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Unmanned aerial vehicles (UAVs) are one of the most effective tools for crop 
monitoring in the field. Time-series RGB and multispectral data obtained with UAVs 
can be used for revealing changes of three-dimensional growth. We previously 
showed using a rice population with our regular cultivation protocol that canopy 
height (CH) parameters extracted from time-series RGB data are useful for 
predicting manually measured traits such as days to heading (DTH), culm length 
(CL), and aboveground dried weight (ADW). However, whether CH parameters 
are applicable to other rice populations and to different cultivation methods, and 
whether vegetation indices such as the chlorophyll index green (CIg) can function 
for phenotype prediction remain to be elucidated. Here we show that CH and 
CIg exhibit different patterns with different cultivation protocols, and each has 
its own character for the prediction of rice phenotypes. We analyzed CH and 
CIg time-series data with a modified logistic model and a double logistic model, 
respectively, to extract individual parameters for each. The CH parameters were 
useful for predicting DTH, CL, ADW and stem and leaf weight (SLW) in a newly 
developed rice population under both regular and delayed cultivation protocols. 
The CIg parameters were also effective for predicting DTH and SLW, and could 
also be used to predict panicle weight (PW). The predictive ability worsened when 
different cultivation protocols were used, but this deterioration was mitigated by 
a calibration procedure using data from parental cultivars. These results indicate 
that the prediction of DTH, CL, ADW and SLW by CH parameters is robust to 
differences in rice populations and cultivation protocols, and that CIg parameters 
are an indispensable complement to the CH parameters for the predicting PW.
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1 Introduction

Remote sensing by unmanned aerial vehicles (UAVs) is an efficient way to phenotype 
crops in the field (Yang et al., 2017; Ninomiya, 2022). Typical, “multi-rotor-type” UAVs can 
cover a large field in a short period of time (Yang et al., 2017), and when equipped with sensing 
devices, they can fly over agricultural fields and acquire information about crop growth in a 
non-destructive manner. The sensing devices include RGB (red, green and blue) and 
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multispectral cameras (Shi et al., 2016), and RGB images are used to 
reconstruct the 3D structure of plants by the structure-from-motion 
technique (Westoby et al., 2012). RGB and multispectral cameras are 
also used to quantify spectral reflectance from plants and calculate 
vegetation indices (VIs), which are related to yield and leaf color (Xue 
and Su, 2017). These data can be utilized as predictors for traits such 
as plant emergence (Li et al., 2019), height (Holman et al., 2016), 
biomass (Ogawa et al., 2021a), and yield (Wan et al., 2020). Gathering 
these data with manual measurements is labor-intensive for workers 
in the field. Therefore, UAV-based phenotyping can be more cost-
effective than conventional manual methods (Reynolds et al., 2019), 
and is expected to facilitate agronomic studies.

Improvements of crop varieties and their cultivation methods are 
a necessary response to global population growth and climate change 
(Tester and Langridge, 2010; Heredia et  al., 2022). In breeding 
programs, hundreds of genotypes are cultivated in the plots on a filed 
at the same time. Since the growing conditions suitable for cultivars 
vary depending on their genetic architecture (Shinada et al., 2014; 
Hori et al., 2016), growing tests of crops should be conducted under 
various cultivation conditions to account for the genetic background 
of the population. In terms of genetics, the methodology to analyze 
breeding population in multiple environments (e.g., years or locations) 
has been intensively studied (Crossa et  al., 2022). UAV-based 
phenotyping is a promising technology for the usage in breeding 
programs (Guo et al., 2021), but its application to multi-environmental 
test is limited so far (e.g., Sakurai et  al., 2023). A fundamental 
challenge is how to handle UAV-derived data for multiple genetic 
backgrounds, environments, or cultivation conditions. It is important 
for UAV-based phenotyping of crops to be robust enough to be applied 
to various populations under different growing conditions.

Remote sensing has enabled to trace seasonal changes in crop 
growth (crop phenology) using time-series observation data 
(Sakamoto et al., 2013; Kronenberg et al., 2021). In the case of rice, the 
growth process is generally divided into a vegetative growth stage 
before heading and a reproductive growth stage after heading. During 
vegetative growth, assimilates are stored in source organs (i.e., the 
stem and leaf), and during reproductive growth, assimilates are 
translocated into a sink organ (i.e., the panicle). Because the yield 
potential and cultivation characteristics of each cultivar or line is 
strongly related to the sink-source relationships (Horie et al., 1995; Li 
et al., 1998; Yoshida and Horie, 2009; Ohsumi et al., 2011) and the 3D 
architecture of plant associated with photosynthesis (Jiao et al., 2010; 
Khush, 2013; Burgess et  al., 2017), phenology information is 
indispensable in agronomic studies. Many previous studies have made 
it possible to predict the phenology stage of rice by using VIs or image 
data obtained from UAVs (Desai et al., 2019; Yang et al., 2020; Ge 
et al., 2021; Lu et al., 2023), and various approaches to connect VI 
time-series data to rice phenology have also emerged (Berger et al., 
2019; Yang et al., 2022). However, the number of studies that analyze 
genetic differences in terms of rice phenology is still limited, and the 
methodology to evaluate rice lines for breeding and cultivation tests 
by using UAV time-series data is underdeveloped.

To develop the methodology for evaluating rice lines by using 
UAV time-series data, two important points should be considered. 
First, interpretable models need to be constructed to assess which 
aspect of phenology the time-series data reflects. These time-series 
data are often used as predictors for predicting manually measured 
traits in machine-learning models, such as random forest, support 

vector regression, and neural networks, which can generally 
incorporate various types of UAV time-series data (Masjedi et al., 
2020; Sakamoto, 2020; Shafiee et al., 2021; Xu et al., 2021). However, 
these complexed models are often referred to as “black box” models, 
meaning the difficulty in model explanation and model examination 
(Biecek and Burzykowski, 2021). Instead, an understanding of which 
predictors have what effects at which period during the crop 
phenology can give agronomic insight into trait prediction.

Second, appropriate methods need to be examined to deal with 
various cultivars and cultivation protocols. One possible approach is 
to divide the growth process into several developmental stages and to 
acquire VIs at each stage (Han et al., 2018; Wang et al., 2019; Qiu et al., 
2020). However, even on the same observation date, the phenology 
stage of rice can vary depending on the cultivar., cultivation protocol 
(e.g., transplanting dates), and year because rice phenology is affected 
by genetic background and environment (Hori et al., 2015). Therefore, 
it is difficult to arrange an observation date that will target specific 
phenological stages of each cultivar, protocol, and year.

To tackle these two challenges, we hypothesized that applying a 
time-series model to explain the UAV time-series data by non-linear 
curve and utilizing time-series model parameters would be effective. 
This approach has been used for crops such as soybean (Borra-Serrano 
et al., 2020) and maize (Anderson et al., 2019). In our previous study 
(Taniguchi et al., 2022), we focused on canopy height (CH) which is 
the natural height of crop canopy between the ground surface and its 
highest point in a standing condition, and then examined its time-
series trait by the UAV observations. We  developed a time-series 
model and applied it to time-series CH data of 30 rice cultivars, 
including japonica and indica. The obtained model parameters (CH 
parameters) predicted manually measured traits such as culm length 
(CL) and biomass and identified relationships between the manually 
measured traits and model parameters. However, it is not clear 
whether that approach is robust enough to apply to other populations.

Moreover, in our previous study targeting 30 rice cultivars, the 
prediction model by CH parameters was insufficient to predict grain 
yield, which is a key trait in agronomic studies. According to 
Tsukaguchi et  al. (2022), a VI related to chlorophyll content and 
photosynthesis activity, namely, the chlorophyll index green (CIg) 
(Gitelson et al., 2003; Gitelson et al., 2005), is related to rice yield over 
the course of growth and development. Since CIg has a sensitivity 
advantage compared with the Normalized Difference Vegetation 
Index (NDVI), a commonly used vegetation indicator, especially when 
the vegetation fraction tends to be saturated (Gitelson et al., 2005; 
Viña et  al., 2011; Tsukaguchi et  al., 2022), we  expect it to be  an 
appropriate VI for observing middle and late growth phases. In a 
study of wheat, using VIs and CH together was found to be  an 
appropriate strategy to increase yield prediction performance (Tao 
et al., 2020).

This study aimed, therefore, to evaluate the performance of trait 
prediction models using interpretable parameters of CH and CIg as 
they relate to rice phenology. We developed a genetically close Multi-
parent Advanced Generation Inter Cross (MAGIC) population 
derived from 4 japonica rice cultivars, which are totally different from 
the previous population consisting of 30 rice cultivars (Taniguchi 
et al., 2022), and tested the MAGIC population in paddy fields under 
regular and delayed transplanting protocols to investigate the 
influence of the different protocols on rice phenology. We extracted 
parameters from the CH and CIg time-series data, and quantified 
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differences among CH and CIg parameters in terms of trait prediction. 
Finally, we constructed a calibration method so that trait prediction 
models can be applied to different transplanting protocols or different 
years. This study should provide valuable insights into how to obtain 
and handle phenological data for the prediction of manually 
measured traits.

2 Materials and methods

2.1 Development of Japan-MAGIC2 lines 
and cultivation

We used four Japanese cultivars as parents of the Japan-MAGIC2 
(JAM2) lines: Iwaidawara (IW), Toyomeki (TO), Akidawara (AK), 
and Tachiharuka (TH). We first crossed AK with TO and IW with TH 
to produce seeds of two types, called the AKTO and IWTH two-way 
hybrids. Then these hybrids were crossed to produce four-way 
recombinants. We finally produced 100 JAM2 lines by the single-seed 
descent (SSD) method. These JAM2 lines (F5 in 2022, F6 in 2023) 
were used in this study (Supplementary Figure 1A).

We cultivated the 100 JAM2 lines in a rice field in Tsukuba, Japan, 
in 2022 and 2023 using both regular (R) and delayed (D) transplanting 
protocols (Figure 1; Supplementary Table 1). The dates of sowing and 
transplanting to the paddy field in the delayed transplanting protocol 
were about a month later than those in the regular transplanting 
protocol (Figure 2). In this study, the data from 2022 were used for the 
main analysis, and the data of 2023 were used for evaluating the 
robustness of the trait prediction models.

2.2 Manual measurements of traits related 
to yield

Days to heading (DTH) was scored as the number of days from 
transplanting rice to the field to the appearance of the first panicle 
in more than half of the plants in each JAM2 line. CL was assessed 
as the length of the longest culm of each plant measured with a ruler 
more than 10 days after heading. For the measurement of panicle 
weight (PW) and stem and leaf weight (SLW), shoots of mature 
plants were air-dried from one to two months in a drying room and 
then cut 3 cm below the panicle base to separate the parts. The 
aboveground dried weight (ADW) was calculated as PW + SLW. The 
averages of five plants in the middle lane except for the plants at 
both edges were used as the CL, PW, SLW, and ADW values of each 
JAM2 line (Figure 1).

2.3 UAV-based aerial photography

Similar to our previous studies (Ogawa et al., 2021b; Taniguchi et al., 
2022), UAV-based aerial photography was conducted once a week to 
track the growth of the rice lines. For lines grown under both the regular 
transplanting and delayed transplanting protocols, aerial photography 
was conducted once a week after puddling and before the planting date 
until harvest, which occurred by 1 November. For the aerial photography, 
we used a Phantom 4 Pro (P4P) UAV equipped with an RGB camera to 
obtain data for calculating CH, and a DJI Phantom 4 Pro Multispectral 

(P4M) UAV, which is equipped with multispectral cameras, to obtain 
data for calculating CIg (Figure 1). The automatic flight settings for the 
P4M were slightly different from those for the P4P in order to shorten 
the flight time, thereby reducing the impact of short-term changes in 
incident light intensity on the spectral images (Ogawa et al., 2021a). The 
flight path and image shooting setting were programmed by using DJI 
GS Pro software. The detailed settings are in Supplementary Table 2. The 
band setting of P4M were as follows: blue is 450 nm 16 nm± , green is 
560 nm 16 nm± , red is 650 nm 16 nm± , red edge is 730 nm 16 nm±  
and NIR is 840 nm 16 nm± .

The P4P was manually raised to 10 m and the camera’s focus 
distance was adjusted on a region of the canopy before the aerial 
photography, then was started in automatic flight mode at an altitude 
of 10 m. The P4M was manually operated to a position 1–2 m above 
a Micasense Calibration Reflectance Panel (MicaSense Inc., Seattle, 
WA, USA) to capture spectral images of the gray plate with 50% 
reflectance before and after operation in automatic flight mode at an 
altitude of 20 m. We set painted black and white markers on paved 
surfaces at eight points surrounding the field as ground control points 
(GCPs) and then precisely measured the latitude, longitude, and 
altitude of each point with a TCRP1205 surveyor (Leica, Heerbrugg, 
Switzerland).

2.4 Generation of orthomosaic images and 
a crop surface model from the UAV images

We obtained multispectral orthomosaic images and a crop 
surface model (CSM) from each set of aerial images with Agisoft 
MetaShape Professional v. 1.7.3 software (Agisoft, St. Petersburg, 
Russia). The CSM was generated from the high-resolution RGB 
images acquired by the P4P using the same steps as described 
previously (Ogawa et al., 2019): (1) Align photos (accuracy, high), 
(2) input GCPs, (3) build dense cloud (accuracy, high), (4) build 
mesh (surface type, height field; source data, dense cloud), and (5) 
build digital elevation model (DEM; source data, dense cloud). The 
DEM image of 16 May was defined as the height of the ground 
surface. Then, a CSM image representing the height of the rice 
plants was created by taking the difference between the ground 
surface height image obtained on another observation date and the 
DEM image. The multispectral orthomosaic images were generated 
from the P4M aerial images with an alternative procedure to 
reduce misalignment of the spectral images (Sakamoto et  al., 
2022). The following steps were repeated for each spectral image: 
(1) Align photos (accuracy, high), (2) input GCPs, and (3) calibrate 
reflectance using the sun sensor data and gray panel images. The 
sparse-point data and the GCP data for each spectral dataset were 
merged into a single chunk in the Meta Shape to perform camera 
calibration. Then, the following steps were conducted: (4) Build 
DEM (source data, sparse cloud) and (5) build orthomosaic images 
(surface DEM; blending mode, mosaic). The orthomosaic images 
and the DEM images were analyzed in ENVI v. 5.5 remote sensing 
software (Harris Geospatial, Boulder, CO, USA). The original 
spatial resolution was 3 mm/pixel for P4P and 11 mm/pixel for 
P4M. The map projection was converted to UTM zone 54 N 
(WGS-84), and then both DEM and orthomosaic images were 
resampled with a 2-mm/pixel resolution. The resampling 
resolution was set to a slightly higher resolution than P4P RGB 
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FIGURE 1

Framework of this study. (1) Time-series photogrammetry was used to extract CH and CIg data of the JAM2 lines grown in the field. (2) The CH and CIg 
parameters were extracted by fitting time-series models to the data. (3) Manually measured traits were obtained. (4) Linear regression models were 
then constructed to predict the manually measured traits from the CH and/or CIg parameters. (4.1) Six prediction models were constructed depending 
on the parameter types and whether variable selection was conducted or not, and model comparisons were performed. (4.2) The prediction models 
were applied for five manually measured traits. (4.3) The robustness of the prediction models to the different transplanting protocols and years were 
also evaluated.
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camera images because of accounting for variations in ground 
resolution due to changes in actual UAV flight altitude. The 
converted image was rotated 66° clockwise to match the direction 
of the long side of the field with the lateral direction of the final 
output image. The image was then resized to a rectangle (28,000 
pixels × 14,000 pixels).

2.5 Quantification of CH and CIg

JAM2 lines were cultivated in a small plot in a field: the distance 
between adjacent plants was 30 cm between columns and 18 cm 
between rows. The plots in which each line was planted were cut out 
by using ENVI software from the orthomosaic and DEM images. Each 
cut-out image corresponded to 90 cm × 126 cm on the ground and 
contained 21 plants (Supplementary Figure 1B). From the cut-out 
images, CH and CIg were calculated as follows. We defined CH as the 
difference between the canopy position, that is, the 95th percentile 
value in the cut-out DSM, and the ground level; the method used to 
obtain values were consistent with manually measured CH data 
(Taniguchi et al., 2022). CIg was calculated as the ratio of NIR to green 
reflectance values (Gitelson et al., 2003; Gitelson et al., 2005):

 

NIR

green
CIg ρ

ρ
=

We defined the CIg of each line as the mean CIg in the plot 
corresponding to that line in the orthomosaic image.

2.6 Fitting time-series model to the CH and 
CIg

We fitted time-series models to the CH and CIg time-series data 
to obtain the CH parameters and CIg parameters (Figure 1). In our 
previous study (Taniguchi et al., 2022), in which we analyzed time-
series CH data, we  applied a modified three-parameter logistic 
model. The three-parameter logistic model accounted for the CH 
decrease in the late growth period by using a quadratic curve,

 

( )( )

( )( ) ( )

1 0

2
1

1 0

1 exp

1 exp

K
r d x

y
K a x d
r d x


 + −= 
 − −
 + −

where x  is the days after transplanting. The parameters of the 
three-parameter logistic model were estimated by the same procedure 
of our previous study, the algorithm of which was implemented in the 
R package phenolocrop (Taniguchi et al., 2022). Parameter K  is the 
maximum value of CH, 1r  is the growth rate before the peak, 0d  is the 
time point at which the growth rate is a maximum, 1d  is the time point 
at which the maximum value of y is reached, and a is the rate at which 
CH decreases in the late growth period (Figure 3A). Different from 
CH, CIg time-series data described an S-shape with time; therefore, 
we  adopted a double logistic model for the CIg data (Fisher and 
Mustard, 2007; Yang et al., 2012).

 ( )( ) ( )( )max
2 2 3 3

1 1
1 exp 1 exp

y y
r d x r d x

 
= −  + − + − 

Here, parameter 2r  is the growth rate before the peak, 3r  is the rate of 
decrease after the peak, 2d  is the time point at which the growth rate is a 
maximum, 3d  is the time point at which the decreasing rate is a maximum, 
and maxy  is the maximum value of CIg (Figure 3B). Here, we fitted both 
a three-parameter logistic model and a double logistic model to the time-
series CH and CIg data. To estimate the parameters of the double logistic 
model, we  first set the maximum value of the objective time-series 
variable (CH or CIg) to maxy  and then estimated the other variables in the 
framework of the nonlinear least squares method implemented in the R 
function nls. The algorithm was set to nl2sol, and the initial values of 2r , 
3r , 2d , and 3d  were 0.05, 0.05, 40, and 100, respectively.

To evaluate which model was best suited to CH or CIg, 
we  calculated the coefficients of determination ( 2R ) for each 
observation dataset. For CH, the 2R  values were high for both the 
three-parameter logistic model ( 2 0.982R =  on average) and the 
double logistic model ( 2 0.985R =  on average). While the double 
logistic model was slightly better, we adopted the three-parameter 
logistic model for the time-series CH data because our objective is to 
evaluate the robustness of the methodology presented in our previous 
study (Taniguchi et al., 2022). In contrast, for CIg, we adopted the 
double logistic model because the 2R  value ( 2 0.941R =  on average) 
for that model was larger than that for the three-parameter logistic 
model ( 2 0.796R =  on average; Supplementary Figure 2).

FIGURE 2

Regular and delayed transplanting protocols with meteorological 
data in 2022. Day length and daily mean air temperature are shown 
in the top graph, with the timelines of the regular and delayed 
transplanting protocols for the JAM2 lines shown below it. The 
period of rice seedling growth is shown by dotted lines, and the 
period of cultivation in the rice paddy field is shown by solid lines. 
The dates of sowing and transplanting are shown by gray and black 
triangles, respectively, and the mean heading dates are shown by red 
triangles. Monitoring of JAM2 lines with UAVs ceased at harvest. Day 
length and temperature data were acquired from Weather Data 
Acquisition System of Institute for Agro-Environmental Sciences, 
NARO.
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2.7 Characterization of traits and 
parameters

All of the manually measured traits and model parameters were 
characterized by summary statistics (mean, variance, max value, and 
min value), frequency distribution, and the calculated Pearson’s 
correlation coefficient (cor) between each trait and parameter. To 
determine how the CH and CIg parameters were related, we conducted 
principal component analysis (PCA).

2.8 Prediction of manually measured traits 
using CH and CIg parameters

For the prediction of manually measured traits from CH and/or 
CIg parameters, we conducted variable selection and constructed six 
linear regression models depending on which parameters were used 
as the predictors (Figure 1). The CH-selected model used K, d0, and d1 
as predictors. These parameters were selected from the five CH 
parameters by a procedure called backward variable selection to 
prevent multicollinearity (Hastie et  al., 2009). When the variance 
inflation factor (VIF) was calculated using the car package in R (Fox 
and Weisberg, 2019), the selected parameters, K, d0, and d1, had VIFs 
lower than 5 (Supplementary Table 3). The CIg-selected model used 
2r , 2d , 3d , and maxy  as predictors without multicollinearity. These 

parameters were selected from the five CIg parameters in the same 

way (Supplementary Table 4). Then, to investigate whether the two 
models contained different information for trait prediction, 
we  constructed a “Hybrid-selected model,” which used all of the 
predictors used by the CH-selected and CIg-selected models. We also 
constructed the corresponding full models (CH-full model, CIg-full 
model, and Hybrid-full model) to examine the effects of 
variable selection.

We evaluated the performance of the six prediction models using 
four validation schemes: model fitness, model accuracy, type-1 model 
robustness, and type-2 model robustness (Figure  4). To evaluate 
model fitness, each prediction model was fitted separately to the 
JAM2 data of R and D in 2022, and their coefficients of determination 
( 2R ), regression coefficients, and p-values were calculated to measure 
the goodness of fit and to identify those parameters that were 
important for trait prediction. To evaluate model accuracy, 
we conducted 10-fold cross validation (10-CV) for R and D separately 
in 2022. Because cross-validation results can fluctuate depending on 
the data-splitting process, we  randomly repeated the 10-CV 100 
times and calculated root mean squared errors (RMSEs) and cor 
values. We  also compared prediction accuracies among the 
CH-selected, CIg-selected, and Hybrid-selected models by 
conducting a “Tukey-like” non-parametric multiple comparison 
among them with the nparcomp function implemented in the 
nparcomp package in R (Konietschke et al., 2015). To evaluate type-1 
model robustness, we trained the prediction model with R data and 
tested the trained model against D data, and vice versa. To evaluate 
type-2 model robustness, we trained the prediction model with R 
data of 2022 and tested the trained model against R data of 2023. 
We also trained the prediction model with D data of 2022 and tested 
the trained model against D data of 2023. We quantified the two types 
of model robustness by calculating the RMSE and the cor values.

2.9 Calibration of the prediction models for 
improving the model robustness

After predicting the phenotypic values of the test data in the 
evaluation procedure of model robustness, we calibrated the predicted 
phenotypic values by using the data of the parental cultivars of JAM2. 
The calibration model was constructed in the following five steps 
(Supplementary Figure 3).

As shown in Supplementary Figure  3A, for the type-1 model 
robustness, (1) we trained the prediction model with D data of JAM2. 
(2) We applied the trained prediction model to R data of JAM2 and 
obtained the predicted values of R data of JAM2. (3) We applied the 
trained prediction model to R data of parental cultivars of JAM2 and 
obtained the predicted values of the parental cultivars. (4) We trained 
a single regression model as the calibration model by comparing the 
predicted and observed values of the parental cultivars. (5) We applied 
the trained calibration model to the predicted values of the R data of 
JAM2 and obtained the calibrated values. Similarly, for the case of 
training the prediction model with R data of JAM2, we calibrated the 
predicted values of D data of JAM2. We quantified the calibration by 
calculating the RMSE and the cor values.

For the type-2 model robustness, as shown in 
Supplementary Figure 3B, (1) we trained the prediction model with R 
data of JAM2 in 2022. (2) We applied the trained prediction model to 
R data of JAM2 in 2023 and obtained the predicted values of R data of 

FIGURE 3

CH and CIg parameters. Trajectories of the CH (A) and CIg (B) time-
series models and definitions of the model parameters.
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JAM2 in 2023. (3) We applied the trained prediction model to R data 
of the parental cultivars of JAM2 in 2023 and obtained the predicted 
values of the parental cultivars. (4) We trained a single regression 
model as the calibration model by comparing the predicted and 
observed values of the parental cultivars. (5) We applied the trained 
calibration model to the predicted values of R data of JAM2 in 2023 
and obtained the calibrated values. Similarly, for the case of training 
the prediction model with D data of JAM2 in 2022, we calibrated the 
predicted values of D data of JAM2  in 2023. These calibration 
frameworks were applied to the Hybrid-selected model; the parameter 
and trait data are available in Supplementary Data 1.

3 Results

3.1 Differences in manually measured traits 
in the JAM2 lines between regular and 
delayed transplanting protocols

We examined the distributions of five manually measured traits 
of the JAM2 lines grown under the regular and delayed transplanting 
protocols. The ranges of trait distribution under the regular 
transplanting protocol were as follows: days to heading (DTH: 
59–100 days), culm length (CL: 51–110 cm), aboveground dried 
weight (ADW: 56–118 g), stem and leaf weight (SLW: 24–76 g), and 

panicle weight (PW: 21–58 g). Those under the delayed transplanting 
protocol were as follows: DTH (48–84 days), CL (58–121 cm), ADW 
(69–114 g), SLW (23–70 g), and PW (28–59 g). We found that the CL, 
ADW, SLW, and PW distributions, which were investigated at the 
maturation stage, were largely comparable between the regular and 
the delayed transplanting protocols. By contrast, the DTH 
distribution was clearly shorter under the delayed transplanting 
protocol (48–84 days) than under the regular transplanting protocol 
(59–100 days). Thus, the vegetative growth period was shortened 
under the delayed transplanting protocol (Figure  5A; 
Supplementary Table 5).

Positive correlations were detected between the regular and delayed 
transplanting protocols for the five manually measured traits, with 
correlation coefficients ranging from 0.98 (DTH) to 0.50 (PW: 
Supplementary Figure 4). In the case of DTH, which had the highest 
correlation coefficient, the transition from the vegetative phase to the 
reproductive phase was consistently earlier under the delayed 
transplanting protocol. The probable reason is that the JAM2 parental 
cultivars are adapted to the Japanese environment, so the transition 
occurs when the plants detect high temperatures together with a shorter 
day length at the end of July (Figure 2), conditions that are known to 
promote heading (Vicentini et al., 2023). The correlation coefficient of 
CL (0.96) was also high, but the difference between the transplanting 
protocols in this trait was small. The correlation for PW was small 
(cor = 0.50) but still significantly positive (Supplementary Table 4). The 

FIGURE 4

Frameworks for evaluating the performance of the prediction models. To assess model fitness, all data of regular (R) and delayed (D) transplanting 
protocols were treated as training data. To assess model accuracy, 10-fold cross-validation (10-CV) was used, in which each dataset was split into 
training and test data. Type-1 model robustness was assessed by using data from different transplanting protocols as training and test data. Type-2 
model robustness was assessed by using the data from 2023 as the test data and those from 2022 as the training data.

https://doi.org/10.3389/frai.2024.1477637
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Taniguchi et al. 10.3389/frai.2024.1477637

Frontiers in Artificial Intelligence 08 frontiersin.org

correlations for ADW and SLW were between these values at 0.65 and 
0.81, respectively.

Among the five traits, DTH was consistently highly correlated to SLW 
(cor > 0.7; Supplementary Figure 5). The correlation of CL with SLW was 
smaller but still positive (about 0.6). Under the regular transplantation 
protocol, PW showed almost no correlation with DTH or SLW, whereas 
under the delayed transplanting protocol, PW was negatively correlated 
with DTH and SLW. Thus, PW exhibited distinctive characteristics under 
the delayed protocol.

Overall, these results indicate that these five traits have distinctive 
characteristics in terms of influence by different transplanting 
protocols and correlations among traits. It is therefore reasonable to 
focus on the growth pattern of the JAM2 lines during cultivation to 
predict the five manually measured traits.

3.2 Characteristics of CH and CIg 
parameters in JAM2 lines

We first focused on the vertical growth pattern through time-series 
CH monitoring. From temporal CH data of the JAM2 lines, we extracted 
the CH parameters from the time-series image data from the UAVs, 
which reflect the vertical growth of rice and consist of a, 0d , 1d , 1r , and K  
(Figure 3A). The frequency distributions of the growth speed 1r , the time 
point of maximum growth speed 0d , and the time point of maximum 
CH 1d  in the modified three-parameter logistic model of time-series CH 
data differed notably between the two protocols (Figure 5B).

Next, we focused on CIg, an index of the total chlorophyll content 
of the canopy that reflects vegetation amount and senescence. The 
pattern of the CIg curve was similar to that of the CH curve, but the 
maximum CIg was reached at an earlier date than the CH maximum 
(Figures 3A,B). We fitted a double logistic model to the time-series 
CIg data of the JAM2 lines to determine the five CIg parameters 2r , 3r
, 2d , 3d , and maxy . The frequency distributions of all CIg parameters 
differed between the regular and delayed transplanting protocols, but 
the distributions of growth rate 2r  and the time point of the maximum 
growth rate 2d  differed more remarkably between the protocols than 
those of the other CIg parameters (Figure 5C). These results indicates 
that early growth might be sensitive to the cultivation protocol.

Focusing on PC1  in the PCA (Figure  6A), we  found three 
parameter clusters common to both the regular and delayed 
transplanting protocols: cluster I (consisting of 0d , 1d , and 3d ), cluster 
II (K  and maxy ), and cluster III ( 1r , 2r , and 3r ). The parameters in each 
cluster were positively correlated (Figure 6B). Notably, the parameters 
of clusters I and III, which reflect key time points and rates of growth 
and development, respectively, were negatively correlated. Parameter 

2d  was also negatively correlated with 2r . These results reflect the 
tendency for faster growth to be associated with a shorter period of 
growth and development and vice versa. The reproductive phase 
parameters a and 3r  were weakly correlated. In addition, K  and maxy , 
both in cluster II, were weakly correlated but contained different 
information, as can be seen by examining PC3 and PC4 (Figure 6A). 
Considered together, these results show that the CH and CIg 
parameters had both similar and distinct characteristics.

3.3 Fitness of the prediction models using 
CH and CIg parameters

We evaluated the model fitness based on the goodness of fit of the 
prediction models to the training data by considering 2R  (Figures 4, 7). 
Furthermore, we examined which CH parameters had large effects on 
model fitness. With regard to the prediction of DTH, 2R  was between 
0.7 and 0.8 for both protocols (Supplementary Table 6). The coefficient 
of 1d  on DTH had the largest absolute value and was significantly 
positive (Figure 7A; Supplementary Tables 7, 8). For the prediction of 
CL, 2R  was more than 0.9 under both protocols. The coefficient of K  on 
CL had the largest absolute value and was significantly positive. For the 
prediction of SLW and ADW, 2R  was between 0.5 and 0.8 under both 
protocols. The coefficient of 1d  on SLW had the largest absolute value 
and was significantly positive. For the prediction of ADW, the absolute 
value of the coefficient of 1d  was largest under the regular transplanting 
protocol, whereas the effect of K  was largest under the delayed 
transplanting protocol. For the prediction of PW, 2R  was close to zero 

FIGURE 5

Frequency distributions of traits and parameters in 2022. (A) Manually 
measured traits. (B) CH parameters. (C) CIg parameters. R (yellow): 
regular transplanting, and D (blue): delayed transplanting. The blue 
(D) and yellow (R) inverted triangles indicate the phenotypic values of 
the four parental cultivars. DTH, days to heading; CL, culm length; 
ADW, aboveground dried weight; SLW stem and leaf weight; PW, 
panicle weight.
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FIGURE 6

Relations between CH and CIg parameters and between the parameters and measured traits in 2022. (A) PCA results for CH and CIg parameters of 
data obtained under regular (left panel) and delayed (right panel) transplanting protocols. (upper) Biplots of PC1 and PC2; (lower) biplots of PC3 and 
PC4. The proportion of the total variance contributed by each principal component is shown in parenthesis. Black points indicate data of JAM2 lines, 
and red arrows indicate the correspondence of CH and CIg parameters to the PCA space. (B) Correlation coefficients between parameters for the 
regular transplanting (left) and delayed transplanting (right) protocols. The parameters are defined in 2.6. DTH, days to heading; CL, culm length; ADW, 
aboveground dried weight; SLW stem and leaf weight; PW, panicle weight.
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for all CH parameters (Figure 7B; Supplementary Table 6). These results 
indicate that the model using CH parameters was fit to predict DTH, 
CL, ADW, and SLW but not PW. More specifically, 1d  and K  contained 
rich information for the prediction model to fit the data of DTH, CL, 
ADW, and SLW in the JAM2 lines, but there were no CH parameters 
to fit the data of PW.

We also asked if CIg would be useful for the prediction models to 
fit to the training data of manually measured traits. Since CIg had a 
higher correlation to PW than NDVI, especially during the early growth 
period (Supplementary Figure 6), we adopted CIg as the focal VI. With 
regard to the prediction of DTH, 2R  was consistently greater than 0.7 
and the absolute value of the coefficient of 3d  was largest and significantly 
positive (Figure 7A; Supplementary Tables 6, 9, 10). For the prediction 
of CL, 2R  was 0.17 for the regular transplanting protocol and 0.39 for 
the delayed transplanting protocol; therefore, CIg parameters were not 
appropriate for predicting CL. For the prediction of ADW and SLW, 2R  
was between 0.6 and 0.8 for both protocols, and the absolute value of the 
coefficient of maxy  was largest for the regular transplanting protocol, 
whereas that of 2r  was largest for the delayed transplanting protocol. For 
the prediction of SLW, the coefficient of 3d  consistently had the largest 
absolute value and was significantly positive. For the prediction of PW, 

2R  was 0.44 for the regular transplanting protocol and 0.35 for the 
delayed transplanting protocol. The coefficient of maxy  had the largest 
absolute value and was significantly positive. The coefficient of 3d  on 
PW had the second largest absolute value and was significantly negative. 
These results indicate that the model using CIg parameters was fit to 
predict DTH, ADW, SLW, and PW but not CL. Specifically, 2r , maxy , 
and 3d  in the CIg parameters contained information for the prediction 
model to fit the data of DTH, ADW, SLW, and PW in the JAM2 lines, 
but there were no CIg parameters to fit the data of CL.

To improve predictions of the five manually measured traits, 
we  attempted to use both CH and CIg parameters for prediction 
(Hybrid-selected model). For all five traits obtained under regular and 
delayed transplanting protocols, the 2R  of the Hybrid-selected model 
was higher than that of either the CH-selected or the CIg-selected 
model (Figure 7B; Supplementary Table 6). This result indicates that 
the use of CH and CIg parameters together increases model fitness. 
We also compared CH-selected, CIg-selected, and Hybrid-selected 
models with CH-full, CIg-full, and Hybrid-full models. The effects of 
variable selection on model fitness are described in the Discussion.

3.4 Accuracy and robustness of the 
prediction models using CH and CIg 
parameters

Model accuracy was evaluated based on the ability to predict test 
data obtained under the same conditions (transplanting protocol and 
year) as the training data (Figure 4). The model accuracy of each trait 
by the CH-selected, CIg-selected, and Hybrid-selected models was 
consistent with the model fitness both in terms of cor and RMSE 
between predicted and observed values (Figure  8; 
Supplementary Figure  7 and Supplementary Table  11). For the 
prediction of PW, the CIg-selected model showed significantly better 
performance than CH-selected model (Supplementary Figure 7).

Model robustness was evaluated based on the ability to predict test 
data obtained under different transplanting protocols (type-1) or 
different years (type-2) from the training data (Figure 4). For DTH, CL, 

and SLW, the correlations between predicted and observed values in 
type-1 and -2 model robustness were consistent, but RMSEs tended to 
fluctuate and become larger (Figure 9). For example, when DTH was 
used to evaluate type-1 model robustness, CH-selected, CIg-selected, 
and Hybrid-selected models had similarly high cor values, whereas the 
RMSEs were different; CIg-selected and Hybrid-selected models had 
larger RMSEs than the CH-selected model (Supplementary Table 12), 
possibly because the values predicted by the former two models are 
biased to larger values (Supplementary Figure 8).

In the case of the prediction of ADW using CH-selected, 
CIg-selected, and Hybrid-selected models, cor values were high in terms 
of type-1 model robustness but not in terms of type-2 model robustness 
(Supplementary Tables 12, 13). For the prediction of PW by CIg-selected 
and Hybrid-selected models, which had high model fitness and 
accuracy, cor values were not always high (Supplementary Table 13). A 
bias in the predicted values of ADW and PW was also observed 
(Supplementary Figure 8).

In summary, except for the prediction of PW and ADW in some 
cases, the prediction models with high model accuracy also had high 
model robustness in terms of cor, but they also tended to have larger 
RMSEs because of prediction biases derived from different 
transplanting protocols and years. The effect of variable selection is 
considered in the Discussion.

3.5 Calibration of training and test data 
obtained under different protocols

To mitigate the problem of large RMSEs when the training and 
test data were from different transplanting protocols or years, 
we  evaluated the improvement by a calibration procedure using 
training and test data (Figure 10). In terms of type-1 model robustness, 
the calibration reduced the RMSE in predicting DTH by the Hybrid-
selected model from 11.3 to 6.81 (trained using R data) and from 16.7 
to 5.90 (trained using D data; Supplementary Table 14). The calibration 
also reduced the RMSE values for the prediction of ADW, SLW, and 
PW (Supplementary Table 14). In terms of type-2 model robustness, 
calibration reduced the RMSE values for CL, ADW, PW, and DTH 
(Supplementary Table  15). There were, however, two cases where 
calibration resulted in a larger RMSE: the prediction of CL under the 
delayed transplanting protocol (type-1 model robustness) and the 
prediction of SLW of the delayed protocol in 2023 (type-2 model 
robustness). In these two cases, the phenotypic data of the four 
parental cultivars did not cover the full range of phenotypic variance 
of the JAM2 lines.

4 Discussion

One of the most important challenges in time-series phenotyping 
is the extraction of essential information from individual time period 
image data, which can be one of the features of a crop line under a given 
environment. We previously found that five CH parameters derived 
from time-series CH data are useful for analyzing the process of growth 
and development of 30 genetically diverse rice cultivars during an 
experiment lasting 3 years and, furthermore, for predicting manually 
measured traits such as DTH, CL, ADW, and SLW (Taniguchi et al., 
2022). In this study, we extracted the CH parameters from different 
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FIGURE 7

Model fitness for prediction of the dependent variables CL, DTH, ADW, SLW, and PW. (A) Model fitness results when regression models with the 
selected predictors were fitted to the regular transplanting protocol data. Scatter plots show the relations between the fitted values and the observed 
values. The CH-, CIg-, and Hybrid-selected models are distinguished by color. R2 values shown in each scatter plot represent coefficients of 
determination between fitted and observed values. Bar plots show the regression coefficients of each selected independent variable of the CH or CIg 
model. (B) R2 values for each dependent variable when regression models were fitted to the regular (R) or delayed (D) transplanting data. The colors 
indicate which predictors were used (CH, CIg, or Hybrid); light colors show the results when selected parameters were used, and dark colors show the 
results when full parameters were used. DTH, days to heading; CL, culm length; ADW, aboveground dried weight; SLW stem and leaf weight; PW, 
panicle weight.
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JAM2 rice lines grown under both regular and delayed transplanting 
protocols. We  confirmed that the CH parameters were useful for 
predicting DTH, SLW, ADW, and CL, but not PW. We defined five CIg 
parameters from time-series VI data for the first time. By analyzing the 
characteristics of CH and CIg parameters, we found that the CH and 
CIg parameters had both similar and distinct characteristics. CIg 
parameters could predict the yield trait PW in addition to DTH, ADW, 
and SLW, but not CL. Use of both CH and CIg parameters enabled the 
prediction of all of the manually measured traits we focused on in this 
study. These results show that time-series monitoring of both vertical 
and lateral growth using UAVs in the field can potentially substitute for 
laborious and time-consuming manual phenotyping.

In this study, 0d , 1d , and K  were selected from the five CH 
parameters as variables for trait prediction in JAM2 lines. These CH 
parameters were also selected for trait prediction in 30 rice cultivars 
by Taniguchi et al. (2022). The parameters that contributed the most 
to the prediction of DTH, CL, and SLW were consistent between this 
study and the previous study (Taniguchi et  al., 2022). For the 
prediction of ADW, the effects of 1d  were large and positive in this and 
previous studies (Taniguchi et al., 2022). These results indicate the 
versality of CH parameters in trait prediction.

To describe the serial dynamics of CIg with a limited number of 
parameters, we introduced a double logistic model. Double logistic 
models have previously been used for the extraction of plant 

phenology of forests (Fisher and Mustard, 2007; Yang et al., 2012) and 
agricultural crops (Liu and Zhan, 2016; Son et al., 2016; Guo et al., 
2022). In this study, goodness of fit of the double logistic model to CIg 
time-series data was very high, indicating that a small number of CIg 
parameters could describe much of the phenological dynamics of CIg. 
By comparing CIg parameters from different transplanting protocols, 
we succeeded in identifying growth patterns differences, which are 
also analyzed by CH parameters.

For the prediction of PW, CIg parameters showed a sufficiently 
high level of performance in terms of model fitness and model 
accuracy. Although the parameter with the largest effect was maxy , it 
was not strongly related to the CH parameters, which suggests that 

maxy  contains some important information about PW that is not 
contained in the CH parameters. According to Tsukaguchi et  al. 
(2022), the number of rice spikelets can be  explained by CIg, 
especially 15 days before heading. They suggested that this result is 
consistent with previous studies showing the importance of nitrogen 
accumulation during the late spikelet differentiation stage (Yoshida 
et al., 2006; Kamiji et al., 2011). Parameter maxy  may correspond to 
the CIg 15 days before heading. Because spikelet number is related to 
yield (Sheehy et  al., 2001), it is reasonable to assume that CIg 
contributes to PW as well. The parameter 3d  had the next largest 
effect on PW, and its effect was negative, whereas the effect of 3d  on 
SLW was positive. Considering that a higher 3d  means a longer term 

FIGURE 8

Model comparison for the prediction of each trait under model accuracy. Mean correlations and RMSEs obtained by 100 repetitions of 10-CV. Error 
bars indicate the standard deviation. Models were separately applied to delayed (D) and regular (R) transplanting protocol data. See Figure 5 for trait 
abbreviations. DTH, days to heading; CL, culm length; ADW, aboveground dried weight; SLW stem and leaf weight; PW, panicle weight.
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FIGURE 9

Model comparison for the prediction of each trait under model robustness. Correlation coefficients and RMSEs obtained by applying the prediction 
models to test data. (A) Under type-1 model robustness, cor values and RMSEs of each protocol were plotted for 2022: tested against data of delayed 
transplanting protocol (Test: D) or tested against data of regular transplanting protocol (Test: R). (B) Under type-2 model robustness, cor values and 
RMSEs of each protocol were plotted: Test: D (2023) or Test: R (2023). DTH, days to heading; CL, culm length; ADW, aboveground dried weight; SLW 
stem and leaf weight; PW, panicle weight.
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FIGURE 10

Visualization of the calibration process. Each panel shows the predicted and observed values of each manually measured trait in terms of (A) type-1 
model robustness and (B) type-2 model robustness. Black points are JAM2 lines, and red points are the parental cultivars used for calibration. The red 
lines represent calibration models trained by using the parental cultivars, and the black lines represent a one-to-one correspondence between 
predicted and observed values. DTH, days to heading; CL, culm length; ADW, aboveground dried weight; SLW stem and leaf weight; PW, panicle 
weight. R, regular transplanting protocol; D, delayed transplanting protocol.
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with high vegetation, these results may reflect on the trade-off 
between PW and SLW during maturation in the reproductive phase.

Generally, one of the goals of variable selection is to avoid 
multicollinearity, which causes problems in calculating regression 
coefficients and in interpreting prediction models. However, variable 
selection can decrease model flexibility, thereby losing information to 
fit to the training data. To assess the influence of variable selection, 
we compared CH-selected, CIg-selected, and Hybrid-selected models 
to their corresponding full models (CH-full, CIg-full, and Hybrid-full 
models). The difference in 2R  values between the full models and 
selected models was very small (0.012 on average), indicating that the 
information loss was negligible (Supplementary Table 6). Therefore, 
in this case, variable selection was a useful procedure that enabled the 
detection of important CH and CIg parameters for trait prediction by 
precisely calculating regression coefficients without information loss.

In this study, we found that the prediction models using CH and/
or CIg parameters (CH-selected, CIg-selected, and Hybrid-selected 
models) performed consistently well when the training and test data 
were from the same transplanting protocol and year. When the 
transplanting protocols and years were different, however, RMSEs 
increased and fluctuated, depending on the prediction models 
(Figure 9; Supplementary Tables 12, 13). Similar problems were also 
observed when comparing the selected models to the corresponding 
full models. These results indicate that the test data contained some 
additional factors, derived from the difference in transplanting 
protocols or years, which acted as random noise causing bias in 
predicted values. To reduce the bias associated with differences of 
transplanting protocols or years, we  developed a calibration 
procedure using parental cultivars and confirmed its effectiveness. 
This was achieved by developing a calibration model that could 
numerically measure and correct the bias in the predicted values. 
Only in the two cases did the calibration not work well. This may 
be because the phenotypic data of the four parental cultivars did not 
cover the full range of phenotypic variance of the JAM2 lines. These 
results indicate that use of appropriate actual values for the calibration 
is effective for prediction using training data obtained under 
different environments.

Here, we presented a methodology for the prediction of manually 
measured traits from time-series image data via CH and CIg parameters. 
These parameters were useful for comparisons among crop lines in terms 
of phenology. So far, we have developed a haplotype-based genome-wide 
association study method using the MAGIC rice population (Ogawa 
et al., 2018a; Ogawa et al., 2018b), and we have revealed quantitative trait 
loci for the vegetation fraction and CH from time-series data in the field 
(Ogawa et  al., 2021a,b). By combining UAV-based time-series 
phenotyping data and genomic information, it should be possible to 
analyze the phenotypic values in terms of phenology, genetics, and 
transplanting protocols in more detail. It remains a future challenge to 
develop a more comprehensive method that combines the use of genomic 
and UAV information for additional improvements of trait prediction.
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