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Cell-penetrating peptides (CPPs) are highly effective at passing through eukaryotic 
membranes with various cargo molecules, like drugs, proteins, nucleic acids, and 
nanoparticles, without causing significant harm. Creating drug delivery systems 
with CPP is associated with cancer, genetic disorders, and diabetes due to their 
unique chemical properties. Wet lab experiments in drug discovery methodologies 
are time-consuming and expensive. Machine learning (ML) techniques can 
enhance and accelerate the drug discovery process with accurate and intricate 
data quality. ML classifiers, such as support vector machine (SVM), random forest 
(RF), gradient-boosted decision trees (GBDT), and different types of artificial neural 
networks (ANN), are commonly used for CPP prediction with cross-validation 
performance evaluation. Functional CPP prediction is improved by using these ML 
strategies by using CPP datasets produced by high-throughput sequencing and 
computational methods. This review focuses on several ML-based CPP prediction 
tools. We discussed the CPP mechanism to understand the basic functioning of 
CPPs through cells. A comparative analysis of diverse CPP prediction methods 
was conducted based on their algorithms, dataset size, feature encoding, software 
utilities, assessment metrics, and prediction scores. The performance of the CPP 
prediction was evaluated based on accuracy, sensitivity, specificity, and Matthews 
correlation coefficient (MCC) on independent datasets. In conclusion, this review 
will encourage the use of ML algorithms for finding effective CPPs, which will 
have a positive impact on future research on drug delivery and therapeutics.
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1 Introduction

Peptide prediction is critical for the recognition of novel and systematic peptide-based 
therapeutics (Gautam et al., 2013). Two major hindrances to the development of drugs are 
poor delivery and truncated bioavailability of drug molecules in therapy (Manavalan et al., 
2018). The plasma membrane is particularly permeable and endures as a prime barrier for 
many therapeutic cargos. Several delivery systems have been evolved to outlive this barrier 
(Gao et al., 2007). Available delivery techniques can lead to high toxicity, immunogenicity, and 
insufficient delivery yield. CPPs have accomplished much appreciation as an outstanding 
delivery module since they have high bioavailability (Heitz et al., 2009). CPPs, also called 
“Trojan” peptides, and protein transduction domains (PTDs) are roughly around the length 
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of 5 to 30 amino acids that can enter cell membranes via energy-
dependent and independent mechanisms. CPPs have a remarkable 
ability to obliquely eukaryotic membranes without deteriorating the 
outer membrane (Gautam et  al., 2013). CPPs can carry diverse 
particles, such as peptides, proteins, drugs, nucleic acids, siRNAs, and 
nanoparticles, across the lipid bilayer (Hansen et al., 2008; Bechara 
and Sagan, 2013; Brasseur and Divita, 2010; Sanders et al., 2011). With 
its high specificity, affinity, low toxicity, and relatively low cost, CPP 
enables therapeutic medications to overcome the limitations of small 
molecules (Guerrero-Vázquez et al., 2023). Almost every aggregate/
drug molecule can be  carried into the cell once coupled to CPP 
(Fonseca et  al., 2009). Therefore, CPPs have terrific therapeutic 
potential, particularly in the area of drug delivery. They have become 
a hotspot for gene and anti-tumor drug research (Kamei et al., 2016; 
Pang et al., 2015).

Using peptides as drugs is limited by their low stability, limited 
membrane penetration, reduced solubility, quick clearance, limited 
oral bioavailability, and elevated production costs (Craik et al., 2013; 
Marqus et al., 2017; Lee et al., 2019). The identification of appropriate 
medicinal peptides involves biological wet lab methods and 
computational-assisted identification methods. The in vitro method is 
an expensive, challenging, and time-consuming procedure. To control 
these limitations, new and effective computational approaches have 
been developed by researchers (Li et  al., 2020). Such ideas could 
be used to screen peptides before their synthesis, thereby accelerating 
peptide discovery (Manavalan et al., 2017). ML-based computational 
ideologies can serve as swift and inexpensive pre-screening tools to 
proficiently cover the diverse and crucial sequence margin, thereby 
facilitating and this will rationalize the process of peptide discovery 
(Tang et al., 2016; Sidey-Gibbons and Sidey-Gibbons, 2019; Li et al., 
2019; Basith et  al., 2020). ML techniques have been put forth to 
discover novel CPPs that may be further investigated experimentally 
(Guerrero-Vázquez et al., 2023).

Classification of CPPs computationally from peptide sequences 
was pitched in 2005 (Hällbrink et al., 2005). Followed by this, various 
ML-based CPP predictors have been developed, which include 
artificial neural networks (ANN) (Dobchev et al., 2010; Holton et al., 
2013; Cai et al., 2021; de Oliveira et al., 2021; Manavalan and Patra, 
2022; Park et al., 2023; Zhang et al., 2023), support vector machine 
(SVM) (Gautam et al., 2013; Sanders et al., 2011; Tang et al., 2016; de 
Oliveira et al., 2021; Manavalan and Patra, 2022; Zhang et al., 2023; Fu 
et  al., 2020; Fu et  al., 2019), extremely randomized tree (ERT) 
(Manavalan et  al., 2018; Manavalan and Patra, 2022), gradient-
boosted decision trees (GBDT) (Arif et  al., 2020), light gradient 
boosting machine (LGBM) (Maroni et al., 2024), kernel extremely 
learning machine (KELM) (Pandey et al., 2018), and random forest 
(RF) (de Oliveira et al., 2021; Manavalan and Patra, 2022; Chen et al., 
2015; Diener et al., 2016; Wei et al., 2017b; Wei et al., 2017a; Kumar 
et al., 2018; Qiang et al., 2020; Wei L. et al., 2019). In the past, around 
15 CPP predictors have been reviewed and compared based on 
datasets and prediction strategies (Guerrero-Vázquez et al., 2023; Wei 
H. H. et al., 2019). A meticulous comparative analysis of cutting-edge 
ML techniques in the investigation of CPPs is crucial given the 
increasing interest in their applications in drug delivery, molecular 
treatment, and biomedicine. In this review, the CPPs penetrating 
mechanism through cell membranes was highlighted. A comparison 
of contemporary prediction methods for CPP was conducted based 
on their accuracy and MCC on training and independent datasets. 

We  have included 26 prediction methods that were exclusively 
constructed for forecasting CPPs. Among 26, 5 predictors followed a 
2-layer framework (Wei et al., 2017b; Manavalan et al., 2018; Fu et al., 
2020; Arif et al., 2021; Manavalan and Patra, 2022). Every approach 
that has been examined fits within the framework of supervised 
learning, and all of the positive samples in the datasets were 
empirically curated CPPs (Agrawal et al., 2016). All of these methods 
were thoroughly investigated to identify the statistical indices, 
advantages, and pitfalls. Balanced and imbalanced datasets were 
scrutinized concerning each prediction method. We anticipate that 
this review will help biologists with the appropriate computational 
tools for CPP-dependent therapeutics.

2 Overview of the mechanism of CPP 
internalization

Although numerous studies have been conducted on CPPs, the 
mechanism by which they enter the cell remains unclear and 
controversial in some cases (Bechara and Sagan, 2013). The 
mechanism of CPP uptake into cells is crucial for optimizing the 
efficiency and safety of intracellular delivery, which may be suitable 
for a specific cargo (Madani et al., 2011). The use of ML models for 
accurate prediction and design relies on significant input features such 
as sequence motifs, hydrophobicity, charge, peptide length, and the 
secondary structure of CPPs. Understanding the biological mechanism 
of CPPs is crucial for researchers to design challenging features that 
incorporate the fundamental aspects of CPP functioning, such as 
peptide-lipid interactions (Copolovici et al., 2014). In the absence of 
biological understanding, feature selection for ML prediction might 
miss critical aspects, resulting in poor model performance (Yadahalli 
and Verma, 2020). The cellular absorption pathways for CPPs include 
an energy-independent pathway and an endocytic pathway, each with 
unique characteristics (Ruseska and Zimmer, 2020; Gori et al., 2023). 
Figure 1 shows different methods of the intracellular mechanism of 
CPP penetration into cells.

In the presence of endocytic inhibitors and at low temperatures, 
either energy-independent or direct penetration occurs (Trabulo et al., 
2010). The negatively charged phospholipid bilayer membrane and the 
peptide often interact electrostatically during direct penetration 
(Wallbrecher et al., 2017). Following contact, there is either a transient 
or persistent membrane instability, which allows the peptide to enter 
the cytosol. Direct penetration is a one-step process that involves the 
development of pores, carpet models, and inverted micelles, among 
other processes (Ruczynski et al., 2014). The inverted micelles are 
formed due to membrane invagination, which traps the CPP with 
conjugated cargo at low concentrations (Derossi et  al., 1998). 
Penetratin was reported to be  the first CPP to follow an inverted 
micelle mechanism (Alves et  al., 2010). Pep-1 and MPG are 
amphiphilic CPPs that undergo pore formation through direct 
penetration (Heitz et  al., 2009; Deshayes et  al., 2006). The pore 
formation mechanism involves two different models: the barrel-stove 
and the toroidal. Bundle formation through peptide interaction with 
the plasma membrane happens in the barrel-stove model (Bechara 
and Sagan, 2013). The inward bending of the lipid monolayer leads to 
hydrophilic pores in the toroidal model. Carpet-like association of the 
peptide itself on the lipid bilayer was found in the carpet-like model 
(Pouny et al., 1992). Interaction happens between the hydrophobic 
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regions of the peptide and lipid bilayer, allowing the peptide to 
penetrate inside the cells due to changes in membrane conformation 
(Galanth et al., 2009).

Due to energy expenditure, macromolecular internalization 
occurs through endocytosis (energy-dependent) (Zhao et al., 2011). 
This process occurs through two types: phagocytosis and pinocytosis. 
The uptake of specialized cells (cell eating), like monocytes and 
neutrophils, is phagocytosis (Desale et al., 2021). Liquids and solutes 
uptake (cell drinking) is pinocytosis. Pinocytosis involves four 
mechanisms (Conner and Schmid, 2003). (i) Macropinocytosis is the 
formation of membrane protrusions due to polymerization of actin 
(Wadia et al., 2004; Futaki et al., 2007). Kinases and GTPases are the 
key enzymes involved in this process (Lim and Gleeson, 2011). (ii) 
Clathrin-mediated endocytosis (CME) is a process for nutrient 
uptake in all mammalian cells (Haucke and Kozlov, 2018). It is a 
receptor-guided process where vesicles covered by clathrin are 
converted into endosomes and released into the cytosol (Veldhoen 
et  al., 2006; Arukuusk et  al., 2013). (iii) Caveolae-mediated 
endocytosis (CVME) is the formation of caveolae, which are cave-like 
invaginations on the inner side of the cell under the guidance of 
caveolins and cavins (Kovtun et  al., 2015). Glypicans with TAT, 
azurin, and chicken anemia virus (CVP1) are peptides that undergo 
internalization through this pathway (Nabi and Le, 2003; De Pasquale 
and Pavone, 2020; Hao et al., 2022; Taylor et al., 2009). (iv) Clathrin- 
and caveolae-independent endocytosis undergo specific uptake of 
glycolipids, raft-associated receptors, cholesterol, and GPI-anchored 
proteins (Damm et al., 2005; Johannes and Lamaze, 2002; Parton and 
Richards, 2003). Protamine CPP for siRNA delivery is the best 
example of independent endocytosis.

3 General machine learning scheme 
for cell-penetrating peptide prediction

A thorough examination of different methods revealed that the 
machine learning approach for the prediction of CPP involved four 
steps: the first step involved the construction of reliable datasets, 
namely, training and independent datasets. CPPsite 2.0 is the most 
abundant and largest database for experimentally validated CPPs 
available at http://crdd.osdd.net/raghava/cppsite/ (Agrawal et  al., 
2016). The majority of the predictors have retrieved datasets from this 
database. The CD-HIT (Cluster Database at High Identity with 
Tolerance) program was used to remove sequence redundancy to 
prevent overfitting of the model (Fu et al., 2020; Diener et al., 2016; 
Qiang et al., 2020). The second step was the extraction of optimal 
feature descriptors to train the classifier. The third step involved model 
training and evaluation of training and independent datasets based on 
feature encodings. K-fold cross-validation has been widely used for 
the evaluation of the algorithm’s performance. The evaluation indices 
included to assess the prediction performance were accuracy (ACC), 
sensitivity (SN), specificity (SP), and Matthews correlation coefficient 
(MCC) (Park et al., 2023). All the existing prediction methods follow 
these statistical indicators. The values were enumerated as follows:
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FIGURE 1

Illustration of the basic mechanism of cell-penetrating peptides for intracellular invagination into cells. Cargo can be a drug, protein, micromolecule, 
siRNA, etc. (created with BioRender.com/k22o427).
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TP indicates the number of true +ve samples (CPPs); TN depicts the 
number of true −ve samples (non-CPPs); FP represents the number of 
false +ve samples, non-CPPs speculated to be CPPs; FN represents the 
number of false −ve samples, CPPs predicted to be non-CPPs (Park et al., 
2023). The area under the curve (AUC) from the receiver operating 
characteristic curve (ROC) was used to visually represent the model’s 
interpretation (Manavalan and Patra, 2022; Kumar et al., 2018). A web 
server was developed for certain predicted models that demonstrated 
robust performance (Gautam et al., 2013; Holton et al., 2013; Diener 
et al., 2016; Tang et al., 2016; Wei et al., 2017b; Wei et al., 2017a; Kumar 
et al., 2018; Manavalan et al., 2018; Pandey et al., 2018; Qiang et al., 2020; 
Wei L. et al., 2019; de Oliveira et al., 2021; Manavalan and Patra, 2022). 
All the information related to the predictors is available on the web 
server, which will be useful for the researchers in providing insights for 
further research to develop advanced predictions (Basith et al., 2020).

4 State-of-the-art methods

In our article, we  identified 26 predictors of cell-penetrating 
peptides that have been reported to date. Table  1 highlights 
information on the CPP predictors evaluated in this review. The 
predictor’s name, number of datasets, feature encodings, classifier 
used, evaluation indices, accuracy of prediction, and web server 
information were mentioned to provide insights about these methods.

The model with QSAR features as input to MLP (multilayer 
perceptron), which is a type of ANN, was thrived by Dobchev. 
He performed a PCA with STASTICA for the MLP attributes with 101 
peptide datasets. The false +ve and false -ve samples were prohibited 
during model progression and achieved 83% accuracy over the training 
set and ~ 100% accuracy over the validation set (Dobchev et al., 2010). 
Sanders evolved an SVM classifier with 61 different features, based on 
PCP. Features were screened using a wrapper-based selection. A 10-fold 
cross-validation was used on 111 benchmarks and 34 test datasets to 
achieve accuracy (ACC), sensitivity (SN), and specificity (SP) of 91.72, 
91.70, and 12.70%, respectively. Fluorescence microscopy was then used 
to empirically verify the cell penetration functionality, and a quantitative 
uptake analysis of the peptides was carried out (Sanders et al., 2011).

CellPPD is an SVM-based predictor that utilizes AAC, DPC, BPP, 
and PCP as input features. The training and independent datasets were 
retrieved from the CPPsite (Agrawal et al., 2016; Gautam et al., 2012). 
The SVM-BPP model achieved an accuracy of 81.30% on independent 
datasets. Training datasets with hybrid features (BPP-based motif) 
achieved the highest performance with SN, SP, and ACC at 98.15, 
96.58, and 97.40%, respectively. This is the first web server that was 
easy to use. It provided the opportunity to create analog devices with 
improved cell penetration capabilities (Gautam et al., 2013).

A web server CPPpred with an N-to-1 neural network using 
motif-based features as input progressed with 174 training and 94 
independent datasets. These datasets were generated by performing 

redundancy removal using BLAST. A 5-fold CV was performed that 
achieved moderate performance with 77.60 and 82.98% accuracy for 
training and independent datasets, respectively (Holton et al., 2013). 
An RF model with pseudo-amino acid composition as a feature input 
was developed. Curated CPPs and non-CPPs were retrieved from 
Sanders’s method (Sanders et al., 2011). For the representation of 
each sample, 270 features were employed. The max-relevance and 
min-redundancy (mRMR) encoding method was performed to 
understand the importance of optimal features for model building. 
The incremental feature selection (IFS) method and the random 
forest were used to construct an optimal prediction method and 
extract the best combination of features. In comparison, the 
PseAAC-RF method achieved 83.40% accuracy on training datasets 
evaluated using the 10-fold CV technique (Chen et al., 2015).

The DCF tool was developed to design multifunctional CPPs using 
27 different PCP features. Random forest algorithm predicted 
multifunctional CPPs with 90% accuracy evaluated using 4-fold CV on 
training datasets (Diener et al., 2016). An SVM-based C2Pred tool was 
developed with dipeptide composition as a feature descriptor on 
benchmark datasets of 411 CPPs and 411 non-CPPs retrieved from 
CPPsite2.0 (Agrawal et al., 2016). The CD-HIT program was employed 
for redundancy removal. This tool was developed to achieve better 
accuracy than the aforementioned methods. The SN, SP, and ACC were 
achieved at 81.50, 85.60, and 83.60%, respectively (Tang et al., 2016).

SkipCPP-Pred was developed using an RF classifier with a 
k-skip-2 g feature algorithm that achieved ACC, SN, and SP of 90.60, 
88.50, and 92.60% on training datasets with LOOCV (leave-one-out 
cross-validation), which is a validation technique to estimate the 
reliability of achieved statistical results. Rapid CPP prediction was 
accomplished by the utilization of sequential information (Wei et al., 
2017a). CPPred-RF is the first tool that simultaneously predicts both 
CPPs and their uptake efficiency. The RF algorithm was executed using 
four sequence-based descriptors, namely, PC-PseAAC, SC-PseAAC, 
ASDC, and PCP. mRMR and sequential forward search (SFS) were 
employed for prioritizing the essential features and traversing through 
the subset of effective features, respectively. Benchmark datasets 
achieved better performance using the LOOCV strategy using ACC, 
SN, and SP of 91.60, 90.50, and 92.60%, respectively (Wei et al., 2017b).

CellPPDMod was developed to predict and evaluate modified 
CPPs. This study was performed using different combinations of 
descriptors, such as seventeen 2D, six 3D, and twenty-seven 
fingerprints, which achieved robust performance in the RF-based 
model. Feature selection was performed using the “CfsSubsetEval” 
evaluator to obtain these features. The training datasets used for 
internal validation achieved ACC, SN, and SP values of 95.10, 95.19, 
and 95.02%. The independent datasets achieved ACC, SN, and SP of 
92.33, 91.3, and 93.3% with a 5-fold CV evaluation (Kumar et al., 2018).

The MLCPP is a two-layer prediction model that has been developed 
to predict CPPs/non-CPPs in the first layer and their effectiveness of 
uptake in the second layer. This method involved five different feature 
compositions, namely, AAC, DPC, AAI, CTD, and PCP, employed with 
four different ML methods such as SVM, ERT, RF, and k-nearest 
neighbor (k-NN). MLCPP was the first to employ an ERT-based model 
that achieved robust performance with hybrid features (AAC and PCP 
combination) on both training and independent datasets. On training 
datasets, the first layer prediction achieved ACC, SN, and SP of 88.30, 
91.90, and 84.50%, respectively. The independent datasets achieved ACC, 
SN, and SP of 89.60, 93.30, and 85.80%, respectively, with a 10-fold CV 
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TABLE 1 List of currently available CPP predictors evaluated in this review.

Predictor/
author’s 
name

Classifier Year Feature 
encodings

Dataset size (positive/
negative)

Assessment 
strategy (CV)

Accuracy (%) Web server 
availability

References

Training 
dataset

Independent 
dataset

Training Independent

Dobchev et al. MLP 2010 PCA 49/10 23/2 3-Fold 83.1 92.0 NA Dobchev et al. (2010)

Sanders et al. SVM 2011 PCP 111/34 - 10-Fold 91.7 - NA Sanders et al. (2011)

CellPPD SVM 2013 BPP 708/708 99/99 5-Fold 97.4 81.3 http://crdd.osdd.net/

raghava/cellppd/

Gautam et al. (2013)

CPPpred N-to-1 NN 2013 Motif 74/100 47/47 5-Fold 77.6 82.9 http://bioware.ucd.ie/

cpppred

Holton et al. (2013)

Chen et al. RF 2015 PseAAC 111/34 - 10-Fold 83.4 - NA Chen et al. (2015)

DCF RF 2016 PCPs 1,267/1,267 - 4-Fold 90.0 - http://bis.ifc.unam.mx/en/

software/dcf

Diener et al. (2016)

C2Pred SVM 2016 DPC 411/411 - 5-Fold 83.6 - http://lin-group.cn/server/

C2Pred

Tang et al. (2016)

SkipCPP-Pred RF 2017 Adaptive k-skip-

2-gram

462/462 - LOOCV 90.6 - http://server.malab.cn/

SkipCPP-Pred/Index.html

Wei et al. (2017a)

CPPred-RF RF 2017 PC-PseAAC, 

SC-PseAAC, 

ASDC, PCP

462/462 - LOOCV 91.6 - http://server.malab.cn/

CPPred-RF

Wei et al. (2017b)

CellPPD-Mod RF 2018 2D, 3D, 

Fingerprint 

descriptors

582/582 150/150 5-Fold 95.1 92.3 http://webs.iiitd.edu.in/

raghava/cellppdmod

Kumar et al. (2018)

MLCPP ERT 2018 AAC and PCP 427/427 311/311 10-Fold 88.3 89.6 www.thegleelab.org/

MLCPP

Manavalan et al. (2018)

KELM-CPPpred KELM 2018 AAC, PseAAC, 

DPC, hybrid 

motifs

408/408 96/96 10-Fold 86.2 83.1 http://sairam.People.iitgn.

ac.in/KELM-CPPpred.html

Pandey et al. (2018)

PEPred-suite RF 2019 10 feature 

encodings

370/370 92/92 10-Fold 91.2 NR http://server.Malab.cn/

PEPred-Suite

Wei L. et al. (2019)

Fu et al. SVM 2019 GAAC, 

CKSAAGP, 

GDPC, CTD

462/462 96/96 LOOCV 92.3 84.4 NA Fu et al. (2019)

G-DipC XGB 2020 DPC 1,223/

1,223

- 5-Fold 83.9 - NA Wang et al. (2019)

(Continued)
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TABLE 1 (Continued)

Predictor/
author’s 
name

Classifier Year Feature 
encodings

Dataset size (positive/
negative)

Assessment 
strategy (CV)

Accuracy (%) Web server 
availability

References

Training 
dataset

Independent 
dataset

Training Independent

CPPred-FL RF 2020 9 feature 

encodings

462/462 - 10-Fold 92.1 - http://server.Malab.cn/

CPPred-FL

Qiang et al. (2020)

StackCPPred SVM 2020 PseRECM 462/462 - 10-Fold 94.5 - NA Fu et al. (2020)

TargetCPP GBDT 2020 CPSR, CTD, 

SAAC, ITF

462/462 111/34 LOOCV 93.5 88.4 NA Arif et al. (2020)

BChemRF-CPPred ANN, SVM, 

GPC

2021 AAC, PseAAC, 

DPC

300/300 75/75 10-Fold 87.6 90.6 http://comptools.linc.ufpa.

br/BChemRF-CPPred

de Oliveira et al. (2021)

ITP-Pred CNN-BiLSTM 2021 AAC, PCP 370/370 92/92 5-Fold 89.0 95.1 NA Cai et al. (2021)

DeepCPPred CDF 2022 PSSM, RECM, 

SMR, RSIV

462/462 - 5-Fold 93.0 - NA Arif et al. (2021)

MLCPP 2.0 7 ML 

classifiers

2022 17 feature 

encodings

573/573 157/2184 10-Fold 91.3 93.4 https://balalab-skku.org/

mlcpp2/

Manavalan and Patra 

(2022)

SiameseCPP SNN 2023 CL features 462/462 - NR 96.1 - NA Zhang et al. (2023)

AiCPP LSTM 2023 9-mer approach 1,249/1,097 150/150 10-Fold NR 86.0 NA Park et al. (2023)

PractiCPP PractiCPP 2024 SF, LSF, PTF 462/462 649/649,000 10-Fold 95.6 80.5 NA Shi et al. (2024)

LightCPPgen LGBM 2024 375 features 573/573 157/2184 10-Fold NR 96.2 NA Maroni et al. (2024)

NR, not reported; NA, not available; MLP, multilayer perceptron; ANN, artificial neural network; SVM, support vector machine; RF, random forest; ERT, extremely randomized tree; KELM, kernel extremely learning machine; XGB, extreme gradient boosting; GBDT, 
gradient-boosted decision trees; GPC, Gaussian process classification; CNN-BiLSTM, convolutional neural network-bidirectional long short-term memory; SNN, siamese neural network; LSTM, long-short term memory; LGBM, light gradient boosting machine; 
QSAR, quantitative structure-active relationship; PCA, principal component analysis; PCP, physicochemical properties; AAC, amino acid composition; BPP, binary profiles of pattern; DPC, dipeptide composition; GAAC, grouped amino acid composition; CKSAAGP, 
composition of k-spaced amino acid group pairs; GDPC, grouped dipeptide composition; PseAAC, pseudo amino acid composition; PC-PseAAC, parallel correlation-pseudo amino acid composition; SC-PseAAC, series correlation-pseudo amino acid composition; 
PseRECM, pseudo residue pairwise energy content matrix; ASDC, adaptive skip dipeptide composition; SAAC, split-amino acid composition; ITF, information theory features; CPSR, composition protein sequence representation; CTD, composition-transition-
distribution; CDF, cascade deep forest; PSSM, position-specific scoring matrix; RECM, residue energy contact matrix; SMR, substitution matrix representation; RSIV, reduced sequence and index-vectors; CL, contrastive learning; SF, sequential features; LSF, local 
structure features; PTF, pretrained features; LOOCV, leave-one-by-one cross validation; CV, cross validation.

https://doi.org/10.3389/frai.2024.1497307
https://www.frontiersin.org/journals/Artificial-intelligence
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technique. An easy-to-use web server has been proposed for encouraging 
further prediction by researchers (Manavalan et al., 2018).

KELM-CPPpred is an advanced tool for the prediction of CPPs 
developed exclusively with hybrid features, which involved 3 
combinations—AAC, DPC, and PseAAC. The kernel extreme 
learning machine (KELM) model outperformed existing predictions, 
such as ANN, SVM, and RF. A 10-fold CV was used for the evaluation 
of the performance. Training datasets achieved ACC, SN, and SP of 
86.21, 82.61, and 89.56%, respectively. Independent datasets achieved 
scores for ACC, SN, and SP of 83.10, 78.72, and 88.05%, respectively. 
A user-friendly server was built for promoting further research 
(Pandey et al., 2018).

A bioinformatics tool with an adaptive feature representation 
called PEPred-Suite was developed with an RF algorithm. Various 
sequence-based descriptors were used to develop different RF-based 
models. The benchmark datasets followed a 10-fold assessment 
technique and performed better with ACC, SN, and SP of 91.20, 90.30, 
and 92.20%, respectively. The independent datasets achieved 95.20% 
accuracy, thus indicating the robust performance of the developed 
model (Wei L. et al., 2019). An SVM algorithm incorporating RFE 
(recursive feature elimination) and CBR (correlation bias reduction) 
was implemented on CPP benchmark datasets from CPP924 with four 
different feature encodings. The algorithm achieved outstanding 
prediction with the CTDC feature technique and the jackknife test 
strategy. The ACC, SN, and SP of the training datasets were 92.3, 91.8, 
and 92.9%, respectively. ACC, SN, and SP of the independent datasets 
were 84.4, 82.3, and 86.5%, respectively (Fu et al., 2019).

G-DipC is a method of improved feature representation that was 
developed using the XGBoost algorithm for shorter sequences. 
Numerous training datasets were evaluated using a 5-fold CV strategy. 
To minimize the cost of computation, linear discrimination analysis 
(LDA) was utilized. This method performed better with dipeptide 
composition, with ACC, SN, and SP of 83.98, 65.28, and 70.67%, 
respectively (Wang et al., 2019). CPPred-FL prospered in predicting 
large-scale identification of CPPs. Nine different feature encodings, such 
as CTD, AAC, PC-PseAAC, SC-PseAAC, GGAP DPC, ASDC, OLP 
(overlapping property features), BIT20 (binary profile algorithm), BIT21 
(position-specific algorithm with PCP), and the N + C terminal 
approach, are utilized to determine CPPs in RF classifiers. A 10-fold 
validation strategy was implemented, which achieved better performance 
with ACC, SN, and SP of 92.10, 92.40, and 91.80% (Qiang et al., 2020).

StackCPPred used a 2-layer strategic approach for CPP prediction 
that employed the training datasets from CPPred-RF (Wei et  al., 
2017b). Of the three different feature encodings implemented with 
the SVM classifier, PseRECM (pseudo residue pairwise energy 
content matrix) achieved better performance in model prediction 
when evaluated using a ten-fold evaluation strategy. The ACC, SN, 
and SP of the predicted SVM-PseRECM model were 94.50, 94.20, and 
94.80% (Fu et  al., 2020). TargetCPP was a model built using a 
gradient-boosted decision trees (GBDT) and four different feature 
algorithms. The mRMR feature selection method was used to 
categorize optimal feature subsets. The leave-one-out CV technique 
was utilized to analyze the performance of training and independent 
datasets. Training datasets achieved ACC, SN, and SP of 93.54, 93.41, 
and 93.68%, whereas independent datasets achieved ACC, SN, and 
SP of 88.45, 67.64, and 94.59%, respectively (Arif et al., 2020).

BChemRF-CPPred (beyond chemical rules-based framework for 
CPP prediction) was an outstanding technique that exploited different 

sequence- and structure-based descriptors with ANN, SVM, and GPC 
to differentiate CPPs and non-CPPs from training and independent 
datasets. The independent datasets achieved a prediction accuracy of 
90.66% with SN and SP of 89.30 and 92%, respectively (de Oliveira 
et al., 2021). A deep-learning interpretable method, ITP-Pred, was 
developed with feature encodings of AAC and PCP. Convolutional 
neural networks (CNNs) and recurrent neural networks (RNNs) are 
types of ANNs, of which long short-term memory (LSTM) is a distinct 
type of RNN. ITP-Pred utilized the CNN-BiLSTM algorithm, which 
is a fusion of CNN and LSTM with the feature descriptors and 
evaluated with a 5-fold strategy. The ACC, SN, and SP of training sets 
were 89, 86.30, and 93.20%, and the validation sets were 95.10, 92.80, 
and 97.80%, respectively (Cai et al., 2021).

The prediction and uptake efficiency strength were simultaneously 
performed with an updated version of MLCPP, a stacking 2-layer 
approach tool called MLCPP 2.0. The best model was selected from 
199 baseline models developed using 7 different ML classifiers (SVM, 
RF, LGBM, gradient boosting, ADA boosting, XGB, and ERT) and 17 
feature encoding algorithms. The thrived ML classifiers were analyzed 
using a ten-fold assessment method that outperformed other methods, 
showing ACC, SN, and SP of 91.30, 88.50, and 94.10% on training 
datasets and 93.40, 84.70, and 94% on independent datasets. To 
estimate the significance of the top 20 features, an ablation study was 
performed. A user-friendly web server was implemented for the 
convenience of researchers (Manavalan and Patra, 2022). DeepCPPred 
is the first deep learning framework with a two-layer approach 
followed by an elastic net (EN) algorithm to select appropriate 
features. Out of the four feature descriptors used, PSSM performed 
better with remarkable accuracy. The CDF algorithm achieved better 
prediction results with the PSSM feature (HOG-PSSM) using a 5-fold 
CV on independent datasets. Layer 1 prediction achieved ACC, SN, 
and SP of 93.04, 99.34, and 86.73%, and layer 2 predictions achieved 
95.43, 95.68, and 95.17%, respectively (Arif et al., 2021).

SiameseCPP is the first tool implemented with a contrastive 
learning approach for developing an automated CPP prediction 
model. Siamese neural network (SNN) classifiers used different 
probabilistic features with a gated recurrent unit (GRU) framework 
on training datasets. This model was superior to the existing baseline 
models with ACC, SN, and SP of 96.17, 95.92, and 96.47% (Zhang 
et al., 2023). With the aim of predicting efficient CPPs, AiCPP was 
established in a sliding window approach. This is a deep-learning 
framework that exploited the LSTM algorithm, which is a specialized 
RNN with the 9-mer approach. AiCPP used many training and test 
datasets. The model demonstrated a better performance with ACC, 
SN, and SP of 86, 82.70, and 89.30% with the test sets (Park et al., 2023).

PractiCPP is exclusively designed for incredibly imbalanced 
datasets. Hard negative sampling and feature extraction with the 
prediction module were the two elements of this method. SF, LSF, 
and PTF were the three unique features utilized for model prediction 
in PractiCPPbase. The imbalanced dataset was kept at a 1:1000 ratio 
for evaluating the performance. A 10-fold CV performance 
evaluation was carried out on balanced datasets from CPP924 
datasets. PractiCPPbase achieved ACC, SN, and SP of 95.65, 94.29, 
and 97.06%. Precision, recall, F1 score, and FP/C (FP per correct) 
for imbalanced datasets were 80.56, 60, 68.64, and 24.14%, 
respectively. An ablation study was performed to analyze the 
influence of feature embeddings like pre-trained features and 
Morgan fingerprints (Shi et al., 2024).

https://doi.org/10.3389/frai.2024.1497307
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LightCPPgen is a recent predictor that utilized the datasets from 
MLCPP  2.0 (Manavalan and Patra, 2022). Various sequence- and 
structure-based features were included from the iFeature Omega and 
RDKit libraries, respectively. Exclusive feature bundling (EFB) and 
gradient-based one-side sampling (GOSS) were the two novel 
strategies that comprised LGBM to enhance efficiency. This technique 
is an integration of ML and GA (genetic algorithms). Global feature 
and local feature attributes were implicated to give a comprehensive 
picture of the impact of features in the model’s prediction. Around 375 
features were scrutinized after the MDI approach (mean decrease in 
impurity). A 10-fold CV assessment was performed on independent 
datasets that achieved ACC, SN, and SP of 96.20, 69, and 98.10%, 
respectively (Maroni et al., 2024).

5 Analysis of the performance of 
existing tools for CPP prediction

Training datasets serve as the basis for the model for recognizing 
patterns and correlations within the incoming data. They are used for 

internal evaluation of the developed model. Independent datasets aid 
in predicting the robustness of the model. They are crucial for 
assessing the model’s efficacy and confirming its real-world 
applicability. Figure 2 depicts the CPP prediction framework via a 
flowchart of efficient prediction methods in chronological order. MCC 
and AUC are the assessment metrics crucial for determining the 
efficiency of prediction, particularly in classification tasks of machine 
learning. If the MCC and AUC values are closer to 1, the developed 
ML method achieved robust performance in prediction (Basith 
et al., 2020).

5.1 Comparison of the size of datasets

The size of training and independent datasets for all the 
prediction methods is represented in Figure  3. CPPs (+ve) and 
non-CPPs (−ve) were balanced to reduce the overfitting of the 
model in the majority of the prediction methods. Dobchev utilized 
the minimum number of training and independent datasets, which 
contain 59 (49/10) and 25 (23/2) sequences retrieved from available 

FIGURE 2

Depiction of existing framework in CPP prediction methods. It represents some of the best predictors on training and independent datasets with 
feature encodings (AAC, PCP, DPC, CKSAAGP, QSO, etc.) selected for prediction. Different ML classifiers SVM, RF, LGBM, GB, SNN, PractiCPP, and CNN-
BiLSTM achieved higher accuracy around 93–97%. The CV technique was utilized for model evaluation. CKSAAGP, composition of k-spaced amino 
acid group pairs; QSO, quasi sequence order; CV, cross-validation; AAC, amino acid composition; DPC, dipeptide composition; BPP, binary profiles of 
pattern; PCP, physicochemical properties; SF, sequential features; LSF, local structure features; PTF, pretrained features; GB, gradient boosting; LGBM, 
light gradient boosting machine; SVM, support vector machine; SNN, siamese neural network; RF, random forest; CNN-BiLSTM, convolutional neural 
network-bidirectional long short-term memory.
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literature, respectively (Dobchev et al., 2010). Sanders utilized 145 
(111/34) training datasets, which were unbalanced (Sanders et al., 
2011). This dataset was utilized for training the model in Chen et al.’s 
prediction and testing the prediction in TargetCPP (Chen et al., 
2015; Arif et al., 2020). CPPpred used an unbalanced training set 
(74/100) and a balanced test set (47/47) for model generation 
(Holton et  al., 2013). CellPPD used 198 (99/99) sequences as a 
validation set (Gautam et al., 2013). MLCPP utilized 854 (427/427) 
sequences as a training set and 622 (311/311) sequences as a 
validation set (Manavalan et al., 2018). KELM-CPPpred utilized 816 
(408/408) sequences as a training dataset (Pandey et al., 2018). Fu 
et  al.’s predictor and KELM-CPPpred utilized a balanced 
independent dataset (96/96) for evaluation (Pandey et al., 2018; Fu 
et  al., 2019). PEPred-Suite and ITP-Pred utilized 740 peptides 
(370/370) for training and 184 peptides (92/92) for validating the 
prediction (Wei L. et al., 2019; Cai et al., 2021). BChemRF-CPPred 
used 600 sequences (300/300) for training and 150 sequences 
(75/75) for testing the prediction (de Oliveira et  al., 2021). 
CPPred-RF (Wei et al., 2017b), SkipCPP-Pred (Wei et al., 2017a), 
CPPred-FL (Qiang et  al., 2020), StackCPPred (Fu et  al., 2020), 
TargetCPP (Arif et al., 2020), MLCPP 2.0 (Manavalan and Patra, 
2022), DeepCPPred (Arif et al., 2021), Fu et al.’s predictor (Fu et al., 
2019), SiameseCPP (Zhang et al., 2023), and PractiCPP (Shi et al., 
2024) are the ten predictors that retrieved the datasets from CPP924 
(Wei et al., 2017b). CellPPD (Gautam et al., 2013), CPPred (Holton 
et al., 2013), CellPPD-Mod (Kumar et al., 2018), MLCPP (Manavalan 
et al., 2018), KELM-CPPpred (Pandey et al., 2018), PEPred-Suite 
(Wei L. et al., 2019), Fu et al.’s predictor (Fu et al., 2019), BChemRF-
CPPred (de Oliveira et al., 2021), and ITP-Pred (Cai et al., 2021) are 
the nine predictors where both training and independent datasets 
are balanced. C2Pred used 822 (411/411) sequences as a training set 
(Tang et  al., 2016). CellPPD-Mod and AiCPP utilized the same 
number of balanced independent datasets (150/150) (Kumar et al., 
2018; Park et al., 2023). DCF (Diener et al., 2016) used 2,534 (1,265 

CPPs and 1,265 non-CPPs), the maximum number of training 
datasets, followed by G-DipC (Wang et al., 2019), AiCPP (Park et al., 
2023), CellPPD (Gautam et al., 2013), and CellPPD-Mod (Kumar 
et  al., 2018) with training datasets of 2,446 (1,223/1223), 2,346 
(249/1097), 1,416 (708/708), and 1,164 (582/582). AiCPP utilized a 
comparatively larger, unbalanced training dataset among all 26 
predictors (Park et al., 2023). MLCPP 2.0 used 1,146 (573/573) and 
2,341 (157/2184) balanced training and unbalanced independent 
datasets for model prediction, respectively (Manavalan and Patra, 
2022). LightCPPgen retrieved the datasets from MLCPP 2.0 (layer-1) 
for prediction and validation (Maroni et al., 2024). PractiCPP was 
exclusively developed for imbalanced datasets. This method involved 
the balanced datasets from CPP924 (462/462) for reasonable 
comparison with existing predictors. A 1:1000 ratio of the 
imbalanced dataset (649/649000) was included for prediction, which 
performed well with good precision and specificity. This is 
considered the largest among all the datasets (Shi et  al., 2024). 
Sanders et al.’s predictor (Sanders et al., 2011), Chen et al.’s predictor 
(Chen et al., 2015), DCF (Diener et al., 2016), C2Pred (Tang et al., 
2016), SkipCPP-Pred (Wei et al., 2017a), CPPred-RF (Wei et al., 
2017b), CPPred-FL (Qiang et al., 2020), G-DipC (Wang et al., 2019), 
StackCPPred (Fu et al., 2020), DeepCPPpred (Arif et al., 2021), and 
SiameseCPP (Zhang et al., 2023) are the eleven predictors that did 
not include an independent dataset for external validation. Five 
predictors followed a 2-layer prediction framework in which 
CPPred-RF (Wei et al., 2017b), MLCPP (Manavalan et al., 2018), 
StackCPPred (Fu et al., 2020), and DeepCPPred (Arif et al., 2021) 
utilized a balanced dataset (187/187) for the estimation of uptake 
efficiency retrieved from CPPsite3 (Wei et al., 2017b). MLCPP 2.0 
(Manavalan and Patra, 2022) utilized 46 high-uptake and 16 
low-uptake CPPs from the MLCPP dataset and CPPsite 2.0 
(Manavalan et al., 2018). CPPsite 2.0 is a database with around 1855 
experimentally validated peptide entries from which CPPs can 
be retrieved and utilized for research (Agrawal et al., 2016).

FIGURE 3

Comparison of size of training and independent datasets used on state-of-the-art methods for CPP prediction.
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5.2 Evaluation of the performance of 
training datasets

The experimental and statistical results of existing prediction 
methods on training datasets are presented in Table  2. Fifteen 
predictors achieved an accuracy (ACC) range of 90 to 97%. Nine 
predictors achieved an ACC range of 77 to 89%. DCF, Dochev’s 
predictor, and CPPred reported only ACC, while other assessment 
metrics SN, SP, MCC, and AUC with training datasets were not 
indicated properly (Diener et al., 2016; Dobchev et al., 2010; Holton 
et al., 2013). The statistical results of the training set were not reported 
in AiCPP and LightCPPgen (Park et al., 2023; Maroni et al., 2024). 
The MCC value of four predictors, CellPPD (Gautam et al., 2013), 
SiameseCPP (Zhang et al., 2023), PractiCPP (Shi et al., 2024), and 
CellPPD-Mod (Kumar et al., 2018), is above 0.9, indicating perfect 
prediction. Nine predictors achieved an MCC range between 0.81 and 
0.89, indicating better prediction. Four predictors achieved an average 
MCC range between 0.71 and 0.78, indicating moderate prediction. 
Chen et al.’s predictor obtained an MCC of 0.486, which achieved 
poor prediction performance (Chen et al., 2015). C2Pred and Sanders 
et al.’s predictor estimated only three statistical metrics: ACC, SN, and 
SP (Tang et al., 2016; Sanders et al., 2011). Eleven predictors estimated 
the AUC range around 0.92 to 0.99, indicating a perfect classifier in 

prediction. The AUC is one of the important evaluation metrics that 
was not reported in thirteen predictors, namely, SiameseCPP (Zhang 
et al., 2023), PractiCPP (Shi et  al., 2024), StackCPPred (Fu et al., 
2020), TargetCPP (Arif et al., 2020), Sanders et al.’s predictor (Sanders 
et al., 2011), SkipCPP-Pred (Wei et al., 2017a), DCF (Diener et al., 
2016), BChemRF-CPPred (de Oliveira et al., 2021), G-DipC (Wang 
et al., 2019), C2Pred (Tang et al., 2016), Chen et al.’s predictor (Chen 
et al., 2015), Dobchev et al.’s predictor (Dobchev et al., 2010), and 
CPPpred (Holton et  al., 2013). CellPPD (Gautam et  al., 2013), 
CellPPD-Mod (Kumar et al., 2018), and DeepCPPred (Arif et al., 
2021) achieved the maximum AUC of 0.99 from the ROC curve, 
indicating remarkable predictivity. Fourteen predictors reported a 
higher precision (SN) range between 90 and 98%. Five predictors 
estimated a moderate SN range between 81 and 89%. G-DipC 
reported the lowest SN of 65.28%, which is the least preferred method 
for prediction (Wang et al., 2019). Thirteen predictors recorded higher 
recall (SP) ranges between 91 and 97%. Four predictors estimated the 
average SP range between 84 and 90%. G-DipC estimated moderate 
SP of 70.67% (Wang et al., 2019). Chen et al.’s predictor estimated a 
poor SP of 44.10%, whereas the SN is higher at 95.50% (Chen et al., 
2015). Sensitivity and specificity were not reported in DCF (Diener 
et al., 2016), BChemRF-CPPred (de Oliveira et al., 2021), Dobchev 
et al.’s predictor (Dobchev et al., 2010), and CPPpred (Holton et al., 

TABLE 2 Comparison of available prediction methods on training datasets evaluated with the cross-validation technique.

S No Predictors ACC (%) SN (%) SP (%) MCC AUC References

1 CellPPD 97.40 98.15 96.58 0.950 0.990 Gautam et al. (2013)

2 SiameseCPP 96.17 95.92 96.47 0.923 NR Zhang et al. (2023)

3 PractiCPP 95.65 94.29 97.06 0.913 NR Shi et al. (2024)

4 CellPPD-Mod 95.10 95.19 95.02 0.900 0.990 Kumar et al. (2018)

5 StackCPPred 94.50 94.20 94.80 0.890 NR Fu et al. (2020)

6 TargetCPP 93.54 93.41 93.68 0.871 NR Arif et al. (2020)

7 DeepCPPred 93.04 99.34 86.73 0.878 0.993 Arif et al. (2021)

8 Fu et al. 92.30 91.80 92.90 0.846 0.957 Fu et al. (2019)

9 CPPred-FL 92.10 92.40 91.80 0.842 0.976 Qiang et al. (2020)

10 Sanders et al. 91.72 91.70 12.70 NR NR Sanders et al. (2011)

11 CPPred-RF 91.60 90.50 92.60 0.831 0.972 Wei et al. (2017b)

12 MLCPP 2.0 91.30 88.50 94.10 0.827 0.949 Manavalan and Patra (2022)

13 PEPred-Suite 91.20 90.30 92.20 0.824 0.972 Wei L. et al. (2019)

14 SkipCPP-Pred 90.60 88.50 92.60 0.812 NR Wei et al. (2017a)

15 DCF 90.00 NR NR NR NR Diener et al. (2016)

16 ITP-Pred 89.00 86.30 93.20 0.787 0.962 Cai et al. (2021)

17 MLCPP 88.30 91.90 84.50 0.768 0.938 Manavalan et al. (2018)

18 BChemRF-CPPred 87.60 NR NR NR NR de Oliveira et al. (2021)

19 KELM-CPPpred 86.21 82.61 89.56 0.730 0.920 Pandey et al. (2018)

20 G-DipC 83.98 65.28 70.67 0.712 NR Wang et al. (2019)

21 C2Pred 83.60 81.50 85.60 NR NR Tang et al. (2016)

22 Chen et al. 83.40 95.50 44.10 0.486 NR Chen et al. (2015)

23 Dobchev et al. 83.10 NR NR NR NR Dobchev et al. (2010)

24 CPPpred 77.60 NR NR NR NR Holton et al. (2013)

NR, not reported; ACC, accuracy; SN, sensitivity; SP, specificity; MCC, Matthews correlation coefficient; AUC, area under the curve.
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2013). Hence, random accuracy was obtained, and effectiveness was 
not defined in these predictors.

CellPPD achieved the best results in prediction with 97.40% ACC 
and 0.950 MCC (Gautam et al., 2013). The sensitivity (SN) is 1.19% 
lower than DeepCPPred, which achieved the best precision of 99.34% 
(Arif et al., 2021). However, the SN is 2.23, 2.65, and 2.96% higher 
than SiameseCPP (Zhang et al., 2023), Chen et al.’s predictor (Chen 
et al., 2015), and CellPPD-Mod (Kumar et al., 2018). The specificity 
(SP) is 0.48% lower than PractiCPP, which achieved the best recall 
score of 97.06% among all the predictors (Shi et al., 2024). However, 
the SP is 0.11, 1.56, and 1.78% higher than SiameseCPP (Zhang et al., 
2023), CellPPD-Mod (Kumar et  al., 2018), and StackCPPred (Fu 
et al., 2020). SiameseCPP is the second-best predictor, with 96.17% 
ACC and 0.923 MCC (Zhang et al., 2023). PractiCPP is the third-best 
predictor with 95.65% ACC and 0.913 MCC (Shi et  al., 2024). 
CellPPD-Mod follows PractiCPP with 95.10% ACC and 0.90 MCC 
(Kumar et al., 2018). StackCPPred achieved better prediction, the 5th 
best, with ACC and MCC of 94.50% and 0.890, respectively (Fu et al., 
2020). TargetCPP achieved 93.54% ACC and 0.871 MCC, the 6th best 
in predicting efficient CPPs (Arif et  al., 2020). MCC values of 
DeepCPPred (Arif et al., 2021), Fu et al.’s predictor (Fu et al., 2019), 
CPPred-FL (Qiang et  al., 2020), CPPred-RF (Wei et  al., 2017b), 
MLCPP 2.0 (Manavalan and Patra, 2022), PEPred-Suite (Wei L. et al., 
2019), and SkipCPP-Pred (Wei et al., 2017a) were 0.878, 0.846, 0.842, 
0.831, 0.827, 0.824, and 0.812. These predictors achieved better 
efficiency in predicting CPPs. ITP-Pred (Cai et al., 2021), MLCPP 
(Manavalan et  al., 2018), KELM-CPPpred (Pandey et  al., 2018), 
AiCPP (Park et al., 2023), and G-DipC (Wang et al., 2019) achieved 
moderate performance. A pictorial representation of different 
evaluation metrics for the available CPP prediction methods CellPPD 
(Gautam et al., 2013), SiameseCPP (Zhang et al., 2023), PractiCPP 
(Shi et al., 2024), CellPPD-Mod (Kumar et al., 2018), StackCPPred 
(Fu et al., 2020), TargetCPP (Arif et al., 2020), DeepCPPred (Arif 
et al., 2021), Fu et al.’s predictor (Fu et al., 2019), CPPred-FL (Qiang 

et al., 2020), Sanders et al.’s predictor (Sanders et al., 2011), CPPred-RF 
(Wei et al., 2017b), MLCPP 2.0 (Manavalan and Patra, 2022), PEPred-
Suite (Wei L. et al., 2019), and SkipCPP-Pred (Wei et al., 2017a), DCF 
(Diener et al., 2016), ITP-Pred (Cai et al., 2021), MLCPP (Manavalan 
et al., 2018), BChemRF-CPPred (de Oliveira et al., 2021), KELM-
CPPpred (Pandey et al., 2018), G-DipC (Wang et al., 2019), C2Pred 
(Tang et al., 2016), Chen et al.’s predictor (Chen et al., 2015), Dobchev 
et al.’s predictor (Dobchev et al., 2010), and CPPpred (Holton et al., 
2013) on training datasets are depicted in Figure 4. AUC values of 
CPPred-RF (Qiang et al., 2020), MLCPP (Manavalan et al., 2018), 
KELM-CPPpred (Pandey et  al., 2018), CPPred-FL (Qiang et  al., 
2020), PEPred-Suite (Wei L. et al., 2019), ITP-Pred (Cai et al., 2021), 
MLCPP 2.0 (Manavalan and Patra, 2022), DeepCPPred (Arif et al., 
2021), Fu et al.’s predictor (Fu et al., 2019), and AiCPP (Park et al., 
2023) were 0.972, 0.938, 0.920, 0.976, 0.972, 0.962, 0.949, 0.993, 0.957, 
and 0.927, indicating robustness of the prediction. SVM (Kumar 
et al., 2018), SNN (Zhang et al., 2023), and RF (Kumar et al., 2018) 
are some ML algorithms implemented by the predictors that 
accomplished the best performance on training datasets in 
determining efficient CPPs. In PractiCPP, the hard negative sampling 
contributed to the better classification of CPP in the imbalanced 
dataset, which performed greater than the variant PractiCPPbase (Shi 
et al., 2024).

5.3 Evaluation of the performance of 
independent datasets

Overfitting of the predictive model may occur while striving to 
achieve the maximum MCC or accuracy during training. An 
independent review of the established model is a prerequisite for 
mitigating such presumptions. Table 3 elucidated the comparison of 
existing prediction methods on independent datasets. 15 out of 26 
predictors calculated the effectiveness of predictions using test 

FIGURE 4

Comparison results of existing CPP prediction methods on training datasets. Accuracy (ACC), sensitivity (SN), specificity (SP), and Matthews correlation 
coefficient (MCC).
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datasets. Six predictors, LightCPPgen (Maroni et al., 2024), ITP-Pred 
(Cai et  al., 2021), MLCPP  2.0 (Manavalan and Patra, 2022), 
CellPPD-Mod (Kumar et  al., 2018), Dobchev et  al.’s predictor 
(Dobchev et al., 2010), and BChemRF-CPPred (de Oliveira et al., 
2021), accomplished a higher ACC range between 90 and 96%. Seven 
predictors, MLCPP (Manavalan et al., 2018), TargetCPP (Arif et al., 
2020), AiCPP (Park et al., 2023), Fu et al.’s predictor (Fu et al., 2019), 
KELM-CPPpred (Pandey et al., 2018), CPPred (Holton et al., 2013), 
and CellPPD (Gautam et al., 2013), indicated an average ACC range 
between 81 and 89%. ITP-Pred is the only predictor with a remarkable 
MCC value, indicating perfect prediction suitable for real-world 
application (Cai et al., 2021). CellPPD-Mod (Kumar et al., 2018) and 
BChemRF-CPPred (de Oliveira et  al., 2021) achieved an average 
MCC value above 0.80. MLCPP and AiCPP indicated a moderate 
MCC value above 0.70 (Manavalan et al., 2018; Park et al., 2023). Six 
predictors, LightCPPgen (Maroni et  al., 2024), MLCPP  2.0 
(Manavalan and Patra, 2022), TargetCPP (Arif et al., 2020), Fu et al.’s 
predictor (Fu et al., 2019), KELM-CPPpred (Pandey et al., 2018), and 
CellPPD (Gautam et  al., 2013), scored a moderate MCC value 
between 0.62 and 0.69. The MCC value was not reported in four 
predictors: Dobchev et al.’s predictor (Dobchev et al., 2010), CPPred 
(Holton et  al., 2013), PEPred-Suite (Wei L. et  al., 2019), and 
PractiCPP (Shi et al., 2024). Nine predictors estimated the AUC range 
around 0.91 to 0.99, indicating a perfect classifier in the validation of 
test datasets. F1 score was one of the evaluation metrics reported in 
PractiCPP with 0.686 indicating an average efficiency in CPP 
determination. However, PractiCPP reported a moderate AUC of 
0.64, indicating mediocre discrimination ability (Shi et al., 2024). 
Eleven predictors reported SN and SP in external validation. Three 
predictors, MLCPP (Manavalan et al., 2018), ITP-Pred (Cai et al., 
2021), and CellPPD-Mod (Kumar et al., 2018), estimated higher SN 
of above 90%. Five predictors, MLCPP 2.0 (Manavalan and Patra, 
2022), BChemRF-CPPred (de Oliveira et al., 2021), AiCPP (Park 
et al., 2023), Fu et al.’s predictor (Fu et al., 2019), and PractiCPP (Shi 

et al., 2024), recorded an average SN range between 80 and 89%. 
Three predictors, LightCPPgen (Maroni et al., 2024), TargetCPP (Arif 
et al., 2020), and KELM-CPPpred (Pandey et al., 2018), reported a 
moderate SN of below 80%. Six predictors, LightCPPgen (Maroni 
et al., 2024), ITP-Pred (Cai et al., 2021), MLCPP 2.0 (Manavalan and 
Patra, 2022), CellPPD-Mod (Kumar et al., 2018), BChemRF-CPPred 
(de Oliveira et al., 2021), and TargetCPP (Arif et al., 2020), attained 
an outstanding SP range between 92 and 98%. Four predictors, 
MLCPP (Manavalan et al., 2018), AiCPP (Park et al., 2023), Fu et al.’s 
predictor (Fu et al., 2019), and KELM-CPPpred (Pandey et al., 2018), 
recorded an average SP range of above 80%. PractiCPP achieved a 
lower SP of 60% in the estimation of effective CPPs (Shi et al., 2024). 
Four predictors—Dobchev et al.’s predictor (Dobchev et al., 2010), 
CPPred (Holton et al., 2013), CellPPD (Gautam et al., 2013), and 
PEPred-Suite (Wei L. et al., 2019)—have not reported precision (SN) 
and recall (SP), which are the important statistical metrics for 
CPP discrimination.

LightCPPgen accomplished a remarkable ACC of 96.20% and 
an AUC of 0.93. MCC of 0.687 indicated moderate predictive 
ability (Maroni et al., 2024). The SN is only 69%, which is 24.3, 
23.8, 22.3, 20.3, and 15.7% lower than MLCPP (Manavalan et al., 
2018), ITP-Pred (Cai et al., 2021), CellPPD-Mod (Kumar et al., 
2018), BChemRF-CPPred (de Oliveira et al., 2021), and MLCPP 2.0 
(Manavalan and Patra, 2022). The SP is 98.10%, which is 0.30, 3.51, 
4.10, and 4.77% higher than ITP-Pred (Cai et al., 2021), TargetCPP 
(Arif et al., 2020), MLCPP 2.0 (Manavalan and Patra, 2022), and 
CellPPD-Mod (Kumar et al., 2018), indicating its precise prediction 
of negative cases. ITP-Pred achieved outstanding predictive ability 
with ACC, MCC, and AUC of 95.10%, 0.904, and 0.989 (Cai et al., 
2021). MLCPP 2.0 achieved better predictive ability with ACC, 
MCC, and AUC of 93.40%, 0.624, and 0.928 (Manavalan and Patra, 
2022). CellPPD-Mod is the fourth among the top predictors that 
achieved a good performance with ACC, MCC, and AUC of 
92.33%, 0.850, and 0.98 (Kumar et al., 2018). BChemRF-CPPred 

TABLE 3 Comparison of available prediction methods on independent datasets evaluated with the CV strategy.

S no Predictors ACC (%) SN (%) SP (%) MCC AUC References

1 LightCPPgen 96.20 69.00 98.10 0.687 0.930 Maroni et al. (2024)

2 ITP-Pred 95.10 92.80 97.80 0.904 0.989 Cai et al. (2021)

3 MLCPP 2.0 93.40 84.70 94.00 0.624 0.928 Manavalan and Patra (2022)

4 CellPPD-Mod 92.33 91.33 93.33 0.850 0.980 Kumar et al. (2018)

5 Dobchev et al. 92.00 NR NR NR NR Dobchev et al. (2010)

6 BChemRF-CPPred 90.66 89.30 92.00 0.813 0.953 de Oliveira et al. (2021)

7 MLCPP 89.60 93.30 85.80 0.793 0.959 Manavalan et al. (2018)

8 TargetCPP 88.45 67.64 94.59 0.675 NR Arif et al. (2020)

9 AiCPP 86.00 82.70 89.30 0.722 0.927 Park et al. (2023)

10 Fu et al. 84.38 82.29 86.46 0.688 NR Fu et al. (2019)

11 KELM-CPPpred 83.10 78.72 88.05 0.670 0.910 Pandey et al. (2018)

12 CPPred 82.98 NR NR NR NR Holton et al. (2013)

13 CellPPD 81.30 NR NR 0.630 NR Gautam et al. (2013)

14 PEPred-Suite NR NR NR NR 0.952 Wei L. et al. (2019)

15 PractiCPP NR 80.56 60.00 NR 0.640 Shi et al. (2024)

NR, not reported; ACC, accuracy; SN, sensitivity; SP, specificity; MCC, Matthews correlation coefficient; AUC, area under the curve.
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achieved ACC, MCC, and AUC of 90.66%, 0.813, and 0.953 (de 
Oliveira et al., 2021). MCC values of MLCPP (Manavalan et al., 
2018), TargetCPP (Arif et al., 2020), AiCPP (Park et al., 2023), Fu 
et al.’s predictor (Fu et al., 2019), KELM-CPPpred (Pandey et al., 
2018), and CellPPD (Gautam et al., 2013) were 0.793, 0.675, 0.722, 
0.688, 0.670, and 0.630. AUC values of MLCPP (Manavalan et al., 
2018), KELM-CPPpred (Pandey et al., 2018), PEPred-Suite (Wei 
L. et al., 2019), and AiCPP (Park et al., 2023) were 0.959, 0.910, 
0.952, and 0.927, indicating the robustness of the predicted model. 
Predictors with MCC < 0.70 can be  improved by varying the 
hyperparameters to achieve better predictive ability. The top 
predictors utilized ML algorithms like LGBM (Maroni et al., 2024), 
RF (Kumar et al., 2018), GB (Manavalan and Patra, 2022), and 
CNN-BiLSTM (Cai et  al., 2021) that achieved remarkable 
predictions with independent datasets. A pictorial representation 
of different evaluation metrics for the available CPP prediction 
methods—LightCPPgen (Maroni et al., 2024), ITP-Pred (Cai et al., 
2021), MLCPP 2.0 (Manavalan and Patra, 2022), CellPPD-Mod 
(Kumar et al., 2018), Dobchev et al.’s predictor (Dobchev et al., 
2010), BChemRF-CPPred (de Oliveira et  al., 2021), MLCPP 
(Manavalan et  al., 2018), TargetCPP (Arif et  al., 2020), AiCPP 
(Park et al., 2023), Fu et al.’s predictor (Fu et al., 2019), KELM-
CPPpred (Pandey et  al., 2018), CPPpred (Holton et  al., 2013), 
CellPPD (Gautam et al., 2013), and PractiCPP (Shi et al., 2024) on 
independent datasets are depicted in Figure  5. The top three 
prediction methods on training and independent datasets for 
effective CPP prediction are elucidated in Table 4 to give a deeper 
understanding of suitable predictors.

5.4 Comparison of 2-layer framework 
prediction methods

A two-layer prediction framework was first implemented 
in CPPred-RF to determine CPPs and their uptake efficiency 

(Wei et al., 2017b). Table 5 highlights the comparison of statistical 
results of five different predictors that followed a two-layer 
approach. CPPred-RF (Wei et al., 2017b), MLCPP (Manavalan 
et  al., 2018), StackCPPred (Fu et  al., 2020), MLCPP  2.0 
(Manavalan and Patra, 2022), and DeepCPPred (Arif et al., 2021) 
followed this strategy. In Layer 1 prediction, StackCPPred 
achieved outstanding performance in determining CPPs 
with ACC and MCC of 94.50% and 0.890, respectively (Fu et al., 
2020). The SN of StackCPPred is 94.20%, which is 2.30, 3.70, 
and 5.70% higher than MLCPP (Manavalan et  al., 2018), 
CPPred-RF (Wei et al., 2017b), and MLCPP 2.0 (Manavalan and 
Patra, 2022), but 5.14% lower than DeepCPPred, which 
achieved a higher sensitivity of 99.34% (Arif et  al., 2021). 
The SP of StackCPPred is 94.80%, which is 0.70, 2.2, 8.07, and 
10.30% higher than MLCPP 2.0 (Manavalan and Patra, 2022), 
CPPred-RF (Wei et al., 2017b), DeepCPPred (Arif et al., 2021), 
and MLCPP (Manavalan et  al., 2018). The AUC was not 
reported in StackCPPred. DeepCPPred achieved good results 
with ACC, MCC, and AUC of 93.04%, 0.878, and 0.993 (Arif 
et  al., 2021). CPPred-RF obtained better prediction in 
finding CPPs with ACC and MCC of 91.60% and 0.831, 
respectively (Wei et al., 2017b). MLCPP 2.0 obtained MCC and 
AUC of 0.827 and 0.949, respectively (Manavalan and Patra, 
2022). MLCPP obtained MCC and AUC of 0.768 and 0.938, 
respectively, indicating the random performance of the model 
(Manavalan et al., 2018).

In layer 2 prediction, DeepCPPred achieved the highest 
accuracy in evaluating the uptake efficiency of CPPs. It achieved 
ACC, MCC, and AUC of 95.43%, 0.910, and 0.984, indicating 
outstanding performance (Arif et al., 2021). It accomplished a 
remarkable SN of 95.68%, which is 16.58, 19.28, 23.48, and 
23.98% higher than StackCPPred (Fu et al., 2020), MLCPP 2.0 
(Manavalan and Patra, 2022), CPPred-RF (Wei et al., 2017b), and 
MLCPP (Manavalan et  al., 2018). The SP of DeepCPPred is 
95.17%, which is 17.67, 18.07, 21.87, and 25.07% higher than 

FIGURE 5

Comparison results of existing CPP prediction methods on independent datasets. Accuracy (ACC), sensitivity (SN), specificity (SP), and Matthews 
correlation coefficient (MCC).
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StackCPPred (Fu et al., 2020), MLCPP 2.0 (Manavalan and Patra, 
2022), MLCPP (Manavalan et al., 2018), and CPPred-RF (Wei 
et  al., 2017b). StackCPPred (Fu et  al., 2020) and MLCPP  2.0 
(Manavalan and Patra, 2022) achieved moderate performance 
with ACC of 78.30% and 76.80%, respectively. The MCC value is 
around 0.5, which indicates random performance of the model. 
MLCPP (Manavalan et  al., 2018) and CPPred-RF (Wei et  al., 
2017b) achieved average performance with ACC, SN, and SP 
compared to other predictors in determining the uptake 
efficiency. The AUC was not reported in CPPred-RF. The MCC 
value is comparatively lower for MLCPP (0.445) and CPPred-RF 
(0.423), indicating the least preference of the predictors for 
finding the uptake efficiency (Manavalan et al., 2018; Wei et al., 
2017b). Hyperparameter optimization should be carried out to 
improve their effectiveness in prediction. Overall, DeepCPPred is 
appropriate for a 2-layer prediction framework since it achieved 
exceptional results in all evaluation metrics.

6 Common limitations of the CPP 
prediction methods

Despite significant advancements in forecasting CPPs, various fields 
remain to be explored. The limited length of CPPs hinders the extraction 
of contextually disguised information that elucidates their intrinsic 
properties. The exploration of limited feature representation is a vital 
factor, and integration of many variables from different domains was 
conducted to incorporate essential probabilistic information for 
prediction. This may result in several issues, including the time required 
to create predictive models and the curse of dimensionality in 
predictions (Fu et al., 2020). CPPred-FL processed this by employing 
mRMR to reduce the dimensionality of the feature space (Wei et al., 
2017b). Of the 26 predictors examined in this study, 21 can distinguish 
actual CPPs from non-CPPs. The prospective therapeutic use of CPPs is 
intricately linked to their absorption efficiency. Prediction of the uptake 
efficiency involves only 5 predictors. It is essential to anticipate more 

TABLE 4 Top 3 CPP prediction methods on training and independent datasets.

S No Predictors 
(training 
datasets)

ACC (%) SN (%) SP (%) MCC AUC References

1 CellPPD 97.40 98.15 96.58 0.950 0.990 Gautam et al. (2013)

2 SiameseCPP 96.17 95.92 96.47 0.923 NR Zhang et al. (2023)

3 PractiCPP 95.65 94.29 97.06 0.913 NR Shi et al. (2024)

S No Predictors 
(independent 
datasets)

ACC (%) SN (%) SP (%) MCC AUC References

1 LightCPPgen 96.20 69.00 98.10 0.687 0.930 Maroni et al. (2024)

2 ITP-Pred 95.10 92.80 97.80 0.904 0.989 Cai et al. (2021)

3 MLCPP 2.0 93.40 84.70 64.00 0.624 0.928 Manavalan and Patra (2022)

NR, not reported; ACC, accuracy; SN, sensitivity; SP, specificity; MCC, Matthews correlation coefficient; AUC, area under the curve.

TABLE 5 Comparison of two-layer prediction methods for cell-penetrating peptides.

S No Predictors (layer 1) ACC (%) SN (%) SP (%) MCC AUC References

1 StackCPPred 94.50 94.20 94.80 0.890 NR Fu et al. (2020)

2 DeepCPPred 93.04 99.34 86.73 0.878 0.993 Arif et al. (2021)

3 CPPred-RF 91.60 90.50 92.60 0.831 0.972 Wei et al. (2017b)

4 MLCPP 2.0 91.30 88.50 94.10 0.827 0.949 Manavalan and Patra 

(2022)

5 MLCPP 88.30 91.90 84.50 0.768 0.938 Manavalan et al. (2018)

S No Predictors (layer 2) ACC (%) SN (%) SP (%) MCC AUC References

1 DeepCPPred 95.43 95.68 95.17 0.910 0.984 Arif et al. (2021)

2 StackCPPred 78.30 79.10 77.50 0.567 0.802 Fu et al. (2020)

3 MLCPP 2.0 76.80 76.40 77.10 0.536 0.824 Manavalan and Patra 

(2022)

4 MLCPP 72.50 71.70 73.30 0.445 0.764 Manavalan et al. (2018)

5 CPPred-RF 71.10 72.20 70.10 0.423 NR Wei et al. (2017b)

NR, not reported; ACC, accuracy; SN, sensitivity; SP, specificity; MCC, Matthews correlation coefficient; AUC, area under the curve.
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prediction methods for determining absorption efficiency to uncover 
the significant potential of CPPs in future therapeutic applications. 
Three predictors, namely, DeepCPPred, AiCPP, and PractiCPP, utilized 
the deep-learning technique to make predictions (Arif et al., 2021; Park 
et al., 2023; Shi et al., 2024). Therefore, the efficacy of CPP utilizing deep-
learning methodologies needs more examination. A prevalent drawback 
is the overfitting of training data, resulting in bias during model building, 
which poses a significant problem in the absence of a test dataset for 
external evaluation. Concerning the reliability of machine learning 
findings, reiterating the evaluation metrics is challenging unless the 
machine learning conditions and appropriate source codes for feature 
encodings are well characterized. Therefore, it is essential to supply 
source codes and data sets for the built methods, facilitating the 
advancement of next-generation tools (Basith et al., 2020).

7 Discussion

From the comparative analysis, CellPPD achieved exceptional 
performance with good precision on training datasets, while CPPred 
achieved a moderate accuracy in prediction. In CellPPD, the binary 
pattern profile feature played a significant role in the excellent predictive 
ability with the SVM algorithm (Gautam et al., 2013). A crystal-clear 
web tool was created for biological aspirants to carry out research in 
designing effective CPPs. LightCPPgen was able to achieve the highest 
performance on independent datasets with remarkable accuracy and 
sensitivity (Maroni et al., 2024). However, MLCPP performed better 
with the highest precision (Manavalan et al., 2018). In ITP-Pred, AAC 
and PCP were the feature descriptors that contributed to the robustness 
of the model generated with the CNN-BiLSTM algorithm that achieved 
the highest MCC and AUC (Cai et  al., 2021). StackCPPred and 
DeepCPPred demonstrated high precision in Layer 2 prediction (Fu 
et al., 2020; Arif et al., 2021). This helped in determining effective CPPs 
with better uptake efficiency from large-scale datasets. The HOG-PSSM 
feature contributed to the robust performance of DeepCPPred (Arif 
et  al., 2021). The development of more refined target-specific drug 
delivery systems employing CPPs with fewer adverse effects must 
be  investigated to address issues that prevent their practical utility. 
PractiCPP is one of the several deep learning frameworks that offered a 
promising solution to address the challenges posed by imbalanced 
binary classification in CPP prediction. The model’s propensity to handle 
imbalanced data and its state-of-the-art performance on balanced and 
imbalanced datasets denote its capacity for practical deployment in drug 
delivery research and development (Shi et al., 2024). In addition, it 
compels the model to focus on challenging negative samples, refining its 
decision boundaries, and augmenting its overall performance. By 
adapting the framework of PractiCPP, we may be able to evolve novel 
strategies to overcome challenges in various prediction methods in 
computational biology. In conclusion, we anticipate that no single model 
consistently surpasses all others in every assessment parameter.

8 Conclusion and future prospects

We have reviewed 26 prediction methods using ML algorithms and 
deep-learning techniques regarding statistical metrics, feature 
encodings, and dataset size. Furthermore, we  have discussed their 
importance in therapeutics and their limitations. ML predictions must 

be  validated experimentally. A thorough understanding of the 
biological processes behind CPPs helps the researchers find out specific 
assays for targeting specific cell types for delivering cargo molecules. 
Mechanistic understanding guarantees that predictions are 
physiologically relevant, interpretable, and actionable. This facilitates 
the effective identification and creation of new CPPs with therapeutic 
potential. Although excellent results have been obtained from these 
ML-oriented in silico tools, additional studies are essential for a 
thorough understanding. Only a few ML methods have been evaluated 
using validation datasets to determine their authenticity. Due to 
narrowed feature utilization, complete understanding of CPPs was not 
accomplished in some predictors. To overcome these impediments, the 
development of bioinformatics tools with definite accuracy is essential 
to overcome the narrowed feature utilization, which favors outstanding 
CPP identification in the future. Given the significant therapeutic 
potential of CPPs, particularly in drug delivery, identifying novel and 
highly efficient CPPs has become a critical requirement. However, this 
process is exceedingly challenging for biologists. It involves scanning 
entire proteins using overlapping window patterns and testing each 
peptide for cell-penetrating activity—a highly labor-intensive and time-
consuming endeavor. A computational approach that could predict 
whether a peptide sequence qualifies as a CPP with good uptake ability 
would greatly aid biologists by enabling rapid pre-synthesis screening, 
thereby accelerating CPP-focused research in the future.
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