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Active learning enables prediction models to achieve better performance faster

by adaptively querying an oracle for the labels of data points. Sometimes the

oracle is a human, for example when a medical diagnosis is provided by a

doctor. According to the behavioral sciences, people, because they employ

heuristics, might sometimes exhibit biases in labeling. How does modeling the

oracle as a human heuristic a�ect the performance of active learning algorithms?

If there is a drop in performance, can one design active learning algorithms

robust to labeling bias? The present article provides answers. We investigate

two established human heuristics (fast-and-frugal tree, tallyingmodel) combined

with four active learning algorithms (entropy sampling, multi-view learning,

conventional information density, and, our proposal, inverse information density)

and three standard classifiers (logistic regression, random forests, support

vector machines), and apply their combinations to 15 datasets where people

routinely provide labels, such as health and other domains like marketing and

transportation. There are two main results. First, we show that if a heuristic

provides labels, the performance of active learning algorithms significantly drops,

sometimes below random. Hence, it is key to design active learning algorithms

that are robust to labeling bias. Our second contribution is to provide such a

robust algorithm. The proposed inverse information density algorithm, which is

inspired by human psychology, achieves an overall improvement of 87% over

the best of the other algorithms. In conclusion, designing and benchmarking

active learning algorithms can benefit from incorporating themodeling of human

heuristics.

KEYWORDS

active learning, human in the loop, human behavior, biases, robustness, fast-and-frugal

heuristics

1 Introduction: active learning with human
heuristics

Building prediction models is crucial for automating management decision processes

because it enables organizations to make informed decisions based on data rather

than relying solely on intuition or past experiences. There is an increasing need

for training such models in conditions where obtaining labels is significantly more

expensive than their attributes. For example, the safety of automobile designs is

assessed by crash tests under carefully controlled conditions which is expensive.

An active learning algorithm selects efficiently data points for training prediction

models. This selection is made by adaptively querying an oracle for the labels of
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data points. That is, the training process starts from a small number

of labeled data points and queries the oracle for further labels,

wherein each query is a function of previously provided labels.

Thus, prediction models can achieve better performance faster by

employing active learning modules (Settles, 2009; Monarch, 2021).

Crucially, the oracle providing the labels is typically assumed

to be unbiased (Wu et al., 2012; Cohn et al., 1994; Lan et al.,

2024). This is sometimes a valid assumption when reliable and

accurate data may be gathered through extensive, automated

experimentation, such as the example provided earlier. But in many

situations there is a need to consult a human oracle—a medical

diagnosis must be provided by a doctor, a loan application must be

decided on by a bank manager, and so on. In principle, such cases

could also be approached by automated extensive experimentation,

but there are ethical or business considerations that limit the extent

to which this can be done.

The behavioral sciences, such as the psychology of judgment,

decision-making, and behavioral economics, have found that

people exhibit systematic biases in the sense of deviations from

norms of logic and probability (Kahneman et al., 1982; Gilovich

et al., 2002). Whereas such biases might be attributed to the

structure of the decision environment or can be viewed as adaptive

given a focus on accuracy or transparency (Todd et al., 1999;

Katsikopoulos et al., 2020). This structured decision environment

refers to the heuristics a human uses in decision-making, which

may be biased. It remains a fact that human oracles sometimes

provide biased labels, which challenges the common assumption in

active learning literature.

This calls for an investigation into the impact of human

heuristics used by human oracles on the performance of active

learning algorithms(henceforth AL). Such a study would show

whether AL algorithms are as effective as commonly assumed.

Furthermore, this problem motivates the development of a novel

AL algorithm specifically designed to be robust against human-

induced biases in the labeling process. Our work successfully

addresses both of these objectives.

This research is necessary because investigating the impact of

biased oracles will prompt active learning researchers to consider

human psychology when designing and evaluating algorithms. By

addressing human-induced biases, the development of more robust

AL algorithms can lead to more accurate prediction models with

fewer labeled instances. This improvement will help practitioners

optimize data labeling efforts, enhancing the overall efficiency and

performance of AL systems in the presence of biased human inputs.

The expected outcomes include more reliable models, reduced

labeling costs, and improved algorithmic generalization.

The format of the paper is as follows: Literature pertinent

to the investigation is discussed in Section 2. Section 3

provides a methodological overview, including information on

the experimental design, AL algorithms, and human heuristic

models. Section 4 presents the findings from rigorous investigations

conducted in three phases, followed by the Conclusion.

2 Background literature

In this section, we provide some background on (i) AL

algorithms, (ii) models of human heuristics, and (iii) literature

addressing the research problem, which involves the intersection of

active learning and biased oracles. We discuss the basic concepts;

concrete examples with formal details are given in Section 3, which

describes our methodology.

2.1 AL algorithms

In what follows, we consider a pool-based sampling scenario

where a small number of labeled data points exist and the rest are

unlabeled and available at once.

In the first family of AL algorithms, data points are ranked

according to metrics such as each point’s uncertainty or entropy

(Shannon, 1948). The querying of labels is done based on the

rank obtained over the pool of unlabeled data points. They might

appear too simple, but such algorithms can be comparatively well-

performing (Raj and Bach, 2022; Liu and Li, 2023). Recently,

these methods have shown good performance when applied to

convolutional auto-encoders for image classification (Roda and

Geva, 2024).

The second family of AL algorithms also utilizes uncertainty,

though not of data points per se, but rather uncertainty stemming

from the predictions of classifiers. Each unlabeled data point is

classified in multiple ways to measure this type of uncertainty.

In an initial version of this approach (Mitchell, 1982), multiple

classifiers are used (these classifiers perform well in the pool of

labeled data points). Preference for querying is given to data points

receiving contradicting labels from the classifiers. In a variant of

this approach (Muslea et al., 2006), called multi-view learning, a

classifier is trained with different sets of attributes —these are

the multiple views—and again, preference is given to data points

receiving contradicting labels based on these views.

The third family of AL algorithms considered here tends to

outperform the first two families. The approach is to combine

uncertainty with what is called information density. The aim of

information density is to measure how representative an unlabeled

data point is of the distribution of all unlabeled data points.

The uncertainty and information density measures are typically

multiplied to form the combined measure (Settles and Craven,

2008).

2.2 Models of human heuristics

Answering Herbert Simon’s call for precise models of

how people make decisions under realistic conditions of time,

information, computation, and other resources (Simon, 1990),

the fast-and-frugal heuristics approach has provided mathematical

models that describe how people judge a quantity, choose one of

several options, or classify objects into categories. These heuristics

have been empirically validated (Gigerenzer et al., 2011). While

fast-and-frugal heuristics can perform competitively to standard

statistics and operations research benchmarks or even near-

optimally or optimally (Baucells et al., 2008; Katsikopoulos, 2011)

under certain conditions, they also commit systematic mistakes.

For these reasons, fast-and-frugal heuristics constitute a viable

possibility for modeling how human oracles provide labels.
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A characteristic property of fast-and-frugal heuristics is that

they use a few attributes and combine them in simple ways,

for example, by ordering or summing attributes and relying on

numerical thresholds. The spectrum of fast-and-frugal heuristics

runs from the so-called non-compensatory to fully-compensatory

models. Non-compensatory models make decisions without

allowing for the values of some attributes to compensate for the

values of other attributes. For example, in fast-and-frugal trees

(Martignon et al., 2008), attributes encountered after an exit is

reached cannot reverse the decision embodied in the exit. Of

course, this is the case for all decision trees, but fast-and-frugal trees

are special cases of decision trees (Section 3). In fully compensatory

models, any attribute value can, in principle, compensate for the

values of any other attribute. For instance, this is the case in tallying

(Dawes, 1979), which is a linear model where all attribute weights

equal one. Because these two extremes of the fast-and-frugal-

heuristics spectrum can cover a large part of the behaviors produced

by the heuristics (Katsikopoulos, 2013), thus we consider just fast-

and-frugal trees and tallying as models of human heuristics. It must

be noted that this work is based on the assumption that fast and

frugal heuristics are good models for automating human labeling,

which is based on the work of Gigerenzer et al. (2011) and this

assumption is not validated in this study.

2.3 AL algorithms and biased oracles

A small part of the AL literature has considered biased

oracles. Settles (2009) suggested the possibility of incorrect labeling

because of the human oracle experiencing fatigue due to, for

TABLE 1 Literature relevant to AL with biased oracles.

References Methodology Contribution Research gap

Agarwal et al. (2022) Impact of Behavioral biases such as Hot-hand
fallacy and Regret aversion bias on Active learning
were demonstrated using experiments conducted
on the Pancreatic dataset

Established that behavioral bias reduces
the classification accuracy of the
decision model by at least 20%

The study does not propose novel
strategies to mitigate the impact of
behavioral bias in models.

Sheng et al. (2008) The authors analyze various repeated-labeling
strategies and introduce a robust technique that
combines different measures of uncertainty to
selectively choose data points, demonstrating
improved results over uniform relabeling.

The key contribution is showing that
repeated labeling of selected data points
improves label quality and model
performance, especially in noisy settings
or when processing unlabeled data is
costly.

The study does not account for label
noise caused by systematic human bias,
and the proposed query strategy of
repeated labeling for the same query
may not be cost-effective across all
domains.

Groot et al. (2011) The researchers use a Gaussian Process framework
to model regression with noisy, subjective labels
from multiple annotators, demonstrating through
experiments that their multi-annotator model
outperforms other approaches by effectively
capturing annotators’ expertise and handling
disagreements.

Propose a non-parametric model that
can automatically estimate the reliability
of annotators from data without
requiring prior knowledge.

The estimation of annotator reliability
aids in detecting bias but does not
contribute to its mitigation.

Du and Ling (2010) The authors analyze human-like oracles, assuming
noise decreases with oracle confidence, and design
an active learning algorithm that balances
exploration and exploitation. Empirical validation
on synthetic and real-world datasets shows its
superiority over traditional uncertainty-based
methods.

Introduces a realistic model of human
oracles in active learning, where labeling
noise depends on oracle confidence. The
key contribution is a novel algorithm
that accounts for example-dependent
noise, closely mimicking human
behavior.

The oracle confidence model overlooks
human heuristics, and the proposed AL
algorithm’s repeated re-labeling of
misclassified data points may not be
cost-effective.

Harpale and Yang (2008) They develop an extended Bayesian active learning
strategy tailored to individual users, ensuring that
queries are relevant to their potential ratings. A
comparative evaluation of benchmark datasets
assesses the effectiveness of this personalized
method against a well-established baseline.

Presents a novel approach to
Collaborative Filtering (CF) that
personalizes active learning by querying
only items users are likely to rate,
thereby addressing the criticality in
human labeling.

Oracle modeling does not involve
systematic bias injected by human
heuristic models.

Raghavan et al. (2006) The authors extend the traditional active learning
framework by incorporating feedback on feature
importance alongside labeling instances. They
conduct a series of experiments in text
categorization, comparing the effects of feature
selection and human feedback on classifier
performance and developing an algorithm that
alternates between labeling features and instances.

The study shows that human feedback
on feature relevance improves classifier
performance through feature
re-weighting, outperforming traditional
active learning. Feature labeling is faster
than instance labeling, accelerating
active learning in applications like news
filtering and email classification.

Alternating between querying features
and instances may confuse human
annotators, complicating
implementation. Additionally, the query
strategy doesn’t account for the
heuristics used by annotators.

Hoarau et al. (2024) The paper introduces two active learning
strategies, Klir uncertainty sampling and
evidential epistemic uncertainty sampling, both
based on belief function theory, to address the
exploration-exploitation trade-off and handle
reducible uncertainty.

The proposed methods incorporate
oracle uncertainty into active learning
and demonstrate superior performance
compared to traditional uncertainty
sampling in experimental evaluations,
simplifying computational processes
without relying on specific observations.

Decision strategies used by humans
were not considered toward the
computation of oracle uncertainty.
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FIGURE 1

Methodological framework.

example, having to provide too many labels. Consistently, some AL

algorithms modeling oracles that provide low-quality labels have

been developed (Sheng et al., 2008; Groot et al., 2011). However,

such algorithmsmodel labeling error as random noise or uniformly

distributed error, whereas, as discussed previously, the error is due

to human bias and is systematic.

Agarwal et al. (2022) calculated that labeling biases would

decrease the predictive accuracy of classifiers by at least 20%. In

another approach, Du and Ling (2010) proposed an algorithm with

an exploration and exploitation approach by relabeling data points

that could be wrongly labeled. The oracle here was modeled based

on the assumption that the probability of obtaining biased labels

depends on the maximum posterior probability of an instance that

is computed with the ground truth labels. We consider this idea

promising because it models the effects of oracle behavior.

A detailed discussion of the above literature, along with other

notable studies, is presented in Table 1. It is important to highlight

that none of the current researchmodels the oracle based on human

heuristics or designs AL algorithms with this consideration. This

paper addresses this gap by explicitly modeling oracle behavior

using well-established human heuristics.

3 Methodology

The methodological framework is presented in Figure 1. Out of

the dataset D(X,Y), where Y represents the ground truth labels for

the set of data points X characterized by their attributes, a small

fraction Xseed ⊂ X is used to train the classifier with the labels

provided by the human heuristic. This operation is portrayed in the

left part of the figure. On the other hand, as seen in the right part

of the figure, the remaining large pool of data points Xpool ⊂ X is

used by the AL algorithm to identify the next data point to query.

The queried data point and its heuristic-provided label are used

to retrain the classifier. The accuracy of the whole model M is

recomputed after each query.

We use three standard classifiers, logistic regression (LR),

random forest (RF), and support vector machines (SVM) that were

predominantly used in AL literature (Yang and Loog, 2018; Gu et

al., 2014; Kremer et al., 2014).

3.1 AL algorithms

This section includes a description of three well-known AL

algorithms selected for this study (one from each AL family

discussed in section 2.1), which are not only widely accepted and

commonly used for benchmarking but also well-performing to date

(Liapis et al., 2024; Tan et al., 2024; Moles et al., 2024). Following

this, the novel inverse information density method is presented.

3.1.1 Entropy
The entropy E(x) of a data point x measures the information

required to label this data point with certainty. The following

equation calculates this value, where pM(yi/x) denotes the

probability of a data point x belonging to class yi, ranging over

K possible label assignments. This probability is derived from the

model M, which is trained using the labels acquired up to the

previous query.

E(x) = −
K∑

i=1

pM(yi/x) log(pM(yi/x)) (1)

The unlabeled data point with maximum E(x) is chosen to be

queried:

x∗ = argmax
x∈XU

[E(x)] (2)

3.1.2 Multi-view learning (MVL) with co-testing
The following pseudo-code describes an algorithm that

incorporates uncertainty stemming from using different
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classification processes. There is a single classifier, trained with

two different sets, called views, of attributes (Step 1). Unlabeled

data points with different predicted labels in the two views form

the co-testing set (Steps 2 and 3), where the point with maximum

entropy is chosen to be queried (Step 4).

Input : Labeled set of data points (XL,YL), unlabeled pool of

data points (XU )

1: The labeled data (XL) is split into two attribute sets (views),

X1
L and X2

L, and trains two classifiers using these different views.

2: For each unlabeled data point x in XU , the predictions from

the two classifiers are compared.

3: If the classifiers disagree on the label for x, this point is added

to the co-testing set C. If no disagreements are found, all points in

XU are added to C.

4: x∗ = argmaxx∈C[E(x)]

Output : Data point x∗ to query

It is important to emphasize that the labeled set (XL,YL) is

updated with the newly acquired labels after each query. Similarly,

the queried data point is removed from the pool of unlabeled data

(Xpool) following every query, consistent with standard practices in

other algorithms.

3.1.3 Conventional information density (CID)
This algorithm evaluates data points on two measures. The first

measure captures the uncertainty of a data point’s most probable

label, as formulated below, where K represents the number of

possible labels.

U(x) = 1− max
i∈1,..K

PM(yi|x) (3)

The second measure captures how representative a data point

of the distribution of unlabeled data points xu by using the

cosine similarity function sim (Settles and Craven, 2008), where U

represents the size of the unlabeled setXu as shown in the following.

R(x) =
1

U

∑

xu∈XU

sim(x, xu) (4)

The unlabeled data point with themaximum product of the two

measures is chosen to be queried:

x∗ = argmax
x∈XU

[U(x) ∗ (R(x)] (5)

3.1.4 The proposed Inverse Information Density
(IID)

The aim of this algorithm is to achieve robustness to labeling

bias. We design an algorithm inspired by human psychology.

Human heuristics are robust across a host of real-world situations,

including prediction in classification tasks (Gigerenzer et al., 2011;

Katsikopoulos et al., 2020).

The IID algorithm shares the basic concepts of the CID

algorithm, but it employs them differently. There are two

differences. First, IID does not use all available attributes but only

the attributes that a statistical test (Pearson correlation test) has

found to be significantly related to ground truth labels. People’s

fast-and-frugal heuristics routinely narrow down the set of available

attributes, and this has been shown to, under some conditions,

enhance their predictive accuracy (Baucells et al., 2008; Simşek,

2013). In IID, representativeness is computed using the narrowed

set of attributes (N) significantly correlated with the previous set of

labels obtained and the function sim stands for Euclidean distance.

The second difference between IID and CID is that, in IID,

representativeness is seen as a reason to not query a data point.

People have a natural tendency to explore uncharted territory,

sometimes with good success, as in armed bandit problems (Stojić

et al., 2015; Brown et al., 2022), and the IID tweak in using

information density captures this tendency.

The following pseudo-code describes the IID algorithm.

Input : Labeled set of data points (XL,YL), unlabeled pool of

data points (XU ), attribute list (ATT), s =
∑

x1 ,x2∈X
sim(x1, x2)

1: For all att in ATT:

If Corratt(XL,YL) 6= 0 (α = 0.001):

N← att

2: For all x in XU :

R(x) = 1
s

∑
N;xu∈XU

sim(x, xu)

3: x∗ = argmaxx∈XU
[U(x)− R(x)]

Output: Data point x∗ to query

The IID algorithm begins by identifying the subset of attributes

N that are significantly correlated with the labels in the labeled

set (XL,YL), using a Pearson correlation test at a significance level

α = 0.001 (Step 1). For each data point x in the unlabeled pool

XU , the representativeness R(x) is computed based on its similarity

to other points in XU , using the Euclidean distance sim(x, xu)

specifically focusing on attributes contained in N (Step 2). Finally,

the algorithm selects the data point x∗ that has the maximum

difference between uncertainty U(x) and representativeness R(x).

3.2 Models of human heuristics

3.2.1 Fast-and-frugal trees
A fast-and-frugal tree (FFT) is a tree for making classifications

such that it (i) always has an exit after it queries an attribute (two

exits after it queries the last attribute), (ii) has only a ‘few’ attributes

(a common default value is three attributes) and (iii) queries each

attribute once and does not query multiple attributes together.

FIGURE 2

A fast-and-frugal tree for predicting raisin type.
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These three conditions jointly imply that fast-and-frugal trees

are, all else being equal, sparser than standard classification trees.

In general, trees are made sparser by using fewer attributes or by

using each attribute fewer times; methods of statistical induction of

trees include pruning modules that pursue these goals (Bertsimas

and Dunn, 2017; Breiman et al., 1984). Fast-and-frugal trees further

increase sparsity by using each attribute at most once.

There are several statistical and qualitative methods for

inducing fast-and-frugal trees from data (Katsikopoulos et al.,

2020). Here, we build fast-and-frugal trees via the fan algorithm

(Phillips et al., 2017), where attributes were binarized using a

median split. Additionally, the maximum depth of the tree is set

to three. An example fast-and-frugal tree induced in the ’Raisin’

dataset (Cinar et al., 2020), where the task is to predict the type of

raisin (Kecimen or Besni) based on two morphological features of

raisins, is shown in Figure 2.

3.2.2 Tallying
According to (Martignon et al., 2008), a tallying model is

a unit-weight linear model for making classifications, with the

number of its parameters equalling the number of possible classes

minus one.

For example, assume that there are two classes, C1,C2, and one

wishes to classify a data point x with binary attribute values xi, i =

1, ..., n to one class. Tallying can be described by the following,

where the parameter k can take any integer value from 1 to n.

Assign x→ C1iff
∑

i=1,...,n

xi > k (6)

4 Results

We use 15 datasets from the UCI ML Repository (Kelly et

al., n.d.), where people routinely provide labels. Datasets come

mostly from health but other domains too, such as marketing

and transportation. For brief descriptions of the datasets, see

Supplementary material A. We chose datasets with two possible

classes because there is more empirical evidence for people’s use of

fast-and-frugal heuristics in such classification tasks (Katsikopoulos

et al., 2020) It must be noted that all the datasets used for the study

were used and cited by multiple published works (Jalali et al., 2017;

Xie et al., 2019).

Our investigations were carried out in three phases. In the first

phase, a hypothesis on the nature of human heuristics is proposed,

and its validity is empirically explored to comprehend the points

susceptible to labeling bias. The second phase aims to establish that

our algorithm has the characteristics that make it robust toward

such bias. An evaluation of the performance of Active learning

algorithms is provided in the final section.

4.1 Phase 1: experimental validation on the
hypothesized nature of human heuristics

To understand the nature of human heuristics, we develop a

hypothesis. We hypothesize that data points farther away from the

data points with median values for the most important attributes

are more likely to be accurately labeled by human heuristics.

FIGURE 3

Data points farther away from the data points with median values for the most important attributes are more likely to be accurately labeled by the

fast-and-frugal tree.
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FIGURE 4

Data points farther away from the data points with median values for the most important attributes are more likely to be accurately labeled by tallying.

FIGURE 5

Rank of querying for the Raisin dataset.

We report an empirical test that supports the hypothesis.

Figures 3, 4 illustrate the distribution of correctly/incorrectly

labeled data points with respect to important attribute values used

by heuristics in the decision-making process. Notably, the correctly

classified points, represented in purple, tend to lie farther from the

median attribute values, marked by the dotted lines. This pattern

holds overall for all 30 scenarios ( 15 datasets x 2 heuristics),

as shown in Supplementary material B. These results support our
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FIGURE 6

Learning curves for two datasets using the LR classifier.

assertion that data points with attribute values deviating from

their population median are more likely to be labeled correctly by

the heuristics.

4.2 Phase 2: assessment on AL algorithm’s
robustness for human heuristics

The robustness of an AL algorithm toward labeling bias

depends on (i) the independence of the algorithm on labeling

accuracy and (ii) the ability of the algorithm to identify and query

data points that are more likely to be accurately labeled. In this

section, we find that the IID algorithm is well-suited for the

aforementioned factors. Therefore, we hypothesize that the IID

algorithm would perform better than the existing ones.

Factor (i) favors the information density algorithms, CID and

IID. This is so because Entropy and MVL only rely on E(x)

and U(x) that are dependent on labeling accuracy, whereas the

information density algorithms also use R(x).

When the experimentally validated hypothesis is combined

with the fact that IID prefers querying such points more than CID

(because only in IID R(x) measures how close a data point is to the

data points with median values for the most important attributes),

They jointly imply that IID has a higher ability than CID to identify

and query data points more likely to be accurately labeled.

In Figure 5, evidence is provided for the Raisin dataset (one

run, the fast-and-frugal tree provided labels) that IID is the only

algorithm that prefers querying the data points farther away

from the data points with median values for the most important

attributes. This pattern holds overall for the 30 scenarios (see

Supplementary material B).

4.3 Phase 3: performance of AL algorithms

Experiments were carried out on datasets using human

heuristics and AL query methods. In every iteration, a randomly

chosen seed set (Xseed) labeled with the human heuristic was used

to train a classifier, and the remaining pool (Xpool) was used by the

AL query strategies to choose the data points to query. The classifier

was re-trained to predict the entire dataset after every query. The

above process was pursued for 30 iterations by varying the Xseed

and Xpool chosen from X after each iteration.

Figure 6 provides learning curves (accuracy as a function

of the number of data points queried) for the four AL

algorithms(averaged over all iterations), including random

sampling as a benchmark for two datasets and both human

heuristics. The IID algorithm has superior performance in

these cases.

Tables 2–5 report the area under the learning curve for both

human heuristics for the LR classifier. Bold font denotes the

algorithm with the best performance, and underlined font denotes

that an algorithm performed worse than random. It can be inferred

that irrespective of the performance metric, entropy sampling

consistently outperforms other methods in most scenarios when

ground truth labels are available. Additionally, the proposed IID

algorithm demonstrates superior performance when heuristics

are employed for labeling. Table 6 summarizes these findings

by illustrating the frequency of algorithms that exhibit optimal

performance. Similar results were obtained for the RF and SVM

classifiers (see Supplementary material C).

To provide insights into the overall trends in the behavior

of active learning (AL) algorithms, irrespective of the specific

prediction tasks, we utilize Table 7. This table presents the average

performance of all classifiers across all datasets, using accuracy
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TABLE 2 Area under the learning curve (accuracy) for all 15 datasets and the LR classifier.

Dataset Labels provided
by

Max. value Random Entropy MVL CID Proposed IID

Car condition Ground truth 422 356.62 358.84 357.92 357.50 358.83

FFT 422 318.16 318.58 317.25 318.50 318.91

Tallying 422 338.44 345.43 346.33 330.92 348.63

Breast cancer Ground truth 439 417.97 419.77 419.50 419.41 420.85

FFT 439 410.50 411.70 411.55 411.92 411.77

Tallying 439 418.48 418.67 418.34 418.40 419.27

Wholesale
customer

Ground truth 279 247.11 249.86 249.88 249.50 250.53

FFT 279 243.82 243.33 243.27 242.88 244.36

Tallying 279 202.25 200.65 201.42 199.31 206.40

Raisin Ground truth 852 729.16 734.42 733.16 731.80 734.14

FFT 852 722.54 728.78 728.46 728.36 729.97

Tallying 852 715.86 715.88 715.54 715.94 714.65

Wine Ground truth 161 155.83 158.01 158.00 157.82 158.09

FFT 161 153.18 154.38 154.25 154.04 154.40

Tallying 161 152.46 153.11 153.03 153.05 152.76

Maternal
health

Ground truth 958 669.81 691.84 688.49 689.04 684.78

FFT 958 619.51 633.70 633.37 625.60 641.78

Tallying 958 579.58 593.34 596.42 594.30 596.88

Algerian forest Ground truth 231 187.20 194.57 195.43 192.67 194.34

FFT 231 190.31 195.68 195.58 193.10 195.80

Tallying 231 180.00 185.02 185.06 183.20 186.84

Contraceptive Ground truth 1222 798.77 821.41 822.81 821.30 818.55

FFT 1222 700.78 697.07 699.99 693.52 700.99

Tallying 1222 707.88 744.96 746.24 741.94 747.03

Echocardiogram Ground truth 55 51.96 52.07 52.07 51.65 52.07

FFT 55 51.90 51.42 51.43 51.36 51.42

Tallying 55 47.71 45.61 45.45 45.24 45.97

Chronic
kidney disease

Ground truth 143 140.84 142.86 142.86 142.87 142.86

FFT 143 140.84 142.86 142.86 142.59 142.86

Tallying 143 139.08 141.20 141.19 141.04 141.43

Cervical
cancer

Ground truth 65 59.09 60.95 60.88 60.33 60.86

FFT 65 56.06 57.25 56.91 56.20 57.24

Tallying 65 55.57 56.29 56.24 56.11 56.34

Parkinsons
disease

Ground truth 186 156.10 161.42 161.35 159.84 160.76

FFT 186 145.33 145.06 145.39 144.75 145.75

Tallying 186 133.71 130.57 130.51 130.88 131.97

Indian liver
patient

Ground truth 568 406.85 406.54 406.57 406.63 406.45

FFT 568 384.03 371.19 375.64 357.64 384.57

(Continued)
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TABLE 2 (Continued)

Dataset Labels provided
by

Max. value Random Entropy MVL CID Proposed IID

Tallying 568 366.08 356.93 359.72 349.50 369.22

Happiness
survey

Ground truth 135 82.45 86.60 85.95 83.86 86.53

FFT 135 82.60 82.46 82.90 82.14 84.03

Tallying 135 88.20 89.11 89.13 89.03 89.03

Breast cancer-
prognostic

Ground truth 185 146.48 150.13 150.06 146.88 149.97

FFT 185 135.80 137.02 137.91 137.18 138.40

Tallying 185 108.36 114.57 114.80 110.38 117

Algorithm with best performance is bolded.

TABLE 3 Area under the learning curve (Precision) for all 15 datasets and the LR classifier.

Dataset Labels provided
by

Max. value Random Entropy MVL CID Proposed IID

Car condition Ground truth 422 345.60 349.71 348.91 348.35 349.71

FFT 422 294.19 294.79 292.03 294.65 295.38

Tallying 422 323.53 331.61 331.20 326.07 332.62

Breast cancer Ground truth 439 418.09 419.85 419.57 419.57 421.21

FFT 439 412.26 413.92 413.63 413.98 413.92

Tallying 439 419.16 419.22 418.85 418.87 419.86

Wholesale
customer

Ground truth 279 241.69 245.52 245.81 244.78 247.43

FFT 279 234.71 234.13 234.00 233.51 235.94

Tallying 279 207.60 207.35 207.56 206.78 209.64

Raisin Ground truth 852 703.26 707.83 706.99 707.75 706.94

FFT 852 699.78 700.99 701.06 700.94 701.75

Tallying 852 690.00 688.22 688.06 688.99 686.74

Wine Ground truth 161 155.46 157.75 157.77 157.64 157.66

FFT 161 154.08 156.04 156.02 155.95 155.59

Tallying 161 151.34 152.47 152.33 152.18 152.16

Maternal
health

Ground truth 958 660.90 688.79 682.17 684.92 680.88

FFT 958 616.45 699.71 690.80 701 702.08

Tallying 958 607.16 614.20 616.04 611.27 616.52

Algerian forest Ground truth 231 190.11 194.69 195.38 193.76 194.77

FFT 231 194.04 195.09 195.75 194.05 195.93

Tallying 231 185.42 187.77 187.97 187.03 188.44

Contraceptive Ground truth 1,222 792.33 825.85 826.80 851 817.34

FFT 1,222 705.40 708.17 707.88 707.55 708.87

Tallying 1222 708.28 739.36 738.48 732.74 741.25

Echocardiogram Ground truth 55 51.07 50.65 50.62 50.28 50.63

FFT 55 50.59 49.85 49.85 49.82 49.85

Tallying 55 46.63 44.89 44.71 45.68 45.20

(Continued)
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TABLE 3 (Continued)

Dataset Labels provided
by

Max. value Random Entropy MVL CID Proposed IID

Chronic
kidney disease

Ground truth 143 141.41 142.91 142.91 142.91 142.90

FFT 143 141.41 142.91 142.91 142.91 142.90

Tallying 143 140.53 141.79 141.79 141.68 141.95

Cervical
cancer

Ground truth 65 60.56 61.78 61.58 61.15 61.61

FFT 65 58.46 58.11 57.88 57.90 58.19

Tallying 65 54.47 54.39 54.45 54.32 54.48

Parkinson’s
disease

Ground truth 186 154.85 164.80 164.60 162.70 162.02

FFT 186 135.16 136.92 137.12 136.53 137.60

Tallying 186 129.59 128.98 129.00 129.21 129.56

Indian liver
patient

Ground Truth 568 300.23 273.78 278.85 333.81 276.62

FFT 568 339.09 359.30 359.96 358.81 361.52

Tallying 568 356.01 367.45 366.64 366.26 368.01

Happiness
survey

Ground Truth 135 82.38 88.47 88.51 83.34 87.35

FFT 135 84.92 84.57 84.91 84.58 85.37

Tallying 135 88.32 89.10 89.13 89.05 89.03

Breast cancer-
prognostic

Ground Truth 185 140.84 159.76 158.26 142.29 158.26

FFT 185 119.62 121.75 122.22 121.40 123.02

Tallying 185 116.01 116.26 116.65 115.82 116.89

Algorithm with best performance is bolded. Underlined font denotes that an algorithm performed worse than random.

TABLE 4 Area under the learning curve (Recall) for all 15 datasets and the LR classifier.

Dataset Labels provided
by

Max. value Random Entropy MVL CID Proposed IID

Car condition Ground truth 422 332.47 334.70 333.18 334.95 334.85

FFT 422 290.68 291.12 288.96 290.76 292.71

Tallying 422 334.99 339.64 339.58 339.82 340.55

Breast cancer Ground truth 439 417.91 419.62 419.36 419.30 420.62

FFT 439 409.49 410.60 410.31 410.80 410.56

Tallying 439 417.95 418.14 417.84 417.87 418.59

Wholesale
customer

Ground truth 279 236.42 239.07 238.85 239.01 238.74

FFT 279 238.78 238.02 237.89 237.97 238.09

Tallying 279 223.07 222.52 222.85 221.60 225.60

Raisin
prediction

Ground truth 852 702.00 705.42 704.90 705.17 704.99

FFT 852 696.41 698.92 698.99 698.88 699.85

Tallying 852 687.29 686.95 686.75 687.67 685.69
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TABLE 4 (Continued)

Dataset Labels provided
by

Max. value Random Entropy MVL CID Proposed IID

Wine
prediction

Ground truth 161 152.40 155.84 155.75 155.80 155.23

FFT 161 152.88 157.22 157.09 157.29 157.77

Tallying 161 151.28 154.61 154.38 154.36 155.47

Maternal
health

Ground truth 958 649.37 686.61 681.64 681.25 679.71

FFT 958 667.56 671.24 669.63 676.82 677.69

Tallying 958 604.03 613.86 616.38 611.95 616.69

Algerian
prediction

Ground truth 231 186.86 193.78 194.84 191.94 193.91

FFT 231 187.95 195.66 195.50 191.74 195.76

Tallying 231 183.71 187.69 188.02 186.57 189.03

Contraceptive Ground truth 1,222 770.91 778.84 783.65 768.69 776.65

FFT 1,222 707.59 709.00 709.26 707.49 709.84

Tallying 1,222 710.49 741.70 740.83 732.77 743.62

ECG preds Ground truth 55 51.75 52.37 52.66 50.89 52.39

FFT 55 52.52 52.40 52.40 52.38 52.40

Tallying 55 49.88 48.45 48.32 48.24 48.79

Chronic
kidney

Ground truth 143 138.57 142.74 142.74 142.76 142.73

FFT 143 138.57 142.74 142.74 142.76 142.73

Tallying 143 136.09 139.69 139.69 139.40 140.14

Cervical
cancer

Ground truth 65 55.27 58.62 58.53 57.80 58.46

FFT 65 50.46 52.18 51.41 50.27 52.42

Tallying 65 53.48 55.36 55.51 55.16 55.55

Parkinsons Ground truth 186 129.25 139.75 139.51 137.03 139.70

FFT 186 142.44 149.08 149.21 148.34 149.92

Tallying 186 141.05 141.31 141.33 141.49 141.99

Indian liver Ground truth 568 287.23 286.02 286.12 287.00 285.55

FFT 568 339.35 372.28 372.51 372.08 373.77

Tallying 568 370.58 382.88 382.46 380.60 376.35

Happiness
survey

Ground truth 135 81.68 85.65 85.59 82.04 85.18

FFT 135 84.11 83.71 84.12 83.68 84.81

Tallying 135 88.41 89.22 89.24 89.15 89.34

Breast cancer-
prognostic

Ground truth 185 104.96 113.42 113.16 105.77 112.74

FFT 185 122.22 124.83 123.78 123.77 126.04

Tallying 185 123.63 125.08 125.66 123.69 126.03

Algorithm with best performance is bolded. Underlined font denotes that an algorithm performed worse than random.
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TABLE 5 Area under the learning curve (F1 score) for all 15 datasets and the LR classifier.

Dataset Labels provided
by

Max. value Random Entropy MVL CID Proposed IID

Car condition Ground truth 422 338.91 342.04 340.87 341.52 342.12

FFT 422 292.42 292.94 290.49 292.70 294.04

Tallying 422 329.16 335.58 335.34 332.80 336.54

Breast cancer Ground truth 439 418.00 419.74 419.47 419.44 420.91

FFT 439 410.87 412.25 411.96 412.38 412.23

Tallying 439 418.56 418.68 418.34 418.37 419.23

Wholesale
customer

Ground truth 279 239.03 242.25 242.28 241.86 243.01

FFT 279 236.73 236.06 235.93 235.72 237.01

Tallying 279 215.06 214.67 214.93 213.93 217.33

Raisin Ground truth 852 702.63 706.62 705.94 706.46 705.97

FFT 852 698.09 699.95 700.02 699.91 700.80

Tallying 852 688.64 687.59 687.40 688.33 686.21

Wine Ground truth 161 153.92 156.79 156.75 156.71 156.44

FFT 161 153.48 156.67 156.56 156.62 156.63

Tallying 161 151.31 153.53 153.35 153.27 153.80

Maternal
health

Ground truth 958 655.09 687.70 681.91 683.08 680.29

FFT 958 640.99 685.18 680.05 688.70 689.67

Tallying 958 605.59 614.03 616.21 611.61 616.60

Algerian
prediction

Ground truth 231 188.47 194.23 195.11 192.84 194.34

FFT 231 190.95 195.37 195.63 192.89 195.84

Tallying 231 184.56 187.73 188.00 186.80 188.74

Contraceptive Ground truth 1222 781.47 801.65 804.65 807.75 796.47

FFT 1222 706.49 708.58 708.57 707.52 709.35

Tallying 1222 709.38 740.53 739.65 732.76 742.43

ECG preds Ground truth 55 51.41 51.49 51.62 50.58 51.49

FFT 55 51.54 51.09 51.10 51.07 51.10

Tallying 55 48.20 46.60 46.44 46.40 46.93

Chronic
kidney

Ground truth 143 139.97 142.82 142.82 142.81 142.84

FFT 143 139.97 142.82 142.82 142.81 142.84

Tallying 143 138.28 140.73 140.73 140.53 141.04

Cervical
cancer

Ground truth 65 57.79 60.16 60.02 59.43 59.99

FFT 65 54.16 54.98 54.45 53.82 55.16

Tallying 65 53.97 55.01 54.98 54.73 54.87

Parkinsons Ground truth 186 140.90 151.25 151.02 148.77 150.03

FFT 186 138.71 142.74 142.91 142.19 143.50

Tallying 186 135.07 135.49 134.89 135.07 134.86

Indian liver Ground truth 568 293.59 279.77 282.43 281.02 308.64

FFT 568 339.22 365.68 366.13 365.32 367.54
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TABLE 5 (Continued)

Dataset Labels provided
by

Max. value Random Entropy MVL CID Proposed IID

Tallying 568 363.15 375.00 374.39 373.29 374.00

Happiness
survey

Ground truth 135 82.03 87.03 87.02 82.69 86.25

FFT 135 84.51 84.14 84.51 84.13 85.09

Tallying 135 88.37 89.16 89.18 89.10 89.19

Breast cancer-
prognostic

Ground truth 185 120.28 132.66 131.96 121.34 131.69

FFT 185 120.91 123.27 122.99 122.57 124.51

Tallying 185 119.70 120.51 120.99 119.63 121.29

Algorithm with best performance is bolded. Underlined font denotes that an algorithm performed worse than random.

TABLE 6 Recurrence in best performance across all datasets (from Tables 2–5).

Labels provided by Entropy MVL CID Proposed IID

Metric: accuracy

Ground truth 9 4 3 3

FFT 2 1 1 13

Tallying 0 2 1 12

Metric: precision

Ground truth 10 7 2 4

FFT 3 2 3 14

Tallying 2 1 1 11

Metric: recall

Ground truth 9 4 1 4

FFT 2 2 3 13

Tallying 2 2 1 13

Metric: F1 score

Ground truth 7 6 2 7

FFT 4 2 3 15

Tallying 3 2 1 11

as the primary metric. The best performances within 0.05 are

highlighted in bold. The proposed IID method showed an

overall effectiveness improvement of 19.8% compared to Entropy

sampling, which was the best-performing alternative. This boost

in performance is primarily due to the Inverse Information

Density (IID) metric, which complements the uncertainty measure

captured by entropy sampling. Notably, the improvement increases

to 87% when labels are generated by human heuristic models,

further demonstrating the suitability of the proposed method

in such environments, as anticipated. However, this summary

masks data-specific variations in performance, which serves as a

notable caveat.

Despite the significant performance improvements

demonstrated by the proposed model, it lacks a specific mechanism

for handling adversarial samples. Adversarial examples are

generated by introducing small perturbations to normal data

points, which remain correctly recognizable to humans but are

misclassified by prediction models (Kwon, 2023; Kwon and Kim,

2023). Given the potential application of this model for automating

critical human decisions, such as detecting diseases or forest fires,

it is crucial for the model to be resilient to adversarial attacks.

Several mitigation strategies, including adversarial training and

transfer learning, have been developed to address this issue (Kwon

and Lee, 2022; Kwon et al., 2022). Incorporating such mitigation

strategies into the proposed model presents a promising direction

for future work.

5 Conclusion: active learning and
oracle uncertainty

AL algorithms hold tremendous potential but should be

based on realistic assumptions. Starting from the commonsense

observation that sometimes the labels necessary for AL must be

provided by a human, who might be biased, we model the oracle

by fast-and-frugal heuristics. In other words, we also modeled the
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TABLE 7 Average area under the learning curves, based on accuracy, across all datasets, presented for each classifier.

Labels provided by Max. value (approx.) Random Entropy MVL CID Proposed IID

Classifier: LR

Ground truth 393 307.08 312.62 312.33 311.41 311.97

FFT 393 290.36 291.37 291.78 289.32 293.48

Tallying 393 282.24 286.09 286.63 283.95 288.23

Classifier: RF

Ground truth 393 331.18 340.20 339.29 338.08 339.64

FFT 393 293.41 293.98 294.03 292.04 294.01

Tallying 393 288.49 288.90 288.93 288.75 289.08

Classifier: SVM

Ground truth 393 314.07 317.80 314.85 317.53 317.39

FFT 393 290.97 291.26 290.20 289.91 291.62

Tallying 393 284.25 285.83 284.38 284.19 287.68

Average (heuristics) 393 288.29 289.57 289.325 288.03 290.68

Overall average 393 298.01 300.89 300.27 299.46 301.46

labeling strategy used by an oracle beyond the known modeling

of data and prediction uncertainty in active learning. Our study

showed the need to design AL algorithms robust to labeling

bias, and this was pursued by taking inspiration from heuristics

research. More generally, this exercise shows that it may be

beneficial to consider human psychology in the design of active

learning algorithms.
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