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Dynamic-budget superpixel
active learning for semantic
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Introduction: Active learning can significantly decrease the labeling cost of deep

learningworkflows by prioritizing the limited labeling budget to high-impact data

points that have the highest positive impact on model accuracy. Active learning

is especially useful for semantic segmentation tasks where we can selectively

label only a few high-impact regions within these high-impact images. Most

established regional active learning algorithms deploy a static-budget querying

strategy where a fixed percentage of regions are queried in each image. A

static budget could result in over- or under-labeling images as the number of

high-impact regions in each image can vary.

Methods: In this paper, we present a novel dynamic-budget superpixel querying

strategy that can query the optimal numbers of high-uncertainty superpixels

in an image to improve the querying e�ciency of regional active learning

algorithms designed for semantic segmentation.

Results: For two distinct datasets, we show that by allowing a dynamic budget for

each image, the active learning algorithm is more e�ective compared to static-

budget querying at the same low total labeling budget. We investigate both low-

and high-budget scenarios and the impact of superpixel size on our dynamic

active learning scheme. In a low-budget scenario, our dynamic-budget querying

outperforms static-budget querying by 5.6% mIoU on a specialized agriculture

field image dataset and 2.4% mIoU on Cityscapes.

Discussion: The presented dynamic-budget querying strategy is simple,

e�ective, and can be easily adapted to other regional active learning algorithms

to further improve the data e�ciency of semantic segmentation tasks.

KEYWORDS

dynamic-budget querying, superpixel, regional querying, active learning, semantic

segmentation

1 Introduction

Advances in deep learning have steadily improved performance on general computer

vision datasets like Cityscapes (Cordts et al., 2016). Adapting this success to a more

specialized area like precision agriculture usually requires creating a sizable and well-

labeled dataset. Abundant images can be relatively cheaply collected while manually

labeling thousands of images can be costly, tedious and prone to human errors caused by

repetition and boredom. Furthermore, the benefit of additional labeled data often exhibits

diminishing returns when the dataset grows unnecessarily big (Sun et al., 2017) due to

easy and low-impact images/regions being labeled. This diminishing return is particularly

problematic in agricultural datasets where class imbalance is common. Only 757 images

out of the 12,330 images in the SugarBeets 2,016 dataset (Chebrolu et al., 2017) contain

weeds making the rest of the labeled images less beneficial for model training.

The application of deep learning also faces challenges in generalizability due to complex

background/soil conditions, differences in vegetation species and volunteer weeds. Models

trained on one farm field often fail on other distinct fields. We often have to repeat the

entire pipeline of data curation, labeling and model training for each field leading to
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increased labeling and computational costs. Deep learning data

efficiency can be greatly improved by prioritizing high-impact

images/regions images that have the highest positive impact on

model accuracy for labeling. Active learning (AL) (Cohn et al.,

1994) is a well-known technique for selectively labeling high-

impact data points. This allows us to effectively train models with

significantly smaller datasets, and simultaneously decrease labeling

and computational costs.

Many active learning algorithms have been proposed for image

classification (Gal et al., 2017; Krishnamurthy et al., 2019; Sener

and Savarese, 2017b; Vijayanarasimhan and Grauman, 2009) and

have inspired dedicated AL algorithms for semantic segmentation.

Semantic segmentation is crucial for agricultural field images

due to dense, tangled and occluded plants; also important for

precision agriculture where crop and weed plants need to be

differentiated, labeling is very costly because it often requires plant

science expertise to differentiate between crop/weed instances with

similar appearance.

The AL algorithms designed for semantic segmentation

typically take advantage of a pixel-level uncertainty map

(Mackowiak et al., 2018) to perform regional querying on

images. Querying is a process in active learning algorithms where

the learner (model) determines and selects high-impact data points

to be labeled by the oracle (human labeller). Regional querying only

queries high-impact regions from high-impact images, partially

labeling images and further lowering the labeling cost.

Instead of querying rectangular regions like Mackowiak

et al. (2018), we can also query superpixels. Cai et al. (2021)

compared different regional querying algorithms and concluded

that superpixel querying ismore cost-effective. Siddiqui et al. (2020)

proposed an effective superpixel querying AL algorithm which

ranks all of the regions in the unlabelled pool. This can incur a

significant overhead since with n images and m regions per image

(in the thousands for high-resolution images) the sorting time

complexity is nmlog(nm). We opt to rank whole images first and

then from the selected b images, rank the regions within these

images. The overhead of our method is reduced to nlog(n) +

bmlog(m), where b is a small number (50 in our low-budget

experiment). Both Mackowiak et al. (2018) and Cai et al. (2021)

inspired our proposed algorithm where we extended the querying

process of the superpixel-based active learning algorithm to use a

dynamic per-image budget.

Much of the prior work in active learning, including the studies

mentioned above, evaluates their AL approaches within limited-

scope experiments, e.g. with a single dataset, or a single budget

range, or constant region size. Furthermore, the effect of querying

region sizes is largely overlooked. We addressed these gaps by

experimenting with low- and high-budget scenarios, as well as

testing with both coarse and fine superpixels for both datasets.

In this paper, we introduce a novel dynamic-budget superpixel

querying strategy to improve regional querying active learning

algorithms. This strategy uses clustering to dynamically query

the optimal amount of superpixels from the queried images. We

demonstrate the effectiveness of this strategy by evaluating both

low- and high-budget scenarios with two distinct datasets: a general

dataset of street scenes (Cityscapes) and a more specialized dataset

of agriculture field images (Nassar 2020) (Wang et al., 2023). The

source code of this project is publicly available at: https://github.

com/yuw422/dynamic-budget-superpixel-active-learning.git.

The main contributions of our paper include:

• We proposed a novel dynamic-budget querying strategy

that can improve regional active learning algorithms for

semantic segmentation.

• We evaluated our querying strategy on a specialized

agricultural field image dataset (Nassar) and a general street

scene dataset (Cityscapes).

• We evaluated our querying strategy in both low- and high-

budget scenarios.

• We demonstrated the effects of superpixel sizes on our

querying strategy.

2 Materials and methods

In this section we will introduce the overall active learning

algorithm, the proposed querying strategy and the foreground-

only querying strategy designed for the specialized dataset. We also

describe the two datasets (Nassar 2020 and Cityscapes) and the

two models (UNet and DeepLabv3+) used in this paper. Lastly, we

explain the different experiment scenarios.

2.1 Datasets

We evaluate our proposed algorithm on two distinct semantic

segmentation datasets: Nassar 2020 (Wang et al., 2023), a

specialized agricultural field image weed detection dataset and

Cityscapes (Cordts et al., 2016), a popular general street scenes

dataset. Cityscapes is a considerably more complex dataset

compared to Nassar 2020, with higher definition images and more

classes. Most Cityscapes images are crowded with objects whereas

Nassar images are very background-dominant. The significant

differences between these two datasets can provide us with a better

understanding of how our algorithm performs with different types

of data.

2.1.1 Nassar 2020
The Nassar 2020 dataset is a UAV-collected weed detection

dataset collected from an experimental wheat field. This dataset is

composed of six high-definition images of various sizes sampled

from the whole-field orthormosaic image. Each image in this

dataset comes with pixel-level labels in one of the three classes:

background (soil), crop, and weed.

For ease of use, we chose a tiled version of this dataset where

each image in the dataset is cut into 256 × 256 tiles with no

tile overlaps. We use the pre-determined data split of this tiled

dataset with 1,784 images for training, 168 images for validation

and 266 images for testing. One interesting aspect of the Nassar

dataset is that the three classes of interest can be divided into

two categories: background (mainly soil) and foreground which

contains all vegetation pixels including crops and weeds.
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The dataset is highly background-dominant as shown in

Figure 1, where background pixels make up 85% of all pixels in

the training set and appear in every single image. The foreground

pixels are also imbalanced: in the training set, 13% are crop pixels

that appear in 87% of images compared to only 2% of weed pixels

found in 22% of images. Figure 2 shows examples of images in the

Nassar dataset that contain no crop or weed pixels making the

dynamic-querying strategy less effective as mentioned in Section

2.2.3.

2.1.2 Cityscapes
The Cityscapes dataset contains a large amount of street

scene images collected from 50 different cities. There are several

collections in this dataset covering different camera positions and

image definitions.We selected the 8-bit collection from the left-side

camera with fine pixel-level annotations.

This dataset comes with a pre-determined split of 2,975 training

images, 500 validation images and 1,525 testing images of size

2,048 × 1,024. Since the testing images do not come with labels,

we use the 2,975 training images as our training and validation

sets and the 500 validation images as the test set. The Cityscapes

dataset contains a total of 35 labeled classes with an ignore class.

The author of Cityscapes picked 19 out of the 35 labeled as classes

of interest and we used the provided class map to convert the

provided 35-class labels into the desired 19-class training labels.

We chose to downsample the Cityscape images by half (1,024 ×

512) by uniformly dropping pixels to save time and GPU memory

and cast any labels that are not of the 19 classes of interest

to the ignore class. The downsampling in theory can affect the

absolute performance of ourmodel but we are only interested in the

relative performance difference between the two discussed querying

schemes. Since all the experiments use the same downsampled

dataset, the downsampling should not affect our results.

Cityscapes is also highly imbalanced between its 19 classes both

in pixel counts and image appearance frequencies as shown in

Figure 3. The common road pixels make up around 37% of total

pixels and appear in 99% of training images. Other classes appear

considerably less. Motorcycle pixels make up 0.09% of total pixels

and appear in 17.3% training images while bus pixels only appear

in 9% of training images and contribute to 0.22% of total pixels.

This class imbalance indicates each image is likely to have a

different amount of high-impact regions, and the less common

classes are usually more desirable for labeling. Enforcing a fixed

querying budget for each image could result in under-labeling,

where the image has more high-impact regions than the budget

resulting in the discarding of some high-impact regions, or over-

labeling, where the image has fewer high-impact regions than

the budget resulting in the inclusion of low-impact regions. For

example, if our dataset already contains many images with cars

and the AL is presented with an image with one bicycle and ten

cars. Ideally, we only want to label the bicycle as the dataset already

containsmany car examples. Compared to theNassar dataset where

it is obvious that the under-represented weed class is more desirable

for labeling, the more complex Cityscapes dataset has a mix of high

frequency, high pixel count classes; high/medium frequency, low

pixel count classes and low frequency and low pixel count classes.

Using a dynamic querying budget allows the AL process to more

effectively capture the low pixel counts classes like the fence and the

truck, regardless of their appearance frequencies. It makes intuitive

sense to use a dynamic per-image querying budget to label each

image optimally.

2.2 Dynamic-budget querying active
learning

Since our study focuses on dynamic-budget querying in AL, we

isolate the effect of dynamic vs static budgeting by using a standard

uncertainty sampling AL algorithm for each condition. The

overall active learning algorithm is composed of an initialization

step and several active learning steps. For our active learning

experiments, the initialization training follows the same procedures

from the full dataset baselines: UNet is trained from scratch

with no augmentation while DeepLabv3+ is pre-trained and uses

augmentations. In each active learning step, instead of training the

model from the initialization state, we use the trained weights from

the previous active learning step as pretraining. It should be pointed

out that we do not use human labellers in our AL experiments,

but instead simply make the already available labels visible to our

model to simulate the labeling process. This is commonly done in

AL experiments to both reduce cost and ensure label quality.

2.2.1 Initialization step
We start with an unlabelled pool containing all of the unlabelled

images and an empty AL training set. To initialize the algorithm,

we randomly select a small batch of images from the unlabelled

pool, give these selected images whole-image manual labels, and

add them to our AL training set. These initialization images are the

only images to receive whole-image labels throughout the entire

active learning process. We train our model on this initialization

training set until convergence to finish the initialization step.

2.2.2 Active learning step
Once the initialization step is complete, we repeat active

learning steps until a predetermined budget is met. The active

learning step contains an image querying step followed by a

superpixel querying step. In each active learning step, we want to

find the highest-impact superpixels in the highest-impact images

from our unlabeled pool. The superpixel and image impactfulness

is measured with uncertainty using the acquisition function

Bayesian Active Learning by Disagreement (BALD), whereas

higher impactfulness has higher uncertainty. The BALD acquisition

function takes T samples using MC-Dropout and then combines

the mean of the sample-wise pixel entropy and the entropy of the

mean of the sample pixels. The image and superpixel uncertainties

are aggregated using their member pixels’ uncertainties.

In each AL step, with an unlabeled pool containing n images

andm regions per image, we want to find b images with the highest

uncertainty, and for each image qmost uncertain superpixels. After

the MC sampling, each pixel in an image contains samples of class

distributions P
(u,v)
t,c at pixel (u, v) with T samples and C classes.
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FIGURE 1

Nassar class distribution plot showing the class imbalance in this dataset: total class pixel count in blue and associated image count in the training set

images in red. We show the pixel count and associated image count as a percentage of the total pixel/image count. A static-budget querying scheme

could over-labeling the abundant crop class while under-labeling the under-represented weed class.

FIGURE 2

Samples from the Nassar 2020 dataset with labels: background in black, crop in green, and weed in red. The chosen examples show a sample with

balanced crop and weed pixels (A), a sample with no crop pixels (B), a sample with no weed pixels (C), and a sample with only background pixels (D).

The pixel-wise Bayesian Active Learning by Disagreement (BALD)

uncertainty U(u,v) is calculated as

U(u,v)
=

1

T

T∑

t=1

E(P
(u,v)
t,c )+ E(

1

T

T∑

t=1

P
(u,v)
t,c ) (1)

where E(Pc) is the entropy of class probabilities Pc defined as

E(Pc) = −

∑

c

Pclog(Pc) (2)

Then the image uncertainty U(i) can be aggregated as

U(i)
=

1

U

1

V

∑

u

∑

v

U(u,v) (3)

where U and V are the horizontal and vertical pixel counts.

Similarly, we aggregate the superpixel uncertainty U(s) as the mean

of its member pixels’ uncertainty. We use the Jenks natural breaks

(Jenks, 1967) algorithm to split the superpixels into high- and low-

uncertainty clusters because the pixel uncertainty visualizations

intuitively show bright high-uncertainty pixels and dark low-

uncertainty pixels. We briefly tried three clusters per image aiming

to further reduce labeling costs but this harsher threshold resulted

in under-labeling.

Once we obtain the high- and low-uncertainty superpixel

clusters, we query and then manually label all the high-

uncertainty superpixels in the image. The remaining low-

uncertainty superpixels are automatically labeled to the ignore

class.We then add this batch of partially manually labeled images to

our AL training set and use this updated AL training set to train our

model until convergence. At the end of each active learning step, we

test the trained model on the test set to record AL step mIoU. Each

stage of the AL step is visualized in Figure 4.
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FIGURE 3

Cityscapes class distribution plot showing the class imbalance in this dataset: total class pixel count in blue and associated image count in the

training set images in red. We show the pixel count and associated image count as a percentage of the total pixel/image count. Dynamic-budget

querying could help to avoid over-labeling dominant classes like road and building. Classes like the fence with medium image appearance frequency

but low pixel count could benefit from a dynamic querying budget where additional labeling could more e�ectively capture all the fence pixels.

2.2.3 Foreground-only querying for specialized
dataset

For our specialized weed detection dataset, we made a

few improvements to the algorithm to adapt to the dataset’s

characteristics. As explained in Section 2.1.1, the Nassar dataset

is very background-dominant. The background soil pixels can be

easily separated from the foreground vegetation pixels by applying

thresholding to a vegetation index like Color Index of Vegetation

(CIVE) (Kataoka et al., 2003). Because of the color difference

between foreground and background pixels, our model can achieve

near-perfect accuracy on the background class right after the

initialization training. This also means all the background pixels

will have extremely low uncertainty scores.

In practice, directly applying the active learning step described

in Section 2.2.2 will result in the natural breaks algorithm simply

clustering the background pixels into the low-uncertainty cluster

and the foreground vegetation pixels into the high-uncertainty

cluster. This means we are querying almost all foreground

vegetation pixels which makes the algorithm ineffective since

the difficulty of labeling the Nassar dataset is separating the

foreground pixels into crop and weed. We modified our algorithm

to use the model’s background prediction to exclude background

pixels in both image ranking and superpixel ranking. We take

a further step to scale the per-image uncertainty score with

the image’s foreground pixel percentage. This scaling forces our

image querying to balance between superpixel uncertainty and

foreground pixel presence.

2.3 Models

In this project, we chose two popular semantic segmentation

models: UNet (Ronneberger et al., 2015), and DeepLabv3+ (Chen

et al., 2018). The UNet model is used on the specialized weed

detection Nassar 2020 dataset while the more capable DeepLabv3+

model with Xecption backbone is chosen for Cityscapes. We chose

the less complex UNet model for the simpler Nassar dataset

since it can be trained efficiently but still yield high accuracy.

However, the UNet model struggles with the considerably more

difficult Cityscapes dataset. We are not confident with a low

accuracy baseline due to its randomness and chose the more

capable DeepLabv3+ for Cityscapes to achieve a baseline close to

the state-of-the-art benchmark. A low accuracy baseline contains

more noise, making the baseline less stable and usually resulting in

larger accuracy fluctuation between runs with the same setup. This

makes it harder to determine whether the performance difference

is caused by algorithmic changes or model instability. We train our

models on the entire labeled dataset until converge to get our full

dataset baseline.

Since the Nassar dataset is relatively easy to learn, we train our

UNet model from scratch with no data augmentation. To give a

more realistic evaluation of the more difficult Cityscapes dataset,

we chose to use a PASCALVOC pre-trainedmodel and incorporate

a list of simple augmentations: horizontal flip, random crop,

random brightness, and random gamma. The pre-training and

augmentation allow us to conduct our experiments as close to the

state-of-the-art Cityscapes benchmarks as possible without having

to deploy complicated training routines or specializedmodels. Both

models are implemented (Hiasa et al., 2019; Yu et al., 2020) with

MC-Dropout (Gal and Ghahramani, 2015, 2016) to approximate a

Bayesian Neural Network (BNN) for better uncertainty estimation.

MC-Dropout is a popular choice to estimate model uncertainty

due to its simplicity (Mackowiak et al., 2018; Siddiqui et al.,

2020) and reasonable effectiveness (Seoh, 2020). We evaluate

the performance of our models using Mean Intersection over

Union (mIoU).

In the Nassar experiments, we use a batch size of 4, a dropout

rate of 0.5, and an initial learning rate of 1e-4. In the Cityscapes

experiments, we use a batch size of 5, a dropout rate of 0.5, and an

initial learning rate of 1e-4. All experiments are set up to train for

a maximum of 500 epochs with an autostop where the val loss does

not decrease for 40 consecutive epochs.
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FIGURE 4

Examples from Cityscapes (A, B) and Nassar (C) showing the querying process in active learning steps. The first row is RGB images and the second

row is whole-image manual labels. The third row shows the per-pixel uncertainty for each image scale to [0, 1], with black showing 0 and white

showing 1. The fourth row contains the query maps where high-uncertainty superpixels are in white and low-uncertainty superpixels are in black.

The last row is the resulting active learning labels where the high-uncertainty superpixels from the query masks are given manual labels while the rest

of the image is ignored.

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2024.1498956
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Wang and Stavness 10.3389/frai.2024.1498956

2.4 Experiments

In this section, we describe the experiments being conducted.

Below are descriptions of the different scenarios we consider.

Several scenarios can be combined in a single experiment run.

For example, a run can be dynamic-budget, low-budget and using

fine superpixels. All experiments with the same budget and dataset

use the same initialization step model to ensure consistency in

the initialization step. For example, in the Nassar low-budget

experiments, we train our model on 50 randomly selected images in

the initialization step. Once this is complete, the same checkpoint

is shared by all low-budget Nassar experiments.

2.4.1 Dynamic-budget experiments
2.4.1.1 Low-budget Experiments

In a low-budget experiment, we label fewer images for the

initialization step and active learning steps. The Nassar dataset

experiments will have 50 images fully labeled for the initialization

step and each active learning step queries an additional 50 images.

In our preliminary experiments, we found that a step size of

50 images gives a detailed enough IoU curve progression while

keeping running time low. We run the experiment for six active

learning steps which results in 350 images being labeled. The

Cityscapes low-budget experiments use the same initialization and

active learning step sizes. For the low-budget experiments, we also

include a baseline trained on 350 random images with whole-image

manual labels.

2.4.1.2 High-budget experiments

The high-budget experiments operate in percentages of

the unlabelled pool instead of image counts. The high-budget

experiments for both datasets will use 10% of the unlabelled pool

for both initialization and each active learning step. Again, this step

size gives a balance between enough details on the IoU progression

and running time. This means the Nassar experiments will label

194 images for each step while the Cityscapes experiments label 296

images per step.We run the high-budget experiments for five active

learning steps for Cityscapes and four active learning steps for

Nassar. With 10% initialization data, the high-budget experiments

stop when 70% of the unlabelled pool is labeled for Cityscapes and

50% for Nassar.

2.4.1.3 Superpixel sizes experiments

We experiment with fine and coarse superpixels for both

datasets. For theNassar dataset, we test 2,000 (fine) and 500 (coarse)

superpixels per image. The Cityscapes images are much larger than

the Nassar images which allows us to segment each image into

more superpixels. We test 5,000 (fine) and 500 (coarse) superpixels

per image for the Cityscapes experiments. We will only compare

fine and coarse superpixels with dynamic-budget querying since

it outperforms static-budget querying and we are interested in

whether using coarse superpixels will impact the performance.

2.4.2 Static-budget experiments
We compare our dynamic-budget querying scheme with the

typically used static-budget querying. The average percentage of

labeled superpixels per image is used as a proxy for labeling

cost measurements. We record the average percentage of labeled

superpixels per image for the dynamic-budget querying experiment

and use the same value in the static-budget querying experiment.

Doing this keeps the number of superpixels labeled in the static-

and dynamic-budget querying experiments very close. For the

Nassar dataset, we only count the percentages of labeled foreground

superpixels per image since the algorithm only operates on

foreground pixels. We ran the static-budget experiments following

the same procedure as described in Section 2.4.1.1 for the low-

budget setting and Section 2.4.1.2 for the high-budget setting.

3 Results

We show the results of all low-budget experiments in graphs

in Figure 5. The top graphs show the mIoU change with

increasing labeling budgets of three experiments: dynamic-budget

fine superpixels, static-budget fine superpixels, and dynamic-

budget coarse superpixels. The red dashed line marks 95% of

the 350 random whole-image manual label baseline. We chose

the 95% baseline due to it being a common baseline used in AL

experiments like Mackowiak et al. (2018). We show examples of

our dynamic-budget querying strategy improving the over-/under-

leveling problems found in static-budget querying in Figure 6.

Figure 7 shows two examples of the foreground-only querying

strategy described in Section 2.2.3. We also show fence and truck

IoU curves from Cityscapes experiments in Figure 8 and crop and

weed IoU curves from the Nassar experiments in Figure 9.

The results of all high-budget experiments can be found

in Figure 10. The graph layout follows that of the low-budget

experiments. The red broken line for high-budget experiments

marks 95% of a fully manually labeled whole dataset baseline.

3.1 Dynamic-budget querying

Dynamic-budget querying has a significant mIoU advantage

over static-budget querying in low- and high-budget experiments

on the Nassar dataset. The low-budget dynamic-budget experiment

in Figure 5A shows an advantage of 3.6% mIoU at 150 labeled

images and 5.6% mIoU at 200 labeled images over the low-budget

static-budget querying experiment. The static-budget querying

requires around 250 labeled images to reach 95% of the random

350 whole-image labels baseline which matches the accuracy of

dynamic-budget querying at 200 labeled images. The low active

learning step budget combined with the sparsity of foreground

pixels in the Nassar dataset amplifies the over- or under-labeling

problem with static-budget querying as shown in Figure 6. In

this low-budget experiment, an average of 31% of foreground

superpixels from the queried 300 images are labeled.

The difference between dynamic-budget querying and static-

budget querying is smaller for the high-budget Nassar experiment

shown in Figure 10A. Dynamic-budget querying maintains an

advantage above 1% mIoU over static-budget querying after 30%

of images are labeled. Dynamic-budget querying surpassed 95%

of our fully labeled whole-dataset baseline with 30% of labeled

data compared to static-budget querying requiring 50% of the
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FIGURE 5

Low-budget experiment results showing mIoU (top row, higher is better) and average percentage of labeled superpixels (bottom row) for the Nasser

(left) and Cityscapes (right) dataset. Label dynamic_fine refers to dynamic-budget experiments using fine superpixels; label dynamic_coarse refers to

dynamic-budget experiments using coase superpixels; label static_fine refers to experiments using fine superpixels. X-axis for all subplots is the

number of labeled images. The average percentage of labeled superpixels is calculated at the end of each active learning step as the number of

labeled superpixels over the number of total superpixels. A lower average percentage of labeled superpixels is better as it means a lower budget. This

represents on average, what percentage of superpixels in an image are manually labeled. (A) mIoU on Nassar 2020. (B) mIoU on Cityscapes. (C) Avg.

% Labeled Superpixles on Nassar 2020. (D) Avg. % Labeled Superpixles on Cityscapes.

images labeled. The high-budget experiment on average labels

28% of foreground superpixels from the queried 40% of 1,952

Nassar images.

The low-budget Cityscapes experiments in Figure 5B show

dynamic-budget querying outperforms static-budget querying by

2.4% IoU at 100 and 150 labeled images. After 150 labeled

images, the performance differences are negligible. Around 36% of

superpixels in the queried 300 image are labeled in this experiment.

The high-budget Cityscapes experiment (Figure 10B) did not show

noticeable performance between dynamic- and static-querying.

This could be a result of ample labeled data giving the algorithm

a higher tolerance on less optimal labeling.

3.2 Coarse vs. fine superpixels

The mIoU difference between using fine superpixels

and coarse superpixels is small. In the low-budget scenario

shown in Figure 5C, coarse superpixels show a 2.7%

higher IoU than fine superpixels at 150 labeled images

on the Nassar dataset. However, the performance gain

comes with a 2.3% higher foreground superpixel labeling

percentage penalty. The two experiments show no notable

performance difference for other active learning steps. The

high-budget Nassar experiments in Figure 10C show <1%

IoU or superpixel labeling percentage difference at any active

learning step.

The same can be observed from the Cityscapes

experiments where high-budget experiments (Figure 10D)

between coarse and fine superpixels have close or less

than 1% IoU difference. Fine superpixels outperform

coarse superpixels by 1.8% IoU in the low-budget testing

(Figure 5D) at 300 labeled images. Both high- and low-budget

Cityscapes experiments show that coarse superpixels have a

higher superpixel labeling percentage, while the difference

is insignificant.
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FIGURE 6

Examples from low-budget Nassar experiments comparing dynamic-budget AL labels and static-budget AL labels. The top row shows static-budget

querying under-labeling while the bottom row shows static-budget querying over-labeling due to the fixed budget. (A) RGB image. (B) Manual label.

(C) Dynamic-budget. (D) Static-budget.

FIGURE 7

Examples from Nassar show foreground-only querying on whole-image manual label (A). The per-pixel uncertainty map (B) and query mask (C) only

include foreground pixels/superpixels. In the resulting active learning label (D) the model ignores most crop pixels. The lower part of the weed plant

on the left of the top image and the two smaller weeds on the edge of the bottom image are also ignored.
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FIGURE 8

Fence (A) and truck (B) class IoU (higher is better) from the low-budget Cityscapes experiment. X-axis for all subplots is the number of labeled images.

FIGURE 9

Crop (A) and weed (B) class IoU (higher is better) from the low-budget Nassar experiment. X-axis for all subplots is the number of labeled images.

4 Discussion

4.1 Low vs. high budget

Figure 5 shows our approach is more effective in a low-

budget setting which, in our opinion is more important since

reaching a reasonable accuracy with minimal labeling is the

primary goal of AL. Especially in the low-budget Nassar

experiments, we can reach a crop IoU of over 0.9 and a

weed IoU of almost 0.7 with only 350 labeled images as

shown in Figure 9. Our dynamic-budget querying scheme only

needs 200 labeled images to surpass 0.6 weed IoU. These

accuracies are often sufficient in many applications such as

targeted spraying where the sprayer only needs to detect the

locations of weed objects instead of needing perfect contours

of these weed plants. Moreover, dynamic-budget and static-

budget querying have identical computational complexity as

the most expensive operation is the sorting of the superpixel

uncertainty map. These low-budget experiments show that our

dynamic-budget querying scheme allows the user to effectively

train a model with minimal labeling effort and no additional

computational cost.

Figure 10 shows our method is less effective in a high-budget

scenario but high-budget AL queries can be less desirable due

to diminishing performance gains. Even with a complex and

challenging dataset like Cityscapes, we only need around half of the

dataset to reach comparable accuracy to that of the fully labeled

baseline. In fact, with only 350 labeled images, the low-budget

dynamic-budget querying AL achieved a mIoU of 0.635 which is

86% of the fully labeled baseline with almost 3,000 images.

4.2 E�ect on under-represented classes

One interesting observation of the per-class IoU is that under-

represented classes in the Cityscapes dataset do not always have

lower class IoU. Despite having extremely low pixel count and
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FIGURE 10

High-budget experiment results showing mIoU (top row, higher is better) and average percentage of labeled superpixels (bottom row) for the Nasser

(left) and Cityscapes (right) dataset. Label dynamic_fine refers to dynamic-budget experiments using fine superpixels; label dynamic_coarse refers to

dynamic-budget experiments using coase superpixels; label static_fine refers to experiments using fine superpixels. X-axis for all subplots shows the

percentage instead of the number of labeled images to make the plots more readable. (A) mIoU on Nassar 2020. (B) mIoU on Cityscapes. (C) Avg. %

Labeled Superpixles on Nassar 2020. (D) Avg. % Labeled Superpixles on Cityscapes.

image appearance frequency, the bus class reached IoUs of 0.690

in the dynamic-budget experiment and 0.675 in the static-budget

experiment at 350 labeled images. In comparison, the fence class

with significantly higher pixel count and appearance only reached

0.440 in the dynamic-budget experiment and 0.371 in the static-

budget experiment. We selected two classes to show the effect of

dynamic-budget querying on individual classes. Figure 8A shows

the IoU curve of the fence class which has a low pixel count but

a medium appearance frequency. The dynamic-budget experiment

maintains a visible advantage over the static-budget experiment

after 150 labeled images, ending with 6.9% higher class IoU at

350 labeled images. Figure 8B shows the IoU curve of the truck

class which is one of the least represented classes in the Cityscapes

dataset. The dynamic-budget experiment converged after 150

labeled images and its class IoU stabilized around 0.52 to 0.55. The

static-budget experiment showed greater instability where the class

IoU showed two cases of significant IoU decrease at 200 labeled

images and 350 labeled images despite an increase in labels. These

two examples show that dynamic-budget querying not only can

result in higher IoU but also more stable performance, especially

for the less represented classes.

Figure 9 shows the IoU curve of the two foreground classes

in the low-budget Nassar experiment. The per-class IoU change

follows the trend of the mIoU curve where at 200 labeled images

dynamic-budget querying shows the largest performance advantage

over static-budget querying. The more dominant crop class showed

a high class IoU of over 0.8 for both experiments, with dynamic-

budget querying having a 2.7% IoU gain at 200 labeled images. The

sparsely distributed weed class converged around a class IoU of

0.67. For the weed class, dynamic-budget querying shows a more

noticeable 14% IoU advantage over static-budget querying.

4.3 E�ect of superpixel sizes

Even though none of the experiments showed in Figures 5C,

10D exhibit clear performance or budget advantage, the real-

world labeling cost of using coarse superpixels could be
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higher. Finer superpixels are more likely to contain pixels

of the same class which can be labeled with one click,

while coarse superpixels can contain multiple classes and

require more steps to label. However, using coarse superpixels

means having a lower superpixel count per image, resulting

in fasting sorting of the superpixel uncertainty map in the

querying stage.

4.4 Related works

Active learning can be broadly classified into stream-

based sampling and pool-based sampling. Stream-based sampling

evaluates each data point independently (Cheng et al., 2013)

while pool-based sampling ranks the entire dataset before making

a decision. By examining and comparing each data point in

the dataset before making a decision, pool-based sampling can

select only the most impactful data points with a trade-off of

larger ranking overhead. Pool-based active learning is typically an

iterative process with four key components: the unlabeled pool,

the labeled AL training set, the oracle (human labeler) and the

learner (deep learning model) (Settles, 2009). The learner uses

querying strategies to rank and select a batch of the most beneficial

samples from the unlabeled pool to be labeled by the oracle. Then

these newly labeled samples are added to the AL training set to

train the model. This process can be repeated until the model

is trained to satisfactory accuracy or a preset annotation budget

is exhausted.

The querying strategy which dictates the effectiveness of

active learning algorithms can be split into two major categories:

diversity sampling and uncertainty sampling. Diversity sampling

methods are usually model agnostic and depend on extracted

features from unlabelled images to diversify the training set

(Sener and Savarese, 2017a). The uncertainty sampling algorithm

used in our project uses a trained model to find the most

uncertain samples for labeling. The effectiveness of an uncertainty

sampling algorithm relies heavily on the quality of model

uncertainty measured with acquisition functions. In this paper,

we use Bayesian Active Learning by Disagreement (BALD)

(Houlsby et al., 2011) as our acquisition function, which

is a combination of the basic max entropy approach and

sampling disagreement.

Most active learning algorithms, like the popular Cost-Effective

Active Learning (CEAL) (Wang et al., 2016), are designed

for image classification tasks and naturally query full images.

Although they can be easily adapted to semantic segmentation

tasks, we can further improve the active learning algorithms

to query individual pixels, or more commonly rectangular

regions or superpixels for efficiency as visualized in Figure 11.

Cost-Effective REgion-based Active Learning (CEREALS)

(Mackowiak et al., 2018) applies this idea to CEAL by querying

rectangular grids in an unlabelled image. An alternative to

querying rectangular grids is to query segmented regions called

superpixels. Superpixels are generated by segmentation algorithms

which split the image into clusters of pixels that are similar

to each other. Some commonly used superpixel algorithms

include Felzenszwalb’s method (Felzenszwalb and Huttenlocher,

2004), SLIC (Achanta et al., 2012), and Compact Watershed

(Neubert and Protzel, 2014).

4.5 Limitations and future works

One of the limitations of this work lies in our budget calculation

where we use the number/percentage of superpixels/images as

the labeling cost. This is an approximation of the real-world

labeling cost as different superpixels can require different levels

of labeling efforts. Instead of using the provided labels to

simulate the manual labeling process, we plan to conduct future

experiments with manual labeling to provide a more accurate

labeling cost measurement.

In this paper, we used an agriculture dataset and a street

scene dataset to show the generalizability of our proposed querying

strategy. Different agricultural datasets can vary significantly in

vegetation coverage, density, color and shape. These dataset-

specific traits could influence the accuracy of our trained model,

resulting in variations in the uncertainty estimation quality. We

plan to test this querying strategy on other agriculture datasets with

various plant species and background conditions in the future.

Our proposed querying strategy is versatile and can be easily

applied to other AL algorithms. MC-Dropout along with other

ensemble-based uncertainty estimation methods are also flexible

and generally model agnostic where they can be used on more

sophisticated models like visual transformers (ViTs). This makes

testing our querying strategy with different combinations of

uncertainty estimation methods and models quite straightforward

as the common last step is to rank the resulting pixel-wise

uncertainty maps. We plan to test the generalizability of our

querying strategy with other models, uncertainty estimation

methods and acquisition functions.

Active learning is highly data-efficient when only labeling costs

are considered. However, active learning algorithms can also be

wasteful sincemost of the already collected images in our unlabelled

pool are ignored. Another promising future direction is to combine

our active learning approach with self-supervised learning (SSL) to

utilize all the unlabelled data. We could use the entire unlabelled

dataset to perform SSL pre-training to initialize model weights and

then take advantage of active learning to construct a compact and

informative dataset for the fully-supervised downstream task. By

complementing active learning with self-supervised learning, we

could make use of all the collected data and potentially maximize

data efficiency. Moreover, the self-supervised pre-training process

could be a superior alternative to the random initialization for

active learning. Since active learning is an iterative process, a

poorly initialized model could negatively affect the active learning

process. Creating a more robust initialization state with self-

supervised learning could further enhance the effectiveness of

active learning algorithms.

4.6 Conclusion

In this paper, we introduced a novel dynamic-budget

superpixel querying strategy for regional active learning
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FIGURE 11

Di�erent querying units are shown with a cropped sample from Cityscapes. Superpixels generally follow the contour of objects closely while

rectangular grids regularly cross object contour boundaries. With large enough segment counts, most superpixels will only contain pixels from one

single class while it is common for a rectangular grid to contain pixels from di�erent classes. (A) Whole image. (B) Rectangular grid. (C) Superpixel

(SLIC).

algorithms. We showed that dynamic-budget querying can

be effective compared to fix-budget querying in a low-budget

scenario or on foreground-pixel sparse datasets like agricultural

field images (Nassar 2020). Our low-budget experiments show

a maximum of 5.6% (Nassar) and 2.4% (Cityscapes) IoU

improvement when switching from static-budget querying to

dynamic-budget querying. This advantage diminishes when the

algorithm is given a higher budget with more labeled data. We

did not find significant performance or labeling cost differences

between using coarse and fine superpixels. This simple yet

effective dynamic-budget querying strategy can be easily adapted

to other regional active learning algorithms to improve the

querying efficiency.
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