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What is in a food store name? 
Leveraging large language 
models to enhance food 
environment data
Analee J. Etheredge *†, Samuel Hosmer †, Aldo Crossa *, 
Rachel Suss  and Mark Torrey 

Center for Population Health Data Science, NYC Department of Health and Mental Hygiene, New 
York City, NY, United States

Introduction: It is not uncommon to repurpose administrative food data to 
create food environment datasets in the health department and research 
settings; however, the available administrative data are rarely categorized 
in a way that supports meaningful insight or action, and ground-truthing or 
manually reviewing an entire city or neighborhood is rate-limiting to essential 
operations and analysis. We show that such categorizations should be viewed as 
a classification problem well addressed by recent advances in natural language 
processing and deep learning—with the advent of large language models (LLMs).

Methods: To demonstrate how to automate the process of categorizing food 
stores, we use the foundation model BERT to give a first approximation to such 
categorizations: a best guess by store name. First, 10 food retail classes were 
developed to comprehensively categorize food store types from a public health 
perspective.

Results: Based on this rubric, the model was tuned and evaluated (F1micro = 0.710, 
F1macro = 0.709) on an extensive storefront directory of New York City. Second, 
the model was applied to infer insights from a large, unlabeled dataset using 
store names alone, aiming to replicate known temporospatial patterns. Finally, 
a complimentary application of the model as a data quality enhancement tool 
was demonstrated on a secondary, pre-labeled restaurant dataset.

Discussion: This novel application of an LLM to the enumeration of the food 
environment allowed for marked gains in efficiency compared to manual, in-
person methods, addressing a known challenge to research and operations in a 
local health department.
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1 Introduction

The food environment, a term that broadly captures the “physical, economic, political, and 
socio-cultural context in which consumers engage with the food system to make their 
decisions about acquiring, preparing and consuming food” (HLPE, 2017), is upstream of many 
inequitable health outcomes and is challenging to study in its complex and dynamic forms 
(Boise et al., 2023). Sustained disinvestment in public health and the siloing of skills have 
prevented advancements required for government stakeholders to adequately address the food 
environment’s impact on food equity and disparate health outcomes (Brown et al., 2019). 
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Much of the food environment data that are readily available to 
municipal agencies are from open administrative data sources on food 
licensing or inspections that require manual cleaning, categorization, 
merging, and ground-truthing to create a repurposed snapshot of the 
built food environment (Burgoine, 2010).

Food environment categories are most broadly defined by where 
they exist (e.g., natural or built environments) and the food acquisition 
behavior they elicit (e.g., shopping or dining) (Downs et al., 2020). More 
specifically, innate categories emerge that bear resemblance based on 
attributes (i.e., a shop could be a Grocery store if it consistently has a full 
range of foodstuffs that are safe to eat, at an expected price point, if using 
the attributes of availability, price, safety, and convenience to assign 
membership). Importantly, these attributes also apply to categories 
outside of grocery stores and demonstrate the need to allow for 
overlapping categories to exhaustively classify the food environment (in 
New York City, a “bodega” almost always sells some groceries) (Hirsch 
et al., 2021). Here, we see that store categories are determined by like 
attributes that can be overlapping—by so-called family resemblances 
(Wittgenstein, 1953; Halevy et al., 2009). What then makes the categories 
meaningful in a public health context are their intended uses. In 
epidemiology parlance, “meaningful categories” represent legitimate 
targets for intervention, as the categories act as proxies for a theorized 
exposure of coordinated actors upon a defined health outcome.

Store names not only signal to shoppers the nature of the goods 
on offer but are a feature common to all public food environment 
datasets1, both nationally and in New York City. A model that could 
learn from the NYC food environment by yielding a credible best 
guess as to which meaningful categories a store belongs, based on 
store name alone, would enhance these datasets with actionable 
information suited for epidemiologic study (Hirsch et al., 2021).

Over the last several decades, the field of NLP has been 
revolutionized by fitting as-large-as-possible models to as-large-as-
possible-corpuses. Colloquially, such models are referred to as large 
language models (LLMs). The advent of the transformer architecture 
(Vaswani et  al., 2017) and its task-agnostic descendants spawned 
many state-of-the-art deep learning LLMs across a variety of tasks in 
NLP, with models ever-often scaling in the number of parameters and 
(pre-)training examples (Brown et al., 2020). For this task, we focus 
on (namely classification) the bidirectional encoder representations 
from transformers (BERT), which is among the first transformer 
models to achieve state-of-the-art benchmarks on NLP datasets 
(Devlin et al., 2018) (see Section 2.4).

The success of transformers stems from two key properties of their 
constitution. The first is the attention mechanism, allowing for 
appropriate positioning of words in embedding space based on the 
words around them (Vaswani et al., 2017). The second is that deep 
learning models perform better (i.e., have lower generalization error) 
as the number of parameters grows in relation to the number of 
training examples (Nakkiran et al., 2021). Relatedly, sufficiently deep 
neural networks are more likely to find low-complexity targets 
(Mingard et al., 2021; Goldblum et al., 2023). In this way, large neural 
networks—and in particular transformers—are, contrary to popular 
belief, more prone to produce simple2 solutions to noisy problems 

1 https://www.foodenvironmentdirectory.com/

2 Formally, we mean that such algorithms have low Kolmogorov complexity.

(e.g., Goldblum et al. demonstrate this simplicity bias of GPT3 in an 
idealized setting). We view this tendency to be crucial, as our model’s 
best guess of what a food store is—by name alone—should 
be analogous to the heuristic intuition (Gigerenzer and Gaissmaier, 
2011) of a native of the food environment in NYC, which might not 
differ all-that-much from the intuition of a food environment native 
in larger swaths of the United States.

LLMs address the costs and challenges of by-hand food 
environment classification through automation. To automate the 
arduous process of manually reviewing store records and meaningfully 
categorizing food stores, we used machine learning to give a first 
approximation to such categorizations: the best guess by store name. 
Building on the earlier use of LLMs to predict cuisine type based on 
retailer names in the United Kingdom (Bishop et al., 2021), a classifier 
was developed by fine-tuning a transformer on a snapshot of the NYC 
food environment.

The aims of this study were to (1) train and evaluate the performance 
of an LLM classifier on labeled food retail locations in NYC, (2) perform 
inference on a large unlabeled dataset using store name and replicate 
known temporospatial patterns, and (3) determine potential data quality 
enhancements for a secondary, pre-labeled restaurant dataset. Achieving 
or exceeding “good” performance based on the published threshold 
would indicate the viability of these methods for adoption in the 
longitudinal analysis of the food environment and as data quality 
enhancement (DQE) techniques for operational and research pipelines.

2 Materials and methods

A transformer LLM was trained and tested on labeled NYC 
storefront data based on the 10-item NYC food environment 
categories. These major food retail classes were developed from a 
public health perspective, drawing on previous studies (Cohen et al., 
2020; Hirsch et  al., 2021), and informed by the authors’ working 
contextual knowledge as New Yorkers (Table 1).

2.1 Data acquisition

2.1.1 Labeled data
Training and validation datasets were assembled from a private retail 

directory created and maintained by Live XYZ and licensed through the 
City of New York. The directory snapshot, obtained in September 2023, 
consisted of all currently operating retail store locations in NYC at the 
time of the pull. This directory is regularly ground-truthed by Live XYZ 
surveyors according to a retail store taxonomy developed by the 
company. The conversion from their store taxonomy to our 10-food 
environment categories is outlined in Section 2.2.1 and 2.3.

2.1.2 Inference data
The proposed inference dataset was acquired as public use data 

from the New York State Agriculture and Markets (NYSAM) Office. 
Longitudinal data were obtained through a Freedom of Information 
Act request for data covering the period of January 2012 through 
December 2023. The NYSAM office maintains a database of food 
retail locations that are licensed and inspected by New York State, 
including only food retail locations where <50% of their sales 
revenue is from prepared food. Note that retail food locations within 
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NYC where >50% of their sales are from prepared food (e.g., 
restaurants) are inspected by the NYC Department of Health and 
Mental Hygiene and are excluded from the NYSAM database. Key 
columns in this dataset are store name, location, and date 
of inspection.

The NYC Health Department is responsible for inspecting 
prepared food service establishments and maintains an extensive 
longitudinal dataset of restaurants from inspection records. Food 
retailers with >50% of their sales from prepared food are instead 
inspected by the NYC Health Department and are therefore 
represented in the Restaurants data. As part of the permitting process, 
service description tags are retained in the data and can roughly 
be apportioned into the classifier’s categories of Sit-down Restaurant 
and Fast Food. These data were selected as another inference data 
source to evaluate the DQE capabilities of the classifier given the 
presence of the common feature (store name) and an extant (though 
independent) tag set. Key columns in this dataset are store name, 
location, service description, venue, and date of inspection.

Additionally, Live XYZ shared out-of-state snapshots, which were 
used as a loose estimate of model error through time due to drift. In 
summary, Live XYZ data were used to test and train the model, while 
the NYSAM and NYC Restaurants administrative food store data were 
selected as the inference datasets.

2.2 Data cleaning and preprocessing

2.2.1 Labeled data
A dataset of food retail store names and labels was processed from 

the Live XYZ directory by first restricting this snapshot of retail stores 

to the meta store categories ‘Food’, ‘Essentials’, or ‘Drink’. Subcategories 
such as ‘Restaurant’ and ‘Grocery & Convenience’ were refined by 
more granular tags present in the data. For example, an item was given 
the final label grocery if it had the tag ‘supermarket’ or ‘ Grocery  store’ 
but not if it only had the tag ‘convenience store.’ The ‘convenience 
store’ tag was present in pharmacies and gas stations where such 
capacity exists (e.g., Duane Reade’s and Shell Food Marts). For the 
subcategory ‘restaurant’ several tags were grouped and included in the 
Sit-down Restaurant (henceforth abbreviated to Restaurant) or Fast 
Food categories depending on whether the Live XYZ surveyors had 
flagged the establishment as being ‘dine-in’ and/or ‘quick-bites’. For 
example, stores with the tags ‘kosher delicatessen’, ‘bagel shop’, 
‘pizzeria’, ‘taqueria’, ‘French cafe’, ‘diner’, ‘deli’, ‘sandwich shop’, ‘burger 
joint’, ‘gyro shop’, and ‘fried chicken restaurant,’ among others, were 
only categorized as Fast Food or Restaurant depending on the presence 
of the ‘quick bites’ or ‘dine-in’ flags, respectively. If both flags were 
present, the store would contain both labels Fast Food and Restaurant.

To avoid leakage, the data were deduplicated on the store name. 
Labels were selected based on higher-order modal venue 
categorizations (i.e., whatever categorizations a fixed food store had 
most frequently across all multi-labels), with tie-breaks going to the 
most recently surveyed establishments. For example, any store 
named exactly “John’s” would be given the multi-label Alcohol Bar 
and Restaurant if these were the most frequently occurring multi-
labels paired with “John’s” in the dataset. If “John’s” were a multi-
labeled-only Restaurant, as many times as it was a multi-labeled 
Alcohol Bar, Restaurant then the most recent surveyor labeling 
would break the tie. The final dataset of 24,901 food stores was then 
split into 50% training, 25% validation, and 25% test datasets. 
Exploiting the trade-off of low-generalization-error with 
memorization (Zhang et  al., 2021) stores with more than 10 
locations across the 5-boroughs were set aside from the train-test 
split and later added back into the training set so that they would 
be memorized. As none of the memorized stores showed up in the 
test, our performance scores reflect a lower bound on the true 
performance of the model at inference.

Finally, changes in the NYC food environment that might 
negatively impact model performance globally through time were 
evaluated by inferencing an alternate geography also using name 
alone. To facilitate this aim, Live XYZ provided pre-released non-NYC 
directory data. The San Francisco Bay area was selected for prominent 
similarities in the density of population, affordability of housing, and 
socioeconomic disparities, as well as salient regulatory discrepancies 
that would bias the classifier—chiefly in the overlap between alcohol 
stores and grocery stores. All of the above preprocessing steps were 
applied to create a new test set from the San Francisco Bay area 
geography. The final preprocessed dataset consisted of only 9,185 
labeled food stores with name duplication included.

2.2.2 Inference data
The NYSAM longitudinal data were geocoded using version 21B 

of the NYC Department of City Planning’s Geosupport geocoding 
software. During this process, addresses were cleaned and retail food 
locations outside of NYC were excluded. Additional efforts were made 
to correct addresses, as previously described by Greene et al. (2023). 
The final inference dataset had 33,964 unique point-located 
storefronts. Evident dates of operation were determined by inspection 
dates and the recorded out-of-business date.

TABLE 1 Non-exclusive categories for the classification of the NYC food 
environment.

Food retail 
classes

Description of food store families

Specialty Foods Goods stores that predominantly sell only a specific type 

of foods such as cheese, meat, fish, or fruits, health food 

(e.g., supplements), and international markets

Convenience Smaller goods stores that include beverage coolers, lotto/

candy, and common pantry items

Fast Food Includes places providing the service of preparing 

standardized food items served or consumed quickly 

(e.g., chain fast food and deli counters)

Discount Stores that sell items at a discount (e.g., 99 cents) and 

generally do not sell fresh food

Grocery Goods stores offering a full range of groceries, including 

smaller corner groceries and supermarkets

Restaurant Includes places providing the service of preparing food 

items consumed on-premises usually with table service

Alcohol Store Goods stores where alcohol is the primary offering

Alcohol Bar Includes locations with bars dedicated to the serving of 

alcohol on premises

Juice/Coffee Shops Stores serving coffee, tea, smoothies, or juice

Sweets and Desserts Includes sweets and dessert stores, and bakeries that also 

sell desserts
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The NYC Health Department Restaurants inspection dataset 
initially consisted of 68,135 unique storefronts; 2,329 were dropped 
due to mixed datatypes and null values, resulting in a final dataset of 
65,806 unique storefronts. The key variables in the dataset are food 
store descriptors (including cuisine type, service description, and 
venue tags) and geographic information (point location and address).

2.3 Classification by food store name

The classifier was premised on 10 NYC food environment 
categories, which are roughly ontologically divided between goods 
and services and are, importantly, not mutually exclusive. For example, 
stores classified as both Convenience and Fast Food would be what 
NYC residents would describe as a bodega. To illustrate how the 
model would select classes by way of example, if the store ‘Oak and 
Steel’ is taken to be a food store, the most intuitively fitting labels 
applicable should be assigned independently to each (e.g., in this case 
perhaps just Alcohol Store, Alcohol Bar, or both). The food store ‘La 
Vina Deli Grocery’ is heuristically more likely to be a Convenience 
store with a deli counter (Fast Food) than it is to be a Grocery, and 
‘Butcher Bar’ is heuristically more likely to be a Restaurant with an 
Alcohol Bar than it is to be a butcher shop.

The categories of stores were the following: Specialty Foods, 
Convenience, Fast Food, Discount, Grocery, Restaurant, Alcohol Store, 
Alcohol Bar, Juice/Coffee, and Sweets and Desserts (see Table 1). To 
illustrate the desired behavior of the classifier, the model would, for 
example, take as input the store names ‘La Vina Deli Grocery’ and 
‘Butcher Bar’ and predict the best fitting multi-labels ‘Convenience, 
Fast Food’ and ‘Alcohol Bar, Restaurant,’ respectively.

2.4 Machine learning

The encoder model BERT was selected for the task of sentence 
classification. The original implementations of BERT varied by the 
number of repetitions of the encoder block in the model architecture 
(Devlin et al., 2018). The ‘Large’ version consists of 24 encoder blocks, 
resulting in approximately 350 million model parameters. BERT and 
subsequent variations were state-of-the-art on the Stanford Question 
Answering Dataset (SQUAD) and General Language Understanding 
and Evaluation (GLUE) datasets until 2022 (Rajpurkar et al., 2018; 
Wang et al., 2018).

The architecture and weights of the BERT-Large model were 
downloaded from the Hugging Face platform3 instead of acquiring the 
model via the Transformers API checkpoint to comply with the NYC 
Health Department infrastructure policy. The uncased model was 
chosen due to discrepancies in the capitalization of store names 
observed between our proposed inference datasets.

Python packages pandas, NumPy, and scikit-learn were used for 
data wrangling and preprocessing of both training data and inference. 
Hugging Face’s Transformers APIs in conjunction with deep-learning 
frameworks PyTorch and TensorFlow were used for tuning BERT-
Large on the NYC Health Department’s Machine Learning Server 

3 Bert-large-uncased: https://huggingface.co/google-bert/bert-large-uncased

(Nucleus) with NVIDIA A100 Tensor Core GPUs. The model was 
tuned using the Adam optimizer with a learning rate of 610−  with 

1 0.9β =  and 2 0.999β =  (Kingma and Ba, 2014). Finally, early 
stopping was used as a callback by monitoring macro-F1 (see 2.5.1) 
on the validation set4.

2.5 Performance metrics and geospatial 
methods

2.5.1 Assessing classifier performance
The classifier’s performance was assessed by calculating the 

precision (also known as the positive predictive value) and the recall 
(also known as sensitivity) on the test set. The precision of a binary 
classifier is the ratio of true positives to predicted positives, or the true 
positive rate, whereas recall is the ratio of true positives to actual 
positives or the actual positive rate. Published sensitivity cutoffs for 
food environment classification were applied to our sensitivity 
analyses: < 20% very poor, 21–30% poor, 31–50% fair, 51–71% 
moderate, 71–90% good, and > 90% excellent (Paquet et al., 2008; 
Bishop et al., 2021). High precision with low recall would indicate that 
although actual positives are not well detected, one would still have 
confidence in the positives that are identified. Finally, the F1 score—
the harmonic mean of precision and recall—was calculated per class.

 ( )
 1

 ½   
true positivesF

true positives false positives false negatives
=

+ +

The two natural generalizations of the F1 score to the multi-class 
setting—micro and macro F1 scores—were also calculated as an 
assessment of overall model performance where, specifically, the 
macro F1 score is the arithmetic mean of the per-class F1 scores, and 
the micro F1 score is the above true positive ratio obtained by 
aggregating true and false positives as well as false negatives across 
all classes.

In summary, precision and recall are metrics that, respectively, 
provide a measure of the success of the classifier in correctly predicting 
and detecting true positives. The F1 score is a combination of these 
metrics that is a popular measure of classification performance per 
category and can be generalized to evaluate overall performance in 
multi-class classification settings.

2.5.2 Replicating known temporospatial patterns
To visualize the inference data, static hexbin maps were generated 

for all five boroughs to demonstrate the longitudinal nature of the data 
by showing the average change in retail type distributions. As a coarse 
recapitulation of the changes in the NYC food environment during the 
COVID-era described by Yi et al. (2022), average per-hexbin changes 
from 2019 to 2021 were calculated as the mean annual changes in 
store operation and closure status. Neigborhood Tabulation Area 
(NTA) boundaries (NYC, 2020) were overlaid by the half-mile hexbins 
(i.e., a representation of a 10-min walk from centroid to centroid); this 

4 TensorFlow early stopping: https://www.tensorflow.org/api_docs/python/

tf/keras/callbacks/EarlyStopping
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custom geography visualization was chosen as a visual indicator of the 
modifiable aerial unit problems (MAUPs) common in food 
environment analyses (i.e., food acquisition behaviors are not guided 
by administrative boundaries) (Boise et al., 2023).

3 Results

3.1 Performance on hold-out test set

The final version of the model had good performance according 
to the adopted food environment classifier performance cutoffs 
(F1micro = 0.710, F1macro = 0.709). The per-category performance 
metrics indicate that performance scores broadly represent the 
good and excellent performance ranges in both precision and recall 
(Alcohol Store, Convenience Store, and Discount Store) or good in 
precision alone (Fast Food, Coffee/Juice Shop, Specialty Foods Store, 
and Sweets and Desserts), with few scores falling within the 
moderate range in both precision and recall (Alcohol Bar and 
Restaurant). The Grocery category had the lowest F1 with only fair 
recall and moderate precision (Table  2; Figure  1). Table  3 
demonstrates examples of model outputs on store name inputs 
mentioned in Section 2.3. The variable ‘input’ is assigned an 
example food store name and fed into the model. We present the 
Boolean and raw score predictions per class, where the Boolean 
value is determined by thresholding the raw score at 0.5.

The model was also tested on preprocessed, pre-released Live 
XYZ data from the San Francisco Bay area as a qualitative assessment 
of how performance might be hindered through large-scale food 
environment distribution shifts. The recall on the Alcohol Store class 
was greatly reduced by the shift from NYC to San Francisco Bay area 
(0.928 to 0.533), while precision was only slightly affected (0.968 to 
0.871). Contrastingly, the precision on the Grocery class was 
significantly reduced (0.616 to 0.424), with the recall scores being 
only slightly (positively) affected (0.439 to 0.496). The Specialty Food 
class took the biggest hit, with precision and recall scores dropping 
from 0.867 and 0.643 to 0.394 and 0.333, respectively. Of note, the 
Specialty Food label was relatively absent from this new test set, with 
less than 1% (only 51 unique stores) of this dataset having a positive 

Specialty Food class (compared to more than 5.6% of the deduplicated 
NYC data).

3.2 Temporospatial patterns in the food 
environment

To demonstrate the utility of the classifier, the model was used to 
infer results from the NYSAM administrative dataset covering the 
period from January 2012 to December 2023. Using the model to 
classify stores citywide on top of geospatialized administrative data 
provided an opportunity to explore temporospatial trends. The churn 
of Grocery, Specialty, and Convenience stores were contrasted to 
provide a static view of a longitudinal process (openings and closings). 
Figure 2 displays the variability in the average churn of stores across 
NYC from 2019 to 2021. For each polygon, the mean annual change 
is represented by a divergent color scale ranging from purple 
(increased average number of store types) to gray (no change in 
numbers of store types) to red (average loss of store types). While 
fewer in number, the longitudinal map of the Grocery and Specialty 
Foods stores (Figure  2A) indicates greater segment stability than 
Convenience stores (Figure 2B). The loss of Grocery stores documented 
in the study by Yi et al. is apparent in NYC’s Chinatown in Manhattan 
(Figure  2C) and, to a lesser degree, in Sunset Park in Brooklyn 
(Figure 2D) for the period of years that span the COVID-19 pandemic 
and approximate Yi et al.’s study frame (Yi et al., 2022).

3.3 Data quality enhancements for 
administrative food inspection data

The model was also applied to the DOHMH Restaurant’s 
dataset to demonstrate its utility for the alternate aim of DQE, 
restricting attention to the dataset variables service description 
and venue. To visualize the agreement between the classifier labels 
and the service description tags, a heatmap with cell counts was 
generated (Figure 3). The service description variable consisted 
entirely of the 17 tags displayed on the x-axis and the classifier’s 
labels of either Fast Food or Restaurant on the y-axis. Food stores 

TABLE 2 Heatmap of model performance metrics on the hold-out test set.

Store category Precision Recall F1-Score

Alcohol Bar 0.688 0.659 0.673

Alcohol Store 0.968 0.928 0.947

Convenience Store 0.762 0.823 0.791

Discount Store 0.89 0.807 0.846

Fast Food 0.757 0.702 0.729

Grocery Store 0.616 0.439 0.513

Restaurant 0.618 0.683 0.649

Coffee/Juice Shop 0.836 0.419 0.559

Specialty Foods Store 0.767 0.558 0.646

Sweets and Desserts 0.867 0.643 0.738

Performance:  Excellent (>90%),  Good (71–90%),  Moderate (51–71%),  Fair (31–50%).
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labeled either Fast Food or Restaurant accounted for 73% of the 
data. The remaining food stores within the Restaurant’s dataset 
were primarily classified as Sweets and Desserts or Juice/Coffee 
Shops and were not included in the analysis to avoid unwanted 
overlap. For example, a bubble tea store might have the service 
description tag ‘Takeout (To Go/Grab-And-Go only),’ but by the 
definition of our food retail classification, it should only 
be  labeled as Juice/Coffee Shops. Descriptors coinciding with a 
higher contrast between the Fast Food and Restaurant labels were 
more concentrated toward the edges of the heatmap, with those 
appearing to align with Fast Food placed on the left and 

Restaurant-type descriptors placed on the right side of the x-axis, 
except for ‘Automat Cafeteria’ which had only 1 use.

The venue variable consisted of very many (41) different venue 
type tags, most of which were applied with negligible frequency, the 
most frequent of which were listed in Figure 4. The majority of the 
data were assigned the tags ‘Restaurant (no bar)’ (56%), ‘Restaurant 
(with Bar)’ (19%), and ‘Other’ (10%). The remaining 14.4% were 
concentrated around tags that fit into the Alcohol Bar or Juice/Coffee 
Shop classes. For example, the tags ‘Bar/Tavern/Lounge’, ‘Pub/
Gastropub’, and ‘Coffee House’ took up 5.9% of the venue assignments 
(see Figure 4). Specific to the ‘Other’ venue tags, we found that 58% 

FIGURE 1

Sensitivity and recall for the hold-out test set. Dashed vertical lines show adopted sensitivity cutoffs for food environment classification were applied to 
our sensitivity analyses: <20% very poor, 21–30% poor, 31–50% fair, 51%–71 moderate, 71–90% good, and > 90% excellent (Paquet et al., 2008; Bishop 
et al., 2021).

TABLE 3 Example outputs of the model on selected food retail stores.

Input:
“Oak and Steel”

Input:
“La Vina Deli Grocery”

Input:
“Butcher Bar”

Food retail class Boolean Raw score Boolean Raw score Boolean Raw score

Alcohol bar True 0.688 False 0.006 True 0.797

Alcohol store False 0.406 False 0.003 False 0.010

Convenience Store False 0.057 True 0.885 False 0.007

Discount Store False 0.023 False 0.003 False 0.003

Fast Food False 0.025 True 0.942 False 0.019

Grocery Store False 0.018 False 0.069 False 0.011

Restaurant False 0.411 False 0.009 True 0.597

Coffee/Juice Shop False 0.075 False 0.008 False 0.018

Specialty Foods Store False 0.031 False 0.038 False 0.041

Sweets and Desserts False 0.009 False 0.008 False 0.011

Values exceeding the threshold of 0.5 are bolded.
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of these the model inferred to belong to Restaurants or Fast Food and 
not to Alcohol Bars, indicating membership of a majority of the 
‘Other’ venue tags to the overall majority assigned tag ‘Restaurant (no 
bar).’ A total of 5% of the ‘Other’ venue-tagged stores were inferred 
to belong to the Restaurant or Fast Food class and Alcohol Bar 
simultaneously, indicating membership to ‘Restaurant (with Bar).’ 
The remaining 37% of the ‘Other’ data was not labeled by our 
classifier as either a sit-down or fast-food restaurant. Approximately 
12% of the ‘Other’ data did not receive any label at all.

4 Discussion

This study intended to provide a first pass at categorizing public 
datasets by way of a food environment classification tool. Using the store 
name alone, the classifier had a good performance on the test data (F1micro, 
F1macro > 0.7). Per category performance was highest for Alcohol, 
Convenience, Discount, and Fast Food stores (F1 > 0.7). Performance in the 
Grocery store category, while still fair, was the lowest (F1 = 0.49); higher 
precision (0.616) and lower recall (0.439) for this category suggest Grocery 

FIGURE 2

NYC maps for mean annual change in Grocery and Specialty Stores and Convenience Stores, 2019-2021. Hexbin size: 2640 ft. with overlay border 
2010 NTAs (A) NYC Grocery and Specialty Stores: Mean businesses per hexbin, 3.7 (SD=0.55) (B) NYC Convenience Stores: Mean businesses per 
hexbin, 7.4 (SD=0.82) (C) Chinatown and Sunset Park Feature - Grocery and Specialty Stores: Mean businesses per hexbin, 3.7 (SD=0.55) (D) Chinatown 
and Sunset Park Feature - Convenience Stores: Mean businesses per hexbin, 7.4 (SD=0.82).
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stores were more difficult to detect using name alone, but for those that 
were detected, there is moderate confidence in the classification.

Known temporospatial patterns were approximated in the 
longitudinal inference dataset. Grocery and Specialty Food store closures 
from 2019 to 2021 were detected in previously identified NYC 
neighborhoods of Chinatown and Sunset Park (Yi et al., 2022). Notably, 
Convenience stores increased in the NTA adjacent to Chinatown (East 
Village, 2D) during the same time frame grocery and specialty stores 
were closing (2C), suggesting a shift in food acquisition dynamics. While 
not a direct comparison of store counts, the coarse estimates of food 
environment churn demonstrate the ability of the model to provide 
reasonable first-pass guesses even for Grocery and Specialty Food stores. 
High variance in Convenience store counts across polygons is also well 
reflected in the divergent color scheme shown in the longitudinal maps.

For DQE on the DOHMH Restaurants dataset, the classifier provided 
potential as a quality check of the service description variable and an 
imputation tool for the venue variable. With regard to the latter variable, the 

high recall (high sensitivity) scores across the Restaurant and Fast Food 
classes (as shown in Figure 1) reinforced confidence that the model was not 
errantly missing actual restaurants present in the dataset. Of the stores that 
were classified as Restaurants or Fast Food, the model agreed with the 
Restaurant’s Fast Food and Sit-down Restaurant tags more than 70% of the 
time. For restaurants with more vague or opaque service tags (e.g., ‘delivery 
only’, ‘other’, ‘caterer’, and ‘not applicable’), the classifier correctly did not 
assign those locations to either Fast Food or Restaurant classes, whereas for 
services such as ‘fine dining’ and ‘fast food,’ the model labels corresponded 
remarkably well. A value-add for an analyst tasked with cleaning this data 
would be to manually inspect discrepancies between the service description 
taxonomy and the labels assigned by the model. For example, inspecting 
the overlap between what the classifier determined to be Fast Food, but 
received the ‘fine dining’ tag.

For the venue variable, in instances where the retail type was assigned 
to the “Other” category (approximately 10% of all records), the classifier 
detected a majority (63%) of these to belong to the two most commonly 

FIGURE 4

Frequencies of venue tags in the restaurant dataset: the 11 most frequent of the 41 tags belonging to this variable.

FIGURE 3

Heatmap of service description tag frequency in the restaurants dataset as compared to the fast food and restaurant classifier labels. Counts are 
overlayed for clarity.

https://doi.org/10.3389/frai.2024.1476950
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Etheredge et al. 10.3389/frai.2024.1476950

Frontiers in Artificial Intelligence 09 frontiersin.org

occurring venue tags, “Restaurant (no bar)” and “Restaurant (with bar).” Of 
the remaining 37% of the data, the classifier determined a large amount 
(20% of the “Other” category overall) as belonging to the Sweets and 
Desserts or Juice/Coffee shop classes. This, in conjunction with the 
frequencies of tags across this variable, partially shown in Figure 3, gives 
empirical support for a restructuring of the taxonomy of venue types. That 
is, a coarser bucketing of venue types should make for more useful venue 
tagging of stores in the restaurant dataset. The use of this tool in datasets 
such as the Restaurant inspection database can further enhance the 
understanding of the food environment in operational planning 
and inspections.

Finally, with regard to our assessment of model performance on 
labeled food environment data from the San Francisco Bay area, the 
observed reduction of recall on the Alcohol Store class coupled with a 
corresponding reduction of precision in the Grocery class was anticipated 
due to the unrestricted sale of alcohol products in grocery stores. To 
be sure, the presence of grocery stores in the Bay area that sell a full range 
of alcohol products implied the multi-label Alcohol Store and Grocery 
would be  far more frequently associated with titular grocery stores. 
Correspondingly, the presence of stores having a majority of their 
offerings as alcohol products yet still selling some groceries resulted in 
data containing the label Alcohol Store without Grocery (the latter being 
mostly replaced by Convenience), substantially reducing the precision on 
the Grocery class. As mentioned above, the Specialty Food class was 
unusually absent from this new test set. We attributed the significant 
reduction in precision in this class in part to noise in the source.

4.1 Previous research in food environment 
classification

Thorough enumeration of food retailers is a well-documented 
bottleneck in the process of producing a validated dataset for 
(secondary) food environment applications (Paquet et  al., 2008; 
Hosler and Dharssi, 2010; Lake et al., 2010; Fleischhacker et al., 2013; 
Liese et al., 2013; Caspi and Friebur, 2016; Wong et al., 2017). The 
gold standard for enumeration is ground-truthing; however, this is 
cost- and time-prohibitive at scale for NYC researchers and 
policymakers (Powell et  al., 2011). Improvements to street-level 
imagery of public spaces databases have begun to enrich data quality 
(Hirsch et  al., 2021) and shrink burdens of the ground-truthing 
process (e.g., Google-truthing), with gains in efficiency compared to 
manual, in-person methods (Pliakas et  al., 2017). Cohen et  al. 
explicitly describe 70% efficiency gains by processing 15–20 addresses 
per hour using Google-truthing methods compared to in-person 
methods (Cohen et al., 2020). Efficiency gains receive a substantial 
boost from using the classifier described in this study, scaling with 
available compute resources.

Furthermore, the performance of our model in the test set and 
the ability to recapitulate known geospatial patterns in the NYSAM 
inference data reflect not only a powerful model but a very 
carefully curated, ground-truthed training dataset. Leveraging the 
strengths of privately collected and licensed data allowed for the 
deployment of publicly available state-of-the-art models in a 
government setting. While the validation of the longitudinal 
dataset will present challenges to scale, the classifier provided a 
time-saving, intuitive mechanism to classify an open-access, 
unlabeled food store dataset.

4.2 Limitations of interpretation

Grocery stores were the most challenging to classify for the 
model with moderate precision (0.616) but fair recall (0.439). 
Again, higher precision with lower recall suggests Grocery stores 
are not well detected by name alone, but there is moderate 
confidence in the Grocery stores that are identified. New Yorkers 
may require additional visual cues beyond the store name alone 
to make this determination (e.g., the presence of a fruit stand by 
the entry or store window advertising), especially for some of the 
smaller corner grocery stores included in the Grocery  
category.

Another limitation is that forms of noise present in administrative 
datasets are likely to persist through model inference and deleteriously 
affect the use of the data for analysis. For example, a steep volume 
change in the number of stores counted in the NYSAM database 
occurred in 2017, at the same time that the NYSAM upgraded the data 
storage systems. To minimize bias from the noise, we  limited our 
analysis to years with consistent data system use that also overlapped 
with the comparison study period (2019–2021).

The training data represent a contemporary snapshot of the 
NYC food environment; hence, memorized stores (chains) that 
existed and closed before (or opened after) the snapshot will 
be challenging to longitudinally classify. In the absence of historical 
or future training data, addenda to the training data can address 
this issue for known unknowns (historical) or new chains as they 
are established.

While the training datasets used to build this model are curated 
and ground-truthed by human surveyors, the methodology by which 
stores were classified by the surveyors depended on subjective 
assessment of storefronts, not a result of how people use the store. As 
a result, we cannot rule out any biases in the classification.

4.3 Context of food environment 
classification

The longitudinal maps of food environment processes anticipate a 
temporospatial master dataset wherein future geospatial analyses of 
food store types can occur, addressing an outstanding need for 
epidemiologic study and informed policy-making at the NYC Health 
Department. State and local health departments bear significant 
responsibility for creating healthy food policies and supporting food 
infrastructure but are often not adequately equipped to evaluate or 
implement the most impactful interventions targeting diet-related 
chronic diseases (DRCDs) and nutrition security (NS) (Sreedhara et al., 
2021). The modifying effects of food policies on DRCDs and NS via 
local food access have been extensively studied (Rose et al., 2010; Caspi 
et  al., 2012), and various approaches to disrupting the theorized 
connections between the food environment, social norms, and 
unhealthy eating (Agurs-Collins et al., 2024) include mandates and 
restrictions on the sale of food types, economic (dis)incentives, 
marketing limits, information provision, and healthy default offerings 
(Gorski and Roberto, 2015). While interventions in the form of tax 
policies may disincentivize specific food choices (e.g., the sugar-
sweetened beverage tax in NYC), the replacement of the policy-targeted 
foods with healthy, affordable, accessible, and culturally appealing 
alternatives requires direct changes to the local food environment and 
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community buy-in and contributes to the persistence of the problem 
(e.g., turnover of a convenience store into a fruit stand) (Braid et al., 
2022). Implementation science methodology and resources to evaluate 
the policy-driven interventions on the food environment on population 
DRCD and NS health outcomes is a crucial step to determining 
evidence-based, sustainable healthy food policies (Cohen, 2022). 
Moreover, as DRCDs develop over a period of exposure, the exposures 
must also be longitudinally defined and consistently categorized (Hirsch 
et al., 2021). The data required to conduct such evaluations must have 
categorized food store types; the methods provided in this paper 
facilitate this categorization process in unlabeled administrative data 
commonly available to health departments.

Retail segment churn is an important measure of the food 
environment and the interventions upon it; its measure should 
be considered a downstream aim facilitated by our novel data product 
that provides consistent, longitudinal classification and customizable 
geographic extents to minimize the impact of MAUPs.

4.4 Future directions

A closer approximation to a human-level food environment 
enumeration would be  a natural next step toward these 
downstream aims. Further enhancing efficiency gains from street-
level imagery, the use of multi-modal algorithms such as vision-
language models (VLMs) to analyze images of food stores could 
also be developed for enumeration (Dai et al., 2024; Zhang et al., 
2024). At the time of this paper, state-of-the-art open-weight 
VLMs now have OCR capabilities that would not only be able to 
extract store names from a storefront image but also additional 
data such as descriptions of services (e.g., bottle recycling and 
lotto) and purely visual displays (e.g., posters of products the store 
sold with associated prices and targeted advertisements) 
(Laurençon et  al., 2024; Wei et  al., 2024). Even more general 
information, such as apparent storefront size, could potentially 
be  learned by modern VLMs. The total of this additional 
information would guarantee, given a sufficient amount of 
training data, that a VLM food store classifier would have lower 
generalization error than the model we have developed. A major 
hurdle to this approach would be procuring a dataset consisting 
of storefront images for inference. For example, if only point-
geographic data is associated with a food store, intermediate 
navigation on an interactive panoramic view of streets to capture 
the correct image of a target storefront would be required.

Finally, further cleansing of the inference data could be undertaken 
should future studies require a longitudinal food environment dataset 
with greater accuracy for more granular analyses. Analyses of churn of 
food retail types, population-based health outcomes, and spatial social 
polarization could be  easily incorporated for research or policy 
analyses. However, it may be  that other aspects of the food 
environment, such as food choices and cost, will take precedence in 
establishing consistent linkages to downstream diet-related health 
outcomes over the spatial density of food stores (Block and 
Subramanian, 2015). How a shopper uses a store and whether a food 
store can accommodate demand appear to be  increasingly salient 
inquiries into the food environment-DRCD connection [e.g., 
interventions in grocery retail settings that address healthy food 
purchasing (Wolgast et al., 2022)].

In conclusion, this application of deep learning on administrative 
food data resulted in enhanced efficiency of enumerating and 
classifying the food environment, addressing long-standing challenges 
to research and operations by automating expensive manual public 
health processes using open-access tools and data. Accomplishment of 
this heavily depends on the use of foundation models in a government 
setting. Furthermore, longitudinal and consistent assignment of 
meaningful categories that represent targets for intervention upon 
health outcomes and the use of modern geospatial analytics to facilitate 
rapid analytics further advance public health.
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