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Introduction: Requirements classification is an essential task for development

of a successful software by incorporating all relevant aspects of users’

needs. Additionally, it aids in the identification of project failure risks

and facilitates to achieve project milestones in more comprehensive way.

Several machine learning predictors are developed for binary or multi-class

requirements classification. However, a few predictors are designed for multi-

label classification and they are not practically useful due to less predictive

performance.

Method: MLR-Predictor makes use of innovative OkapiBM25 model to

transforms requirements text into statistical vectors by computing words

informative patterns. Moreover, predictor transforms multi-label requirements

classification data into multi-class classification problem and utilize logistic

regression classifier for categorization of requirements. The performance of

the proposed predictor is evaluated and compared with 123 machine learning

and 9 deep learning-based predictive pipelines across three public benchmark

requirements classification datasets using eight di�erent evaluation measures.

Results: The large-scale experimental results demonstrate that proposed MLR-

Predictor outperforms 123 adopted machine learning and 9 deep learning

predictive pipelines, as well as the state-of-the-art requirements classification

predictor. Specifically, in comparison to state-of-the-art predictor, it achieves

a 13% improvement in macro F1-measure on the PROMISE dataset, a 1%

improvement on the EHR-binary dataset, and a 2.5% improvement on the

EHR-multiclass dataset.

Discussion: As a case study, the generalizability of proposed predictor is

evaluated on softwares customer reviews classification data. In this context, the

proposed predictor outperformed the state-of-the-art BERT language model by

F-1 score of 1.4%. These findings underscore the robustness and e�ectiveness

of the proposed MLR-Predictor in various contexts, establishing its utility as a

promising solution for requirements classification task.

KEYWORDS

software requirements, multi-label requirements, OkapiBM25, swarm optimizer, label

powerset, data transformation, machine learning classifiers, deep learning predictors

1 Introduction

To create a prosperous software application, usually software development teams

including researchers and developers follow particular software development model such

as waterfall (Petersen et al., 2009), v-Model (Ruparelia, 2010), agile (Zhang and Patel,

2010), spiral (Boehm, 1988), and incremental model (Larman and Basili, 2003). In all these
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models, requirements classification and understanding is common

and fundamental task (Munassar and Govardhan, 2010). It is

impossible to develop a successful software without completely

understanding end users’ requirements (Vogelsang and Borg,

2019; Hidellaarachchi et al., 2021). Requirements provide essential

insights about features such as functionality and characteristics

of the software that stakeholders expect and need (Gupta

et al., 2020). To understand required features of a software,

requirements classification is an indispensable task. Figure 1

illustrates requirements class hierarchy in which each class

represents a unique aspect or feature of software, such as, functional

class requirements represents information about capabilities and

functionalities that software is expected to perform (Maruping

and Matook, 2020). Similarly, non-functional requirements class

defines qualities and constraints of a software. Moreover, sub-

classes of this category represent a unique feature such as

speed, reliability, performance, throughput, privacy, scalability, and

security (Becker et al., 2019; Horkoff, 2019; Binkhonain and Zhao,

2019).

Manual categorization of requirements is time-consuming,

expensive, and tedious task (Leelaprute and Amasaki, 2022). With

an aim to automate the process of requirements classification,

several rule-based predictors have been designed (Vlas and

Robinson, 2011, 2012; Singh et al., 2016). However, requirements

vary from software to software, and rule-based predictors are

less generic as they require amendments in rules according to

nature of software requirements (Vlas and Robinson, 2012). To

overcome these problems, there has been a marathon of utilizing

artificial intelligence methods power for developing more accurate

and robust predictors capable of categorizing requirements into

predefined classes (Hey et al., 2020; Althanoon and Younis, 2021;

Dias Canedo and Cordeiro Mendes, 2020; Kaur and Kaur, 2022).

According to working paradigm, existing requirements

classification predictors can be categorized into three different

classes: binary (Tiun et al., 2020; Kurtanović and Maalej, 2017),

multiclass (Khayashi et al., 2022; Ajagbe and Zhao, 2022; Kici

et al., 2021), and multi-label (AlDhafer et al., 2022; Chen et al.,

2022). Binary classification type-related predictors categorize

requirements into functional and non-functional classes (Abad

et al., 2017; Hey et al., 2020). Multiclass classification type-based

predictors categorize requirements into one of the many predefined

classes (Tóth and Vidács, 2019). Similarly, multi-label classification

type-specific predictors categorize requirements into multiple

classes, where same requirement may belong to multiple classes

at the same time. Among all three classification types, multi-label

classification of requirements is more useful as it comprehend

different characteristics of software simultaneously. Primarily,

it captures various dimensions of a requirement that cannot be

adequately expressed through single class. This broader perspective

allows for more nuanced analysis and representation of software’s

features and attributes.

According to the best of our knowledge, in last 4 years, five

different predictors have been proposed for binary classification

(Althanoon and Younis, 2021; Dias Canedo and Cordeiro Mendes,

2020; Rahimi et al., 2020; Tiun et al., 2020; Saleem et al.,

2023), six for multiclass classification (Tóth and Vidács, 2019;

Haque et al., 2019; Kaur and Kaur, 2022; Kici et al., 2021;

Baker et al., 2019; Rahman et al., 2019) and seven for both

binary and multiclass classification (Khayashi et al., 2022; Hey

et al., 2020; Li et al., 2022; Rahimi et al., 2021; Ajagbe and

Zhao, 2022; Fávero and Casanova, 2021; Luo et al., 2022).

However to data, for multi-label classification, only three

predictors have been proposed (AlDhafer et al., 2022; Slankas

and Williams, 2013; Rashwan et al., 2013). Among all three

classification types, multi-label classification predictors have least

predictive performance. This is primarily because requirements

classification across multiple labels is more challenging task in

comparison with binary or multiclass classification (Gargiulo

et al., 2018). In binary classification, functional class requirements

typically encompass distinct features that differentiate them from

non-functional class requirements. Machine learning predictors

leverage these distinguishing patterns to classify requirements into

functional and non-functional categories. In contrast, formulticlass

classification, individual classes of requirements often share fewer

distinctive features, leading to challenges in predictor performance.

Similarly, in multi-label classification, the similarity among diverse

classes of requirements is more pronounced, resulting in limited

discriminative potential. Another major factor contributing to

the lower predictive performance lies in the relatively small

size of requirements datasets, especially in the context of multi-

label classification. This issue is particularly pronounced as the

distribution of training samples becomes smaller, making it

challenging to accurately predict and classify multiple labels for the

given requirements.

Considering industrial need for a powerful multi-label

classification predictor for automatic requirements classification,

the article in hand presents a versatile computational framework

named MLR-Predictor. The presented framework contains diverse

types of methods that together make multiple end-to-end

predictive pipelines for multi-label requirements classification. A

primary contribution of this article is to enrich framework with

a unique method Okapi BM25 that transforms requirements text

into statistical vectors by assigning weights to words based on

their discriminative potential. This method has been widely used in

the domain of information retrieval for transforming queries and

document text into statistical vectors. For the very first time, we

have introduced this method in the domain of text classification.

Apart from this encoder, we also incorporated word2vec and

FastText based pre-trained word embeddings. Moreover, we

strengthened framework with four algorithm adaptation-based

methods (multi-label k-nearest neighbor, binary relevance k-

nearest neighbor, twin multi-label support vector machine,

Multi-Label Hierarchical ARAM Neural Network), three data

transformation methods [binary relevance (BR), label powerset

(LP), and classifier chain (CC)], and nine traditional classifiers

[support vector machine (SVM; Tong and Koller, 2001), naive

Bayes (NB;Watkins, 1989), logistic regression (LR; LaValley, 2008),

adaptive boosting (AdaBoost; Margineantu and Dietterich, 1997),

random forest (RF; Breiman, 2001), decision tree (DT; Quinlan,

1996), gradient boosting (GB; Friedman, 2021), extreme gradient

boosting (XGB; Chen et al., 2015), and extra tree (ET; Geurts et al.,

2006)]. With an aim to design best predictive pipelines by utilizing

each method with optimal set of hyper-parameters, framework is

enriched with swarm optimizer that facilitates smart strategy for

finding hyper-parameters best combination values. To compare

proposed framework predictive pipeline performance, apart from
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FIGURE 1

Hierarchical illustration of requirements classification.

state-of-the-art requirement classification predictors, we adapt nine

different deep learning predictors that have been widely utilized

in diverse types of text classification tasks. We perform a large-

scale experimentation over three public benchmark datasets to find

suitable answers of following research questions:

1. Which combination of traditional data transformation

technique and machine learning (ML) classifier is most effective

in designing predictive pipeline capable of accurately annotating

requirements with their relevant classes?

2. Can OkapiBM25 generates more comprehensive and

informative statistical vectors than TF-IDF and word2vec

as well as FastText based word embeddings?

3. Do classifiers and OkapiBM25 hyper-parameters optimization

through Particle Swarm Optimizer (PSO) enhance predictive

pipelines performance?

4. Utilizing traditional data transformation and algorithm

adaptation methods, is it possible to develop a generic

predictive pipeline for multi-label requirements classification?

5. Do generic pre-trained word embeddings have potential

for enhancing deep learning predictors performance for

requirements classification?

6. While dealing with small datasets of requirements, which

type of predictors yields superior performance for multi-label

classification: deep learning predictors or machine learning

predictors?

2 Related work

To cope with the challenges of software requirement analysis,

researchers are trying to explore the potential of machine and

deep learning approaches. The primary objective is to leverage

the capabilities of these methods to assist software developers

and analysts in creating comprehensive software requirement

specifications (SRS) by systematically categorizing requirements

into predefined classes. This section summarizes diverse types of

machine and deep learning predictors that have been proposed for

binary or multiclass and multi-label classification of requirements.

Among existing functional and non-functional requirements

classification predictors (Althanoon and Younis, 2021;

Dias Canedo and Cordeiro Mendes, 2020; Rahimi et al., 2020;

Tiun et al., 2020; Saleem et al., 2023), one predictor (Althanoon

and Younis, 2021) made use of TFIDF representation with two

standalone machine learning classifiers, namely, Multinomial

Naive Bayes (MNB) and logistic regression (LR). One predictor

(Rahimi et al., 2020) used TFIDF representation and reaped

combine potential of five machine learning classifiers, namely,

logistic regression (LR), support vector classifier (SVC), support

vector machine (SVM), decision tree (DT), and naive bayes (NB).

Two predictors (Dias Canedo and Cordeiro Mendes, 2020; Saleem

et al., 2023) utilized filter-based feature selection approaches

along with four machine learning classifiers: LR, SVM, MNB,

k-nearest neighbor (KNN), and attention-based deep learning
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classifier. One predictor (Tiun et al., 2020) explored potential of

FastText and word2vec-based pre-trained word embeddings and

convolutional neural network (CNN) architecture. Furthermore,

among existing studies for multiclass classification of requirements

(Haque et al., 2019; Tóth and Vidács, 2019; Kaur and Kaur, 2022;

Kici et al., 2021; Baker et al., 2019; Rahman et al., 2019), two

predictors (Haque et al., 2019; Tóth and Vidács, 2019) used TFIDF

representation with 12 different standalone machine learning

classifiers [MNB, SVM, Stochastic Gradient Descent SVM (SGD

SVM), Bernoulli Naive Bayes (BNB), Gaussian Naive Bayes (GNB),

KNearest Neighbors (KNN), DT, ET, Label propagation, Label

spread, LR, MLP]. Two predictors (Kaur and Kaur, 2022; Rahman

et al., 2019) investigated potential of glove, word2vec pre-trained

embeddings with recuurent neural network (RNN) variants. One

predictor (Baker et al., 2019) used random embeddings with

artificial neuarl network (ANN) and CNN. One predictor (Kici

et al., 2021) explored potential of five language models, namely,

BERT, AL-BERT, Roberta, DistilBERT, and XLNet.

Within the realm of both binary and multiclass requirements

classification, two predictors (Rahimi et al., 2021; Khayashi

et al., 2022) studied effectiveness of deep learning-based meta-

predictors. Second, five predictors (Fávero and Casanova, 2021;

Hey et al., 2020; Li et al., 2022; Ajagbe and Zhao, 2022; Luo

et al., 2022) explored potential of BERT language model. On the

other hand, for multi-label requirements classification (AlDhafer

et al., 2022; Slankas and Williams, 2013; Rashwan et al., 2013),

one predictor (Slankas and Williams, 2013) made use of TFIDF

representation method along with binary relevance-based data

transformation approach and SVM classifier, while other predictor

(AlDhafer et al., 2022) investigated integer encoding representation

with bidirectional gated recurrent unit (BiGRU). One predictor

(Rashwan et al., 2013) used ontologies with SVM classifier.

Apart from requirements classification, for other software related

tasks such as multi-label classification of users reviews about

softwares, two predictors (Kaur and Kaur, 2023; Jha andMahmoud,

2019) explored binary relevance-based data transformation along

with SVM and BERT model. Table 1 summarizes aforementioned

predictors for requirements classification in terms of dataset,

feature encoding and classifier.

3 Materials and methods

This section briefly describes different methods that are

incorporated in the proposed framework. It illustrates details

of deep learning predictors that are adapted for requirements

classification. Furthermore, it summarizes diverse types of

evaluation measures that are used to evaluate and compare

performance of proposed framework predictive pipelines with

adapted deep learning predictors and state-of-the-art predictors.

Finally, it describes details of public benchmark datasets.

3.1 Proposed MLR framework

Figure 2 provides a visual representation of proposed

framework different modules that facilitates development of

versatile multi-label classification predictive pipelines. It can

be seen in Figure 2 first of all representation learning module

transforms requirements text into statistical vectors. This module

is a fundamental component of the predictive pipelines because

classifiers inherently rely on statistical vectors as they are unable to

operate directly on raw text data. After transforming requirements

text into statistical vectors, data transformation module transforms

multi-label data into multiclass or binary classification data that is

further passed to traditional machine learning classifiers.

On the other hand, in case of algorithm adaption-based

predictive pipelines, representation learning module output is

directly passed to algorithm adaptation module that performs

classification. In other words, framework facilitates development

of requirements classification predictive pipelines in two

different ways either using representation learning module,

data transformation, and classification module or by using

representation learning module along with algorithm adaption-

based classification module. Moreover, optimization module is

optional as it can be utilized to find optimal hyper-parameters

of different methods present in three different modules, namely,

representation learning, classification, and algorithm adaption-

based classification. Following subsections briefly describe details

of these modules.

3.1.1 Representation learning module
This module facilitates two traditional representation learning

methods, namely, TF-IDF and OkapiBM25 encoder that is adapted

from information retrieval domain. Furthermore, following

success of pre-trained word embeddings in diverse types of

natural language processing tasks including question answering

system (Abbasiantaeb and Momtazi, 2021), biological sequence

classification (Ao et al., 2022; Abu-Qasmieh et al., 2023), fake

news detection (Verma et al., 2021; Agarwal et al., 2020),

and medical code category assignment (Lin et al., 2019), we

enriched representation learning module with two pre-trained

word embeddings (word2vec, FastText) provided by kutuzov

et al..1 Primarily authors (Kutuzov et al., 2017) generated both

types of word embeddings by training word2vec and FastText

models over large English wikipedia and English CoNLL17 corpus

(Kutuzov et al., 2017). Pre-trained word embeddings enabled deep

learning predictors to perform better even on small datasets.

However, in requirements multi-label classification, potential of

these embeddings remained unexplored. This research unlock the

potential of pre-trained word embeddings for requirements multi-

label classification task.

3.1.1.1 TF-IDF

TF-IDF method transforms requirements text into statistical

feature space by computing words term frequencies and inverse

document frequencies (Ramos, 2003). The term frequency (TF)

refers to occurrence count of a wordw in requirement R. Document

frequency (DF) showcases the count of corpus requirements in

which word w appears. Inverse document frequency (IDF) of word

w can be determined through Equation 1.

1 http://vectors.nlpl.eu/repository/

Frontiers in Artificial Intelligence 04 frontiersin.org

https://doi.org/10.3389/frai.2024.1481581
http://vectors.nlpl.eu/repository/
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Saleem et al. 10.3389/frai.2024.1481581

TABLE 1 Comprehensive summary of existing research studies for requirements classification.

Classification type References Dataset Feature encoding technique Predictor

Binary Saleem et al., 2023 Promise,

Promise-exp

FastText Attention-based

DL Classifier

Althanoon and Younis, 2021 Promise - MNB, LR

Tiun et al., 2020 Promise Word2vec,

Fasttext

CNN

Dias Canedo and

Cordeiro Mendes, 2020

Promise-exp BoW, TF-IDF LR, SVM,

KNN, MNB

Rahimi et al., 2020 Self-collected TF-IDF Ensemble of SVM,

SVC, LR, NB, DT

Multiclass Kaur and Kaur, 2022 Promise,

Open source

project

Glove Self-attention-based

bidirectional

RNN

Rahman et al., 2019 Promise Word2Vec RNN, LSTM, GRU

Baker et al., 2019 Promise Random word

embeddings

ANN, CNN

Haque et al., 2019 Promise BoW, TF-IDF NB, SVM, DT, KNN

Tóth and Vidács, 2019 Promise,

Stack overflow

dataset

TF-IDF BernoulliNB, DT

ET, ETs, KNN,

Label propagation,

Label spread, LR,

MLP, MNB, SVM

Kici et al., 2021 Doors,

Promise,

Pure

Pre-trained

BERT

Model

BERT,

DistillBERT,

Roberta,

Al-BERT,

XLNet

Binary and multiclass Khayashi et al., 2022 Promise,

NFR-review,

NFR-so

Pre-trained

BERT

Model

Prompt learning

using BERT

Luo et al., 2022 Pure Glove, Keras

word

embeddings

CNN, LSTM,

BiLSTM, GRU,

BiGRU

Li et al., 2022 Promise,

Concordia

Node embedding Graph attention

network

Ajagbe and Zhao, 2022 Promise,

Pure,

App review

dataset,

Google play

store reviews

Pre-trained

BERT

Model

BERT

Rahimi et al., 2021 Promise Random word

embeddings

Ensemble learning

using CNN, LSTM,

BiLSTM, GRU

Fávero and Casanova, 2021 Open source

project

BERT based

embeddings

BERT

Hey et al., 2020 Promise Pre-trained

BERT

Model

BERT

Multi-label AlDhafer et al., 2022 PromiseML,

EHR-Binary

EHR-Multiclass

Integer encoding BiGRU

Rashwan et al., 2013 Concordia Unigram

tokens with

Ontology

SVM

Slankas and Williams, 2013 PromiseML,

EHR-Multiclass

BoW, TF-IDF SVM
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FIGURE 2

Graphical illustration of proposed MLR framework.

IDF = log
n

DFw
(1)

In Equation 1, n refers to corpus total number of requirements

and DFw denotes document frequency of word w. Equation 2

illustrates mathematical expression for computing TF-IDF is score

of word w with respect to requirement R.

TF − IDFw,R = TFw,R · IDFw (2)

The TF-IDF method assigns scores to words within the range

of 0 to 1, where a word score approaching 1 indicates frequent

occurrence and vice versa.

3.1.1.2 OkapiBM25

OkapiBM25 encoder has been widely used in information

retrieval domain for transforming quires and documents text into

statistical vectors (Kanapala et al., 2019; Desai et al., 2022; Yu,

2019; Bokhari et al., 2021). This research explores the potential

of OkapiBM25 encoder for transforming requirements text into

statistical vectors. This encoder transforms requirements text

into statistical vectors by computing words term and inverse

document frequencies along with two special hyper-parameters (k,

b). Equation 3 illustrates mathematical expression for computing

term frequency of word w in requirement R.

TF(w,R) =
TF

[TF + k× (1− b+ b× RL
ARL )]

(3)

In Equation 3, TF refers to term frequency of word w in

requirement R. RL represents length of requirement R, and

ARL denotes average length of requirements. k hyper-parameter
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controls terms frequencies saturation and hyper-parameter b

minimizes the impact of requirements length variability. Length of

requirements influences occurrence frequencies of words; hence,

it is important to regularize occurrence frequencies with respect

to requirements lengths. To understand this concept, consider

two requirements: R1 and R2 comprising of 100 and 200 words,

respectively. A word “w” appears 5 times in R1 and 10 times in

R2. Although, R2 length is twice that of R1 but without considering

their length variability word “w” gets double score in R2 compared

to its score in R1. This factor hinders incorporation of real

discriminative patters in generated feature space. In this study,

hyper-parameter “B” optimal value assigns appropriate score to

word “w” in both requirements.

Equation 4 depicts mathematical illustration of OkapiBM25

encoder for computing inverse document frequency of a word w.

IDF(w) =
log((N − n(w)+ 0.5)

(n(w)+ 0.5)+ 1)
(4)

In Equation 4, n refers to corpus total number of requirements,

and n(w) denotes number of requirements containing word w.

Equation 5 illustrates mathematical expression for computing

OkapiBM25 score of word w.

OkapiBM25(w,R) =

(

TF

[TF + k× (1− b+ b× RL
ARL )]

)

×

(

log((N − n(w)+ 0.5)

(n(w)+ 0.5)+ 1)

)

(5)

3.1.2 Data transformation module
Data transformation methods transform multi-label data into

single-label data and leverage binary or multiclass classifiers

to perform classification. Over the time, researchers have

proposed several data transformation approaches including

binary relevance (BR; Boutell et al., 2004), label powerset (LP;

Tsoumakas and Vlahavas, 2007), ranking by pairwise comparison

(RPC; Hüllermeier et al., 2008), calibrated ranking by pairwise

comparison (CRPC; Fürnkranz et al., 2008), and classifier chains

(CC; Read et al., 2011). The proposed framework is enriched with

three most widely used data transformation methods (BR, LP, CC)

that are briefly described in following subsections.

3.1.2.1 Binary relevance

BR (Boutell et al., 2004) transforms multi-label classification

dataset into L binary classification datasets, where L represents

number of unique labels in multi-label classification dataset.

To briefly understand data transformation process, consider a

multi-label classification dataset D in which n requirements

samples R1,R2, .....Rn are annotated against a set of k unique

labels L = λ1, λ2, ......., λk. Dataset D comprises of K unique

labels; therefore, it is transformed into k different datasets

Dλj , where λj = 1, .....k. Each Dλj dataset comprises of n

requirements and each requirement is annotated against 1 or 0.

Specifically, if requirement belongs to λj class, it is annotated as 1

otherwise 0.

In Figure 2, binary relevance method of data transformation

module illustrates a hypothetical dataset having six requirements

annotated against different combinations of four classes, namely

security, availability, usability, and privacy. After transformation,

four different datasets are formulated and each dataset represents to

a unique class. The dataset that represents to privacy class contains

1 labels against the requirements which belongs to privacy class and

it contains 0 labels for all other requirements that do not belong

to privacy class. This approach deals each class independently and

ignores label dependencies whichmisinterprets hidden correlations

in data.

3.1.2.2 Label powerset

This method transforms multi-label classification data into

multiclass data, by considering each unique combination of labels

as a separate class (Tsoumakas and Vlahavas, 2007). Transformed

multiclass dataset may contain 2|L| unique classes, where L denotes

number of labels in original dataset. In Figure 2, LP method-based

data transformation module illustrates a hypothetical multi-label

dataset and after transformation generatedmulticlass dataset. It can

be seen from Figure 2 six requirement samples belong to different

combinations of four classes, namely, security, privacy, availability

and usability. Requirement R1 belong to usability and security

classes, Requirement R2 belongs to privacy and secuirty classes,

and Requirement R3 belongs to security, privacy, and usability

classes. Dataset contains four different combinations of classes,

LP set assigns a unique integer to each unique combinations, and

transformed data contain four unique labels.

Unlike BR, LP is competent in preserving labels co-relation

by assigning unique labels to every distinct combination of labels.

However, data transformed through LP become highly imbalance

because it may contain up to 2|L| labels. This results in varying

numbers of requirements across different labels, with some labels

having a significant number of requirements while others may have

only a few requirements.

3.1.2.3 Classifier chain

Similar to BR, CC also transforms multi-label dataset into L

binary datasets, where L represents number of unique labels in

original dataset. However unlike BR, CC builds chain of classifiers,

and feature space of each binary classifier is extended with the

labels predicted by the classifiers prior to itself in the chain. It

considers label dependencies by using the order of labels to capture

correlations.

To briefly understand CC-based data transformation, consider

Figure 2 data transformation module Classifier Chain method

illustrates four datasets that are formulated after transformation

process. These datasets are formulated from multi-label data

shown in Label powerset method. In transformed datasets,

first data contain only requirements and their associated

labels either o or 1. Second dataset input space contains

requirements and output of previous dataset; similarly, third

dataset input space contains requirements and outputs of previous

both datasets.

3.1.2.4 Classification module

After transforming multi-label classification data into binary

or multiclass data, to perform requirements classification proposed

framework facilitates nine different classifiers, namely, SVM (Tong

and Koller, 2001), NB (Watkins, 1989), LR (LaValley, 2008),
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AdaBoost (Margineantu andDietterich, 1997), RF (Breiman, 2001),

DT (Quinlan, 1996), GB (Friedman, 2021), XGB (Chen et al.,

2015), and ET (Geurts et al., 2006). SVM (Tong and Koller,

2001) makes use of kernel functions for transforming input feature

space into more comprehensive feature space that is utilized for

learning optimal hyperplane which discriminates requirements

samples into predefined classes. NB (Watkins, 1989) treats all

input features independently and iteratively computes probabilities

of all classes with respect to input features of requirements. LR

(LaValley, 2008) classifies data by finding the best-fit S-shaped

curve that represents the probability of a binary outcome based

on input features. DT recursively partitions data into subsets by

selecting the most informative features at each step and creates

a flowchart-base structure for classification (Quinlan, 1996). The

ET enhances DT by introducing additional randomness in feature

selection and threshold values for node splitting, resulting in amore

diverse ensemble that mitigates overfitting (Geurts et al., 2006). RF

(Breiman, 2001), AdaBoost (Margineantu and Dietterich, 1997),

and GB (Friedman, 2021) are ensemble algorithms that combine

multiple weak classifiers to create a powerful final classifier. XGB

(Chen et al., 2015) is an advanced version of GB that uses tree-based

models to create final classifier.

3.1.3 Algorithm adaptation module
Algorithm adaptation methods are developed by adapting

existing algorithms to more effectively align with multi-label

data. These methods modify multiclass classification algorithms

(KNN, NB, RF, LR, etc) to deal with multi-label classification.

In this context, various classification algorithms, including Binary

Relevance k-Nearest Neighbors (BRkNN; Spyromitros et al., 2008),

Instance-Based Learning by Logistic Regression for Multi-Label

learning (IBLRML; Cheng and Hüllermeier, 2009), Multi-Label k-

Nearest Neighbors (MLkNN; Zhang and Zhou, 2007), RFBoost

(Al-Salemi et al., 2016), MP-Boost (Esuli et al., 2006), Multi-

Label Hierarchical ARAM Neural Network (MLARAM; Benites

and Sapozhnikova, 2015), and Multi-label twin support vector

machine (MLTSVM; Chen et al., 2016) are adapted from single-

label classifiers, namely, kNN, SVM, and AdaBoost (Freund

and Schapire, 1997). Algorithm adaptation module of proposed

framework is enriched with four most widely used algorithm

adaption techniques (MLkNN,BRkNNa,BRkNNb, andMLARAM),

which are briefly summarized below.

3.1.3.1 Multi-label k-nearest neighbors

MLkNN algorithm is an extension of standard KNN algorithm

and utilizes maximum posterior principle to predict label set of

an instance (Zhang and Zhou, 2007). This method predicts if an

instance should be labeled with a specific label λk by analyzing

whether a sufficient number of its k-nearest neighbors are also

labeled with λk.

For an unknown instance Ri, it predicts if Ri should have label

λk by comparing the probabilities: P(Ri having label λk | number

of k-nearest neighbors labeled λk) and P(Ri not having label λk |

number of k-nearest neighbors labeled λk). The objective of Bayes

theorem is to compare P(Ri having label λk) × P(number of k-

nearest neighbors labeled λk | Ri having label λk) with P(Ri not

having label λk) × P(number of k-nearest neighbors labeled λk |

Ri not having label λk), which can be computed from data.

3.1.3.2 Binary relevance KNN

Binary Relevance KNN (BRkNN; Spyromitros et al., 2008) is

another type of adaptation of kNNmethod. Instead of using binary

transformation strategy with kNN algorithm in one-versus-all

transformation manner, BRkNN (Spyromitros et al., 2008) expands

KNN algorithm’s functionality to allow separate predictions against

each label. To avoid empty results for any test scenario, BRkNN

(Spyromitros et al., 2008) uses percentage of predicted label’s k-

nearest neighbors to determine label confidence. Finally, BRkNN

(Spyromitros et al., 2008) only assigns labels to specific instances if

their confidence level exceeds a certain threshold.

3.1.3.3 Multi-label hierarchical ARAM neural network

Multi-Label Hierarchical ARAM Neural Network (MLARAM)

is powerful expansion of Adaptive Resonance Associative Map

(ARAM), specifically designed to handle multidimensional data.

This version introduces an additional ART layer that accelerates

classification and supports development of large clusters of learned

prototypes. Particularly, this concept is advantageous for multi-

label text classification applications.

3.1.4 Optimization module
Machine learning classifiers have a variety of trainable hyper-

parameters, and utilization of optimal hyper-parameters (MacKay,

1996) can significantly boost their performance. Specifically,

random forest classifier has two hyper-parameters: “number of

estimators” and “maximum depth”. “Number of estimators” defines

number of decision trees that classifier uses to predict class, and

“maximum depth” denotes tree depth. Similarly, SVM classifier

has two different hyper-parameters “c” and “gemma”, and “c”

value represents regularization factor that makes trade-off between

maximizing the margin between different classes and minimizing

the classification error on the training data. Similarly, gemma

value denotes shape of decision boundary. Furthermore, the hyper-

parameter “learning rate (lr)” controls the step size of parameter

updates during training of AdaBoost and GB classifiers.

The Bayesian model’s performance can be enhanced by

selecting the best values for the hyper-parameters: “lamba1,”

“lamba2,” “alpha1,” “alpha2,” and “number of iterations (nit)”

that calculates gamma distribution. In existing requirements

classification predictors, best values of hyper-parameters are

found through extensive manual experimentation or grid

search-based strategy (Liashchynskyi and Liashchynskyi, 2019).

However, in large computational frameworks while performing

experimentation over diverse types of datasets with multiple

predictive pipelines, it is difficult to find optimal hyper-parameters

of multiple classifiers through manual experimentation. Similarly,

grid search-based experimentation with wide hyper-parameter

search space requires a lot of computational power and time.

The proposed computational framework contains four different

representation learning strategies, three data transformation

methods, and nine machine learning classifiers. Therefor, using

these two modules, there is possibility of developing 4 × 3 × 9 =

108 predictive pipelines. Similarly, four different representation
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FIGURE 3

Graphical illustration of complete workflow of particle swarm optimizer.

strategies along with four algorithm adaption strategiesmakes 4× 4

= 16 predictive pipelines. To perform performance comparison, of

all 108+ 16= 124 predictive pipelines over 3 requirements datasets

require to perform 124 × 3 = 372 experiments with classifier’s

default hyper-parameters. A fair performance comparison of all

predictive pipelines requires each predictive pipeline with best

hyper-parameters; to accomplish this task, we utilize particle swarm

optimization (PSO) that finds optimal subset of hyper-parameters

using smart strategy (MacKay, 1996).

Considering the need of an automated method competent in

finding optimal hyper-parameters of machine learning methods,

Kennedy and Eberhart (1995) proposed PSO optimizer that makes

use of two different natural behaviors, namely, birds swarming

behavior and biological processes optimization strategy to find

optimal subset of hyper-parameter.

• Swarming behavior: The study of collective behavior

observed in groups of animals and flocks of birds. These

groups exhibit coordinated movement and interaction,

leading to emergent behavior at the group level.

• Evolutionary computing: The domain of genetic algorithms

that utilizes principles of biological evolution to find optimal

solutions for complex problems.

The working of PSO optimizer can be summarized in five

different steps, which are graphically illustrated in Figure 3. (1) First

of all, it generates a population of particles within a predefined

search space, where each particle represents potential solution. It

randomly initializes position and velocity of each particle. (2) Then,

it evaluates fitness of each particle based on particle’s performance

against an objective function. (3) Afterward, it updates local best

(Lbest) and global best (Gbest) positions based on evaluation of

each particle’s fitness. (4) Then, it adjusts velocity of each particle

based on its current velocity and tendency for finding Lbest and

Gbest values, respectively. Equation 6 demonstrates mathematical

formulation for updating a particle’s velocity.

v
(t+1)
i = wv

(t)
i + c1r1[x̂

(t)
i − x

(t)
i ]+ c2r2[g

(t) − x
(t)
i ] (6)

In Equation 6, v
(t)
i and v

(t+1)
i represent current and new velocity

of ith particle at tth and (t + 1)th, respectively. w is a constant that

controls effect current velocity v
(t)
i on new velocity for ith particle. c1

and c2 denote tendency of particle to move toward pBest and gBest,

respectively. r1 and r2 are random values that range between 0 and

1, while x
(t)
i denotes current position of ith particle at tth iteration.

It utilizes new velocity to update particle’s position in search

space, as illustrated in Equation 7.

x
(t+1)
i = x

(t)
i + v

(t+1)
i (7)

(5) It iteratively repeats aforementioned steps (2–4) until it

reaches optimal solution.

In a nutshell, the particles move in predefined search space by

utilizing velocity and position of particles to find Lbest and Gbest

values though iterative process. Finally, the particles in search space

converge at optimal solution.

3.1.5 Adapted deep learning predictors
Apart from requirements multi-label classification, for other

different types of multi-label text classification such as biomedical
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TABLE 2 Comprehensive summary of adapted deep learning predictors.

Predictor CNN layers RNN layers Attention layers Pooling layers Dense layers

Region embedding (Qiao et al., 2018) - - - - 1

FastText (Joulin et al., 2016) - - - - 1

TextCNN (Kim, 2014) 4 - - - 2

DPCNN (Liu and Liu, 2017) 6 - - 2 1

TextVDCNN (Conneau et al., 2016) 9 - - 1 3

AttentionConvNet (Yin and Schütze, 2018) 5 - 1 1 3

TextRNN (Liu et al., 2016) - 1 1 - 1

DRNN (Wang, 2018) - 2 - - 2

TextRCNN (Lai et al., 2015) 3 1 - 1 1

TABLE 3 Samples of promise dataset with class labels.

Sample Labels

All credit card information will be encrypted in

the database

Maintenance,

Security

The system shall protect private information in

accordance with the organization’s information

policy

Security, Privacy

All customer information will be stored on a

secure database accessible only to authorized

personnel

Maintenance,

Security,

Access Control

Daily usage statistics should be logged and

accessible by the

administrator

Functional, Audit,

Database Design,

Access Control

question classification (Wasim et al., 2019; Sarrouti et al., 2015),

hate speech detection (Ibrohim and Budi, 2019; Ameur and Aliane,

2021), tag recommender (Lei et al., 2020), and medical codes and

categories assignment (Pakhomov et al., 2006; Samanta, 2021),

researchers have proposed several deep learning predictors that

are competent in accurately categorizing textual samples into

relevant classes (Mohammed and Kora, 2022; Dogra et al., 2022;

Rasool et al., 2022). Researchers have leveraged diverse types of

deep learning architectures for the development of multi-label text

classification predictors including CNN (Liu et al., 2017; Xu et al.,

2017; Peng et al., 2019), RNN (Du et al., 2019; Liu et al., 2016; You

et al., 2018), hybrid networks (CNN + RNN; Lai et al., 2015), CNN

with attention mechanism (Gargiulo et al., 2018; Kurata et al., 2016;

Peng et al., 2018; Shimura et al., 2018), and regional embeddings-

based predictors (Bojanowski et al., 2017; Qiao et al., 2018; Akbik

et al., 2018).

Within this array of predictors, each type of predictor possesses

its unique set of strengths and weaknesses. Existing research

findings demonstrate that RNN-based predictors successfully

capture long distance dependencies between features but extract

less discriminative feature (Du et al., 2019; Liu et al., 2016;

You et al., 2018), while CNN-based predictors efficiently extract

discriminative features but remains fail in acquiring long range

dependencies among features (Yin et al., 2017). CNN- and RNN-

based approaches surpass each other performance, depending

on characteristics of corpus features. Hybrid predictors reap the

benefits of both CNN and RNN architectures and produce better

performance in comparison with standalone CNN- or RNN-

based predictors (Lai et al., 2015). Attention-based CNN or

RNN yields more informative features because attention preserves

interdependence of sentences in a document (Yang et al., 2016).

With an aim to explore the potential of various CNN, RNN,

attention-based, and hybrid predictors for the task of requirements

multi-label classification, we adapted nine diverse types of deep

learning predictors as baseline methods. The original manuscripts

of these predictors have provided concise descriptions. Hence, in

this context, we have succinctly summarized their architectural

intricacies shown in Table 2. Furthermore, a high level overview of

these predictors is provided in Section 1 of Supplementary material.

3.2 Benchmark datasets

The proposed framework is evaluated on three public

benchmark datasets: PROMISE, EHR-binary, and EHR-multiclass.

Existing requirement classification predictors (AlDhafer et al.,

2022; Slankas and Williams, 2013) performance is evaluated on

these datasets. This enables proposed framework performance

comparison with existing requirements classification predictors

(AlDhafer et al., 2022; Slankas and Williams, 2013). A brief

summary of these datasets is provided below.

3.2.1 Promise
Slankas and Williams (2013) presented PROMISE dataset that

contains 792 requirements annotated against 15 different classes.

Table 3 depicts few samples of promise ML dataset along with

class labels. Overall, based on sample-to-label distribution, 792

requirements samples can be categorized into 4 different categories

such as samples that belong to only 1 class at a time, samples

that belong to 2 classes at a time, similarly, samples that belong

to 3 and 4 classes at a same time. Figure 4a graphically illustrates

distribution of samples into 1, 2, 3, and 4 labels, where it can be

seen that most of the samples belong to only one label and with

the increase in number of labels distribution of samples is reduced.

Figure 4 illustrates overall sample-to-label distribution into four

different categories, while Figure 4b more briefly describes how
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469 samples are distributed into each class. Similarly, Figure 4c

illustrates 177 samples that belong to two different classes are how

distributed into different pairs of classes. Similarly, Figure 4d briefly

describes distribution of samples into three different labels. Hence,

imbalanced label distribution of promise dataset poses significant

challenges, specifically, fewer samples exist for requirements with

multiple labels which might lead to poor predictive performance

for requirements belonging to multiple classes.

3.2.2 Electronic health records
Slankas andWilliams (2013) collected 5,722 requirements from

12 different healthcare domain projects and manually annotated

these requirements in two different ways. The authors presented

Electronic Health Records (EHR) dataset of two different versions,

namely, binary multi-label classification and multiclass multi-label

classification. In binary multi-label classification version of EHR

dataset, 5,722 requirements are annotated against three different

classes, namely, functional, non-functional, and both. Specifically,

in this version of dataset, 2758 samples belong to functional class,

1889 samples belong to non-functional class, and 1075 samples

belong to both functional and non-functional classes.

In multiclass multi-label classification version of EHR dataset,

5,722 requirements are annotated against 15 different classes,

namely, legal, functional, look and feel, privacy, reliability,

recoverability, audit, maintenance, operational, security, usability,

access control, performance and scaleability, availability, and other

functional. Figure 5a graphically illustrates the distribution of

multiclass multi-label dataset across multiple labels, that is, samples

belonging to one class, two classes, three classes, four classes, and

five classes. It is evident from Figure 5a that a few requirements

samples belong to 3, 4, and 5 labels. Figure 5b represents label-

wise distribution among uni-label requirement samples. Similarly,

Figures 5c, d represent the distribution of 1309 and 108 samples

containing bi- and tri-labels, respectively. Similar to the PROMISE

dataset, the EHR dataset also has a limited number of requirement

samples with multiple labels, which poses challenges for effective

multi-label classification and may affect model performance on

such instances.

3.3 Evaluation measures

Primarily in binary or multiclass classification, a requirement

sample belongs to one class at a time; hence, prediction

can be entirely correct or incorrect. Contrarily, in multi-label

classification, a requirement sample belongs to more than one class

at the same time; hence, predictions can be entirely correct, entirely

incorrect, partially correct, or incorrect. Therefore, evaluation of

multi-label classification predictors is more difficult than evaluation

of binary or multiclass classification predictors (El Kafrawy et al.,

2015). Multi-label classification-based evaluation measures are

categorized into two groups: example-based (Giraldo-Forero et al.,

2015) and label-based (El Kafrawy et al., 2015). It is considered that

evaluation measures that fall under the category of label-based are

incapable of considering label interdependence; hence, the majority

of multi-label classification techniques have been evaluated through

example-based measures (Giraldo-Forero et al., 2015).

To facilitate large-scale performance evaluation criteria,

proposed framework is enriched with eight distinct evaluation

measures, namely, accuracy, precision, recall, f1-score, average

precision, coverage, ranking loss, hamming loss, and one-error.

Accuracy (Alshanqiti and Namoun, 2020) computes ratio of

correctly predicted labels to actual number of labels. Precision

(Jiang et al., 2014) calculates the total number of correctly predicted

instances among all instances. Recall (Pereira et al., 2018) estimates

the number of times a specific label is accurately predicted. F1-score

(Bénédict et al., 2021) is harmonic mean of recall and precision.

A higher value for these metrics indicates better performance of

the classifier. Average precision calculates average of all precision

at different recall levels to assess varying class relevance.

Coverage (Hüllermeier et al., 2020) quantifies proportion of

instances that have at least one relevant class correctly predicted

among all instances. It indicates the predictor’s ability to capture the

full set of relevant classes for a given dataset. Ranking loss (Zhang

and Zhou, 2005) quantifies the number of times the incorrect label

appears prior to actual label. Lower numbers of these ranking

measures indicate more powerful classifier performance. The

Hamming loss (Dembczyński et al., 2012) calculates the likelihood

of inaccurately classifying a label combination by focusing on labels

that are either wrongly predicted (prediction error) or un-predicted

(missing error, where the prediction of a relevant label is absent).
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]
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N ∗
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o=1

1
ai∗(nlabels−ai)

HammingLoss = 1
N

∑N
i=1
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j=1[I(ai

j 6= pi
j)]

(8)

In Equation 8,N represents total number of samples, ni denotes

ith sample out of n samples, ai denotes actual class label, pi
represents predicted label of ni sample, Len stands for length of

sample, jth stands for class index, and ∨ and ∧ stand for logical OR

and AND operator, respectively.

4 Experimental setup

The proposed framework is developed on top of eight APIs,

namely, scikit-learn,2 numpy,3 math,4 scipy,5 pandas,6 matplotlib,7

FastAI,8 and pytorch.9 Following experimental criteria of existing

2 https://scikit-learn.org/

3 https://numpy.org/

4 https://docs.python.org/3/library/math.html

5 https://scipy.org/

6 https://pandas.pydata.org/

7 https://matplotlib.org/

8 https://www.fast.ai/

9 https://pytorch.org/
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FIGURE 4

(a) Descriptive statistic of PROMISE multi-label dataset segregation of instances in terms of label cardinality. (b) Count of instances in each class. (c)

Dense Bi-Label Confusion Matrix. (d) Dense Tri-Label Confusion Matrix.

studies (AlDhafer et al., 2022; Slankas and Williams, 2013), we

perform experimentation in 10-fold cross-validation setting. In

this this setting iteratively, 1-fold is taken as test set and other

9-fold are used for model training. Specifically, in EHR dataset

among 5722 samples, 572 samples are used as test set and

remaining 5150 samples are used for training. Furthermore, all

predictive pipeline performance is computed using both micro

and macro versions of precision, recall, and F1-measures. To

investigate impact of hyper-parameters on classifier performance,

We conducted experimentation under two distinct settings. In

the first setting, we evaluated classifiers with their default hyper-

parameters. In the second setting, we choose a suitable hyper-

parameter space as shown in Table 4 and used PSO to discover the

optimum hyper-parameters within the chosen space. Furthermore,

for adapted deep learning predictors, we have utilized binary cross

entropy loss with logits (Ruby and Yendapalli, 2020) along with

Adam optimizer (Zhang, 2018).

5 Results

This section performs an extensive examination of proposed

MLR framework predictive pipelines performance across three

benchmark datasets. First of all, it shows swarm optimizer-based

hyper-parameters optimization impact on data transformation

and algorithm adaptation-based predictive pipeline performance.

Second, it investigates data transformation and algorithm

adaptation-based predictive pipeline performance along with

four different representation learning strategies. Third, it analyze

performance of nine adapted deep learning predictors along with

three different word embeddings. Fourth, it performs performance

comparison of top-performing machine and deep learning

predictors. Finally, it compares MLR framework top-performing

predictive pipeline performance with state-of-the-art multi-label

requirements classification predictor performance. Finally, it

performs a case study in which proposed predictor performance
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FIGURE 5

(a) Descriptive statistic of EHR-Multiclass dataset with segregation of instances in terms of label cardinality. (b) Count of instances in each class. (c)

Dense Bi-Label Confusion Matrix. (d) Dense Tri-label Confusion Matrix.

is compared with BERT language model for software reviews

multi-label classification task.

As MLR framework produces multiple predictive pipelines,

therefore to facilitate readers we named data transformation-based

predictive pipelines as SR-DT-CL and algorithm adaptation-based

predictive pipelines as SR-AACL. In SR-DT-CL-based pipelines,

SR can be any method from four representation learning methods

namely TFIDF, OkapiBM25, word2vec, and FastText. Similarly,

DT can be any method from data transformation-based three

methods BR, LP, and CC and CL can be any classifier from

nine classifiers. Specifically, OkapiBM25 representation learning

method, BR data transformation method, and RF classifier
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TABLE 4 Search space for di�erent problem transformation and algorithm adaption classifiers.

Problem transformation classifier PSO search space Algorithm adaptation PSO search space

Adaptive Boosting

(AB)

learning rate (0.00001,..,1)

n_estimators (10,...,1000)

Binary Relevance

k-Nearest

Neighbors

(BRkNNa)

k (1,..,10)

Gradient Boost

(GB)

learning rate (0.00001,...,1)

max_depth (10,..,1000)

min samples leaf (5,...,100)

min samples split (10,...,1000)

n_estimators (10,...,1000)

Binary Relevance

k-Nearest

Neighbors

(BRkNNb)

k (1,..,10)

Support Vector Classifier

(SVC)

C (1,..,1000)

degree (1,...,4)

gamma (0.000001,...,1)

max iterations (500,...,1000)

tol (0.00001,...,0.0001)

Multi-Label

Hierarchical ARAM

Neural Network

(MLARAM)

Threshold

Vigilance (0.01,...,1)

Logistic Regression

(LR)

C (1,..,1000)

max iterations (500,...,1000)

tol (0.00001,...,0.0001)

Multi-Label k-

Nearest Neighbors

(MLKNN)

k (1,..,10)

Extreme Gradient Boosting

(XGB)

learning rate (0.00001,..,1)

max-depth (10,...,1000)

n_estimators (10,...,1000)

Decision Tree (DT),

Random Forest (RF),

Extra Tree (ET)

max_depth (10,...,1000)

min sample leaf (5,...,100)

min sample split (10,...,1000)

n_estimators (10,...,1000)

predictive pipeline are named as OkapiBM25-BR-RF. Similarly,

OkapiBM25 representation-based predictive pipeline with MLNN

algorithm adaption technique is named as OkapiBM25-MLKNN.

Furthermore, EHR-Binary and EHR-Multiclass datasets are named

as EHR-B and EHR-M, respectively.

5.1 Performance analysis of requirements
multi-label classification pipelines using
default and optimized hyper-parameters

This section provides a comprehensive summary about

how swarm optimizer affects the performance of multi-label

classification predictors. To investigate impact of hyper-parameters

on predictors performance, over three benchmark datasets

(promise, EHR-B, EHR-M), we performed experimentation

under two distinct experimental settings. In the first setting,

data transformation and algorithm adaptation-based predictive

pipelines are evaluated using default hyper-parameters of

OkapiBM25 and classifiers. In the second setting, first for each

dataset by using 70% data, we employed swarm optimizer to find

optimal set of OkapiBM25 and classifiers hyper-parameters from

a wide space of hyper-parameters shown in Table 4. Furthermore,

using optimal hyper-parameters, we performed experimentation

using all predictive pipelines.

Table 5 illustrates predictive pipelines (OkapiBM25-DT-CL,

OkapiBM25-AACL ) performance across three benchmark datasets

using default and optimized hyper-parameters. In Table 5, the

1 column illustrates performance gain achieved by predictive

pipelines with optimized hyper-parameters in comparison with

their performance with default hyper-parameters. A bird’s-eye

view of 1 column illustrates that all predictive pipelines achieved

performance gains with optimized hyper-parameters across all

three datasets. However, a closer examination of Table 5 reveals

that some predictive pipelines achieved significant performance

gain, while others only experienced marginal improvements

in performance. This performance distinction primarily arises

due to the fact that the performance of certain classifiers is

heavily dependant on hyper-parameters, whereas for other

classifiers, hyper-parameters have a relatively minor impact on

their performance. Specifically, eight predictive pipelines, namely,

OkapiBM25-DT-AB, OkapiBM25-DT-LR, OkapiBM25-DT-RF,

OkapiBM25-DT-SVC, OkapiBM25-DT-GB, OkapiBM25-DT-ET,

OkapiBM25-BRkNNa, and OkapiBM25-MLARAM, showed

higher performance gain with optimized hyper-parameters.

After observing performance improvements achieved by various

predictive pipelines, the answer to research question three becomes

evident: incorporating swarm optimization in predictive pipelines

proves to be beneficial.

5.2 Performance comparison of diverse
types of text representation approaches
along with data transformation and
algorithm adaptation-based predictive
pipelines

To find answers of four research questions (Q1,Q2,Q3,Q4)

mentioned in Section 1, this section performs a comprehensive

performance analysis of four representation learning approaches

along with data transformation and algorithm adaptation-based

predictive pipelines. Table 6 illustrates performance values
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TABLE 5 Performance analysis of data transformation and algorithm adaptation-based requirements multi-label classification predictive pipelines using

OkapiBM25 representation method and classifiers default and swarm optimizer-based optimal hyper-parameters.

Data
transformation
approaches

Classifier Promise EHR-Binary EHR-Multiclass

OkapiBM25
default

OkapiBm25
optimized

1 OkapiBM25
default

OkapiBm25
optimized

1 OkapiBM25
default

OkapiBm25
optimized

1

Binary relevance AB 0.499 0.577 0.078 0.822 0.855 0.033 0.711 0.728 0.017

DT 0.520 0.535 0.016 0.785 0.798 0.013 0.727 0.733 0.006

ET 0.468 0.477 0.008 0.872 0.882 0.010 0.733 0.747 0.015

GB 0.468 0.553 0.085 0.848 0.896 0.048 0.739 0.781 0.042

LR 0.601 0.648 0.048 0.893 0.894 0.001 0.785 0.793 0.008

NB 0.298 0.3025 0.005 0.854 0.874 0.021 0.664 0.677 0.013

RF 0.358 0.400 0.042 0.858 0.896 0.038 0.700 0.715 0.015

SVC 0.487 0.508 0.021 0.729 0.895 0.166 0.606 0.749 0.143

XGB 0.418 0.431 0.012 0.874 0.886 0.011 0.748 0.761 0.013

Label powerset AB 0.388 0.434 0.046 0.782 0.834 0.052 0.601 0.606 0.004

DT 0.462 0.474 0.012 0.810 0.824 0.014 0.722 0.722 0.000

ET 0.616 0.666 0.050 0.874 0.896 0.022 0.770 0.787 0.017

GB 0.606 0.627 0.020 0.845 0.894 0.049 0.742 0.751 0.010

LR 0.750 0.754 0.004 0.892 0.905 0.013 0.814 0.834 0.020

NB 0.498 0.517 0.019 0.862 0.874 0.013 0.658 0.682 0.024

RF 0.541 0.627 0.086 0.849 0.880 0.031 0.675 0.758 0.083

SVC 0.354 0.672 0.319 0.607 0.892 0.285 0.606 0.824 0.218

XGB 0.534 0.570 0.036 0.880 0.891 0.012 0.767 0.781 0.014

Classifier chain AB 0.495 0.595 0.100 0.808 0.868 0.060 0.715 0.773 0.058

DT 0.517 0.531 0.014 0.823 0.828 0.004 0.710 0.715 0.005

ET 0.455 0.481 0.026 0.882 0.892 0.010 0.734 0.760 0.025

GB 0.488 0.522 0.034 0.808 0.888 0.080 0.743 0.785 0.042

LR 0.632 0.659 0.027 0.871 0.888 0.017 0.802 0.804 0.002

NB 0.312 0.323 0.011 0.853 0.874 0.021 0.654 0.683 0.029

RF 0.355 0.390 0.036 0.859 0.883 0.024 0.703 0.729 0.027

SVC 0.523 0.534 0.011 0.730 0.896 0.165 0.606 0.807 0.201

XGB 0.436 0.447 0.011 0.871 0.880 0.009 0.764 0.768 0.003

Algorithm

adaptation

BRkNNa 0.378 0.437 0.060 0.778 0.802 0.025 0.589 0.761 0.172

BRkNNb 0.091 0.092 0.001 0.783 0.824 0.042 0.010 0.013 0.002

MLARAM 0.428 0.438 0.010 0.560 0.746 0.186 0.617 0.734 0.117

MLKNN 0.491 0.494 0.003 0.811 0.829 0.018 0.690 0.763 0.073

of 27 data transformation and 4 algorithm adaptation-based

predictive pipelines along with four different representation

learning methods across 3 benchmark datasets. Furthermore,

Supplementary Tables 1–12 illustrates in-depth performance

analysis of 27 data transformation and 4 algorithm adaptation-

based predictive pipelines based on 14 different evaluation

measures using 4 different representation learning methods across

3 benchmark datasets, respectively.

It is evident from Table 6 that all 31 (27 SR-DT-CL,

4 SR-AACL) predictive pipelines produce significantly better

performance with TFIDF and OkapiBM25 representation learning

methods as compared to their performance with pre-trained word

embeddings methods. Word embeddings are regarded as superior

representation learning techniques in comparison with traditional

bag of word-based methods. However, their utility in requirements

classification encounters limitations due to the scarcity of available

data. Developing comprehensive word embeddings from a small

requirements data seems impractical. Although different types

of pre-trained word embeddings are publicly available, they

are typically constructed from generic corpora such as English
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TABLE 6 Performance comparison of data transformation and algorithm adaptation-based predictive pipelines using F1-score across three benchmark datasets.

DT
approach

Classifier Promise EHR-Binary EHR-MultiClass

TFIDF OkapiBM25 Word2vec FastText TFIDF OkapiBM25 Word2vec FastText TFIDF OkapiBM25 Word2vec FastText

Binary relevance AB 0.507 0.577 0.437 0.446 0.819 0.855 0.780 0.807 0.710 0.728 0.659 0.667

DT 0.547 0.535 0.349 0.35 0.808 0.798 0.689 0.703 0.727 0.733 0.560 0.571

ET 0.484 0.477 0.250 0.277 0.873 0.882 0.813 0.862 0.728 0.747 0.626 0.650

GB 0.487 0.553 0.377 0.399 0.852 0.896 0.843 0.853 0.744 0.781 0.677 0.679

LR 0.298 0.648 0.048 0.246 0.895 0.894 0.820 0.849 0.681 0.793 0.589 0.653

NB 0.277 0.302 0.395 0.482 0.892 0.874 0.712 0.762 0.641 0.677 0.568 0.605

RF 0.394 0.400 0.273 0.284 0.853 0.896 0.811 0.859 0.698 0.715 0.643 0.627

SVC 0.494 0.508 0.229 0.366 0.729 0.895 0.855 0.878 0.606 0.749 0.633 0.699

XGB 0.442 0.431 0.412 0.444 0.877 0.886 0.860 0.874 0.749 0.761 0.716 0.715

Label powerset AB 0.388 0.434 0.331 0.355 0.779 0.834 0.783 0.795 0.611 0.606 0.604 0.605

DT 0.474 0.474 0.322 0.352 0.833 0.824 0.739 0.747 0.723 0.722 0.560 0.568

ET 0.635 0.666 0.589 0.591 0.875 0.896 0.839 0.846 0.777 0.787 0.688 0.699

GB 0.603 0.627 0.463 0.492 0.844 0.894 0.837 0.849 0.736 0.751 0.689 0.679

LR 0.640 0.754 0.416 0.555 0.887 0.905 0.802 0.846 0.747 0.834 0.624 0.729

NB 0.583 0.517 0.453 0.541 0.868 0.874 0.754 0.787 0.652 0.682 0.612 0.641

RF 0.560 0.627 0.579 0.581 0.850 0.880 0.837 0.8454 0.750 0.758 0.689 0.699

SVC 0.354 0.672 0.501 0.622 0.607 0.892 0.837 0.871 0.606 0.824 0.695 0.763

XGB 0.551 0.570 0.560 0.605 0.878 0.891 0.865 0.874 0.762 0.781 0.714 0.729

Classifier chain AB 0.503 0.595 0.456 0.482 0.812 0.868 0.790 0.815 0.718 0.773 0.672 0.674

DT 0.535 0.531 0.337 0.346 0.829 0.828 0.730 0.7492 0.727 0.715 0.566 0.576

ET 0.492 0.481 0.299 0.325 0.880 0.892 0.826 0.838 0.742 0.760 0.665 0.667

GB 0.509 0.522 0.395 0.432 0.805 0.888 0.820 0.841 0.743 0.785 0.691 0.690

LR 0.398 0.659 0.087 0.367 0.881 0.888 0.728 0.835 0.742 0.804 0.628 0.697

NB 0.319 0.323 0.419 0.483 0.872 0.874 0.739 0.777 0.649 0.683 0.577 0.610

RF 0.391 0.390 0.282 0.302 0.863 0.883 0.841 0.855 0.707 0.729 0.656 0.655

SVC 0.49.5 0.534 0.329 0.522 0.729 0.896 0.816 0.863 0.606 0.807 0.677 0.735

XGB 0.460 0.447 0.447 0.433 0.868 0.880 0.855 0.866 0.768 0.768 0.726 0.728

Algorithm

adaptation

BRkNNa 0.457 0.437 0.082 0.342 0.813 0.802 0.572 0.809 0.741 0.761 0.421 0.678

BRkNNb 0.089 0.092 0.075 0.086 0.819 0.824 0.572 0.808 0.011 0.013 0.008 0.009

MLARAM 0.354 0.438 0.349 0.349 0.607 0.746 0.607 0.607 0.606 0.734 0.522 0.522

MLKNN 0.456 0.494 0.013 0.448 0.814 0.829 0.695 0.819 0.761 0.763 0.602 0.723

Bold values indicate highest performance figure across all methods for all 3 datasets.
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Wikipedia and English CoNLL17 corpus (Kutuzov et al., 2017).

Unfortunately, these pre-trained embeddings lack many keywords

specific to requirements, ultimately influencing the performance

of predictors.

In Table 6, experimental results reveal that among both pre-

trained word embeddings across three benchmark datasets, all

31 predictive pipelines produce better performance with FastText

pre-trained word embeddings. In comparison with word2vec,

FastText pre-tranied embeddings aids classifiers to produce

better performance because FastText generates pre-trained word

embeddings by extracting subwords information that also helps

to acquire out of vocabulary words embeddings. On the other

hand, among two statistical representation learning approaches,

OkapiBM25 encoder outperforms TFIDF based representation

across all three benchmark datasets. Particularly, OkapiBM25

transforms requirements into statistical vectors by efficiently

handling requirements length variability effect on words term

frequencies. Moreover, it also assigns less scores to most

frequent terms.

Specifically, among all FastText pre-trained word embeddings-

based predictive pipelines, FastText-LP-ET, FastText-BR-RF,

and FastText-LP-SVC achieve best performance over promise,

EHR-B, and EHR-M, respectively. Among TFIDF representation-

based predictive pipelines, TFIDF-LP-ET demonstrates superior

performance over promise and EHR-M datasets, while TFIDF-BR-

LR produces highest performance over EHR-B dataset. Contrarily,

among all OkapiBM25 representation method-based predictive

pipelines, OkapiBM25-LP-LR produces highest performance

across all three datasets. Furthermore, OkapiBM25-LP-LR beats

performance of all other SR-DT-CL and SR-AACL predictive

pipelines with significant performance margin. In a nutshell,

TFIDF and pre-trained word embeddings lack to generate

comprehensive statistical representation of requirement for

accurate class predictions. Furthermore, these representation

learning methods also remain fail to provide a generic predictive

pipeline across all three datasets.

Aforementioned performance analysis demonstrates that, as

an answer to research question 1, the combination of the label

powerset data transformation approach and the logistic regression

classifier forms the most effective predictive pipelines. Regarding

research question 2, the OkapiBM25 method showcases a more

comprehensive representation when compared to TFIDF and

pre-trained word embeddings. Moreover, addressing research

question 3, it is evident that the development of a generic

requirements multi-label classification predictive pipeline is

feasible as OkapiBM25-LP-LR outperformed all other predictive

pipelines across all the datasets.

5.3 Performance analysis of adapted deep
learning predictors

To address research question 5, this section performs

an analysis of how three distinct word embedding methods

influence predictive performance of nine adapted deep learning

predictors. Figures 6a–c graphically illustrate three distinct word

embeddings (Random, Word2vec, FastText) impact on nine

deep learning predictors F1-scores across three benchmark

datasets, namely, promise, EHR-B, and EHR-M, respectively.

Furthermore, Supplementary Tables 13–15 illustrates in-depth

performance analysis nine adapted deep learning predictors

using 14 evaluation measures over promise, EHR-B, and EHR-M

datasets, respectively.

It can be seen in Figure 6a over promise dataset, two

predictors, namely, AttentionConvNet and TextRNN, produce

better performance with word2vec embeddings as compared

to their performance with other two embeddings (random,

FastText). Similarly, FastText embddings assisted three predictors

(TextCNN, DPCNN, TextRCNN) to produce better performance

in comparison with other two embedding methods (random,

word2vec). Two predictors namely region embedding and

FastText produce better and similar performance with word2vec

and FastText embeddings as compared to their performance

on random embeddings. Random embeddings assisted two

predictors (TextVDCNN, DRNN) to perform better as

compared to two pre-trained embeddings. Similarly, it can

be seen in Figures 6b, c, across two datasets EHR-B and EHR-

M, seven predictors, namely, FastText, Region embedding,

TextCNN, DPCNN, TextVDCNN, DRNN, and Text RCNN,

produce almost similar performance for three distinct types of

embeddings. Although TextRNN produces better performance

with FastText based embeddings over EHR-B dataset, it produce

similar performance with all three embeddings over EHR-

M dataset. AttentionConvNet predictor produces better

performance with FastText embeddings over EHR-B but in

case of EHR-M dataset it produces better performance with

random embeddings.

Overall, it can be concluded across EHR-B and EHR-M

datasets, pre-trained embeddings remain fail to enhance the

performance of the predictors. Pre-trained word embeddings

remain fail to enhance the performance of predictors because these

embeddings have been developed on generic data and lack most

of the requirements key words. On the other hand, although pre-

trained embeddings lacks many requirements key words but still

over promise dataset predictors produce better performance with

pretained embeddings. Reason behind this performance distinction

is small size of promise data as compared to EHR-B and EHR-

M dataset.

It is evident from Figure 6, among three CNN-based predictors,

TextCNN and DPCNN predictors produce almost similar and

better performance, while VDCNN predictor remain least

performer. The poor performance of VDCNN predictor is due

to its deeper architecture that extracts redundant features due

to inappropriate gradient flow. Among two RNN predictors,

DRNN stands out with considerable performance margin in

contrast to TextRNN predictor. In comparison with standalone

CNN or RNN predictors, Hybrid predictor TextRCNN produces

better performance because it reaps the benefit of both CNN and

RNN architectures that extract comprehensive discriminative and

contextual features. Two predictors namely region embedding

and FastText performance remain in between the performance

of top-performing hybrid predictor and least performing

predictor AttentionConvNet. Overall, among all nine predictors,
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FIGURE 6

Performance comparison of adapted deep learning predictors based on di�erent embeddings using three public benchmark dataset. (a) Promise. (b)

EHR-Binary. (c) EHR-Multiclass.

Fasttext-TextRCNN produces better performance across all

three datasets. Moreover, following comprehensive performance

analysis of nine distinct predictors and three word embeddings

methods, the conclusion drawn in response to research question

5 indicates that generic word embeddings do not possess the

capability to significantly improve the performance of deep

learning predictors.

5.4 MLR-predictor and baseline predictors
performance comparison

As discussed in Section 5.2, a large-scale experimental

analysis of 108 data transformation-based predictive pipelines

reveals that OkapiBM25-LP-LR predictive pipeline manages

to produce highest performance over all three benchmark

datasets. Similarly, among 12 algorithm adaption-based predictive

pipelines, OkapiBM25-MLKNN achieves best performance

across all three datasets. On the other hand as discussed in

Section 5.2, from adapted deep learning predictors FastText pre-

trained embeddings with hybrid predictor (Fasttext-TextRCNN)

produces better performance across all three datasets. This

section illustrates performance comparison of top-performing

data transformation, algorithm adaption, and deep learning-

based predictive pipelines using five different evaluation

measures including: accuracy, precision, recall, f1-score and

subset-accuracy.

It is evident from Figure 7 that among three top-performing

predictors, FastText-TextRCNN predictor surpasses performance

of OkapiBM25-MLKNN predictor by 15%, 6%, and 3% in terms

of all five evaluation measures across promise, EHR-B, and

EHR-M datasets, respectively. Proposed OkapiBM25-LP-LR

predictor outperforms FastText-TextRCNN predictor with a

significant margin of 19%, 1.5%, and 5% across promise, EHR-

B, and EHR-M in terms of all evaluation matrices. Proposed

OkapiBM25-LP-LR predictor outperforms OkapiBM25-

MLKNN predictor with performance gain of ∼26, 7, and 7%

over promise, EHR-B, and EHR-M, respectively. Proposed

OkapiBM25-LP-LR predictor utilizes comprehensive statistical

representation and LP-based data transformation method

capable of capturing co-relation among different classes.

Thus, proposed predictor exhibits dominating performance

over both algorithm adaption-based and deep learning-based

top-performing predictors.

Furthermore, we assess and compare capabilities of three top-

performing predictors for simultaneously accurately predicting

different combinations of labels. Figure 8 graphically illustrates

confusion matrices of actual and predicted combinations of

labels and samples to labels combinations distribution across

three benchmark datasets. It can be seen in Figure 8 top row
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FIGURE 7

Performance comparison of adapted deep learning predictors based on di�erent embeddings using three public benchmark dataset. (a) Promise. (b)

EHR-Binary. (c) EHR-Multiclass.

confusion metrics and samples to labels distribution bar graph,

over promise dataset, out of 469 uni-label samples 340 samples

are correctly identified by proposed predictor. Contrarily,

only 45 and 289 uni-label samples are correctly identified

by OkapiBM25-MLKNN and Fasttext-TextRCNN predictors,

respectively. Out of 170 bi-label samples, proposed predictor

correctly identified 140 bi-labels while both baseline predictors

correctly identified almost a similar number of bi-label samples,

that is, 104. However unlike OkapiBM25-MLKNN predictor,

FastText-TextRCNN predictor demonstrates twice effectiveness

in correctly identifying at least one correct label among bi-label

samples. Moreover, among 120 tri-labels samples proposed

and OkapiBM25-MLKNN predictors correctly predicted 99

and 101 correct tri-label-related samples, while FastText-

TextRCNN managed to predict only 85 correct samples. Among

26 tetra-label samples, proposed and FastText-TextRCNN

predictors correctly identified 14 and 8 samples, respectively.

On the other hand, OkapiBM25-MLKNN remains fail to

correctly label any tetra-label samples. In a nutshell, proposed

predictor remarkably outperformed other baseline predictors

over uni-, bi-, tri-, and tetra-label samples. Furthermore, a similar

performance trend also exists in other two datasets, namely, EHR-B

and EHR-M.

Moreover, to assess and compare class-wise performance

of proposed and baseline predictors, Figure 9 represents three

predictors confusion matrices for EHR-Binary dataset. More

specifically, this analysis aims to assess performance of proposed

predictor when few classes contain a small number of samples

as compared to other classes. For developing confusion matrices,

we used one vs. all technique across all distinct classes, in which

false positives, false negatives, true positives, and true negatives

are calculated by considering one class as positive and all other

classes as negative. Class-level performance analysis of proposed

predictor reveals that ∼98 and 96% samples of “functional” and

“non-functional” classes are predicted correctly. Contrarily, the

OkapiBM25-MLKNN predictor manages to correctly identifies

∼76% samples of “functional” class and only 36% samples of

“non-functional” class. FastText-TextRCNN predictor accurately

identifies 73% and nearly 67% samples of “functional” and

“non-functional” classes, respectively. Hence, it is evident that

the proposed OkapiBM25-LP-LR predictor achieves the highest

true positive rate for each individual class over promise

dataset. In the Supplementary material, a detailed examination of

Supplementary Figures 1, 2 demonstrates that all three predictors

exhibit similar trends to those observed in the EHR-B dataset for

the other two datasets promise and and EHR-M.
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FIGURE 8

Performance analysis of top-performing predictors.

5.5 Performance comparison of proposed
and state-of-the-art predictors

This section provides performance comparison of proposed

and state-of-the-art multi-label requirements classification

predictors across three benchmark datasets. It is evident from

Table 7 state-of-the-art predictors are evaluated across three

different evaluation measures namely macro precision, macro

recall, and macro F1 measure. Moreover, Slankas and Williams

(2013) reported all three measures performance for EHR-M

dataset but only macro F1-score for promise dataset. To ensure

fair performance comparison, we have also reported macro

precision, macro recall, and macro F1-measure in this particular

section. However, the remaining sections of the article focus on

performance analysis primarily using the F1-score.

Over promise dataset, among existing predictors, AlDhafer

et al. (2022) predictor produces 6% better macro F1-score.

However, over EHR-M dataset, Slankas and Williams (2013)

predictor outperformed AlDhafer et al. (2022) predictor by 2%.

On the other hand, over promise dataset, proposed predictor

outperformed Slankas and Williams (2013) and AlDhafer et al.

(2022) predictors with a significant performancemargin of 19% and

13% in terms of macro F1-score. Similarly, over EHR-M dataset,

proposed predictor outperformed Slankas and Williams (2013)

and AlDhafer et al. (2022) predictors by performance margin

of 2.5% and 4.5% in terms of F1-score. Over EHR-B dataset,

proposed predictor outperform AlDhafer et al. (2022) predictor by

a performance figure of 1%.

With respect to robustness, proposed and state-of-the-art

predictors fall into two categories: highly biased and less-biased

based on differences in precision and recall values. Highly-biased

predictors have higher differences, and less-biased predictors

have less difference between precision and recall values. It is

evident from Table 7, Slankas and Williams (2013) predictor has

almost 18% different between precision and recall. Although

AlDhafer et al. (2022) predictor precision and recall performance

figures are almost similar over EHR-B dataset. It has almost 7%

precision and recall difference over promise dataset and ∼14%

performance difference in terms of precision and recall over EHR-

M dataset. Based on precision and recall differences (greater
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FIGURE 9

Class-wise performance analysis of MLR and baseline predictors in

terms of number of correct and wrong predictions over EHR-Binary

dataset. (a) OkapiBM25-LP-LR. (b) OkapiBM25-MLKNN. (c)

FastText-TextRCNN.
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than 5), state-of-the-art predictors (Slankas and Williams, 2013;

AlDhafer et al., 2022) are baised toward type II error, over promise,

and EHR-M dataset. Proposed predictor produced almost similar

precision and recall values across promise and EHR-B; however,

over EHR-M it is baised toward type I error.

AlDhafer et al. (2022) predictor less predictive performance is

due to its reliability over deep learning architecture (BiGRU) that

usually requires large training data to produce better performance

and requirements classification datasets are smaller in size. Slankas

and Williams (2013) predictor also could not manage to produce

better performance although it makes use of traditional TFIDF

representation learning approach along with binary relevance data

transformation approach and SVM classifier. Binary relevance

does not consider co-relations between labels and usually lacks in

performance. Proposed predictor outperformed both state-of-the-

art predictors with a significant performance margin because it

makes use of more comprehensive representation learning method

OkapiBM25 and data transformation method label powerset that

considers correlations between class labels while transforming

data from multi-label to multiclass. Another reason for producing

better performance is proposed predictor reliability over swarm

optimizer that smartly finds optimal values of hyper-parameters.

It can be seen, Slankas and Williams (2013) predictive pipeline

TFIDF-BR-SVMmanaged to produce 0.382% and 0.62%macro F1-

score over promise and EHR-M datasets, respectively. However, in

our experimentation, same predictive pipeline manged to produce

0.397% and 0.629% F1-score over promise and EHR-M datasets,

respectively. A prime reason behind this performance boost is

utilization of optimal hyper-parameters.

5.6 Case study

In addition to requirements classification, we also evaluated

the effectiveness of the proposed MLR framework’s top-performing

predictive pipeline in handling the task of classifying customer

reviews for various software products. With an aim to improve

existing softwares by collecting users feedbacks from social media

platforms, Jha and Mahmoud (2019) manually categorized users

feedbacks into requirements four classes. In this study, the objective

was to analyze how users are providing feedback about each

requirement class. Primarily, 6,000 user reviews encompassing

2,369 instances of non-functional requirements and 3631 instances

categorized asmiscellaneous requirements. These reviews belong to

various domains including games, communication, books, health,

and more. The reviews are categorized into four distinct NFR

classes namely dependability, performance, supportability, and

usability.

More recently, Kaur and Kaur (2023) utilized aforementioned

dataset for multi-label classification of reviews under two distinct

experimental settings including (1) 10-fold cross-validation and

(2) independent test set (70-30 split). The authors made use of

binary relevance for data transformation along with BERT language

model. The authors reported average F1-measure of 74 and 73

under first and second experimental setting, respectively. However,

proposed predictor outperformed Kaur and Kaur (2023) predictor

with a margin of 1.4 and 1% under first and second setting,

respectively. The superior performance of proposed predictor

reveals that it can be utilize to perform other different types of

multi-label classification tasks related to software.

6 Limitations of study

This study covers a broad scope by investigating the

potential of 124 machine learning and nine deep learning-based

predictive pipelines. However, there are opportunities for further

enhancements within these predictive pipelines. For instance, the

study utilizes pre-trained word embeddings generated from generic

textual data. Performance of predictive pipelines might improve

significantly if the word embeddings were generated specifically

from requirements data. Additionally, the study examines only two

types of word embeddings, namely, word2vec and FastText. Other

methods, such as deepwalk, graph representation, node2vec, LINE,

and HOPE, remain unexplored. These alternative methods could

potentially enhance the performance of the predictive pipelines.

Furthermore, while this study includes a case study comparing the

performance of the proposed predictive pipeline with the BERT

language model, it does not explore the potential of large language

models for requirements classification task.

7 Conclusion

To empower multi-label requirements classification process,

the article in hand presents a versatile computational framework

named MLR-Predictor. With an aim to transform requirements

into statistical vectors having discriminative patterns among

different classes, MLR-Predictor is enriched with diverse types

of words embeddings and a unique encoder Okapi BM25.

Furthermore, it is strengthened with four algorithm adaptation

and three data transformation methods along with nine machine

learning classifiers. To find optimal hyper-parameters of classifiers

and Okapi BM25 encoder, MLR-Predictor is empowered with

swarm optimizer. MLR-Predictor distinct predictive pipelines

and nine adapted deep learning predictors are evaluated on three

benchmark datasets using eight different evaluation measures.

The performance analysis of diverse predictive pipelines within

the proposed framework reveals that, at the representation

level, the Okapi BM25 method is the most effective among four

different representation learning approaches namely TFIDF,

word2vec, fasttext, and glove.It transforms requirements into a

statistical feature space by assigning scores to words based on

their actual discriminative potential. Furthermore, among three

data transformation approaches, the Label Powerset method is

particularly effective in converting multi-label data into multiclass

data. Among four algorithm adaption-based methods, xx method

produced better performance. Overall, among 124 machine

learning-based predictive pipelines, OKAPI-BM25 representation

learning, Label powerset data transformation, and LR classifier-

based predictive pipeline produced best performance. On the

other hand among adapted nine different deep learning predictors,

okapiBM25-LP-LR predictor produced highest performance.

Furthermore, deep learning predictors remain fail to surpass the

performance of traditional machine learning-based predictive

Frontiers in Artificial Intelligence 22 frontiersin.org

https://doi.org/10.3389/frai.2024.1481581
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Saleem et al. 10.3389/frai.2024.1481581

pipelines, primarily due to the limited size of the training data.

Furthermore, in comparison with state-of-the-art requirements

classification predictor, the OkapiBM25-LPLR predictive pipeline

demonstrated enhancements in macro F1-scores of 13%, 1.5%,

and 2.5% across the promise, EHR-B, and EHR-M datasets,

respectively.

Promising future directions for this study include accumulation

of a substantial amount of requirements-related data along with

time and space complexity of MLR framework. Additionally,

investigating the potential of large language models (LLMs)

and exploring predictor’s robustness against adversarial attacks

(Kwon and Lee, 2023, 2024) would be crucial to ensure its

reliability in real-world applications. These advancements

would not only strengthen the current approach but also pave

the way for more sophisticated and resilient requirements

classification systems, potentially revolutionizing software

engineering practices.
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