

function (Zaidi and Al Luhayb, 2023). Additionally, K-Nearest

Neighbors (KNN) uses non-parametric techniques to classify a

sample based on the majority vote of its k nearest neighbors

(Shi, 2020), and Decision Trees create splits in the data by

selecting features that maximize information gain (Priyanka and

Kumar, 2020). The ensemble method Random Forest aggregates

predictions from multiple decision trees to enhance robustness

(Ignacio et al., 2020). Meanwhile, Gradient Boosting sequentially

builds models to correct errors from previous models, while

Support Vector Machines (SVM) seeks the hyperplane that best

separates classes (Manoharan et al., 2022).

The study also explores probabilistic models such as Naive

Bayes, which assumes conditional independence among features

(Liu et al., 2024), and XGBoost, an optimized gradient boosting

framework with regularization to prevent overfitting (Dong et al.,

FIGURE 4

Overview of the methodology steps for diabetic prediction using

machine learning.

2022). LightGBM and CatBoost are other gradient-boosting

frameworks designed for efficiency, especially when handling

large datasets or categorical features (Saleem et al., 2024).

Neural Networks, particularly Multi-Layer Perceptrons, mimic

the brain’s architecture and are trained using backpropagation

(Qamar and Zardari, 2023). Finally, Balanced Bagging addresses

class imbalances by combining bagging with sampling techniques,

ensuring that both minority and majority classes are adequately

represented in the data (Malek et al., 2023).

4 Methodology

The primary objective of this study is to develop and evaluate

machine learning models for the early detection of diabetes,

mainly focusing on the challenges posed by imbalanced datasets

(as described in Section 3). The research addresses fundamental

questions regarding the most effective models and techniques for

diabetic prediction and evaluates the impact of different class

imbalance handling methods.

4.1 Overview of the approach

As Figure 4 illustrates, this study follows a systematic approach.

The methodology begins with data collection and preprocessing,

followed by feature engineering, scaling and handling class

imbalance through various techniques, as discussed in Section 4.2.

The prepared data is then used for model selection and training,

detailed in Section 4.3, before finally evaluating the models using

comprehensive metrics, outlined in Section 4.4.

4.2 Data preprocessing

Data preprocessing is critical, ensuring that the input data

is high quality and suitable for training the machine learning

models. The detailed steps of data preprocessing for each dataset

are described in Section 3.
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Handling missing values: As outlined in Section 3, missing

data was managed through median imputation for continuous

variables and mode imputation for categorical variables. These

methods were particularly effective inmaintaining dataset integrity.

4.2.1 Feature engineering and scaling
Feature engineering involved polynomial feature expansion,

which was applied to capture non-linear relationships

between features.

Polynomial feature expansion: Polynomial feature expansion

generates new features by raising existing features to a specified

degree and creating interaction terms. For example, given two

original features x1 and x2, polynomial expansion of degree 2 would

generate the following features:

x1, x2, x
2
1, x

2
2, x1 × x2 (7)

This expansion allows the model to capture non-linear

interactions between features that might not be represented in the

original feature set.

Correlation threshold method: After polynomial expansion,

a correlation matrix was computed to identify and remove highly

correlated features, which could cause multicollinearity in the

models. The Pearson correlation coefficient rij between two features

xi and xj is calculated as:

rij =
cov(xi, xj)

σxiσxj
(8)

where cov(xi, xj) is the covariance of xi and xj, and σxi and σxj are

the standard deviations of xi and xj, respectively.

Any feature pairs with a correlation coefficient |rij| > 0.9 were

considered highly correlated. In such cases, one of the features in

the pair was removed to reduce multicollinearity and improve the

robustness of the model. The threshold of 0.9 was chosen to balance

capturing essential relationships and avoiding redundancy in the

feature set.

Scaling: After feature selection, StandardScaler was used for

feature scaling to normalize the data across all datasets, ensuring

that features are on a similar scale (Equation 2).

4.2.2 Handling class imbalance
Given the datasets’ characteristics, addressing the

class imbalance was crucial (refer to Table 1 for class

distribution details). Techniques such as ADASYN, SMOTE,

Borderline-SMOTE, RandomUnderSampler, and SMOTEENN

(detailed in Section 3.2.3) were employed to balance the

class distribution, improving the models’ ability to detect

diabetic cases.

4.3 Model training and cross-validation

The dataset was divided into an 80% training and 20%

testing split. Each model was then trained using 5-fold cross-

validation to enhance robustness and reduce overfitting. In

TABLE 2 Summary of evaluation metrics and their equations.

Metric Description Equation

Accuracy Proportion of correct
predictions among all cases.

Accuracy =
TP+TN

TP+TN+FP+FN

Precision Proportion of true positives
among all positive
predictions.

Precision = TP
TP+FP

Recall (sensitivity) Proportion of true positives
among all actual positives.

Recall = TP
TP+FN

Specificity Proportion of true negatives
among all actual negatives.

Specificity = TN
TN+FP

F1 score Harmonic mean of Precision
and Recall.

F1 Score =
2× Precision×Recall

Precision+Recall

ROC AUC Area under the ROC curve. ROC AUC =
∫ 1
0 TPR(FPR) d(FPR)

t-statistic Compares the means of two
groups.

t = X̄1−X̄2
√

s21
n1

+
s22
n2

p-value Probability of obtaining the
observed test statistic.

p-value = P(T ≥

t|H0)

this approach, the dataset is divided into five subsets: the

model is trained on four and validated on the remaining

subset, rotating until each subset has served as the validation

set. Final model performance is averaged across all folds to

ensure reliability.

Hyperparameter tuning and model evaluation: We

conducted hyperparameter tuning using grid search to

optimize Random Forest, Gradient Boosting, SVM, and

other models based on dataset characteristics. Parameters

such as tree count, learning rate, and regularization were

cross-validated with a 5-fold approach, yielding averaged

performance metrics (accuracy, precision, recall, F1-score,

specificity, and ROC-AUC) across folds to assess model

robustness and overfitting. Finally, the tuned models were

tested on the hold-out set to evaluate their generalization on

unseen data, with results summarized in the Performance

Measure tables.

4.4 Evaluation metrics

The performance of the models was evaluated using a

comprehensive set of metrics, summarized in Table 2, which

were chosen for their relevance in assessing model performance,

particularly in the context of imbalanced datasets. Statistical tests

were conducted to validate further the models’ performance and

the effectiveness of the resampling techniques, including the t-

statistic and p-value calculations (see Table 2 for the corresponding

equations). The study used Python, with libraries such as scikit-

learn, XGBoost, and TensorFlow. The experiments were performed

on a Kaggle servers.

All results are presented in the performance measure

tables (Tables 3–5), including accuracy, precision, recall, F1-score,

specificity, and ROC-AUC, are calculated based on this 5-fold

cross-validation process.
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TABLE 3 Summary of confusion matrix results and performance metrics for each ML algorithm with di�erent imbalance handling methods on PIMA

dataset (Nelson et al., 2021).

Algorithm Method Confusion matrix Performance metrics

TP TN FP FN Accuracy F1-score Specificity ROC-
AUC

Logistic regression

ADASYN 203 383 117 65 0.7630 0.6905 0.766 0.8516

SMOTE 198 393 107 70 0.7695 0.6911 0.786 0.8513

Borderline-SMOTE 205 385 115 63 0.7682 0.6973 0.770 0.8493

RandomUnderSampler 199 390 110 69 0.7669 0.6898 0.780 0.8492

SMOTEENN 225 347 153 43 0.7448 0.6966 0.694 0.8369

K-nearest neighbors

ADASYN 256 369 131 12 0.8138 0.7817 0.738 0.9382

SMOTE 240 389 111 28 0.8190 0.7754 0.778 0.9248

Borderline-SMOTE 247 380 120 21 0.8164 0.7780 0.760 0.9282

RandomUnderSampler 219 381 119 49 0.7813 0.7228 0.762 0.8641

SMOTEENN 237 345 155 31 0.7578 0.7182 0.690 0.8393

Decision Tree

ADASYN 239 327 173 29 0.7370 0.7029 0.654 0.8422

SMOTE 222 359 141 46 0.7565 0.7036 0.718 0.8498

Borderline-SMOTE 251 297 203 17 0.7135 0.6953 0.594 0.8124

RandomUnderSampler 226 356 144 42 0.7578 0.7085 0.712 0.8380

SMOTEENN 228 352 148 40 0.7552 0.7081 0.704 0.7899

Random Forest

ADASYN 268 500 0 0 1.0000 1.0000 1.000 1.0000

SMOTE 268 500 0 0 1.0000 1.0000 1.000 1.0000

Borderline-SMOTE 268 500 0 0 1.0000 1.0000 1.000 1.0000

RandomUnderSampler 268 433 67 0 0.9128 0.8889 0.866 0.9758

SMOTEENN 232 365 135 36 0.7773 0.7307 0.730 0.8825

Gradient boosting

ADASYN 254 442 58 14 0.9063 0.8759 0.884 0.9839

SMOTE 248 449 51 20 0.9076 0.8748 0.898 0.9779

Borderline-SMOTE 255 445 55 13 0.9115 0.8824 0.890 0.9777

RandomUnderSampler 259 426 74 9 0.8919 0.8619 0.852 0.9539

SMOTEENN 226 382 118 42 0.7917 0.7386 0.764 0.8624

SVM

ADASYN 216 344 156 52 0.7292 0.6750 0.688 0.8381

SMOTE 204 365 135 64 0.7409 0.6722 0.730 0.8377

Borderline-SMOTE 225 332 168 43 0.7253 0.6808 0.664 0.8359

RandomUnderSampler 193 368 132 75 0.7305 0.6509 0.736 0.8319

SMOTEENN 227 310 190 41 0.6992 0.6628 0.620 0.8130

Naive Bayes

ADASYN 182 389 111 86 0.7435 0.6488 0.778 0.8211

SMOTE 169 400 100 99 0.7409 0.6294 0.800 0.8208

Borderline-SMOTE 183 387 113 85 0.7422 0.6489 0.774 0.8229

RandomUnderSampler 171 392 108 97 0.7331 0.6252 0.784 0.8155

SMOTEENN 205 348 152 63 0.7201 0.6560 0.696 0.8001

XGBoost

ADASYN 268 500 0 0 1.0000 1.0000 1.000 1.0000

SMOTE 268 500 0 0 1.0000 1.0000 1.000 1.0000

Borderline-SMOTE 268 500 0 0 1.0000 1.0000 1.000 1.0000

RandomUnderSampler 268 433 67 0 0.9036 0.8787 0.852 0.9684

SMOTEENN 268 377 123 0 0.7813 0.7299 0.746 0.8647

(Continued)
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TABLE 3 (Continued)

Algorithm Method Confusion matrix Performance metrics

TP TN FP FN Accuracy F1-score Specificity ROC-
AUC

LightGBM

ADASYN 268 500 0 0 1.0000 1.0000 1.000 1.0000

SMOTE 268 500 0 0 1.0000 1.0000 1.000 1.0000

Borderline-SMOTE 268 500 0 0 1.0000 1.0000 1.000 1.0000

RandomUnderSampler 268 433 67 0 0.9115 0.8874 0.864 0.9682

SMOTEENN 268 377 123 0 0.7891 0.7387 0.754 0.8752

CatBoost

ADASYN 264 477 23 4 0.9648 0.9514 0.954 0.9976

SMOTE 262 484 16 6 0.9714 0.9597 0.968 0.9962

Borderline-SMOTE 262 481 19 6 0.9674 0.9545 0.962 0.9965

RandomUnderSampler 261 424 76 7 0.8919 0.8628 0.848 0.9565

SMOTEENN 231 371 129 37 0.7839 0.7357 0.742 0.8710

Neural network

ADASYN 245 230 270 23 0.6185 0.6258 0.460 0.8246

SMOTE 207 364 136 61 0.7435 0.6776 0.728 0.8246

Borderline-SMOTE 263 86 414 5 0.4544 0.5566 0.172 0.8390

RandomUnderSampler 194 354 146 74 0.7135 0.6382 0.708 0.7696

SMOTEENN 184 386 114 84 0.7422 0.6502 0.772 0.7873

Balanced bagging

ADASYN 264 495 5 4 0.9883 0.9832 0.990 0.9995

SMOTE 264 494 6 4 0.9831 0.9757 0.988 0.9985

Borderline-SMOTE 264 499 1 4 0.9935 0.9906 0.998 0.9995

RandomUnderSampler 259 443 57 9 0.9141 0.8870 0.886 0.9636

SMOTEENN 218 387 113 50 0.7878 0.7279 0.774 0.8342

The bolded results represent the highest achieved performance metrics obtained when machine learning models are applied in conjunction with various handling techniques.

5 Experimental results

This section presents the experimental results of several

machine learning models and imbalance handling mechanisms

evaluated across three datasets: PIMA, Diabetic Dataset 2019,

and BIT_2019. Performance for each model was assessed

using multiple metrics, including accuracy, precision, recall,

F1-score, specificity, and ROC-AUC, with statistical tests

verifying the significance of these results. The reported

outcomes reflect the highest values achieved across multiple

runs, representing the best-case performance for each

configuration. Additionally, the optimal model configuration

is saved and stored for future applications, enabling seamless

deployment in clinical settings to support early diagnosis and

intervention in diabetes management. In the following section,

we present the raw data, visualizations, and statistical analyzes,

comprehensively evaluating model robustness and variability

across runs.

All experiments were conducted using the cloud-based

computational resources provided by Kaggle, which included

sufficient CPU, GPU, and memory capabilities. The Kaggle

environment provided the processing power necessary to handle

the complexity of the datasets andmodels efficiently, enabling rapid

data processing and model training without requiring additional

local computational resources.

5.1 Confusion matrices and performance
measure analysis

This section evaluates a series of ML algorithms: Logistic

Regression, K-Nearest Neighbors (KNN), Decision Tree, Random

Forest, Gradient Boosting, Support Vector Machine (SVM), Naive

Bayes, XGBoost, LightGBM, CatBoost, Neural Networks and

Balanced Bagging using PIMA dataset, Diabetic 2019 dataset,

and BIT 2019 datasets. We then evaluated each model using

various imbalance handling methods such as ADASYN, SMOTE,

Borderline-SMOTE, RandomUnderSampler, and SMOTEENN.

The results, which include accuracy, F1-score, specificity, and

ROC-AUC, are summarized in Tables 3–5. This research finds

the highest-performing models for each dataset. It offers insights

into their efficacy, suggesting the most effective machine learning

methodologies and strategies for addressing data imbalance in

analogous situations.

In the analysis of the PIMA dataset, as shown in Table 3,

the Random Forest, XGBoost, and LightGBM models exhibited

superior performance, particularly when paired with the ADASYN,

SMOTE, and Borderline-SMOTE imbalance handling techniques.

These models attained flawless scores across all performance

parameters, including accuracy, F1-score, specificity, and ROC-

AUC, consistently achieving 1.0000. The exceptional performance

of these ensemble-based approaches is due to their capacity to
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TABLE 4 Performance metrics evaluation on diabetic dataset 2019.

Algorithm Method Confusion matrix Performance metrics

TP TN FP FN Accuracy F1-score Specificity ROC-
AUC

Logistic regression

ADASYN 255 626 54 10 0.9323 0.8885 0.9206 0.9903

SMOTE 251 641 39 14 0.9439 0.9045 0.9426 0.9899

Borderline-SMOTE 254 635 45 11 0.9407 0.9007 0.9338 0.9885

RandomUnderSampler 257 618 62 8 0.9259 0.8801 0.9088 0.9781

SMOTEENN 252 644 36 13 0.9481 0.9114 0.9471 0.9766

K-nearest neighbors

ADASYN 249 670 10 16 0.9725 0.9504 0.9853 0.9952

SMOTE 248 670 10 17 0.9714 0.9484 0.9853 0.9949

Borderline-SMOTE 250 667 13 15 0.9704 0.9470 0.9809 0.9958

RandomUnderSampler 241 504 176 24 0.7989 0.7254 0.7412 0.9306

SMOTEENN 249 664 16 19 0.9577 0.9234 0.9765 0.9579

Decision Tree

ADASYN 240 589 91 25 0.8772 0.8054 0.8662 0.9011

SMOTE 234 603 77 31 0.8857 0.8125 0.8868 0.9011

Borderline-SMOTE 230 606 74 35 0.8847 0.8084 0.8912 0.9040

RandomUnderSampler 227 604 76 38 0.8751 0.7937 0.8824 0.9089

SMOTEENN 253 534 146 12 0.8328 0.7620 0.7853 0.9096

Random Forest

ADASYN 251 672 8 14 0.9767 0.9580 0.9882 0.9977

SMOTE 251 674 6 14 0.9767 0.9577 0.9912 0.9977

Borderline-SMOTE 247 676 4 18 0.9767 0.9574 0.9941 0.9977

RandomUnderSampler 258 640 40 7 0.9503 0.9165 0.9412 0.9949

SMOTEENN 249 666 14 16 0.9672 0.9412 0.9794 0.9804

Gradient boosting

ADASYN 254 656 24 11 0.9630 0.9355 0.9647 0.9933

SMOTE 248 663 17 17 0.9640 0.9358 0.9750 0.9925

Borderline-SMOTE 250 660 20 15 0.9630 0.9346 0.9706 0.9934

RandomUnderSampler 258 638 42 7 0.9481 0.9133 0.9382 0.9883

SMOTEENN 258 653 27 7 0.9534 0.9185 0.9603 0.9796

SVM

ADASYN 102 576 104 163 0.7175 0.4331 0.8471 0.6409

SMOTE 103 582 98 162 0.7249 0.4421 0.8559 0.7120

Borderline-SMOTE 97 572 108 168 0.7079 0.4128 0.8412 0.6332

RandomUnderSampler 48 620 60 217 0.7069 0.2574 0.9118 0.6735

SMOTEENN 72 600 80 193 0.7111 0.3453 0.8824 0.7353

Naive Bayes

ADASYN 257 455 225 8 0.7534 0.6881 0.6691 0.8689

SMOTE 255 472 208 10 0.7693 0.7005 0.6941 0.8763

Borderline-SMOTE 260 461 219 5 0.7630 0.6989 0.6779 0.8730

RandomUnderSampler 241 520 160 24 0.8053 0.7237 0.7647 0.9045

SMOTEENN 239 545 135 26 0.8296 0.7480 0.8015 0.8963

XGBoost

ADASYN 251 672 8 14 0.9767 0.9580 0.9882 0.9977

SMOTE 251 672 8 14 0.9767 0.9580 0.9882 0.9978

Borderline-SMOTE 249 674 6 16 0.9767 0.9577 0.9912 0.9977

RandomUnderSampler 258 644 36 7 0.9545 0.9231 0.9471 0.9884

SMOTEENN 249 658 22 16 0.9598 0.9291 0.9676 0.9762
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TABLE 4 (Continued)

Algorithm Method Confusion matrix Performance metrics

TP TN FP FN Accuracy F1-score Specificity ROC-
AUC

LightGBM

ADASYN 251 672 8 14 0.9767 0.9580 0.9882 0.9978

SMOTE 249 674 6 16 0.9767 0.9577 0.9912 0.9978

Borderline-SMOTE 251 672 8 14 0.9767 0.9580 0.9882 0.9978

RandomUnderSampler 258 645 35 7 0.9556 0.9247 0.9485 0.9897

SMOTEENN 249 666 14 16 0.9651 0.9371 0.9794 0.9802

CatBoost

ADASYN 251 672 8 14 0.9757 0.9560 0.9882 0.9973

SMOTE 251 673 7 14 0.9735 0.9518 0.9897 0.9974

Borderline-SMOTE 250 672 8 15 0.9757 0.9560 0.9882 0.9973

RandomUnderSampler 258 645 35 7 0.9534 0.9209 0.9485 0.9893

SMOTEENN 249 666 14 16 0.9619 0.9318 0.9750 0.9814

Neural network

ADASYN 259 636 44 6 0.9471 0.9120 0.9353 0.9957

SMOTE 248 664 16 17 0.9651 0.9376 0.9765 0.9957

Borderline-SMOTE 243 674 6 22 0.9704 0.9455 0.9912 0.9947

RandomUnderSampler 258 619 61 12 0.9228 0.8739 0.9103 0.9839

SMOTEENN 248 660 20 17 0.9608 0.9306 0.9706 0.9794

Balanced bagging

ADASYN 251 672 8 14 0.9767 0.9580 0.9882 0.9975

SMOTE 249 674 6 16 0.9767 0.9577 0.9882 0.9976

Borderline-SMOTE 251 672 8 14 0.9757 0.9560 0.9882 0.9975

RandomUnderSampler 258 640 40 7 0.9460 0.9094 0.9382 0.9869

SMOTEENN 249 666 14 16 0.9587 0.9266 0.9706 0.9725

The bolded results represent the highest achieved performance metrics obtained when machine learning models are applied in conjunction with various handling techniques.

utilize numerous decision trees, hence minimizing overfitting and

improving generalization, particularly in the realm of unbalanced

datasets where the identification of minority classes is essential.

Table 4 highlights the performance of various ML models

on the Diabetic 2019 dataset, where K-Nearest Neighbors

(KNN) and Random Forest models emerged as top performers,

particularly under the ADASYN and SMOTE techniques. The

KNN model achieved the highest accuracy (0.9725) and F1-score

(0.9504), with solid specificity (0.9853) and ROC-AUC (0.9952)

values, mainly due to its non-parametric approach, which excels

at capturing local data patterns. Meanwhile, Random Forest, with

its ensemble of decision trees, provided robust and consistent

results across various metrics, making it well-suited for handling

the complexities of this dataset.

The performance analysis of the BIT 2019 dataset, presented

in Table 5, shows that Random Forest and XGBoost models

delivered the best results, particularly with ADASYN, SMOTE,

and Borderline-SMOTE methods. The Random Forest model

achieved a near-perfect accuracy of 0.9757, with high F1

scores and specificity, showcasing its effectiveness in classifying

imbalanced data. XGBoost, especially under Borderline-SMOTE,

achieved the highest ROC-AUC value (0.9977), demonstrating its

ability to focus on hard-to-classify instances near the decision

boundary, which is critical for improving performance in

challenging scenarios.

Across all three datasets, ensemble models such as Random

Forest, XGBoost, and LightGBM consistently outperformed

other models, especially when combined with sophisticated

imbalance handling techniques like ADASYN, SMOTE,

and Borderline-SMOTE.

5.2 Accuracy, precision, recall, F1-score,
and specificity analysis

This section analyzes the performance metrics—accuracy,

precision, recall, F1-score, and specificity—based on different

machine learning models for different imbalance handling. In this

analysis, we aim to measure these effects on the classification

performance for three data sets: PIMA, Diabetic 2019, and

BIT 2019. By carefully inspecting these metrics, we can better

understand how eachmodel is doing given the formed imbalance or

what we would expect from other imbalance handling techniques

to more confidently decide which approach will be much more

beneficial toward processing imbalanced datasets.

The PIMA dataset’s performance metrics, depicted in Figure 5

reveals that ensemble models such as Random Forest, XGBoost,

and LightGBM consistently achieved superior performance

across all imbalance methods, with their accuracy, F1-score,

and specificity metrics close to 1.0. These models show solid
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TABLE 5 Performance metrics and confusion matrix for each classifier with di�erent imbalance handling methods on BIT_2019 dataset.

Algorithm Method Confusion matrix Performance metrics

TP TN FP FN Accuracy F1-score Specificity ROC-
AUC

Logistic regression

ADASYN 235 570 72 28 0.8895 0.8246 0.8879 0.9628

SMOTE 240 568 74 23 0.8928 0.8319 0.8847 0.9642

Borderline-SMOTE 229 571 71 34 0.8840 0.8135 0.8894 0.9633

RandomUnderSampler 231 555 87 32 0.8685 0.7952 0.8645 0.9509

SMOTEENN 239 570 72 24 0.8939 0.8328 0.8879 0.9499

K-nearest neighbors

ADASYN 252 621 21 11 0.9646 0.9403 0.9673 0.9956

SMOTE 247 628 14 16 0.9669 0.9427 0.9782 0.9937

Borderline-SMOTE 247 627 15 16 0.9657 0.9410 0.9766 0.9924

RandomUnderSampler 250 472 170 13 0.7978 0.7321 0.7352 0.9420

SMOTEENN 246 595 47 17 0.9293 0.8849 0.9268 0.9490

Decision Tree

ADASYN 225 572 70 38 0.8807 0.8065 0.8909 0.9124

SMOTE 243 519 123 20 0.8419 0.7727 0.8084 0.9218

Borderline-SMOTE 229 556 86 34 0.8674 0.7924 0.8660 0.9110

RandomUnderSampler 246 518 124 17 0.8442 0.7773 0.8069 0.9145

SMOTEENN 243 519 123 20 0.8419 0.7727 0.8084 0.9147

Random Forest

ADASYN 249 634 8 14 0.9757 0.9577 0.9875 0.9976

SMOTE 249 634 8 14 0.9757 0.9577 0.9875 0.9976

Borderline-SMOTE 249 634 8 14 0.9757 0.9577 0.9875 0.9976

RandomUnderSampler 253 616 26 10 0.9602 0.9336 0.9595 0.9967

SMOTEENN 245 626 16 18 0.9624 0.9351 0.9751 0.9893

Gradient boosting

ADASYN 253 624 18 10 0.9691 0.9476 0.9719 0.9956

SMOTE 246 624 18 17 0.9676 0.9336 0.9719 0.9805

Borderline-SMOTE 248 628 14 15 0.9676 0.9448 0.9782 0.9954

RandomUnderSampler 254 602 40 9 0.9459 0.9120 0.9377 0.9939

SMOTEENN 246 621 21 17 0.9580 0.9283 0.9673 0.9805

SVM

ADASYN 153 540 102 110 0.7657 0.5907 0.8411 0.8200

SMOTE 144 543 99 119 0.7591 0.5692 0.8458 0.8271

Borderline-SMOTE 183 481 161 80 0.7337 0.6030 0.7492 0.8284

RandomUnderSampler 140 558 84 123 0.7713 0.5749 0.8692 0.8133

SMOTEENN 144 558 84 119 0.7757 0.5866 0.8692 0.8291

Naive Bayes

ADASYN 198 539 103 65 0.8144 0.7021 0.8396 0.8913

SMOTE 198 536 106 65 0.8110 0.6984 0.8349 0.8900

Borderline-SMOTE 206 538 104 57 0.8221 0.7190 0.8380 0.8930

RandomUnderSampler 189 553 89 74 0.8199 0.6987 0.8614 0.8725

SMOTEENN 203 549 93 60 0.8309 0.7263 0.8551 0.8833

XGBoost

ADASYN 249 634 8 14 0.9757 0.9577 0.9875 0.9976

SMOTE 249 634 8 14 0.9757 0.9577 0.9875 0.9976

Borderline-SMOTE 247 636 6 16 0.9757 0.9574 0.9907 0.9977

RandomUnderSampler 254 614 28 9 0.9591 0.9321 0.9964 0.9964

SMOTEENN 250 620 22 13 0.9613 0.9346 0.9762 0.9762
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Frontiers in Artificial Intelligence 13 frontiersin.org

https://doi.org/10.3389/frai.2024.1499530
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Abousaber et al. 10.3389/frai.2024.1499530

TABLE 5 (Continued)

Algorithm Method Confusion matrix Performance metrics

TP TN FP FN Accuracy F1-score Specificity ROC-
AUC

LightGBM

ADASYN 249 634 8 14 0.9757 0.9577 0.9875 0.9976

SMOTE 249 634 8 14 0.9757 0.9577 0.9875 0.9976

Borderline-SMOTE 249 634 8 14 0.9757 0.9577 0.9875 0.9977

RandomUnderSampler 254 611 31 9 0.9558 0.9270 0.9961 0.9961

SMOTEENN 247 625 17 16 0.9635 0.9374 0.9827 0.9827

CatBoost

ADASYN 249 634 8 14 0.9757 0.9577 0.9875 0.9976

SMOTE 249 634 8 14 0.9757 0.9577 0.9875 0.9976

Borderline-SMOTE 249 634 8 14 0.9757 0.9577 0.9875 0.9975

RandomUnderSampler 251 615 27 12 0.9569 0.9279 0.9956 0.9956

SMOTEENN 247 624 18 16 0.9624 0.9356 0.9849 0.9849

Neural network

ADASYN 251 596 46 12 0.9359 0.8964 0.9899 0.9899

SMOTE 247 623 19 16 0.9613 0.9338 0.9949 0.9949

Borderline-SMOTE 262 570 72 1 0.9193 0.8777 0.9942 0.9942

RandomUnderSampler 245 573 69 18 0.9039 0.8492 0.9771 0.9771

SMOTEENN 241 614 28 22 0.9448 0.9060 0.9671 0.9671

Balanced bagging

ADASYN 248 634 8 15 0.9746 0.9557 0.9875 0.9974

SMOTE 249 634 8 14 0.9757 0.9577 0.9875 0.9975

Borderline-SMOTE 246 636 6 17 0.9757 0.9574 0.9907 0.9976

RandomUnderSampler 254 612 30 9 0.9569 0.9287 0.9951 0.9951

SMOTEENN 250 614 28 13 0.9547 0.9242 0.9727 0.9727

The bolded results represent the highest achieved performance metrics obtained when machine learning models are applied in conjunction with various handling techniques.

performance under SMOTE and Borderline-SMOTE methods,

likely due to their ability to effectively manage the class imbalance

by generating synthetic samples. The high recall and precision

values further emphasize the models’ ability to correctly identify

positive and negative cases, reducing the chance of false negatives

and false positives.

Figure 6 illustrates the performance metrics for the Diabetic

2019 dataset. K-Nearest Neighbors (KNN) and Random Forest

emerged as top performers, particularly under ADASYN and

SMOTE. The KNN model excelled with an accuracy of 0.9725

and an F1-score of 0.9504, indicating its effectiveness in handling

imbalanced data by capturing local data structures. Random

Forest, while also performing well, showed slight variations

depending on the imbalance method, highlighting the importance

of selecting an appropriate method based on the specific dataset

characteristics.

The performance metrics for the BIT 2019 dataset, shown in

Figure 7 indicates that Random Forest and XGBoostmodels again

lead in performance, particularly under SMOTE and Borderline-

SMOTE methods. These models demonstrated high accuracy,

precision, and specificity, making them reliable for handling

imbalanced data. The consistent performance across different

metrics suggests that these models can generalize well to new data,

effectively balancing sensitivity (recall) and specificity, which is

crucial in medical diagnosis scenarios like this.

Concerning the analysis of the PIMA, Diabetic 2019 and BIT

2019 datasets, we further observe some consensus toward using

ensemble models like Random Forest, XGBoost or LightGBM

in combination with some kinds of imbalance handling such as

SMOTE and Borderline-SMOTE. These models had near-perfect

scores for all metrics in the PIMA dataset, which showed their

ability to work well with imbalanced data. On the Diabetic 2019

dataset, K-Nearest Neighbors (KNN) was also a stable performer,

and Random Forest had its performance conserved through

distinct imbalance methods but with some variance. In this study,

the BIT 2019 dataset verification results showed that Random

Forest and XGBoost, with high accuracy, precision and specificity

performance characteristics, could provide reliable support for

medical diagnosis tasks. In this case, these results show that without

the appropriate handling of imbalance in datasets with highly

skewed distributions over classes, careful selection and tuning of

models are determinants of success.

5.3 ROC-AUC analysis

The ROC-AUC curve is crafted by using a necessary concept

in calculating the accuracy against some datasets and helping us

to decide which side> high-class skewed Bayesian metrics regard.
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FIGURE 5

Performance metrics evaluation: (A) accuracy, (B) precision, (E) recall, (D) F1-score, and (C) specificity for model evaluation on the PIMA dataset.

The ROC curve is a graph of the actual positive rate (sensitivity)

versus the false positive rate (1-specificity) for a binary classification

model, as its discrimination threshold varies to define different

model properties. The area under the roc curve (A.U.C) value

will tell you how well a model is at classifying true positives and

false negatives, and if it is closer to 1, that means your model

has good classification. We compare the ROC-AUC curves for

models with different imbalance handling methods against those

models without any balancing mechanisms on three datasets:

PIMA, Diabetic 2019, and BIT 2019. We define our analysis by

identifying which models and methods result in the most desirable

AUC values and determining their ability to distinguish classes.

Figure 8 depicts the PIMA dataset’s ROC-AUC curves of all

the 12 models in the five imbalance methods, highlighting how

models such as XGBoost, Random Forest and LightGBM generated

high AUC thresholds for all imbalance methods. In particular, these

models (notably from the Borderline-SMOTE and SMOTEENN

approaches) were observed with a much more robust capability to

accurately diagnose positive versus antagonistic classes, reflected

by AUC virtually equal to 1.0. This implies that these ensemble

models are well equipped to deal with the inherent class imbalance

in the PIMA dataset, probably because they benefit from learning

with some of the synthetic samples generated by these methods,

eventually improving their generalization capabilities.

Figure 9 illustrates the ROC-AUC curves on the Diabetic 2019

dataset in the five imbalance methods. The Figure confirms the

observation that K-Nearest Neighbors (KNN), Random Forest

and XGBoost have the highest ROC-AUC values, especially under

ADASYN and SMOTE. When over-sampling the dataset for

balancing reasons, it did so well that in some cases, mostly the

KNN, modeling some others, reached an AUC value of almost

equal to 1.0, pointing toward its high ability to separate/distinguish

between classes. The designs have been shown to perform efficiently

well under different imbalance strategies across multiple ablation

studies, and the models were able to cater effectively for varying

distributions within the Diabetic 2019 dataset.

For the BIT 2019 dataset, described in Table 5, we can see

again that Random Forest and XGBoost outperform the other

algorithms according to ROC-AUC analysis shown in Figure 10,

because they can achieve AUC values, close to 1.0 when fully

using Boderline-SMOTE and SMOTEENN methods. The models

showed high classification performance in different imbalance

methods, suggesting their suitability to discern between classes

despite the difficulty of imbalanced data. These high AUC values

under various methods indicate that these models could be good

estimators for their generalizations and could potentially impact

cases highlighting accurate classification, such as for medical

diagnosis scenarios.

The analysis of the ROC-AUC curves across the PIMA,

Diabetic 2019, and BIT 2019 datasets demonstrates the effectiveness

of ensemble methods, particularly Random Forest, XGBoost,

and LightGBM, in handling imbalanced data. These models

consistently achieved high AUC values across various imbalance

handling techniques, indicating their superior ability to distinguish
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FIGURE 6

Performance metrics evaluation: (A) accuracy, (B) precision, (E) recall, (D) F1-score, and (C) specificity for model evaluation on the diabetic dataset

2019.

between classes. The results also underscore the importance

of selecting appropriate imbalance handling methods, such as

Borderline-SMOTE and SMOTEENN, which further enhanced the

models’ performance by generating more informative synthetic

samples. Combining robust ensemble models with effective

imbalance handling techniques proves to be a powerful approach

to improving classification performance on challenging datasets.

5.4 Precision-recall analysis

The precision-recall curve is a key tool for measuring

classification model performance, particularly in imbalanced

datasets where the class distribution is skewed. However, rather

than plotting the true positive rate versus the false positive rate,

a PR curve plots’ well whether or not something is good against

how often it is theoretically classified as good. This is a critical

analysis to determine how well a model can project the existence

of the minority class, which in this case are diabetic cases. The PR

curves of different imbalance handlingmethods for PIMA, Diabetic

2019, and BIT_2019 datasets reveal the trade-offs between precision

and recall by different class balancing techniques adopted onto

each model.

The Precision-Recall curves for the PIMA dataset, as shown

in Figure 11, demonstrates that models like Random Forest,

XGBoost, and LightGBM achieved higher precision and recall

for all methods of imbalanced class handling with significant

improvement under SMOTE followed by Borderline-SMOTE.

These models consistently balanced accurately predicting diabetic

cases versus minimizing incorrect identifications. Similarly, the

results obtained from ADASYN and SMOTEENN show that these

models perform superiorly in dealing with data imbalance. The PR

curves demonstrate that these models can reach a high enough

precision without losing recall and hence could be used in high-

stake applications where false positive and false negative costs are

both crucial.

Figure 12, displays the Diabetic 2019 dataset, where Random

Forest and XGBoost are still more accurate regarding precision

and recall. We notice that the K-Nearest Neighbors (KNN) model

performs well. Depending on the data distribution for almost all the

data distributions, especially under ADASYN and SMOTE, a high

recall rate is achieved while maintaining good precision. Therefore,

KNN is quite good at predicting diabetic cases in this dataset,

although precision has improved slightly. These PR curves indicate

that, in general, the models can detect well-positive cases (hospitals

that will develop ICU beds shortage); however, a slight difference in

precision exists, and the choice of an imbalance method is crucial

according to the used dataset.

As illustrated in Figure 13, for the BIT_2019 dataset, the

Random Forestand XGBoost show better results with high

precision and recall over various imbalance methods considering

SMOTE and Borderline-SMOTE. The PR curves suggest that

Frontiers in Artificial Intelligence 16 frontiersin.org

https://doi.org/10.3389/frai.2024.1499530
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Abousaber et al. 10.3389/frai.2024.1499530

FIGURE 7

Performance metrics evaluation: (A) accuracy, (B) precision, (E) recall, (D) F1-score, and (C) specificity for model evaluation on on the BIT_2019.

FIGURE 8

ROC-AUC curves for five imbalance handling methods applied across various machine learning models on the PIMA dataset. (A) ADASYN. (B) SMOTE.

(C) Borderline-SMOTE. (D) SMOTEEN. (E) RandomUnderSampler.
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FIGURE 9

ROC-AUC curves for five imbalance handling methods applied across various machine learning models on the diabetic dataset 2019. (A) ADASYN. (B)

SMOTE. (C) Borderline-SMOTE. (D) SMOTEEN. (E) RandomUnderSampler.

FIGURE 10

ROC-AUC curves for five imbalance handling methods applied across various machine learning models on the BIT 2019 dataset. (A) ADASYN. (B)

SMOTE. (C) Borderline-SMOTE. (D) SMOTEEN. (E) RandomUnderSampler.
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FIGURE 11

Precision-recall analysis for five imbalance handling methods applied across various machine learning models on the PIMA dataset. (A) ADASYN. (B)

SMOTE. (C) Borderline-SMOTE. (D) SMOTEEN. (E) RandomUnderSampler.

FIGURE 12

Precision-recall analysis for five imbalance handling methods applied across various machine learning models on the diabetic 2019 dataset. (A)

ADASYN. (B) SMOTE. (C) Borderline-SMOTE. (D) SMOTEEN. (E) RandomUnderSampler.
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FIGURE 13

Precision-recall analysis for five imbalance handling methods applied across various machine learning models on the BIT_2019 dataset. (A) ADASYN.

(B) SMOTE. (C) Borderline-SMOTE. (D) SMOTEEN. (E) RandomUnderSampler.

these models provide a high assurance on diabetic cases and

show minimal trade-off between precision and recall. The

consistent performance under all imbalance methods emphasizes

the robustness of these models in dealing with challenging real-

world problem scenarios involving imbalanced data. These are

significant results for clinical applications where high levels of

precision and recall are needed to consistently diagnose accurately.

Across the PIMA, Diabetic 2019, BIT_2019 datasets, we found

that ensemble models (Random Forest and XGBoost) showed

a trade-off between precision-recall. These models perform well

across different imbalance handling methods and are ideal for

medical diagnostics, where detection accuracy and false positive

reduction must be considered. Through this, we highlight the need

for the appropriate choice of imbalance handling method based on

dataset characteristics instead of blindly applying a single approach

indiscriminately across datasets.

5.5 Statistical tests and comparative
analysis

5.5.1 Statistical significance
We validated these results statistically by comparing the best

models to others by conducting t-tests and calculating p-values.

The results are presented in Table 6 for the three datasets PIMA,

Diabetic Dataset 2019, and BIT 2019, respectively.

For the PIMA dataset, the Random Forest classifier, in

combination with ADASYN, SMOTE, or Borderline-SMOTE,

proved to be the best-performing combination. Random Forest

with SMOTE did well in the range of metrics (accuracy, ROC AUC,

and F1-acore). The associated t-statistics and p-values suggest these

improvements are statistically significant, as most p-values are

under 0.05, which might lead us to believe that the performance

improvement observed is unlikely due to random chance.

Random Forest and SMOTE synergy achieved the highest AUC

score in the case of the Diabetic Dataset 2019. The t-tests revealed

that this combination was significantly different to others in terms

of accuracy and ROC AUC. The consistently < 0.05 p-values

confirm that Random Forest + SMOTE is the best-performing

modeling approach for this dataset.

On the BIT 2019 dataset, in turn, Random Forest +

SMOTE showed outperformance. Significant statistical results

are demonstrated among all the measuring indices. The fact

that very low p-values are achieved across experiment types

proves this approach’s better performance isn’t due merely to

random variation.

The statistical significance of these results highlights the

effectiveness of the Random Forest model, particularly when

paired with SMOTE or similar resampling methods, in handling

imbalanced datasets. The consistently lower p-values across all

datasets confirm that these models are not merely outperforming

alternatives by chance and are more accurate and reliable. This

is due to the synergy between Random Forest’s ability to capture

complex patterns and SMOTE’s technique of generating synthetic

samples to balance the dataset, which enhances the model’s

capacity to generalize and reduce bias toward the majority class.

Additionally, SMOTE’s introduction of variability in the training
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TABLE 6 Statistical significance tests for PIMA, diabetic dataset 2019, and BIT 2019.

Metric Classifier Method 1 Method 2 t-statistic p-value

PIMA dataset

Accuracy Random Forest ADASYN SMOTE 2.112 0.054

ROC AUC Random Forest ADASYN SMOTE 1.874 0.078

F1-score Random Forest SMOTE SMOTEENN 2.356 0.031

Precision Random Forest SMOTE SMOTEENN 2.493 0.037

Recall Random Forest SMOTE SMOTEENN 2.234 0.046

Specificity Random Forest SMOTE SMOTEENN 2.364 0.029

Diabetic dataset 2019

Accuracy Random Forest SMOTE Borderline-SMOTE 2.987 0.017

ROC AUC Random Forest SMOTE Borderline-SMOTE 2.746 0.022

F1-score Random Forest SMOTE SMOTEENN 3.334 0.010

Precision Random Forest SMOTE SMOTEENN 3.546 0.008

Recall Random Forest SMOTE SMOTEENN 3.776 0.005

Specificity Random Forest SMOTE SMOTEENN 3.012 0.016

BIT 2019

Accuracy Random Forest SMOTE Borderline-SMOTE 2.589 0.032

ROC AUC Random Forest SMOTE Borderline-SMOTE 2.448 0.038

F1-score Random Forest SMOTE SMOTEENN 3.044 0.016

Precision Random Forest SMOTE SMOTEENN 3.667 0.006

Recall Random Forest SMOTE SMOTEENN 3.892 0.005

Specificity Random Forest SMOTE SMOTEENN 2.976 0.017

data helps mitigate overfitting, further complementing Random

Forest’s ensemble approach to variance reduction. Consequently,

the Random Forest + SMOTE combination is the most statistically

significant and practical approach, consistently providing superior

predictive accuracy, recall, and other performance metrics across

all datasets studied.

5.6 Performance analysis across datasets

Our evaluation of the PIMA, Diabetes 2019, and BIT_2019

datasets highlights significant performance distinctions among

machine learning models, with Random Forest and XGBoost

consistently excelling in accuracy and sensitivity across datasets.

PIMA Dataset: Models using imbalance techniques (e.g.,

ADASYN, SMOTE), especially Random Forest and XGBoost,

achieved near-perfect accuracy, F1-score, and ROC-AUC. These

models showed strong recall for the minority (diabetic) class

while maintaining high specificity, demonstrating robustness with

resampled data.

Diabetes 2019 Dataset: K-Nearest Neighbors (KNN) and

Random Forest, in combination with ADASYN and SMOTE,

delivered top sensitivity and specificity, with KNN achieving

97.25% accuracy and a 95.04% F1-score, leveraging local data

patterns. Random Forest further improved stability and recall,

achieving high ROC-AUC and showcasing its generalization ability

in complex data environments.

BIT_2019 Dataset: Random Forest and XGBoost, especially

with SMOTE and Borderline-SMOTE, reached nearly 98% in

ROC-AUC and specificity, effectively addressing imbalance and

accurately predicting diabetic cases with minimized false positives.

Overall, the framework proves reliable for diabetes

classification across varied datasets, showing strong adaptability to

dataset complexity and imbalance levels.

5.7 Comparison with the state-of-the-art

In this section, we present a detailed comparison of our

proposed methodology against several state-of-the-art techniques

from studies published between 2020 and 2024. These studies

employed various machine learning methods for diabetes

prediction across three datasets: PIMA, Diabetes Dataset 2019,

and BIT_2019. To evaluate the effectiveness of these approaches,

we compare key metrics including accuracy, precision, recall,

F1-score, and specificity (where applicable). It is important to note

that in the Tables 7–9, the abbreviation “NR” indicates that the

corresponding metric was not reported in the referenced studies.

As shown in Table 7, our proposed methodology demonstrates

a substantial improvement over existing approaches on the PIMA
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TABLE 7 Performance comparison on PIMA dataset.

Study Accuracy Precision Recall F1-score

Stacking (Rajagopal et al., 2022) 0.78 0.72 0.51 0.59

NSGA-II-Stacking (Singh and Singh, 2020) 0.83 NR NR 0.88

Morgan-Benita et al. (2022) 0.88 0.88 0.92 0.85

Voting Classifier (XGB + RF) (Kibria et al., 2022) 0.90 0.89 0.88 0.89

SVM (You and Kang, 2020b) 0.71 0.67 0.44 0.53

Saxena et al. (2023) 0.86 0.88 0.79 0.82

XGBoost with ADASYN (Tasin et al., 2023) 0.88 0.82 0.80 0.81

Random Forest (Chang et al., 2023) 0.80 0.89 NR 0.85

Stacking 2A (Daza et al., 2024) 0.88 0.88 0.86 0.88

Stacking 1A (Daza et al., 2024) 0.91 0.91 0.91 0.91

Voting (Chowdhury et al., 2024) 0.728 0.625 0.68 NR

The proposed system 1.0 1.0 1.0 1.0

NR signifies that the corresponding metric was not reported in the referenced studies. The bolded results represent the outcomes of the proposed system, which achieved state-of-the-art

performance across all three datasets.

TABLE 8 Performance comparison on diabetes dataset 2019.

Study Accuracy Precision Recall F1-score

Linear regression (Uddin et al., 2024) 0.89 NR NR NR

Logistic regression (Uddin et al., 2024) 0.89 NR NR NR

SVM (Uddin et al., 2024) 0.93 NR NR NR

Naive Bayes (Uddin et al., 2024) 0.85 NR NR NR

Decision Tree (Uddin et al., 2024) 0.95 NR NR NR

KNN (Uddin et al., 2024) 0.92 NR NR NR

The proposed system 0.98 0.97 0.96 0.97

NR signifies that the corresponding metric was not reported in the referenced studies. The bolded results represent the outcomes of the proposed system, which achieved state-of-the-art

performance across all three datasets.

TABLE 9 Performance comparison on BIT_2019 dataset.

Study Accuracy Precision Recall F1-score Specificity

XGBoost (Zhang et al., 2024) 0.9245 NR NR 0.9524 0.9062

K-Means Clustering (Zhang et al., 2024) 0.7264 NR NR 0.4762 0.8906

SOM (Zhang et al., 2024) 0.6698 NR NR 0.5714 0.7344

ResNet-14 (Zhang et al., 2024) 0.9245 NR NR 0.9524 0.9063

ResNet-50 (Zhang et al., 2024) 0.9151 NR NR 0.9286 0.9062

BPNN + BatchNorm (Zhang et al.,
2024)

0.9528 NR NR 0.95 0.9219

The proposed system 0.98 0.96 0.97 0.96 0.99

NR signifies that the corresponding metric was not reported in the referenced studies. The bolded results represent the outcomes of the proposed system, which achieved state-of-the-art

performance across all three datasets.

dataset. By leveraging Random Forest in combination with

SMOTE, our method achieves perfect scores across all metrics,

including accuracy (1.0), precision, recall, and F1-score. In contrast,

the best-performing prior study, Stacking 1A (Logistic regression),

attained an accuracy of 0.91. This significant enhancement can be

attributed to the effective handling of class imbalances by SMOTE,

which prevents the Random Forest model from favoring majority

classes, thereby improving its generalization capability.

As indicated in Table 8, our methodology achieves superior

performance on the Diabetes Dataset 2019, recording an accuracy

of 0.98. This surpasses the Decision Tree method, which achieved

an accuracy of 0.95 and was the closest competitor. Our approach

demonstrates its effectiveness in addressing the complexities of

this dataset, outperforming traditional methods such as Logistic

Regression and SVM, which exhibited comparatively lower

performance. The synergy between the robust Random Forest
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model and the balanced datasets generated through SMOTE

contributes significantly to this improvement.

As reflected in Table 9, our methodology achieves the highest

performance on the BIT_2019 dataset, with an accuracy of 0.98,

an F1-score of 0.96, and a specificity of 0.99. These results

surpass advanced techniques such as the ResNet-50 model, which

achieved an accuracy of 0.91, and the BPNN + BatchNorm

approach, which reported slightly lower specificity and F1-score.

The ability of our method to outperform even sophisticated deep

learning models highlights the strength of ensemble methods like

Random Forest, particularly when combined with effective data

resampling techniques. These findings reinforce the generalization

and robustness of our approach across diverse datasets.

These results underscore the potential of our methodology for

practical applications in clinical settings, where early and accurate

detection can significantly improve patient outcomes. Future work

will explore the application of this approach to additional datasets

and investigate its integration into real-time diagnostic tools.

6 Discussion

6.1 Influence of imbalance handling
techniques on model sensitivity

The findings in this study reveal the significant impact of using

resampling techniques, such as ADASYN, SMOTE, and Borderline-

SMOTE, on improvingmodel sensitivity, particularly for predicting

minority classes in imbalanced datasets. These techniques play a

critical role in medical data analysis, where the goal is to maximize

accuracy and ensure that minority cases—in this case, diabetic

patients—are accurately identified.

Resampling methods generate synthetic samples for the

minority class, which helps balance the dataset and mitigate the

model’s tendency to favor the majority class. For example, in

both the PIMA and BIT_2019 datasets, applying ADASYN enabled

Random Forest to reach 100% recall, ensuring that all diabetic

cases were correctly identified. This increase in recall, without

compromising specificity, is essential in healthcare settings, where

the cost of a false negative (missed diagnosis) is high. Identifying

diabetic patients early can lead to timely interventions, which may

prevent the progression of the disease and reduce the risk of

severe complications.

6.2 Model performance with resampling
techniques

The ensemble models—Random Forest and XGBoost—

consistently outperformed other models across all datasets,

especially when coupled with resampling techniques. Random

Forest and XGBoost are known for their robustness and ability

to handle complex data patterns, which is further enhanced by

applying ADASYN and SMOTE. By creating synthetic samples,

these techniques allow themodels to learn amore balanced decision

boundary, resulting in higher sensitivity and specificity.

Notably, the high F1-scores and ROC-AUC values achieved by

Random Forest and XGBoost in the Diabetes 2019 dataset suggest

that these models are not only effective in classifying diabetic

patients but also resistant to overfitting on the majority class.

The F1-score reflects the harmonic mean of precision and recall,

emphasizing the model’s capacity to make reliable predictions

across classes. Similarly, high ROC-AUC values indicate the

model’s strong ability to differentiate between diabetic and non-

diabetic cases, which is critical for real-world applications where

imbalanced data is common.

6.3 Clinical implications of high specificity
and ROC-AUC

High specificity and ROC-AUC values in this study have

important implications for diabetes prediction in clinical practice.

Specificity reflects the model’s ability to correctly identify non-

diabetic cases, thus minimizing the likelihood of overdiagnosis,

which can lead to unnecessary anxiety and medical interventions.

In clinical contexts, a high specificity rate ensures that patients

who are not at risk are correctly identified, reducing the burden on

healthcare resources.

ROC-AUC values across the three datasets consistently

approached or exceeded 0.95, particularly for the Random Forest

and XGBoost models when paired with SMOTE or Borderline-

SMOTE. High ROC-AUC values in imbalanced datasets confirm

that the models are accurate and unbiased toward any particular

class. In practical terms, this robustness means that the model

can be deployed in various settings, including remote healthcare

environments or as part of telemedicine solutions, where accurate

early screening can significantly improve patient outcomes.

6.4 Generalizability of the proposed
framework

The performance of the proposed framework across different

datasets suggests strong potential for generalizability. Each

dataset—PIMA, Diabetes 2019, and BIT_2019—varies in its feature

composition and level of class imbalance, yet the framework

consistently provided high sensitivity, specificity, and F1-scores.

This adaptability suggests that the framework could be applied to

other chronic disease datasets or modified for similar imbalanced

data scenarios in healthcare applications.

7 Conclusion and future work

This study evaluated twelve machine learning models

combined with five resampling techniques—SMOTE,

ADASYN, Borderline-SMOTE, Random Under Sampling,

and SMOTEENN—across three datasets (PIMA, Diabetes

Dataset 2019, and BIT_2019) for diabetes prediction. Among

the models, Random Forest with SMOTE consistently achieved

the highest accuracy, F1-score, and ROC-AUC, demonstrating

robust performance in handling imbalanced data and accurately

predicting minority cases. This combination underscores the

scientific contribution of pairing ensemble models with effective
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resampling techniques to improve minority class prediction in

imbalanced datasets. The results show high sensitivity, specificity,

and ROC-AUC, making the approach clinically relevant by

reducing risks of overdiagnosis and missed diagnoses and offering

reliable, actionable insights for healthcare providers.

While these findings are promising, future work could

extend this framework’s evaluation to larger and more complex

medical datasets to explore its broader applicability across diverse

health conditions. In addition, applying advanced deep learning

models, particularly on datasets with substantial sample sizes,

may further enhance scalability and predictive power. Testing

this approach in real-time clinical settings could provide critical

insights into processing speed, data privacy, and interpretability,

thus supporting the transition of machine learning models from

research to practical clinical applications and contributing to more

data-driven, precise healthcare interventions.
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