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Introduction: Generating physician letters is a time-consuming task in daily

clinical practice.

Methods: This study investigates local fine-tuning of large language models

(LLMs), specifically LLaMA models, for physician letter generation in a privacy-

preserving manner within the field of radiation oncology.

Results: Our findings demonstrate that base LLaMAmodels, without fine-tuning,

are inadequate for e�ectively generating physician letters. The QLoRA algorithm

provides an e�cient method for local intra-institutional fine-tuning of LLMs with

limited computational resources (i.e., a single 48 GB GPU workstation within

the hospital). The fine-tuned LLM successfully learns radiation oncology-specific

information and generates physician letters in an institution-specific style.

ROUGE scores of the generated summary reports highlight the superiority of

the 8B LLaMA-3 model over the 13B LLaMA-2 model. Further multidimensional

physician evaluations of 10 cases reveal that, although the fine-tuned LLaMA-

3 model has limited capacity to generate content beyond the provided input

data, it successfully generates salutations, diagnoses and treatment histories,

recommendations for further treatment, and planned schedules. Overall, clinical

benefit was rated highly by the clinical experts (average score of 3.4 on a 4-point

scale).

Discussion: With careful physician review and correction, automated LLM-based

physician letter generation has significant practical value.

KEYWORDS

radiation oncology, data privacy, parameter-e�cient fine-tuning, LLaMA, fine-tuning,

physician letter, large language model, LLM

1 Introduction

Recently, advancements in neural network architectures (Huang et al., 2024a), such as
Transformers (Vaswani et al., 2017), and effective training strategies, including supervised
fine-tuning (Ziegler et al., 2019) and reinforcement learning with human feedback
(Christiano et al., 2017), have significantly enhanced the capabilities of large language
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models (LLMs). Coupled with the increasing availability of
computational resources and extensive training data, these
developments have led to the release of several prominent LLMs,
such as ChatGPT (Brown et al., 2020; Thapa and Adhikari, 2023),
Gemini (Islam and Ahmed, 2024), LLaMA (Touvron et al., 2023),
and PaLM (Singhal et al., 2023). These models have revolutionized
diverse domains, including medicine (Singhal et al., 2023), by
bringing transformative impacts on various applications.

In addition to their general knowledge, LLMs have
demonstrated a certain level of specialized medical expertise
including the field of radiation oncology. The general capabilities
and limitations of GPT-4 within radiation oncology have been
discussed extensively (Putz et al., 2024). The performance of
LLMs has been benchmarked using the standard ACR Radiation
Oncology In-Training (TXIT) exam (Huang et al., 2023), custom
radiation oncology physics questions (Holmes et al., 2023), patient
care questions (Yalamanchili et al., 2024), and other general
multiple-choice questions in radiation oncology (Dennstädt
et al., 2024). Additionally, the performance of GPT-4 has been
benchmarked against real, complex cases from the Red Journal
Gray Zone (Huang et al., 2023). LLMs have shown promise
in various radiation oncology tasks, such as medical education
through interactive teaching (Ebrahimi et al., 2023), facilitating
research (Guckenberger et al., 2023), standardizing radiotherapy
structure names (Syed et al., 2020), obtaining informed patient
consents (Moll et al., 2024), exploring personalized treatment
pathways (Lin et al., 2024), and automatically extracting radiation
therapy events (Bitterman et al., 2023; Choi et al., 2023). However,
since LLMs can generate convincing but false responses, there
is a risk of inexperienced users overtrusting these AI-generated
outputs (Guckenberger et al., 2023). To mitigate such hallucination
problems, a new method called ReAct (Reason + Act) has been
proposed for treatment decision support, which constrains GPT-4’s
responses based on given treatment guidelines through in-context
learning (Putz et al., 2024).

Automation in the healthcare sector by LLMs could have great
importance to maintain patient care into the future Janssen et al.
(2024), while enabling cost-efficient healthcare systems that offer
a high standard of care. Because of the dramatic demographic
changes inmost western countries, an increase in patients requiring
health care services is projected to meet a shrinking supply of
healthcare workers in the coming years (Jones and Dolsten, 2024).
Already by 2030, a shortage of 1.2 million registered nurses and
121,900 physicians is expected for the US (Markit, 2017; Office,
2020), while a deficit of 488,000 health care workers has been
forecasted for the UK (Office, 2020). Partially automating simple
or bureaucratic tasks like filling out forms, writing reports, and
managing medical records with LLMs could make healthcare
systems more efficient and mitigate the expected demographic
impact (Fleming et al., 2024; Goel et al., 2023). As a shortfall in
physicians has been shown to increase patient mortality (Rocks
et al., 2021), LLM-automation of simple tasks like physician letter
generation, could even positively affect clinical outcomes by freeing
up physician resources for the tasks where they are needed themost.

Despite the promise of LLMs in various radiation oncology
applications and the broader field ofmedicine, data privacy remains
a pressing concern, particularly under regulations such as the

EU Medical Device Regulation (Beckers et al., 2021) and the EU
General Data Protection Regulation (GDPR) for health data. Most
LLMs, including GPT-4, are proprietary AI models. Their use in
clinical settings requires data sharing to external AI hosting service
providers, raising significant security and privacy issues for patient
data. For instance, although ChatGPT users can disable historical
chat logs, conversation data is retained for 30 days to monitor
data misuse according to OpenAI documents (OpenAI, 2024).
Furthermore, OpenAI has faced criticism for allegedly using private
or copyrighted data to train GPT-4 without obtaining necessary
consent agreements (Khowaja et al., 2024). To address data privacy
concerns, open-source LLMs such as LLaMA (Touvron et al., 2023)
have emerged, which can be deployed locally within hospitals.
Local training and inference of LLMs within a hospital’s local IT
infrastructure is very promising, as it eliminates the risk for data
sharing, maximizes patient data safety and minimizes regulatory
issues. Fine-tuned LLaMA-2 models have been reported to achieve
performance comparable to proprietary counterparts like GPT-
3.5 (Nievas et al., 2024). Examples of such fine-tuned LLaMA
models, including ChatDoctor (Li et al., 2023) and HuaTuo (Wang
et al., 2023), have demonstrated promising performance in clinical
knowledge applications. In April 2024, MetaAI released LLaMA-
3 (Dubey et al., 2024), which is announced to offer performance
comparable to GPT-4. In this work, we aim to fine-tune and
evaluate LLaMA-3 as a local LLM for the task of generating
physician letters in the field of radiation oncology, illustrating
how LLM technology can be leveraged in clinical practice by local
deployment within hospitals.

2 Methodology

2.1 Dataset construction

In this study, two types of texts were generated using fine-tuned
LLMs: patient case summary reports and physician letters. Both
types of texts provide an essential overview of patients’ situations,
aiding other physicians, healthcare providers, and patients in
understanding and communicating the most important medical
characteristics of a patient case. Summary reports are commonly
used in tumor board andward round presentations as well as within
electronic health records, while physician letters inform patients
or other medical departments about diagnoses, medical history,
and treatment plans. Manually writing these letters often is a time-
consuming and tedious task for physicians, which to a large part
may involve rearranging textual information that is represented
elsewhere, e.g. in previous medical documents. Therefore, the
automatic generation of such letters using a localized LLM holds
significant clinical value.

A set of physician letters were collected from the Department
of Radiation Oncology at University Hospital Erlangen, Germany,
spanning from 2010 to 2023. For the generation of summary
letters, 560 cases with comprehensive diagnosis and treatment
records were extracted and formatted in a input-and-output style
for fine-tuning. After removing all sensitive patient data, the
patient’s diagnosis and oncologic history were used as model
input whereas the corresponding summary letter served as the
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output label for LLM fine-tuning. An example is given in the
Supplementary material. The summary report generation task
was a trial experiment for us to determine optimal fine-tuning
parameters for the physician letter generation task. For physician
letter generation, 14,479 letters were used for fine-tuning, where all
the information including patient- and physician-specific private
information was kept. Ten entirely independent cases, not included
in the training dataset, were set aside for testing two primary
tasks: summary report generation and physician letter generation.
The model’s input was the tabular data of the original physician
letter head, which included the date of the document creation, the
physician author of the letter, the patient demographic information,
diagnoses and medical history, the planned treatment as well as
the recipient of the letter. For practical use at our institution, this
information can be simply copied from other sources, significantly
enhancing efficiency for practical deployment. The model was
fine-tuned to predict the written section of the original physician
letter beginning with the salutation and ending with the physician
signatures. Given that German is the official language at our
hospital and the pretrained LLMs have the capability to understand
German, all input information was in German. The summary
reports were generated in English, while the physician letters
were generated in German to allow for realistic evaluation by the
assessing physician raters as well as for actual clinical deployment.
For the purpose of this manuscript, all letters were translated into
English to facilitate understanding by the international community.
All letter excerpts shown in this manuscript were fully anonymized,
which included shifting of dates by an arbitrary interval, while
preserving the relative time intervals within a physician letter as
well as the aspects relevant to the results and the discussion. The
use of physician letters in this work was in accordance with the
ethical standards of the institutional research committee and local
legislation (BayKrG Art. 27) as well as with the 1964 Helsinki
declaration and its later amendments. Broad consent for use of
patient data for scientific purposes was given by all patients Zenker
et al. (2022).

2.2 Model fine-tuning

2.2.1 Base models
The LLaMA-2 Touvron et al. (2023) and LLaMA-3 (Dubey

et al., 2024) models, released by Meta on July 18, 2023, and
April 18, 2024, respectively, were used as pretrained base models.
These models can be fine-tuned locally within an institution,
ensuring data privacy during both the fine-tuning and final
deployment phase. The LLaMA-2 family includes pretrained
models with parameter sizes of 7B, 13B, 34B, and 70B, where
larger parameter sizes indicate higher generation capabilities but
also require significantly more computational resources. The
LLaMA-3 family offers models in two sizes: 8B and 70B. Each
pretrained model has a corresponding instruction fine-tuned
version for dialog-related tasks (e.g., LLaMA-3-8B-Instruct) as
well as a general, non-instruction fine-tuned version for text
completion tasks (e.g., LLaMA-3-8B). For the tasks of patient cases
summarisation and physician letter generation in this work, the
general, non-conversational LLaMA-3 model variants were directly

function LoRA(W0,A,B,x)

Frozen Input: Pre-trained weight matrix

W0 ∈ R
d×k

Trainable additional parameters for fine-tuning:

Low-rank matrices A ∈ R
r×k,B ∈ R

d×r

Input: Input representation x ∈ R
d

Output: Adapted output representation y ∈ R
k

y←W0x+(BA)x ⊲ Apply LoRA reparametrization

return y

end function

Algorithm 1. LoRA: Low-Rank Adaptation for LLMs (Hu et al., 2022)

fine-tuned for their respective downstream tasks. Due to limited
computational resources available in a hospital setting, the 13B
LLaMA-2 model and the 8B LLaMA-3 model were utilized for
further fine-tuning.

2.2.2 Low-rank adaptation of LLMs
Due to the large number of parameters in LLMs, it is inefficient

to fine-tune all the parameters. Therefore, parameter-efficient fine-
tuning (PEFT) techniques (Houlsby et al., 2019; Li and Liang,
2021; Liu et al., 2024) are preferred, which keep the parameters of
pretrained LLMs frozen and only need to train a few parameters
added for a specific down-stream task. Some PEFT methods
(Houlsby et al., 2019; Rebuffi et al., 2017; Lin et al., 2020)
apply adapter modules for fine-tuning, which achieve fine-tuning
effectively, but lead to latency in inference due to the lack of
parallelism at the additional adapters. Prompt fine-tuning methods
(Li and Liang, 2021; Liu et al., 2024) are challenging to search for
optimal prompts and typically lead to reduced performance due to
the reduced token size available for down-stream tasks. Since LLMs
are typically overly parameterized and their performance relies on
certain intrinsic low dimensions (Aghajanyan et al., 2021; Li et al.,
2022), low-rank adaptation (LoRA) (Hu et al., 2022) of LLMs has
emerged as the most widely adopted method of the PEFT family.

The fundamental idea of LoRA is illustrated in Algorithm 1.
When a pretrained LLM is denoted by a high-dimensional matrix
W0 ∈ R

d×k with large dimension sizes d and k, its fine-tuned
version is denoted by W1 ∈ R

d×k, which can be decomposed as
W1 = W0 + 1W. According to the low-rank assumption, the
difference 1W can be represented by the multiplication of two
matrices A ∈ R

r×k and B ∈ R
d×r , i.e., 1W = BA, where the

dimension/rank r is much smaller than d and k. Because of the
low rank design, LoRA is much more efficient in computation than
other PEFT methods. Moreover, as the additional parameters of A
and B are added in parallel to the pretrained LLM parameters W0,
the latency problem in inference is avoided.

A key objective of this work is to develop a standardized
workflow that enables small-scale medical institutions to fine-
tune their own LLMs using local, private medical data. Reducing
training costs and computational expenses is therefore highly
significant. In this context, the quantized LoRA (QLoRA) algorithm
(Dettmers et al., 2024) provides a morememory- and computation-
efficient fine-tuning solution compared to standard LoRA.
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QLoRA utilizes quantization techniques to convert conventional
16-bit pre-trained LLMs into 8-bit or 4-bit low-precision
models, maintaining performance without significant degradation
(Dettmers et al., 2024). Additionally, QLoRA introduces paged
optimizers (Dettmers et al., 2024), which address the out-of-
memory issue caused by memory spikes during training. This
is achieved by temporarily offloading optimizer states from the
GPU to the CPU memory, allowing the GPU to handle immediate
high memory demands without crashing. Once memory usage
stabilizes, the state is transferred back to the GPU. This approach
significantly enhances the feasibility of training large models in
resource-constrained environments.

2.3 Experimental setup

2.3.1 Training details
The base LLaMA models (the 13B LLaMA-2 model and the

8B LLaMA-3 model) were fine-tuned with QLoRA using two
NVIDIA A6000 GPUs (48 GB memory). A max length of 1,500
and 2,000 tokens, respectively, was set for the input sequences
fed to the LLaMA models for the patient case summarisation and
physician letter generation tasks. The LoRA rank r was set to 32
and a scaling factor of 64 to increase the contribution of low-rank
adaptions. The dropout rate for LoRA was set to 0.05. The target
weight matrices in LLaMA, which LoRA was applied to, include
q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj,
and lm_head. The 8-bit paged Adamw optimizer was used with
a learning rate of 1 × 10−5. The batch size for each GPU was
2 and parallel training using two GPUs were enabled. Gradient
accumulation steps were set to 2 to allow for larger effective batch
sizes without requiringmorememory. 500 total iteration steps were
applied for the summary report. For the physician letter generation
task, 15,000 iteration steps were applied, which took around 58
hours. Around 30 GB (%60) and 23 GB (48%) of GPU memory
were used for fine-tuning the 13B LLaMA-2 and 8B LLaMA-3
models, respectively.

2.3.2 Evaluation metrics
The ROUGE scores (Lin, 2004) and a multidimensional expert

rating by five physicians were used to evaluate the performance of
the LLMs.

ROUGE Scores: ROUGE (Lin, 2004) is short for
Recall-Oriented Understudy for Gisting Evaluation, which
is a common metric in the field of natural language
processing (NLP). It compares a model’s text output with
a reference text, e.g., a human generated text for the
same input, to evaluate the similarity. ROUGE scores can
range from 0 to 1, with higher values indicating a greater
alignment between the model output and its corresponding
reference text.

ROUGE scores have different variants, commonly known
as ROUGE-N (including ROUGE-1, ROUGE-2 and ROUGE-L),
which is computed based on N-grams. An N-gram is a term
of N words. For example, a reference sentence “I love machine
learning” is divided to a list of [“I”, “love”, “machine”, “learning”]

for 1-grams, and a list of [“I love”, “love machine”, “machine
learning”] for 2-grams. Correspondingly, an output candidate
sentence “I like machine learning very much” is divided to [“I”,
“like”, “machine”, “learning”, “very”, “much”] for 1-grams and [“I
like”, “like machine”, “machine learning”, “learning very”, “very
much”] for 2-grams, respectively. With such N-grams, the recall,
precision, and F1measures of ROUGE-Nmetrics can be computed.
Recall is defined as the overlapping number of N-grams divided by
the number of N-grams in the reference, e.g., recall of ROUGE-1 =
3/4 for the given example; precision is defined as the overlapping
number of N-grams divided by the number of N-grams in the
candidate sentence, e.g., precision of ROUGE-1 = 3/6 for the given
example. The F1 measure is defined as F1 = 2 * recall * precision /
(recall + precision), e.g., F1 measure of ROUGE-1 = 0.6. Note that
in the example “love” and “like” have a similar semantic meaning,
but are considered as different words in ROUGE scores.

Expert rating: The ROUGE scores provide a quantitative
analysis of the similarity between reference and LLM-generated
physician letters. However, ROUGE scores have a lot of
limitation in evaluating the medical context. Therefore, the
generated physician letters were further evaluated on a 4-point
scale across multiple dimensions by 5 physicians: correctness,
comprehensiveness, clinic-specific style, and practicality. Note that
the physician raters had access to the LLM input data, the LLM
predicted letters, and the original physician-created reference
letters. The scores for different dimensions are defined as the
following:

• Correctness:
Score 1—Serious errors, risk for incorrect clinical decisions.
Score 2—Relevant errors, without clinical impact.
Score 3—Minor inaccuracies, irrelevant to the patient case.
Score 4—The letter contains no errors.

• Comprehensiveness (need for adjustments):
Score 1—The letter is so incomplete that it is faster to rewrite
the letter.
Score 2—The letter needs major adjustments > 1 min.
Score 3—The letter needs minor adjustments ≤ 1 min.
Score 4—The letter is complete and does not require any
adjustments.

• Clinic/institute specific content and style:
Score 1—No clinic-specific content or adaptation to the local
letter style.
Score 2—Very little clinic-specific content or adaptation to the
local style.
Score 3—The letter contains significant clinically specific
content or adaptations to the local style.
Score 4—The letter completely reflects the style of a local letter.

• Benefit in practice (practicality):
Score 1—No use for letter writing.
Score 2—Small benefit for letter writing.
Score 3—Moderate benefit for letter writing.
Score 4—Great benefit for letter writing.

For correctness, a note was added: Please do not evaluate dates
that are not included in the input data, these are estimated by the
AI based on the dates within the input data.
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FIGURE 1

The outputs of the locally fine-tuned LLaMA-2 (center) and LLaMA-3 (bottom) models compared to the baseline LLaMA-2 model in an exemplary

case for the task of patient case summarisation.

3 Results

3.1 Summary report generation task

The input data of an exemplary case is displayed in
Supplementary Figure 1. The input document for the patient case
summarisation task included the patient’s primary diagnoses,

secondary diagnoses, tumor-specific history, clinical course and
planned follow-up procedures. Without fine-tuning, the 13B
LLaMA-2 model generated some texts irrelevant to the input case,
as displayed in Figure 1. In contrast, the fine-tuned LLaMA-2 and

LLaMA-3 models both provided a relevant summary of the patient
case despite some inaccuracies, as displayed in Figure 1.

The ROUGE scores for 10 patient case summaries generated

by the LLaMA-2 and LLaMA-3 models are displayed in Figure 2.
The F1 measures of ROUGE-1, ROUGE-2, and ROUGE-L
were 0.161, 0.025, and 0.099 for the 13B LLaMA-2 model
without fine-tuning, respectively. After fine-tuning LLaMA-2,

they were improved to 0.352, 0.156 and 0.234 with statistical
significance (p≤0.01 paired t-test, Figure 2C) for ROUGE-1,
ROUGE-2, and ROUGE-L, respectively. This highlights the benefit
of fine-tuning. Interestingly, compared with the fine-tuned 13B
LLaMA-2 model, the fine-tuned 8B LLaMA-3 model further
improved the ROUGE scores, despite its lower number of
model parameters.

3.2 Physician letter generation

Due to the superior performance of the fine-tuned 8B LLaMA-
3 model, it was selected for the subsequent automatic physician
letter generation task. The input data for the automated physician
letter generation task included the data from the original letter
head including the date and physician author of the letter, the
recipients of the letter, the patient’s demographic information,
diagnoses, as well as the medical history with information on
planned or recommended future procedures in tabular form. Ten
physician letters automatically created by the locally fine-tuned
8B LLama-3 model were evaluated by 5 physicians across four
dimensions. The distributions of physician rating scores over
evaluation dimensions and cases are displayed in Figures 3A, B,
respectively. The generated physician letters got average scores of
2.9, 2.8, 3.3, and 3.4 over correctness, comprehensiveness, clinic-
specific style, and practicality, indicating the decent performance
of the locally fine-tuned LLM. Among all the cases, Case #3 and
Case #10 achieved high average scores of 3.7 over all the evaluation
dimensions, whereas Case #9 got the lowest average score of 2.5.

The input data of Case #1 is displayed in Figure 4. The fine-
tuned LLaMA-3 output and the reference output (original letter)
are displayed in Figure 5, where the highlighted text segments
correspond to the text sections with matching colors in the input
data (Figure 4). For the illustrative example of Case #1, the output
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FIGURE 2

The ROUGE scores of LLaMA models for the task of patient case summarisation with and without local fine-tuning on institutional data. The error

bars indicate standard deviations. (A) Recall. (B) Precision. (C) F1.

FIGURE 3

The distribution of average physician rating scores for the physician letters automatically generated by the locally fine-tuned 8B LLaMA-3 model. The

error bars indicate standard deviations. (A) Distribution over dimensions. (B) Distribution over cases.

of the fine-tuned LLaMA-3 model is correct in the following
aspects:

• Salutations: The model correctly recognized the salutations
of the recipient, the director of the clinic, and the physician
of the clinic. Note that the information of the director (i.e.,
Prof. Dr. R. Fietkau) and the senior physician title of the letter
author was not directly provided in the input data. However,
the model has learned such information from local fine-tuning

based on the large number of institution-specific training
letters.

• Consulting date: The date of the physician letter was
18.02.2019. In the generated letter, instead of copying this
date, the model chose an earlier date for the date of the actual
consultation, which is accurate since physician letters in the
training and test data had usually been written one day after
the consultation. However, rather than selecting 17.02.2019
(one day earlier), the model opted for 15.02.2019. In this
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FIGURE 4

Input medical data of Case #1 for the physician letter generation task. Note that some keywords are highlighted in bold by the authors for better

visualization, but the content was provided in plain text to the LLM. Certain private information is anonymized with the symbol *. Di�erent segments

of the patient input information in regard to the model output (Figure 5) are highlighted by di�erent colors.

specific case it appears that the model correctly inferred that
17.02.2019 was a Sunday and thus selected the last workday,
which was Friday, 15.02.2019.

• Diagnosis and treatment history: In the given case, the
model correctly recognizes the primary diagnosis (prolactin-
producing pituitary adenoma) and the past treatment of
transsphenoidal surgery in the clinic of the recipient.

• Recommended treatment: The model also correctly
summarized the recommended treatment method, which is
fractionated stereotactic radiotherapy.

• Correct prediction that the patient needs further time for
consideration: For Case #1, the keyword “recommended
treatment” is present, prompting the model to predict
that the patient needs more time to consider the
recommended treatment methods. In other cases, the
keyword “recommended treatment” is replaced with the
keyword “planned treatment” (see Supplementary material).
Interestingly, we found in systematic experiments that the
single keyword “recommended treatment” vs. “planned
treatment” in the input text seems to determine the general
content of the output text for letters from the physician author
Dr. G. Lahmer. When “planned treatment” is used, the model
predicts that the patient has agreed to the recommended
treatment methods and summarizes the specific scheduled

radiotherapy planning procedures for the patient. In contrast,
if the keyword “recommended treatment” is used instead, the
model always predicts that the patient requires more time for
consideration. We further observed that this switch-like effect
of the single keyword “recommended treatment” vs. “planned
treatment” on the LLM output is mostly specific to Dr. G.
Lahmer indicating that the LLM was able to learn the writing
habits of different physicians.

The fine-tuned LLaMA3 model had decent performance
for Case #1. However, the scores of certain cases were lower,
e.g., Case #2 and Case #9. In the input of Case #2, a
recommendation of “interstitial brachytherapy alone, e.g. as
permanent brachytherapy with iodine seeds” was provided. With
such input information, the fine-tuned model predicted the
potential treatment approaches of surgery and radiotherapy, which
is correct in general. However, in the original letter, different
radiotherapy treatment approaches were discussed in more detail,
which included external-beam radiotherapy (EBRT), combined
EBRT with brachytherapy boost, permanent brachytherapy with
iodine seeds alone, temporary brachytherapy with iridium-192,
pulsed dose rate (PDR) brachytherapy, and high dose rate (HDR)
brachytherapy. Moreover, the original letter specified the patient’s
preferred treatment time in spring 2022. Because of such missing
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FIGURE 5

Fine-tuned 8B LLaMA-3 model output of Case #1 for the physician letter generation and its corresponding reference output. The patient name is

anonymized with the symbol *. The highlighted text segments correspond to the information in the input data (Figure 4) highlighted with the same

color.

details, the output achieved a mean score of 2.8, which is relatively
low.

In Case #9 displayed in Table 2, the generation of a physician
letter for a female patient with recurrent rectal carcinoma was
evaluated. The fine-tuned model’s prediction and the original letter
both emphasized the patient’s refusal of surgical resection to treat
the rectal carcinoma. However, the original letter provided more
detailed information about the reason for her decision: due to the
risk of a possible colostomy, the patient feared that the plaster used
in the colostomy area would trigger a severe allergic reaction. The
critical difference between the prediction and the original letter
lies in the patient’s decision regarding interstitial brachytherapy.
The fine-tuned LLaMA-3 LLM predicted that the patient agreed to
interstitial brachytherapy, and dates for the planned brachytherapy
procedures were scheduled. In contrast, the original letter indicated
that the patient refused the interstitial brachytherapy option due to
the risk of toxicity, which also bears the risk of secondarily requiring
a colostomy due to the high complication risk. Consequently,
she was referred back to her original treatment center for re-
evaluation of surgical resection. Additionally, the fine-tuned model

inaccurately hallucinated a gynecological examination showing a
large tumor infiltrating the intestinal wall in the lower rectum,
which is not consistent with the provided local tumor stage of rcT2
in the input data. In reality, a clinical and sonographic examination
was performed, revealing the previously described tumor measured
approximately 2 cm to 3 cm, located at the 5 o’clock position in the
subserosal layer (SSL). Due to these inconsistencies, the prediction
received the lowest mean score of 2.5.

4 Discussion

This work demonstrates that a local LLM (LLaMA-3) model
can be fine-tuned within the infrastructure of a hospital using
institution-specific data to create a generative AI application for
physician letter writing.We found that the locally fine-tunedmodel
successfully learned the institution-specific style and content of
the physician letters, which is exemplified in Figure 5 and in the
examples provided in the Supplementary material. This included
the salutation and the signatures of the letter with the correct
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TABLE 1 The LLM input, output, and reference from the original physician letter for Case#2.

Input ...
09/2014: HIFU hemiablation on the left.
02/2016: HIFU hemiablation on the left.
...
Recommendation: Interstitial brachytherapy alone, e.g. as permanent brachytherapy with
iodine seeds.
...

Output ...
In the case of prostate cancer and history after two HIFU treatments of the left prostate,
imaging now shows a high suspicion of a local recurrence on the left posterolateral side. We
spoke to the patient about potential treatment methods (surgery or radiotherapy). In
particular, we explained the options for radiotherapy to him and recommended interstitial
brachytherapy alone. At the end of the conversation, the patient said that he now needed
some time to think about it. He would contact us himself if he wanted radiotherapy.
...

Reference ...
In the case of low-risk prostate cancer and history after 2x HIFU, we have now spoken to
the patient with a persistent PSA value of approx. 7 ng/ml about potential radiotherapy
methods (percutaneous radiotherapy, combined percutaneous radiotherapy with
brachytherapy boost, permanent brachytherapy with iodine seeds alone, temporary
brachytherapy with iridium-192, PDR procedure, HDR procedure). The patient is leaning
toward treatment with iodine seeds. At the end of the conversation, he said that if he
wanted radiotherapy, he would like to have it done in spring 2022 and would contact him
himself to coordinate further appointments.
...

The texts in red highlight the major differences between the fine-tuned LLaMA-3’s output and the original physician letter.

titles of the physicians, but also the sequence of information in
the main text, the content elements of the letter, the style of
writing as well as commonly used expressions. In stark contrast,
a non-fine-tuned LLaMA model was not capable of producing
any reasonable output for the related task of case summarization
(Figure 1). Hospitals possess a large amount of patient data that
forms the ideal training corpus for developing institution-specific
LLM-based applications. For this work, 14,479 physician letters
could easily be downloaded and processed for local LLM fine-
tuning. This wealth of data within hospitals currently can only
be hardly tapped without local model training, because of data
privacy regulations as well as data safety concerns. Local LLM fine-
tuning and inference can avoid any sharing of data to AI hosting
providers, increasing patient data safety as well as independence
from centralized institutions. Decentralized training and local
execution of LLMs could make health-care systems more resilient,
because internet service providers (ISPs) as well as AI hosting
companies can form single point of failures that could widely affect
health-care services. Whereas de novo training of LLaMA-3-8b
had been performed by Meta AI on 16,384 H100 80 GB GPUs
requiring 1.3 million GPU hours (Dubey et al., 2024), LLaMA-
3-8b model fine-tuning with the QLoRA technique in this work
was possible in 58 hours with a single 48Gb Nvidia RTX A6000
GPU on a hospital workstation. It is interesting to note this vast
decrease in computational requirements for fine-tuning an LLM as
compared to de novo training, which is enabled by LoRA (Low-
rank adaptation) (Hu et al., 2022) combined with quantization (i.e.,
QLoRA) (Dettmers et al., 2024) and makes local development of
specialized LLMs within hospitals feasible.

The LLM-generated physician letters overall received decent
ratings by the five physician evaluators, especially in the category
of practicality (i.e., benefit in practice, mean 3.4 out of 4). Despite
the promising score, there are several limitations that need to be

addressed. First, the study’s limited sample size (n = 10) suggests
that further research is needed to assess the fine-tuned model’s
generalizability and clinical impact. Therefore, we are further
planning for a real clinical implementation of the developed letter
generation model via an intranet web interface in the context of
a prospective clinical trial to quantify the time-saving and clinical
benefits in practice. Another limitation is the incapacity to generate
content beyond the provided input data. For instance, The results
of Case #2 (Table 1) and Case #9 (Table 2) revealed this limitation
in the physician letter generation tasks. In the input information
not all details of the conversation between the patient and the
clinician were included. Consequently, the fine-tuned model is
restricted in its ability to add such information, such as the reason
for the refusal of surgical resection in Case #9. Nevertheless,
Case #2 and Case #9 show that the fine-tuned LLaMA-3 model
has a certain ability to deduct the content beyond the input
information, despite of inaccuracy. With more training data or
extended input information, the fine-tuned model could show
improved performance on such challenging cases. Nevertheless, it
is mandatory for physicians to carefully review and correct the
LLM-predicted letter in every patient case in a similar fashion to
other automation tasks within radiation oncology (Huang et al.,
2022; Erdur et al., 2024; Weissmann et al., 2023). The experiences
of the present evaluation and the feedback from the physician
raters indicate that this manual review could be possible in ≤ 1
minute for most cases. Privacy concerns also pose a significant
challenge, particularly when sharing or publishing LLM models
fine-tuned on institutional data. In contrast to other tasks like auto-
segmentation, where interinstitutional sharing of model weights
has been proposed as a solution for privacy-preserving training
on multicenter data (Huang et al., 2024b), it cannot be excluded
that privacy-sensitive information could be extracted from the fine-
tuned LLM. Therefore, advanced privacy-preserving techniques,
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TABLE 2 The LLM input, output, and reference from the original physician letter for Case#9.

Input Diagnoses:

Rectal carcinoma lower third cT3 cN+ cM0
Secondary diagnoses:

Bland liver cysts
Tumor-specific anamnesis:

01/2020: Blood in the stool.
Colonoscopic diagnosis with removal of multiple polyps, including the distal third of the rectum with exophytic
growth.
Histopathological adenoma parts with high-grade suspected carcinoma.
Diagnostic staging completion MRI/CT/endosonography: Suspected deep-seated rectal carcinoma, cT3 cN+
cM0.
01/21/2020: Interdisciplinary tumor conference consensus (University Hospital Regensburg):
Neoadjuvant radiochemotherapy for curative surgery and additional appendectomy (polyp residue).
02-03/2020: Definitive radiochemotherapy (radiotherapy Regensburg):
1.8 Gy to 50.4 Gy in the area of the rectum and corresponding lymph drainage area.
Chemotherapy:
2 courses of 5-Fu.
04/2020: Patient refuses surgical resection. Change of concept from neoadjuvant to definitive, corresponding
local dose escalation in the area of the primary tumor up to 60.4 Gy + additional 2 courses of FOLFOX.
06/2020: Rectoscopic residual tumor cT2 cN0.
Planned: Evaluation of the possibility of interstitial brachytherapy.

Output ...
The patient was definitively irradiated for a rectal carcinoma using neoadjuvant chemoradiotherapy. The patient
refused the recommended surgical resection, so that chemoradiotherapy was considered definitive and the dose
was increased locally accordingly. Ms. ***** is currently presenting to us with persistent hematochezia. Our
gynecological examination shows a large tumor in the area of the lower rectum that infiltrates the intestinal wall
in the area of the lower rectum. We informed Ms. ***** about the possible risks and the expected benefits of
interstitial brachytherapy and she agreed to the therapy. The following appointments have already been made
for the patient:
06.08.2020 preparation for brachytherapy procedure.
10.08.2020 brachytherapy implantation.
...

Reference ...
The patient underwent neoadjuvant radiochemotherapy for the rectal carcinoma she was diagnosed with in
the above-mentioned stage at the Regensburg Clinic. However, Ms. ***** refuses surgical resection of the rectal
carcinoma due to the risk of a possible colostomy. The patient is afraid that the plaster used in the colostomy
area would trigger a strong allergic reaction. We carried out a clinical and sonographic examination of the
patient. This showed the previously described tumor, measuring approximately 2 cm to 3 cm, at 5 o’clock SSL.
Brachytherapy would in principle be technically feasible, but even with brachytherapy there is a risk that a
colostomy will be necessary due to toxicity caused by the brachytherapy. For this reason, Ms. ***** is currently
opposed to this treatment option, so we have referred her back to the Regensburg Clinic for re-evaluation of
surgical resection of the known rectal carcinoma. If the patient changes her mind, she can be re-presented at any
time.
...

The texts in red highlight the major differences between the fine-tuned LLaMA-3’s output and the original physician letter.

such as differential privacy, federated learning, or synthetic data
generation, could be explored to mitigate these risks (Iqbal et al.,
2023; Han et al., 2023). Moreover, since not all institutions have the
staff or technical expertise to refine models locally, future research
could focus on developing user-friendly tools and frameworks
for secure and privacy-preserving fine-tuning and deployment of
LLMs in resource-constrained environments. Finally, the inherent
risk of hallucinations posed by LLMs is still present. This risk
stresses the importance of thorough examination and validation of
each generated letter.

While LLaMA-3 8b has no formal multilingual support (Dubey
et al., 2024), it is interesting to observe that the fine-tuned model
in general showed good performance with the German physician
letter task. This finding can be explained by the fact that LLaMA-
3 8b nevertheless was pretrained on multilingual data. Moreover,
the local fine-tuning was performed on a considerable amount
of German physician letters for a large number of iterations. We
only observed one potentially language related limitation regarding
the date format. The date format in English, especially in the

United States, is mm-dd-yyyy, while the date format in Germany
is dd.mm.yyyy. In the evaluation, we found that the fine-tuned
LLM in general could correctly handle the German date format but
made mistakes in the presence of errors within the input data. For
example, in the original medical record shown in Table 3, the doctor
accidentally put the start time of the treatment at the end position
inducing an error in the LLM’s physician letter prediction.

At the time of writing, we did not find any prior studies
reporting local fine-tuning of LLMs for institution-specific
physician letter generation. However, several research papers (Tung
et al., 2024; Ruinelli et al., 2024; Schoonbeek et al., 2024) have
recently explored using general purpose LLMs like ChatGPT-4
with zero-shot prompting to automatically create physician letters
(Guo et al., 2024) and patient case summaries (Barak-Corren
et al., 2024). Tung et al. (2024) used ChatGPT-4 to generate
discharge letters in urologic patients. The authors performed
zero-shot prompting of ChatGPT-4, while appending the case-
specific medical record to the input prompt. The ChatGPT-4-
generated discharge letters were subsequently compared against
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TABLE 3 An example with date-related input errors inducing a misinterpretation of the date format (mm-dd-yyyy vs. dd.mm.yyyy) within the model’s

output.

Input with errors Output of fine-tuned LLaMA 3-8b

10.03.2014–04.03.2014: Chemotherapy: CCNU (100 mg/m2

orally, day 1) Procarbacin (60 mg/m2 orally, days 8–21)
The patient received chemotherapy from October 2014–March 2014, but it was
discontinued due to severe side effects

manually written letters created by junior physicians in a single-
blinded fashion. Interestingly, GPT-4 created letters were superior
to human-generated letters regarding information provision, while
there was no significant difference in all other investigated domains
including overall satisfaction of the blinded physician rater panel.
Ruinelli et al. employed a similar strategy providing ChatGPT
with patient-specific clinical notes and an input prompt to create
discharge summaries in Italian for medical and surgical cases
(Ruinelli et al., 2024). In addition, Schoonbeek used GPT-4
through an electronic health record system to create patient case
summaries in Dutch language. Though GPT-4-generated patient
summaries were less concise than those written by physicians,
overall evaluation scores were equal and there even was a slight
preference toward the LLM-created summaries (57% vs. 43%) with
the ten physician raters (Schoonbeek et al., 2024). Conversely,
Guo et al. (2024) used LLaMA-3-8b without fine-tuning to
automatically create two specific sections of the medical discharge
letter (“Brief Hospital Course” and “Discharge Instructions”).
Similarly to the aforementioned approaches, the authors also
designed a dedicated zero-shot prompt including the patient-
specific medical information and achieved high NLP-evaluation
metrics. All of these studies together with the observations from
the present work suggest that LLMs have significant potential in
supporting hospitals and clinicians with clinical documentation
tasks and physician letter writing. However, despite the widespread
use of OpenAI GPT-4 in most studies, its practical application in
clinical settings with real patient data is often hindered or outright
prohibited by data privacy regulations in many jurisdictions.
Therefore, studies on open-source LLMs like LLaMA-3, which
can be implemented within a hospital’s IT infrastructure, are of
particular relevance.

5 Conclusion

In the field of radiation oncology, the automatic generation
of physician letters has the potential to offer significant clinical
value. Our study has demonstrated that base LLaMA models
without fine-tuning are inadequate for generating physician
letters effectively. However, the QLoRA algorithm offers an
efficient method for fine-tuning LLaMA models, even with limited
computational resources, while preserving data privacy. We have
shown that the 8B LLaMA-3 model can be successfully fine-
tuned on a 48 GB GPU using QLoRA. The fine-tuned model has
effectively learned radiation oncology-specific information and can
generate physician letters in an institution-specific style, which
could provide practical value in assisting physicians with letter
generation. Future work should focus on larger-scale testing and
implementation trials to quantify the time-saving and clinical
benefits in practice.
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