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In 2019, COVID-19 began one of the greatest public health challenges in history, 
reaching pandemic status the following year. Systems capable of predicting individuals 
at higher risk of progressing to severe forms of the disease could optimize the 
allocation and direction of resources. In this work, we evaluated the performance 
of different Machine Learning algorithms when predicting clinical outcomes of 
patients hospitalized with COVID-19, using clinical data from hospital admission 
alone. This data was collected during a prospective, multicenter cohort that 
followed patients with respiratory syndrome during the pandemic. We aimed to 
predict which patients would present mild cases of COVID-19 and which would 
develop severe cases. Severe cases were defined as those requiring access to 
the Intensive Care Unit, endotracheal intubation, or even progressing to death. 
The system achieved an accuracy of 80%, with Area Under Receiver Operating 
Characteristic Curve (AUC) of 91%, Positive Predictive Value of 87% and Negative 
Predictive Value of 82%. Considering that only data from hospital admission was 
used, and that this data came from low-cost clinical examination and laboratory 
testing, the low false positive rate and acceptable accuracy observed shows that 
it is feasible to implement prediction systems based on artificial intelligence as 
an effective triage method.
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1 Introduction

Initiated in 2019, Coronavirus Disease (or COVID-19), a respiratory infection caused by 
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), rapidly spread worldwide, 
reaching pandemic status as early as March 2020 (Sott et al., 2022; Mohamed et al., 2020). 
According to the World Health Organization (WHO), by October 4, 2023, there were already 
771,151,224 confirmed cases and 6,960,783 deaths globally (World Health Organization, 
2023). COVID-19 is primarily characterized by pneumonia symptoms, including fever, fatigue, 
and dry cough. However, other symptoms such as gastrointestinal alterations, anosmia, or 
even ophthalmological changes can also be observed (Luo et al., 2022). Severe cases require 
intensive care, with the need for endotracheal intubation and mechanical ventilation, leading 
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to death in extreme cases (Luo et al., 2022; Ou et al., 2020; Martono 
and Mulyanti, 2023; Fang et al., 2020).

The rapid increase in infection numbers highlighted the 
unpreparedness of healthcare systems, affecting even developed 
countries. There were shortages of qualified professionals (Buonsenso 
et al., 2021; Yoshioka-Maeda et al., 2020), medications (Kanji et al., 
2020), equipment (Sandhu et al., 2022), and reagents for laboratory 
tests (Brinati et al., 2020; Arpaci et al., 2021). To address resource 
deficiencies, new strategies emerged, including changes in 
management approaches (Sott et  al., 2022; Mohamed et al., 2020; 
Buonsenso et  al., 2021; Yoshioka-Maeda et  al., 2020), vaccine 
distribution (Mohamed et  al., 2022), and the development of 
alternative techniques for treatments and diagnostics (Kanji et al., 
2020; Brinati et  al., 2020; Arpaci et  al., 2021; Kim, 2022). Social 
impacts were also notable, including worsened economic situations, 
increased cases of domestic violence, and disruptions in the treatment 
of other diseases (Sott et al., 2022).

The global crisis and its devastating consequences, along with 
resource scarcity, have motivated the development of several artificial 
intelligence (AI) based tools. Algorithms have been implemented to 
assist in COVID-19 diagnosis, interpretation of imaging exams, 
prediction of case variations, drug and vaccine development, and 
prognosis prediction for infected patients (Brinati et al., 2020; Arpaci 
et al., 2021; Rahman et al., 2021; Yu et al., 2021; Isgut et al., 2023; 
Shakibfar et  al., 2023; Wang et  al., 2021; Napolitano et  al., 2022; 
Ramírez-Del Real et al., 2022; Kamel et al., 2023).

Developing robust predictors of morbidity and mortality during 
a pandemic could aid in strategic healthcare planning, providing early 
indications, for example, of the need for hospitalization for a group of 
infected patients (Shakibfar et al., 2023). The quality of data used to 
construct a predictor is crucial, as incomplete, or poorly processed 
clinical data can introduce biases that hinder implementation (Isgut 
et al., 2023).

Being the first major pandemic of the digital era, an enormous 
amount of information has been collected (Isgut et  al., 2023; 
Napolitano et al., 2022). With the goal of identifying risk factors most 
associated with COVID-19 severity, dozens of cohort studies, case–
control studies, and case series have been conducted (Ou et al., 2020; 
Martono and Mulyanti, 2023; Fang et  al., 2020). Based on this 
information, AI-based predictors of mortality and morbidity can 
be developed (Shakibfar et al., 2023).

Artificial Intelligence (AI) is a term that has been widely used in 
literature, but often with distinct definitions. This becomes more 
evident when this term is used in conjunction with Machine Learning 
(ML). Although there is no consensus, it is safe to define AI as a 
system that seeks to mimic human intelligence. ML, on the other 
hand, is considered a subset of AI and refers to systems capable of 
learning from datasets without explicit programming on how to make 
decisions (Kühl et al., 2022). Another frequently used concept is that 
of Artificial Neural Networks (ANNs), systems inspired by the 
functioning of the nervous system and capable of learning from 
presented data. ANNs can have various architectures and can 
be defined as a subset of ML (Wang et al., 2021; Haglin et al., 2019).

There are various ML methods, each more suitable for different 
tasks. Learning can be supervised, semi-supervised, or unsupervised, 
and tasks include classification, clustering, regression, localization, 
among others. In a classification task, such as predicting COVID-19 
morbidity based on clinical data, several supervised algorithms can 

be used. These algorithms are called supervised because clinical data 
is presented with labels, i.e., in conjunction with the outcome for each 
patient (Uddin et al., 2019).

Within the family of supervised classification methods, different 
approaches can be taken, such as logistic regression, decision trees, 
support vector machines, Random Forest, artificial neural networks, 
among others. Each method has a different approach to data analysis, 
but they all work by finding parameters that minimize classification 
error. These parameters represent the learning acquired from data 
analysis (Uddin et al., 2019).

Artificial Neural Networks (ANNs) have gained popularity due to 
increased computer processing power and the availability of digital 
information. These algorithms are inspired by the functioning of the 
nervous system, where a network of artificial neurons can receive 
input data, such as laboratory test results, and deliver an output 
indicating the class to which the individual belongs—such as the 
presence or absence of a disease. This method involves successive 
nonlinear transformations to determine whether each unit (or 
artificial neuron) in the network will be activated, simulating neuronal 
depolarization (Grossi and Buscema, 2007; Rodvold et  al., 2001; 
Buscema, 2002).

These artificial networks can learn input data patterns so well that 
they often memorize the labels of the presented data, resulting in 
overfitting and low generalization capacity for unseen data. Overfitting 
is a major challenge when developing a machine learning (ML)-based 
classifier because an overfitted system performs well on training data 
but poorly when used to classify new patients. An overfitted system 
can be  likened to a doctor who correctly diagnoses only cases for 
which they have seen the answer before but struggles to recognize 
diseases in new patients. Various techniques are used to prevent 
overfitting, including controlling the neural network’s size, limiting 
learning iterations (early stopping), dropout regularization, and others 
(Grossi and Buscema, 2007; Rodvold et al., 2001; Buscema, 2002; 
Pansambal and Nandgaokar, 2023; Salehin and Kang, 2023).

Combining the extensive data collection carried out during the 
pandemic with artificial intelligence methods, several published 
studies aim at predicting patient outcomes for COVID-19. Fernandes 
et  al. (2021) utilized data from 1,040 patients, incorporating 
laboratory, clinical, and demographic information. As in this study, 
only data collected at the time of hospital admission were considered; 
however, the data were collected from a single hospital. A total of 57 
variables were used after excluding those with over 90% missing data 
and those with a correlation above 0.9. The implemented models 
demonstrated high predictive capability, with Area Under the Receiver 
Operating Characteristic Curve (AUC) values exceeding 0.91  in 
identifying various adverse outcomes.

Kwok et al. (2023) also achieved favorable results in developing a 
predictor for adverse outcomes in COVID-19 hospitalizations. Using 
retrospective data from 16 different hospitals, they trained ML models 
with 92 variables, achieving an AUC of 0.852 and an accuracy of 89%. 
Notably, they utilized the 6 variables that contributed most to the AI 
model to construct a new risk score.

In another retrospective study, this time including results from 
radiological examinations, Tenda et  al. (2024) developed another 
predictor with an AUC of 0.815  in the dataset used to train the 
classifier and 0.770 in a dataset collected solely for model validation. 
In another study with retrospective multicenter data, Kamel et al. 
(2023) were able to predict progression to adverse outcomes. By 
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comparing different subsets, they determined that hematological 
variables had the highest predictive capacity for outcomes, but the 
combination of all collected data resulted in better accuracy. Various 
tested algorithms showed 90% accuracy, with excellent sensitivity, 
specificity, and AUC.

Jimenez-Solem et  al. (2021) also investigated the predictive 
capability of severe outcomes using ML. This study stands out for its 
analysis of different outcomes at various points during patient 
evaluation. Additionally, they performed external validation, 
demonstrating that these ML models can be utilized in patients with 
COVID-19.

Heldt et al. (2021) also achieved satisfactory results using only 
data collected during the initial moments of medical care. Additionally, 
Hao et al. (2022) analyzed similar outcomes and raised an important 
question regarding racial bias in the classifiers, with high false positive 
rates for hospitalization risk in Black patients.

We identified some research gaps in our literature review. The first 
observation relates to data collection methods. Most published studies 
relied on retrospective cohorts, which can introduce biases and 
confounding factors (Kamel et al., 2023). Additionally, most studies 
gathered data from a single healthcare center. Single-center studies 
may limit the generalizability of classification models (Kwok et al., 
2023; Tenda et al., 2024; Hao et al., 2022). Possibly due to publication 
bias, the studies we  reviewed did not thoroughly discuss data 
availability, as we noticed that a large portion of the analyzed variables 
were available for over 90% of study participants. These near-ideal 
datasets fail to reflect the reality of many healthcare systems during 
the health crisis, where multiple tests were not performed due to 
limited availability. This resource scarcity results in missing-not-at-
random (MNAR) data, introducing biases and confounding factors 
that must be addressed (Isgut et al., 2023).

The main objective of this study is to assess the performance of 
ML algorithms as outcome predictors during COVID-19 
hospitalization using only hospital admission data. Throughout this 
process, we aim to:

Evaluate the availability of data in real-world scenarios, 
particularly in resource-constrained environments where access to 
advanced diagnostic tests is limited, leading to a significant amount of 
missing data. To achieve this, we conducted a prospective multicenter 
cohort study, tracking patients admitted with suspected COVID-19 
and collecting clinical, laboratory, and demographic information. This 
approach aimed to minimize the risk of bias and potential confounders 
typically associated with retrospective or single-center studies.

Discuss different methods for handling far from ideal datasets, 
with a great quantity of MNAR data and the potential biases they may 
introduce, covering the entire process from data preprocessing to AI 
model training.

Analyze the performance of classification algorithms on a dataset 
that has been preprocessed to reflect the clinical significance of 
variables, particularly by categorizing physical and laboratory 
examination results based on established reference values and 
grouping variables with similar medical significance to reduce sparsity.

Assess the capability of ML algorithms to triage hospitalized 
COVID-19 patients by predicting which individuals are likely to 
experience significant deterioration, such as requiring intubation, 
admission to the Intensive Care Unit (ICU), or facing a fatal outcome.

Assess the impact of different approaches to handling missing 
data, such as selecting variables with the highest completion rates 

while excluding subjects lacking data for all selected variables or using 
mean imputation.

Validate a methodology for the development of tools to assist in 
combating new diseases, starting from data collection, preprocessing, 
and experimenting with different algorithms.

The contributions of this research are multifaceted and include de 
following key points:

 1. The study demonstrates the feasibility of using ML algorithms 
to predict a severe outcome of COVID-19 based on hospital 
admission data. Utilizing data from a prospective multicenter 
cohort, the study achieved 80% accuracy and 91% AUC. By 
using only hospital admission data, we  developed systems 
capable of making early predictions, enabling important 
conclusions to be  drawn at the beginning of a patient’s 
hospitalization. This early identification of at-risk patients can 
significantly enhance triage processes and improve clinical 
decision-making, ultimately contributing to better 
patient outcomes.

 2. The article emphasizes the importance of data quality and 
preprocessing in developing AI predictors, addressing 
challenges posed by missing data and sparse variables, which 
are common in clinical studies, especially during crises in 
healthcare systems. The study employed mean imputation for 
missing data but acknowledged that other methods may yield 
better results, while utilizing medical knowledge-based 
strategies to group and reduce the dimensionality of 
sparse variables.

 3. The research compares the performance of various ML 
algorithms, including support vector machines, random 
forests, and dense neural networks, providing a comprehensive 
analysis of accuracy, sensitivity, specificity, and AUC for each 
algorithm. Although these techniques are well-established and 
widely used, the study focuses on their performance on this 
specific dataset, which has its limitations and underwent a 
different preprocessing approach.

 4. The study contributes to the literature on AI predictors for 
COVID-19 outcomes, particularly by utilizing data from 
prospective multicenter studies, which improves 
generalizability and applicability compared to single-center 
retrospective studies that may have limited external validity. 
Moreover, the prospective data ensures better quality control 
and reduces potential bias.

 5. This study develops predictive models using a dataset that 
mirrors the practical constraints faced by healthcare systems, 
particularly during times of crisis. Unlike studies that rely on 
idealized datasets and often overlook challenges in access to 
diagnostic tests and other resources, our approach incorporates 
these limitations directly. This enables the creation of models 
that are not only predictive but also adaptable to real-world 
healthcare environments where resources are constrained.

 6. The article underscores the necessity of integrating medical 
knowledge into the development and evaluation of AI systems, 
arguing that AI should complement rather than replace human 
expertise, while highlighting the importance of considering the 
feasibility, applicability, and clinical validity of AI predictors.

 7. Finally, the study provides a replicable methodology for 
developing morbidity and mortality predictors that can 
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be applied to other diseases. This framework, from data collection 
and preprocessing to algorithm selection and evaluation, can 
be  adapted to different clinical scenarios and contribute to 
advancing AI-based decision support tools in healthcare.

2 Methods

Our study involved several key steps in the methodology. Initially, 
we  collected data from patients hospitalized with respiratory 
syndrome. Following data collection, we  performed extensive 
preprocessing, which included cleaning the data and handling missing 
values. Subsequently, we  composed a primary dataset along with 
various subsets tailored for specific analyses. These subsets were 
utilized to train different machine learning classifiers, enabling us to 
assess their performance and effectiveness in predicting outcomes 
related to the condition under investigation. Figure  1 illustrates 
this process.

2.1 Data collection

We conducted a prospective, multicenter, concurrent cohort study 
that included all patients over 18 years of age admitted for respiratory 

syndrome, with confirmed or suspected COVID-19, at one of the 
participating hospitals: University Hospital of Brasília (HUB), 
Brasília-DF, Brazil; Regional Hospital of Asa Norte (HRAN), 
Brasília-DF, Brazil; Hospital das Clínicas of the Federal University of 
Minas Gerais (UFMG), Belo Horizonte-MG, Brazil; Cassiano Antônio 
Moraes University Hospital (HUCAM), Vitória-ES, Brazil; João de 
Barros Barreto University Hospital of the Federal University of Pará 
(UFPA), Belém-PA, Brazil; University Hospital of the Federal 
University of São Francisco Valley (Univasf), Petrolina-PE, Brazil; 
University Hospital of the Federal University of Grande Dourados 
(UFGD), Dourados-MS, Brazil; and Tropical Diseases Hospital (HDT-
UFT), Araquaína-TO, Brazil. The data collection period was from 
June 2020 to January 2021 and only pregnant patients were excluded 
from the study. Cases of respiratory syndrome were defined by the 
association of general symptoms such as dyspnea, decreased oxygen 
saturation, cyanosis, and/or radiographic lung changes.

Patients or their legal representatives authorized data collection 
through an informed consent form, where they were informed about 
all risks associated with the study, as well as the measures taken to 
ensure data privacy and protection. They were also notified that they 
could withdraw from the study at any time. To protect data privacy, 
identifying features were removed before preprocessing and training, 
with only an automatically assigned random identification number 
retained. Access to potentially identifying data was limited to a few 

FIGURE 1

Overview of the methodology, illustrating the steps involved in data collection, preprocessing, dataset composition, and the training of machine 
learning classifiers using various subsets.
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team members who ensured its security. The study adhered to the 
ethical principles outlined in the Declaration of Helsinki and the 
Belmont Report, and it was approved by an independent ethics 
committee (Research Ethics Committee from the University of 
Brasília School of Medicine), under the Certificate of Ethical 
Appreciation Presentation number 31941420.4.1001.5558 and 
approval number 4.054.462. No additional interventions were 
performed beyond those necessary for the proper monitoring of 
hospitalized patients, such as blood tests and clinical examinations.

Clinical data were collected within the first 72 h of hospitalization, 
recording the initial clinical examination (including vital signs and 
identification of comorbidities), demographic information, imaging, 
and laboratory tests. These tests included Polymerase Chain Reaction 
(PCR) on sputum, nasal swabs, and serology for SARS-CoV-2, aiming 
to identify the presence of the coronavirus. After data collection, 
patients were divided into two groups: those with confirmed SARS-
CoV-2 infection (either by PCR or serology) and patients with 
negative test results. All patients, whether COVID-19 positive or not, 
were further categorized into those who experienced severe 
complications and those who did not. Severe complications included 
patients requiring mechanical ventilation, endotracheal intubation, or 
ICU admission, as well as those who experienced cardiac arrest, severe 
sepsis, or who died.

2.2 Data preprocessing

For the development of severity prediction algorithms, the data 
underwent preprocessing. Due to resource scarcity during the 
pandemic, several tests could not be  conducted on all patients, 
resulting in a high number of missing data points among individuals. 
Missing data or incompleteness is a challenge in various studies 
conducted during the pandemic (Isgut et al., 2023). Initially, variables 
collected in less than 50% of participants and constant variables (those 
with the same value for all participants) were removed. For example, 
the presence of jugular turgor, that wasn’t identified in any patient, 
was excluded.

When dealing with incomplete data, two approaches are possible 
(Isgut et al., 2023). The first involves excluding individuals who lack 
data for the algorithm’s variables of interest. The second approach is 
data imputation, where missing values are estimated to retain all 
individuals in the study. Various imputation methods exist; in this 
study, data were imputed using the means. For instance, the average 
hemoglobin value across all patients was used to fill in missing 
hemoglobin measurements for those who did not undergo the test. 
Both elimination and mean imputation approaches were employed in 
this work.

In addition to missing data, clinical conditions that were not 
observed in a significant number of subjects, sparse data, also pose 
challenges in developing predictors using data from clinical studies 
(Tipirneni and Reddy, 2022). Because these clinical variables are 
positive in a very small proportion of individuals, they do not provide 
much information to classifiers and increase complexity by adding to 
the data’s dimensionality. Several variables collected in our cohort, 
particularly prior diseases, symptoms, or physical examination 
findings, were positive in less than 1% of patients. Although they are 
sparse, these variables might be  important to the prediction and 
eliminating them from the study might decrease system’s accuracy. To 

reduce data dimensionality without disregarding the importance of 
these alterations, we  cataloged variables suitable for grouping or 
clustering based on medical knowledge. Thus, variables with similar 
clinical significance or those composing the same syndrome were 
combined using a logical “OR” operation, such that the grouping 
variable would be negative only if all the originating variables were 
also negative. With the operation, the union of previous Chronic 
Obstructive Pulmonary Disease, asthma or other chronic lung 
conditions resulted in a single variable of presence of pre-existing lung 
diseases. The same approach was applied to symptoms of Upper 
Respiratory Tract Infection, grouping presence of runny nose, 
postnasal drip, nasal congestion, sneezing, sore throat, difficulty 
swallowing and presence of facial sinus compression pain. Nonspecific 
viral infection symptoms were the union of muscle pain, dizziness, 
joint pain, skin lesions, diarrhea, abdominal pain, mental confusion, 
chills, enlarged lymph nodes, nausea, vomiting, loss of appetite and 
pale mucous membranes. Signs of pulmonary involvement were the 
union of presence of productive cough, chest pain, cyanosis, chest 
compression pain, respiratory effort, increased respiratory rate, 
irregular respiratory pattern, decreased chest expansion, snoring, 
wheezing, crackles, pinkish sputum, and pulmonary edema.

After this grouping, variables with low representation (less than 
5% positive cases) were excluded from the analysis. Variables whose 
clinical meaning is related to another alteration, such as loss of taste 
and anosmia, were considered repeated and the ones with lower 
frequency of positive cases were removed. The distribution of variables 
for each class (or outcome) was not considered during variable 
selection to avoid bias in classifier analysis.

All numerical data was categorized. Age was categorized based on 
percentiles, using 0, 10, 25, 50, 75, 90 and 100% as separators. Thus, 
patients whose age falls at or below the 10th percentile will be assigned 
the value 0. Those whose age is above the 10th percentile, but equal or 
less than the 25th percentile will receive the value 1. Similarly, value 2 
corresponds to ages between the 25th and 50th percentiles, and so on. 
This approach transforms age from years to a class ranging from 0 to 5.

The hemoglobin levels were categorized for female patients using 
the following intervals: greater than 0 and lower or equal to 6.5 g/dL; 
greater than 6.5 and lower or equal to 8 g/dL; greater than 8 and lower 
or equal to 10 g/dL; greater than 10 and lower or equal to 12 g/dL; 
greater than 12 and lower or equal to 16.5 g/dL; and above 16.5 g/
dL. The same was done for male patients, but the value 12 was 
substituted to 13 g/dL and 16.5 to 18 g/dL. Consequently, a woman 
with a hemoglobin level of 8 g/dL was assigned category 1, while a 
man with a hemoglobin level of 13.7 g/dL was assigned category 4. 
This range of values was inspired by the National Health Institute 
(NSH) and National Cancer Institute (NCI) classifications for anemia 
and its severity.

Leukocytes, lymphocytes, platelets, and urea were categorized as 
low, normal, and high, also inspired by the reference values defined by 
the National Health Institute. Leukocytes were considered low when 
equal or lower than 4,000 cells/ mm3, high when higher than 11,000 
cells/ mm3 and normal in between. For lymphocytes the lower 
boundary was 1 cell/mm3 and the higher was 4 cells/mm3. For platelets 
the values were 150,000 cells/mm3 and 400,000 cells/mm3, respectively, 
and for urea it was 15.02 mg/dL and 46.84 mg/dL.

Although measured upon patient admission, systolic and diastolic 
blood pressures were categorized using criteria inspired by the 
American Heart Association (AHA) classification for hypertension 
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and hypotension. The range between 140 and 180 mmHg for systolic 
blood pressure was excluded (as there were only 2 cases above 
180 mmHg). This classification approach was chosen solely to use the 
values as reference points, not for diagnosing or classifying arterial 
hypertension. Thus, the systolic pressure ranges were the following: 
greater than 0 and lower or equal to 90 mmHg; greater than 90 and 
lower or equal to 120 mmHg; greater than 120 and lower or equal to 
130 mmHg; greater than 130 and lower or equal to 140 mmHg; and 
above 140 mmHg. For diastolic pressure, the ranges were: greater than 
0 and lower or equal to 60 mmHg; greater than 60 and lower or equal 
to 80 mmHg; greater than 800 and lower or equal to 90 mmHg; greater 
than 90 and lower or equal to 120 mmHg; and above 120 mmHg.

The heart rate was categorized using 60 bpm as the cutoff value for 
bradycardia and 100 bpm as the cutoff value for tachycardia. The 
respiratory rate was defined as normal up to 16 breaths per minute 
(bpm), borderline between 16 and 20 bpm, elevated between 20 and 
24 bpm, and very high above 24 bpm. Finally, oxygen saturation 
(SpO2) values equal to or below 88% were considered extremely low, 
between 88 and 92% inclusive as very low, between 92 and 96% 
inclusive as low, and above 96% as normal.

This categorization was performed to align the numerical values 
across different variables. For instance, hemoglobin levels varied 
around the number 10, while platelet counts ranged around 200,000. 
The difference in dynamic range and magnitude among variables could 
potentially lead to poorer performance in certain algorithms. Some 
algorithms might assign greater importance to specific variables not 
due to their predictive significance but based on their absolute values. 
Another approach that could have been used is normalization, which 
scales all numerical variables between 0 and 1. However, we opted for 
categorization because it also aligned numerical variables (such as 
laboratory test results) with categorical ones (such as overall health 
status). For example, the general condition at admission was classified 
as follows: 0: good, 1: mildly compromised, 2: moderately compromised, 
3: severely compromised, and 4: critical. This categorization also 
considers how physicians analyze clinical examination results.

2.3 Dataset development

To assess the impact of eliminating individuals with missing data 
and imputation on algorithm training, we developed a dataset by 
selecting the 28 most complete variables—those collected from most 
patients. Using this dataset, we constructed 7 different subsets. One 
subset included all 421 patients and all 28 variables, with missing 
values imputed using the mean. In the remaining subsets, no 
imputation was performed, resulting in data loss due to incomplete 
records. These 6 subsets were created by varying the number of 
variables included, ranging from the 23 most complete variables to a 
set containing all 28 variables. The 7 subsets will be named A to G. The 
variables and number of subjects of each subset is described below:

 1. Subset A, 355 subjects. Contains 23 variables:
 a) Age.
 b) Hemoglobin.
 c) Leukocytes count.
 d) Lymphocytes count.
 e) Platelets count.
 f) Heart rate.

 g) SpO2.
 h) Absence of previous disease.
 i) Systemic Arterial Hypertension.
 j) Diabetes Mellitus.
 k) Obesity.
 l) Renal insufficiency.
 m) Fever.
 n) Dry cough.
 o) Headache.
 p) Weakness.
 q) Anosmia.
 r) Sex.
 s) Upper Respiratory Tract Infection signs.
 t) Dyspnea.
 u) Signs of pulmonary involvement.
 v) Presence of nonspecific viral infection symptoms.
 w) Pre-existing lung diseases.

 2. Subset B, 335 subjects. Contains 24 variables:
 a) All 23 variables from subset A.
 b) General condition at admission.

 3. Subset C, 309 subjects. Contains 25 variables:
 a) All 24 variables from subset B.
 b) Respiratory rate at admission.

 4. Subset D, 285 subjects. Contains 26 variables:
 a) All 25 variables from subset C.
 b) Systolic blood pressure at admission.

 5. Subset E, 285 subjects. Contains 27 variables:
 a) All 26 variables from subset D.
 b) Diastolic blood pressure at admission.

 6. Subset F, 246 subjects. Contains 28 variables:
 a) All 27 variables from subset E.
 b) Urea.

 7. Subset G, 421 subjects. Contains 28 variables:
 a. Same 28 variables from subset F, with data imputation to fill 

missing values.

The advantage of constructing the subsets in this manner lies in 
its consideration of data availability when selecting variables, thereby 
aiming to preserve the maximum number of individuals in the groups 
while minimizing the elimination of patients with missing data. By 
reducing the amount of missing data during classifier development, 
we aimed to mitigate the risk of bias introduced by MNAR data while 
preserving as much data as possible.

By focusing on the 28 most complete variables, we ensured that 
the selected variables could be collected across a wide range of patients, 
even during a healthcare system crisis. This approach suggests that 
these variables represent more readily available and easily applicable 
examinations, ultimately enhancing the applicability of the model in 
real-world clinical settings. Additionally, we aimed to evaluate the 
balance between maintaining more variables in the subset, which 
could potentially increase accuracy, and the loss of individuals due to 
elimination, which could reduce both accuracy and generalization.

2.4 Classifiers development

The data was then split into training and test groups, comprising 
80 and 20% of the total patients, respectively. These subsets were used 
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to train ML algorithms. Random selection between the groups can 
introduce bias in accuracy analysis; for instance, when individuals that 
are easier to classify end up in the test group, artificially inflating the 
system’s accuracy. To mitigate this impact, each algorithm underwent 
training through 5,000 simulations, with each simulation representing 
a random resampling of the groups and retraining from scratch. This 
validation technique, known as Monte Carlo Cross-Validation, shows 
more accurate result even with subsets containing over 1,000 
observations (Shan, 2022). During each simulation, accuracy, 
sensitivity, specificity, negative predictive value, positive predictive 
value, F1-Score, and the AUC were calculated. The minimum and 
maximum values, mean, and standard deviation of each metric were 
evaluated. The libraries used for algorithm training were Lazy Predict 
0.2.12, Scikit-Learn 1.2.0 (Buitinck et al., 2011), and Tensorflow 2.10.1 
(Abadi et al., 2016), executed in Python 3.9.

The first step involved running 100 simulations using the 
LazyClassifier function from the Lazy Predict 0.2.12 library, which 
automates the training of 27 different ML-based algorithms. These 
algorithms include: Stochastic Gradient Descent Classifier (SGD), 
Linear Support Vector Classification (Linear SVC), Logistic 
Regression, Linear Discriminant Analysis, Ridge Classifier with Cross 
Validation (CV), Ridge Classifier, AdaBoost Classifier, Nearest 
Centroid, Gaussian Naïve Bayes, Passive Aggressive Classifier, Nu 
Support Vector Classification (NuSVC), Light Gradient Boosting 
Machine Classifier (LGBM classifier), Quadratic Discriminant 
Analysis, Support Vector Classification (SVC), XGBoost Classifier, 
Bernoulli Naïve Bayes, KNeighbors Classifier, Random Forest 
Classifier, Bagging Classifier, Perceptron, Extra Trees Classifier, Extra 
Tree Classifier, Calibrated Classifier with CV, Label Spreading, Label 
Propagation, Decision Tree Classifier, Dummy Classifier.

The mean accuracy for each algorithm across each subset was 
recorded. This data-driven approach allowed for a comprehensive 
analysis to identify the most effective algorithms. Only the seven 
algorithms that demonstrated the highest mean accuracy were 
selected for further investigation. Similarly, the single subset that 
yielded the best accuracy across all algorithms was chosen for use in 
subsequent steps.

With the selected subset and 7 best-performing algorithms, 5,000 
new simulations were conducted using the Scikit-Learn 1.2.0 library. 
Additionally, the same subset was employed to train 11 distinct dense 
neural networks architectures. Those networks differ in terms of the 
number of layers, the number of units per layer, and the dropout rate. 
By randomly excluding some units, dropout distributes learning 
across connections and helps reduce overfitting, improving model 
generalization and neural network performance when faced with 
unseen data (Salehin and Kang, 2023). The neural networks were built, 
trained and evaluated using the Tensorflow 2.10.1 library. To test the 
architecture with best performance, 100 simulations were conducted 
for each network. The hidden layers of the tested architectures were 
the following:

 1. Single layer: 32 units with 20% dropout.
 2. Two-layer: First layer with 32 units and 20% dropout, followed 

by a second layer with 16 units and 20% dropout.
 3. Three-layer: Sequential layers with 32 units (20% dropout), 

16 units (20% dropout), and 8 units (20% dropout).
 4. Single layer: 16 units with 20% dropout.
 5. Single layer: 8 units with 20% dropout.

 6. Two-layer: First layer with 8 units and 20% dropout, followed 
by a second layer with 4 units and 20% dropout.

 7. Four-layer: Layers configured with 64 units (20% dropout), 
32 units (20% dropout), 16 units (10% dropout), and a final 
layer of 8 units without dropout.

 8. Single layer: 8 units without dropout.
 9. Two-layer: First layer with 16 units without dropout, followed 

by a second layer with 8 units without dropout.
 10. Three-layer: Layers arranged with 16 units (no dropout), 

8 units (no dropout), and a final layer of 4 units 
without dropout.

 11. Two-layer: First layer with 8 units without dropout, followed 
by a second layer with 4 units without dropout.

All neural networks were trained using the same subset and 
therefore shared the same input layer configuration. Their hidden 
layers uniformly utilized ReLU activation, while their output layers 
consisted of a single unit with Sigmoid activation. The training 
process employed Adam optimization and Binary Cross-Entropy as 
the loss function over 20 epochs. The architecture that yielded the 
highest validation accuracy was selected for an additional 
5,000 simulations.

3 Results

3.1 Cohort outcomes analysis

Out of the 537 study participants, 421 were confirmed to have a 
diagnosis of COVID-19. Among them, 133 experienced an outcome 
classified as severe (31.5%). It’s important to note that a single patient 
may have had multiple severe outcomes during the follow-up period, 
but they were treated the same way as the ones that had a single 
severe outcome.

3.2 Demographic analysis

The demographic profile of patient groups that progressed with 
severe and non-severe forms was analyzed, as described in Tables 1, 
2. It can be observed that there is a predominance of female patients, 
of mixed ethnicity, and aged over 50 years old.

3.3 Classifier results

During 100 simulations, the 7 subsets constructed in this study 
were used to train 27 ML algorithms using the Lazy Predict library. In 
each simulation, the training and test groups were randomly separated 
in an 80 to 20% ratio, respectively, and the accuracy of each simulation 
was computed. The average accuracy was then calculated for each 
classifier and each subset, resulting in the values shown in Table 3. It 
was possible to determine that the highest average accuracy was 
achieved with the Support Vector Classifier (SVC) for the 28-variable 
subset (subset F, without imputation), and the seven best classifiers for 
this subset were SVC, NuSVC, Random Forest Classifier, Ridge 
Classifier CV, Ridge Classifier, Extra Trees Classifier, and Linear 
Discriminant Analysis.
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Using the Scikit-Learn library, these seven classifiers were 
employed for 5,000 new simulations, once again with random 
redistributions between the training and test groups (Monte Carlo 
cross-validation). This library combines algorithm implementations 
based on previous works. In these simulations, only subset F was used 
(which includes 28 variables and has no imputation). Evaluation 
metrics were computed to calculate the mean and margin of error for 
a 95% Confidence Interval (CI 95).

In addition to the previously mentioned algorithms, 11 
different configurations of dense neural networks were tested on 
this subset through 100 simulations with random resampling of the 
training and test groups. These simulations facilitated the 
identification of the most effective topology or neural network 
configuration. The classifier’s error can be described as a function 
of the chosen hyperparameters, such as the number of layers and 
units per layer. The objective is to minimize this error; however, 
due to computational constraints, it’s not feasible to exhaustively 
test all possible combinations. Consequently, 11 configurations 
with slight variations were selected, and their average accuracies 
were computed. The optimal configuration emerged as one with a 

single hidden layer containing 32 units and a 20% dropout rate. 
This configuration was subjected to the same training regimen as 
the seven highest-performing classical ML classifiers, undergoing 
a Monte Carlo Cross-Validation with 5,000 simulations.

Table  4 describes the results of each algorithm after 5,000 
trainings. Very similar values were observed among different 
algorithms, with a very small margin of error around the average 
accuracy (CI 95). The high specificity, combined with a significant 
positive predictive value of the SVC, indicates a high success rate when 
the algorithm classifies patients as severe. On the other hand, the 
Ridge Classifier, Ridge CV, and Linear Discriminant Analysis 
algorithms maintain accuracy while achieving better results in 
identifying patients who will not progress to the severe form. The 
neural network, however, exhibited low sensitivity and lower accuracy 
compared to the other methods. An important metric for classifier 
evaluation, the AUC, indicates that the tested classifiers had less 
satisfactory performance in distinguishing between classes. An 
exception was the Random Forest, with an average AUC of 0.91 and 
an average accuracy of 80%.

In a context of multiple hospitalized patients and resource scarcity, 
such as during the COVID-19 pandemic, the achieved predictive 
values would be extremely useful. The 87% positive predictive value 
attained by the SVC, coupled with a small number of false positives, 
allows for better resource allocation and interventions, such as 
surveillance or transfer to another healthcare unit. It is essential to 
note that only admission data were used for this analysis, and clinical 
follow-up during hospitalization, along with additional tests, could 
lead to patient reclassification and enhance system performance. Also, 
since the data originated from a prospective cohort, in newer studies 
the classifiers could be implemented during the cohort, guiding data 
collection toward most important variables.

Classifiers for COVID-19 severity prediction have been published 
with accuracies ranging from 74.4 to 95.20% and AUC values between 
0.66 and 0.997 (Shakibfar et al., 2023; Wang et al., 2021). However, a 
significant portion of this research relied on data from retrospective 
and/or single-center studies, limiting the generalizability of the 
findings (Wang et al., 2021). In our work, we conducted a prospective 
multicenter study aimed at ensuring that this methodology can 
be applied in real-time during new episodes of public health crises.

The availability of data during public health crises poses 
significant challenges. Resource scarcity in various healthcare centers 
limits not only the number of clinical variables that can be collected 
but also the ability to leverage predictive models that require these 
variables. Previous studies often utilized data collected from 
healthcare services with greater resource availability, resulting in a 
higher number of tests performed and fewer missing data. This 
situation, however, does not reflect the reality of many healthcare 
centers in underdeveloped or developing countries. By utilizing only 
the most readily available variables in healthcare settings of different 
complexity levels, we enable the application of the predictor even in 
adverse situations.

Ramírez-Del Real et al. (2022) also achieved satisfactory results 
by using demographic, clinical, and laboratory data to predict 
COVID-19 mortality. Data were collected from healthy individuals 
who were subsequently monitored to evaluate outcomes if they 
contracted COVID-19. They achieved an accuracy of 90.41%, with 
positive and negative predictive values of 94.28 and 87.36%, 
respectively. This study suggests the possibility of identifying 

TABLE 1 Gender, race, and marital status distributions.

Non severe 
(absolute risk)

Severe 
(absolute 

risk)

Total

Gender

Male 128 (71.91%) 50 (28.09%) 178 (42.28%)

Female 160 (65.84%) 83 (34.16%) 243 (57.72%)

Race

White 53 (68.83%) 24 (31.17%) 77 (18.29%)

Black 17 (73.91%) 6 (26.09%) 23 (5.46%)

Mixed 189 (66.55%) 95 (33.45%) 284 (67.46%)

Asian 5 (62.50%) 3 (37.50%) 8 (1.90%)

Indigenous 2 (66.67%) 1 (33.33%) 3 (0.71%)

Chose not to declare 19 (86.36%) 3 (13.64%) 22 (5.32%)

Blank/unfilled 3 (75.00%) 1 (25.00%) 4 (9.50%)

Marital status

Single 72 (69.23%) 32 (30.77%) 104 (24.70%)

Married 150 (73.17%) 55 (26.83%) 205 (48.69%)

Divorced 26 (72.22%) 10 (27.78%) 36 (8.55%)

Widows 12 (57.14%) 9 (42.86%) 21 (4.99%)

Other 24 (52.17%) 22 (47.83%) 46 (10.93%)

Blank/unfilled 4 (44.44%) 5 (55.56%) 9 (2.14%)

TABLE 2 Age distribution.

Non severe Severe Total

Mean 55.60 61.82 57.57

Median 55 62 57

Standard deviation 15.35 16.54 15.98

Blank/unfilled 1 0 1
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individuals more vulnerable to unfavorable outcomes even before 
contracting the disease.

3.4 Contributing features

After training, we selected the two models that demonstrated the 
best performance, Random Forest and SVC, to extract the features that 
contributed most significantly to the classification process. For the 
Random Forest model, we averaged the “feature importance” values 
for each variable across the 5,000 simulations. In the case of the SVC 
model, which was implemented using the Radial Basis Function 
kernel, we employed the Permutation Feature Importance technique, 
as implemented in Scikit-Learn. The Permutation Importance values 
for each variable were computed for each simulation, and we used the 
average values to identify the most significant features. To conclude 
our analysis, we performed logistic regression on the same subset used 
to train the models and calculated the p-values associated with each 
variable. These values are presented in Table 5.

The most statistically significant variables for predicting severe 
outcomes, with a p-value less than 0.05, included dyspnea, the 
patient’s general condition upon hospital admission, peripheral 
oxygen saturation, urea levels, platelet count, and signs of upper 
respiratory tract infection. In the Random Forest model, the most 
important features were dyspnea, general condition of the patient 
upon admission, age, oxygen saturation upon admission, respiratory 
rate upon admission, and urea. For the SVC model, the significant 
features included dyspnea, general condition of the patient upon 
admission, oxygen saturation upon admission, urea, age, and 
platelet count.

These results share some similarities with findings from previous 
studies, where age and platelet count were identified as significant 
predictors of prognosis in severely hospitalized patients (Martono and 
Mulyanti, 2023; Fang et al., 2020; Kamel et al., 2023). Additionally, 
other important features, such as different hematological variables, 
D-dimer and C-reactive protein, could further enhance the predictive 
power of the system. However, these tests were unavailable for a 
significant portion of the studied population.

TABLE 3 Average accuracy after 100 simulations with each subset.

Average accuracy per subset

Classifier A B C D E F G

XGBoost classifier 74.62% 77.25% 77.27% 77.32% 77.63% 77.20% 72.87%

Decision tree classifier 70.13% 70.13% 69.94% 70.19% 70.82% 71.44% 66.07%

Logistic regression 74.83% 77.51% 78.06% 77.63% 77.65% 77.72% 75.02%

AdaBoost classifier 73.77% 77.22% 75.87% 76.32% 76.30% 76.32% 72.72%

Bagging classifier 75.14% 77.33% 78.21% 77.54% 77.84% 77.08% 74.55%

Linear discriminant analysis 74.70% 77.90% 78.76% 78.16% 78.40% 78.38% 75.46%

Linear SVC 74.80% 77.63% 78.32% 77.68% 77.77% 77.34% 75.09%

SVC 76.30% 79.12% 79.90% 79.44% 80.12% 80.78% 77.27%

Passive aggressive classifier 67.48% 67.96% 70.24% 70.93% 69.42% 69.94% 67.05%

NuSVC 75.07% 78.84% 79.52% 79.09% 79.75% 80.14% 76.35%

Nearest centroid 68.04% 70.99% 71.95% 71.04% 70.58% 71.54% 69.78%

LGBM classifier 74.49% 77.33% 77.23% 78.26% 78.40% 77.46% 73.36%

Ridge classifier 74.68% 78.45% 78.84% 78.32% 78.51% 78.74% 75.52%

Ridge classifier CV 74.75% 78.42% 78.84% 78.35% 78.77% 79.04% 75.75%

Random forest classifier 76.20% 78.97% 80.18% 79.30% 80.33% 80.10% 76.74%

Gaussian NB 70.03% 71.70% 72.94% 71.00% 71.56% 71.78% 69.52%

Calibrated classifier CV 74.41% 77.88% 78.08% 76.67% 77.68% 76.90% 75.65%

Bernoulli NB 73.07% 74.36% 76.16% 75.68% 74.84% 76.10% 72.64%

Extra trees classifier 74.83% 77.72% 78.61% 78.49% 79.51% 79.56% 75.60%

Quadratic discriminant analysis 71.46% 72.51% 73.31% 72.04% 70.96% 68.82% 70.29%

Extra tree classifier 65.07% 69.19% 70.56% 68.60% 67.40% 67.74% 65.91%

Label spreading 67.75% 70.66% 74.06% 73.26% 73.35% 74.24% 67.69%

Label propagation 67.72% 70.70% 74.03% 73.26% 73.35% 74.24% 67.68%

KNeighbors classifier 73.00% 76.34% 77.65% 75.82% 75.70% 75.80% 73.19%

Perceptron 68.89% 70.13% 71.35% 70.82% 69.88% 70.80% 67.05%

SGD classifier 68.28% 71.54% 72.08% 72.18% 71.98% 71.38% 68.38%

Dummy classifier 68.68% 70.76% 71.16% 69.82% 71.30% 69.56% 68.32%

Subsets A-F address missing data through subject elimination, while subset G uses mean imputation.
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4 Discussion

An extensive data preprocessing process was carried out to 
identify as many filling errors or duplicates as possible. Additionally, 
the variable selection process involved not only searching for better 
classifier performance but also minimizing the loss of individuals after 
data cleaning. Constructing seven different subsets, each 
encompassing varying numbers of variables and consequently 
individuals, allowed us to observe the effect on classifier outcomes.

When assessing the cost-effectiveness of using the developed 
classifiers, it is crucial to consider that laboratory tests and clinical 
evaluations are indispensable for proper inpatient monitoring. 
Therefore, the use of the classifier would not incur additional expenses 
beyond an informatics system capable of generating results. The 
utilization of these classifiers does not require additional tests beyond 
those essential for usual medical follow-up.

During preprocessing, a test was conducted to assess the impact 
of imputation for filling missing data. The method used was to fill in 
missing data with the means calculated for all individuals. In other 
words, those who did not have their hemoglobin measured received 
the average hemoglobin value from all individuals who had the test 
collected. Imputation enables certain machine learning algorithms 
that do not accept incomplete input information to be applied to all 
study participants. However, it was observed that mean imputation 
reduced classifier accuracy. It is understood that clinical data 
variables are not independent of each other, and therefore, alternative 
data imputation methods could yield better results. Through 
multivariate analysis, the tests collected for a specific individual could 
be used to estimate the missing values. For instance, hemoglobin, 
respiratory rate, and clinical signs of dyspnea could be utilized to 
estimate peripheral oxygen saturation (SpO2) for patients who could 
not undergo oximetry. Further dedicated studies are recommended 
to identify optimal clinical data imputation methods for 
classifier development.

It has been observed that reducing input variables, despite 
decreasing the loss of individuals (due to incompleteness or missing 
data) and the complexity of classifier systems, compromises the 
accuracy of classification systems. Throughout this work, 
experimentation was necessary to find the best solution for this 
problem. Tests with different subsets helped strike the right balance 
between individual losses and the amount of clinical data used. A high 

loss of individuals would hinder classifier learning, as well as the 
reliability and generalizability of results. The reliance on a large 
amount of clinical data, coupled with the inability of most algorithms 
to handle incompleteness, may indicate inferior performance 
compared to a trained professional. This reinforces the idea that AI 
should be  viewed as a tool rather than a replacement for 
human expertise.

The high number of sparse variables collected during the cohort 
study draws some attention. Several variables were positive in less 
than 1% of study participants, such as the presence of arrhythmia or 
prior valvular disease. This characteristic poses a particular challenge 
when developing a classifier. The more variables used as input, the 
more complex the classifier becomes. Even if we imagine a simple 
questionnaire for diagnosing a specific disease, the more questions 
required for the diagnosis, the more challenging its implementation 
becomes, during real healthcare situations. Also, complex classifiers 
are more prone to overfitting, which reduces their ability to generalize 
to new data and patients (Pansambal and Nandgaokar, 2023; Salehin 
and Kang, 2023). Simultaneously, some clinical data, despite being 
rare, can serve as excellent markers for unfavorable outcomes in 
certain pathologies. Excluding these rare data points from the 
analysis could compromise the quality of the final analysis. 
Considering this, clinical knowledge of signs and symptoms, as 
potential severity predictors (Ou et al., 2020; Martono and Mulyanti, 
2023; Fang et al., 2020), was considered during variable selection, 
along with combining different variables with the same clinical 
significance (such as a variable representing the presence of any prior 
lung disease).

Regarding AI-based classifiers, it is essential to consider that a 
significant class imbalance can hinder the development of classification 
systems (Isgut et  al., 2023). In this study, approximately 69% of 
participants did not experience severe complications. Consequently, 
a classifier that labeled all individuals as “non-severe” would achieve 
a considerable accuracy rate. However, based on the results obtained, 
it is possible to affirm that satisfactory accuracy models were 
developed, particularly when classifying an individual as belonging to 
the “severe” group. This is evident from the high positive predictive 
value and specificity.

Specificity and sensitivity are crucial for determining the quality 
of a medical screening test. When both are high, it indicates a low rate 
of classification errors. Despite the low sensitivity of the developed 

TABLE 4 Average performance metrics from 5,000 simulations using subset F (with 28 variables, no imputation).

Classifier Accuracy F1-score Positive 
predicted 

value

Negative 
predicted 

value

Sensitivity Specificity AUC

SVC 0.79 ± 0.0014 0.54 ± 0.0031 0.87 ± 0.0036 0.78 ± 0.0016 0.40 ± 0.0031 0.97 ± 0.0008 0.79 ± 0.0020

NuSVC 0.79 ± 0.0015 0.56 ± 0.0032 0.83 ± 0.0037 0.79 ± 0.0018 0.44 ± 0.0036 0.96 ± 0.0010 0.78 ± 0.0022

Random forest classifier 0.80 ± 0.0014 0.58 ± 0.0031 0.81 ± 0.0039 0.79 ± 0.0017 0.46 ± 0.0034 0.95 ± 0.0011 0.91 ± 0.0014

Extra trees classifier 0.79 ± 0.0014 0.57 ± 0.0031 0.77 ± 0.0039 0.79 ± 0.0017 0.47 ± 0.0035 0.94 ± 0.0012 0.78 ± 0.0019

Ridge classifier CV 0.80 ± 0.0015 0.63 ± 0.0028 0.75 ± 0.0037 0.82 ± 0.0017 0.56 ± 0.0034 0.91 ± 0.0014 0.77 ± 0.0020

Ridge classifier 0.78 ± 0.0015 0.62 ± 0.0028 0.69 ± 0.0038 0.82 ± 0.0017 0.57 ± 0.0033 0.88 ± 0.0016 0.77 ± 0.0020

Linear discriminant 

analysis
0.78 ± 0.0015 0.61 ± 0.0027 0.67 ± 0.0036 0.82 ± 0.0017 0.58 ± 0.0034 0.87 ± 0.0017 0.77 ± 0.0020

Artificial neural network 0.76 ± 0.0016 0.45 ± 0.0034 0.81 ± 0.0050 0.76 ± 0.0018 0.33 ± 0.0033 0.96 ± 0.0012 0.77 ± 0.0018
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classifiers, the high specificity suggests a small number of false 
positives. Few false positives are generally preferable, even at the 
expense of reduced sensitivity, especially when a positive test result 
could lead to unnecessary and dangerous interventions (Herman, 
2006; Trevethan, 2017).

Using data collected from a multicenter study, it would not 
be inaccurate to assume that the developed system would have greater 
generalization capacity. This is because the study involved healthcare 
units with varying capabilities, technological density, and resource 
access. Consequently, the system could be used in both less-structured 
hospitals and more comprehensive units. It is also worth emphasizing 
that the data were collected from a prospective cohort, ensuring 
greater reliability regarding data quality, despite adding technical 
limitations, such as collecting all variables from all participants. No 
other studies were found that solely utilized clinically and 
demographically collected information in a prospective manner. 
Furthermore, due to its adaptation to real-world constraints and its 

inclusion of individuals from diverse socioeconomic backgrounds and 
demographic profiles, the developed system has greater practical 
usability and can span different levels of healthcare units.

In recent years, several studies have been published addressing the 
prediction of unfavorable outcomes in COVID-19 using AI systems 
(Kim, 2022; Yu et al., 2021; Shakibfar et al., 2023; Wang et al., 2021; 
Ramírez-Del Real et  al., 2022; Kamel et  al., 2023). One of the 
challenges encountered in the literature on ML and AI for disease 
diagnosis or prognosis evaluation is the choice of performance 
metrics. Few studies have reported positive and negative predictive 
values, and some have not even published sensitivity and specificity 
values (Wang et al., 2021). While a new clinical study is necessary to 
precisely determine these metrics using data from new, previously 
unseen patients, calculating these probabilities was considered 
essential to assess the viability of the classifiers. It is considered that 
AI-based algorithms for diagnosis should be evaluated similarly to 
new laboratory and imaging tests.

TABLE 5 Feature importance and p-values for classification models.

Feature Importance RF Importance SVC p-values (logistic 
regression)

General condition of the patient upon admission 0.1158 0.0298 < 0.05

Age (years) 0.0696 0.0040 0.1607

Number of leukocytes (number/mm3) 0.0324 0.0009 0.7348

Number of lymphocytes (number/mm3) 0.0185 0.0015 0.3840

Number of platelets (number/mm3) 0.0388 0.0037 < 0.05

Urea (mg/dL) 0.0478 0.0108 < 0.05

Systolic blood pressure upon admission (mmHg) 0.0435 −0.0022 0.0565

Diastolic blood pressure upon admission (mmHg) 0.0396 0.0013 0.4980

Heart rate upon admission (bpm/min) 0.0302 0.0031 0.4154

Respiratory Rate UPON admission (breaths/min) 0.0559 0.0027 0.7092

Oxygen saturation upon admission (%) 0.0621 0.0144 < 0.05

No pre-existing conditions 0.0203 0.0002 0.4987

Hypertension 0.0247 −0.0006 0.2366

Diabetes mellitus 0.0306 0.0032 0.1365

Obesity 0.0086 −0.0008 0.6146

Kidney failure 0.0045 −0.0001 0.6052

Fever 0.0221 0.0017 0.1207

Dry cough 0.0218 −0.0009 0.0562

Headache 0.0201 0.0033 0.0757

Weakness 0.0162 0.0004 0.3476

Anosmia 0.0103 0.0002 0.5427

Gender 0.0215 −0.0009 0.4630

Signs of upper respiratory tract infection (URTI) 0.0239 0.0034 < 0.05

Dyspnea 0.1334 0.0656 < 0.05

Signs of pulmonary involvement 0.0214 −0.0006 0.7351

Constitutional symptoms 0.0226 0.0002 0.7766

Previous pulmonary diseases 0.0070 −0.0007 0.1377

Hemoglobin (g/dL) 0.0368 −0.0005 0.7695

The table displays features, their importance in Random Forest, importance in SVC, and p-values from logistic regression.
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Other studies have also demonstrated satisfactory results by 
developing predictors that incorporate imaging exams, such as 
Computed Tomography (CT), alongside clinical data to classify 
COVID-19 severity (Yu et al., 2021). The cohort described in this 
study also collected bedside chest radiographies, which could 
be combined with clinical data to enhance results in future work. 
However, by utilizing only a few variables resulting from simple tests, 
the prediction system could be used even in healthcare units with low 
technological density. It is estimated that in 2020, only approximately 
15% of Brazilian municipalities had access to Computed Tomography 
(Pereira and Tomógrafos, 2020).

This work considers healthcare systems with resource scarcity and 
the reality of developing and underdeveloped countries. Nevertheless, 
this methodology can be  adjusted to meet the needs of different 
countries, such as including collaboration between various 
governments and organizations in data collection, as well as steering 
data collection toward more widely available tests.

It is important to emphasize that the objective of these AI-based 
systems is not to replace healthcare professionals but to assist in the 
triaging process during high-demand situations. By providing timely and 
accurate support, these systems can help alleviate the workload of medical 
staff, allowing them to focus on critical decision-making and patient care. 
The collaboration between AI and healthcare providers can enhance 
overall efficiency and effectiveness in delivering quality care.

This classifier was designed to operate specifically in moderate 
and severe cases of COVID-19 that required hospitalization. Mild 
cases of COVID-19 typically do not require the tests we used and 
often do not seek healthcare services. While this classification could 
potentially be applied to other respiratory diseases, further validation 
with new data will be necessary to confirm its effectiveness in those 
contexts. Ongoing research and data collection will be  crucial to 
refining and adapting the classifier for broader applications in 
managing other diseases.

5 Conclusion and future work

It is understood that vaccination and the emergence of new SARS-
CoV-2 variants alter the disease’s behavior and the number of severe 
complications. A reduction in severe COVID-19 cases has been 
observed in vaccinated individuals, while the transmission has 
increased with the emergence of new variants (Martono and Mulyanti, 
2023). Consequently, collecting new data and updating classifiers 
becomes necessary.

Given its multidisciplinary nature, it is essential to emphasize the 
importance of going beyond preprocessing and classification 
algorithms by incorporating medical expertise. The fusion of medical 
and computational perspectives allows for a more comprehensive 
analysis of the feasibility, applicability, and validity of the 
classification system.

This work leaves a few gaps that must be addressed in future 
research before implementing this type of classification system in 
healthcare. Firstly, although mean imputation was utilized to 
manage missing data, more sophisticated techniques, such as 
multivariate analysis, may yield improved results. Secondly, the 
prevalence of numerous sparse variables – those that are positive 
in only a small proportion of patients – should be considered in 
future data collection efforts. By adjusting the form and method 

of data collection to focus on gathering more general information 
rather than numerous specific variables, we  can reduce the 
complexity of the cohort study while addressing the challenges AI 
algorithms encounter with sparse data. Additionally, the study 
revealed challenges related to class imbalance, with a greater 
number of patients classified as “non-severe,” which may hinder 
the classifiers’ ability to accurately identify severe cases. This 
suggests the need for further exploration of sampling techniques 
or specialized algorithms. Moreover, it is essential to investigate 
the potential benefits of incorporating imaging data, such as chest 
X-rays or computed tomography scans, as well as the impact of 
vaccination and emerging SARS-CoV-2 variants on prediction 
accuracy. Finally, external validation using diverse datasets and 
assessing the performance of the developed system in prospective 
studies is crucial before it can be  effectively implemented in 
clinical practice.

This study validated the methodology for developing predictors 
of morbidity and mortality, from data collection to training machine 
learning algorithms. This methodology can be  applied to other 
diseases, especially those where outcomes depend on the interaction 
of multiple variables.
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