
TYPE Original Research

PUBLISHED 24 October 2024

DOI 10.3389/frai.2024.1471208

OPEN ACCESS

EDITED BY

Asif Gill,

University of Technology Sydney, Australia

REVIEWED BY

Babajide J. Osatuyi,

Penn State Erie, The Behrend College,

United States

Aleksandr Raikov,

National Supercomputer Center, China

*CORRESPONDENCE

Stefan Haas

stefan.sh.haas@bmwgroup.com

RECEIVED 26 July 2024

ACCEPTED 30 September 2024

PUBLISHED 24 October 2024

CITATION

Haas S, Hegestweiler K, Rapp M, Muschalik M

and Hüllermeier E (2024) Stakeholder-centric

explanations for black-box decisions: an XAI

process model and its application to

automotive goodwill assessments.

Front. Artif. Intell. 7:1471208.

doi: 10.3389/frai.2024.1471208

COPYRIGHT

© 2024 Haas, Hegestweiler, Rapp, Muschalik

and Hüllermeier. This is an open-access

article distributed under the terms of the

Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in

other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication

in this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

Stakeholder-centric explanations
for black-box decisions: an XAI
process model and its application
to automotive goodwill
assessments

Stefan Haas1,2*, Konstantin Hegestweiler1,2, Michael Rapp1,

Maximilian Muschalik1,3 and Eyke Hüllermeier1,3

1Institute of Informatics, LMU Munich, Munich, Germany, 2BMW Group, Munich, Germany, 3Munich

Center for Machine Learning, Munich, Germany

Machine learning has made tremendous progress in predictive performance in

recent years. Despite these advances, employing machine learning models in

high-stake domains remains challenging due to the opaqueness of many high-

performance models. If their behavior cannot be analyzed, this likely decreases

the trust in such models and hinders the acceptance of human decision-makers.

Motivated by these challenges, we propose a process model for developing and

evaluating explainable decision support systems that are tailored to the needs

of di�erent stakeholders. To demonstrate its usefulness, we apply the process

model to a real-world application in an enterprise context. The goal is to increase

the acceptance of an existing black-box model developed at a car manufacturer

for supporting manual goodwill assessments. Following the proposed process,

we conduct two quantitative surveys targeted at the application’s stakeholders.

Our study reveals that textual explanations based on local feature importance

best fit the needs of the stakeholders in the considered use case. Specifically,

our results show that all stakeholders, including business specialists, goodwill

assessors, and technical IT experts, agree that such explanations significantly

increase their trust in the decision support system. Furthermore, our technical

evaluation confirms the faithfulness and stability of the selected explanation

method. These practical findings demonstrate the potential of our processmodel

to facilitate the successful deployment of machine learning models in enterprise

settings. The results emphasize the importance of developing explanations that

are tailored to the specific needs and expectations of diverse stakeholders.

KEYWORDS

eXplainable AI (XAI), prescriptive machine learning, decision support systems (DSS),

SHapley Additive exPlanations (SHAP), goodwill assessment

1 Introduction

With the growing access to large amounts of data and the widespread availability

of computational resources, the idea of using machine learning (ML) methods to guide

human experts toward more rational, objective, and accurate decisions, rather than

relying solely on their experience and intuition, becomes increasingly prevalent in many

application domains. However, in high-stake domains, where decisions can come with

severe consequences, there is often a reluctance to use ML methods. For example, this

includes applications in healthcare, where decisions may significantly impact human lives,
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and use cases in finance or industry that come with the risk of

economic loss (Burkart and Huber, 2021; Adadi and Berrada,

2018). Concerns about adopting ML-driven technology are often

attributed to the black-box characteristics of high-performance

models, such as ensembles of decision trees or neural networks,

which cannot easily be inspected, verified, and rectified by humans.

Motivated by safety-critical applications, where the ability to

understand a model’s behavior is crucial for its successful adoption

and acceptance by humans, there is a growing demand for

explainable artificial intelligence (XAI). Besides the development

of novel and inherently interpretable supervised ML methods

(e.g., Rudin, 2019; Lou et al., 2012, 2013; Ustun and Rudin,

2016), this direction of research has led to various algorithmic

solutions aimed at increasing the transparency of existing black-

box approaches through post-hoc explanations (e.g., Ribeiro et al.,

2016, 2018; Lundberg and Lee, 2017; Guidotti et al., 2018a;

Plumb et al., 2018; Ming et al., 2018), which explain the inner

workings and decision-making process of a trained machine

learning model, after the model has already been developed and

deployed. One can further distinguish between model-specific or

model-agnostic methods, where an explanation method is limited

to a specific model class or is model independent, respectively

(Burkart and Huber, 2021). In the following, we focus on the

latter, as model-agnostic, post-hoc approaches allow us to improve

on existing models, which are proven to provide robust and

accurate predictions.

Our research is driven by a real-world application in the

automotive domain, where an ML-based system should support

the assessment of goodwill requests. The goodwill process enables

car dealers to request monetary compensation for reparations from

the manufacturer on behalf of their customers. It qualifies as

a high-risk business use case, as bad decisions either negatively

affect customer satisfaction or harm the manufacturer’s financial

interests. Since the manual assessment of goodwill requests is

tedious and time-consuming as automotive manufacturers receive

up to several tens of thousands of goodwill requests per year, ML

provides a tempting opportunity to reduce manual efforts and save

costs. Moreover, due to the availability of tens of thousands or

even hundreds of thousands of past goodwill requests and their

respective outcome, supervised machine learning techniques can

be used and have been shown to succeed in closely capturing

expert decisions (Haas and Hüllermeier, 2023). However, despite

these promising results, the opaqueness of existing models , due to

their complex non-interpretable hierarchical structure and usage

of gradient boosting, prevents their employment in practice. It is

considered a significant limitation by stakeholders, who naturally

want to limit the risk of unexpected behavior and therefore demand

auditability of the models.

The explanatory needs of different stakeholders are typically

context-dependent and may vary between different interest groups.

For this reason, a single explanation method cannot always be

expected to satisfy the requirements of different stakeholders across

a wide variety of applications. As a result, the task of developing

interpretable supervised ML systems can only partially be solved

from an algorithmic perspective. Instead, it must be considered

with high priority during a system’s design, development, and

evaluation phases. To our knowledge, no complete framework

for developing XAI solutions deliberately tailored to different

interest groups has yet been proposed in the literature. Instead,

as elaborated in Section 2 below, existing publications tend

to focus on specific aspects of the topic, such as algorithms,

technical evaluation methods, visualization approaches, or user

studies. As an important step toward closing the gap between

these different research directions, we investigate an end-to-end

approach considering all necessary steps for developing an XAI

system, starting with stakeholder identification and requirements

engineering over implementation to evaluation and user feedback.

In summary, the contributions of our work are the following:

• In Section 3, we first discuss the real-world problem of

automated goodwill assessment that further motivates the

need for explainable ML systems in high-stake domains.

• In Section 4, we propose a streamlined and holistic process

model for developing post-hoc explainable decision support

systems based on findings from interdisciplinary literature and

practical considerations.

• In Section 5, we demonstrate how the proposed process

model can be applied to the previously introduced real-world

scenario and validate its usefulness to meet the explanatory

needs of different stakeholders.

By following a stakeholder-centric approach to XAI, we aim to

overcome the reluctance to useML-based solutions in an exemplary

business context and hypothesize that our results can be transferred

to similar domains. Concretely, we want to validate whether

following this process model helps us to overcome the skepticism of

ML usage in our exemplary high-stake business process. In detail,

we would like to know whether increased stakeholder-centered

transparency through XAI methods actually eases the introduction

of ML into this high-stake process.

2 Related work

As our goal is to propose a process model deeply rooted

in the XAI literature, this section provides a broad overview of

existing work on the topic. Developing and evaluating transparent

ML systems is an interdisciplinary effort, ranging from machine

learning over human-computer interaction and visual analytics to

the social sciences. Consequently, several comprehensive surveys

exist that aim to consolidate this vast field of research (e.g., Burkart

and Huber, 2021; Dwivedi et al., 2023; Minh et al., 2022; Adadi and

Berrada, 2018; Guidotti et al., 2018b; Ali et al., 2023; Longo et al.,

2024). However, these surveys are far from being an actionable

guidance for practitioners in terms of how to approach the topic

of XAI in concrete (high-stake) domain implementations.

Nevertheless, many existing publications focus on specific

aspects of XAI instead. On the one hand, this includes work on

technical aspects of the topic, such as the algorithmic details of

different evaluation methods (e.g., Mc Grath et al., 2018; Molnar

et al., 2020) and approaches for evaluating them quantitatively

(e.g., Lopes et al., 2022; Bodria et al., 2021; Doshi-Velez and

Kim, 2017). On the other hand, because XAI’s primary goal is to

satisfy the explanatory needs of human users and overcome their
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skepticism about ML-based technology, research efforts have also

been devoted to relevant aspects of human-computer interaction.

Among others, contributions in this particular direction include

studies on how knowledge aboutMLmodels should be presented to

users visually (e.g., Hudon et al., 2021). In addition, the challenges

of gathering feedback from users and measuring their satisfaction

in ML systems are also frequently addressed in user studies

(e.g., Kenny et al., 2021). A survey-based methodology for guiding

the human evaluation of explanations with the goal to simplify

human assessments of explanations is presented by Confalonieri

and Alonso-Moral (2024). However, again, this study only focuses

on the human evaluation part, neglecting all other parts of XAI

system development.

The focus on stakeholder perspective and needs is, amongst

others, emphasized by Langer et al. (2021). To our knowledge,

Vermeire et al. (2021) are the only ones that address the problem

of bridging the gap between stakeholder needs and explanation

methods from a practicable and actionable angle. Concretely,

they propose explanation ID cards and questionnaires to map

explanaibilty methods to user needs. However, their methodology

does not cover further technical or user-centered assessments of

the matched explanation methods, which may be required in

high-stakes settings to ensure reliable and useful explanations.

Furthermore, an empirical validation of their proposed method

is still missing. In line with our work, XAI tools and processes

found in the literature are mapped to common steps in software

engineering in Clement et al. (2023). Though the different

software engineering phases also appear reasonable in an XAI

context, starting out from requirements analysis over design

implementation and evaluation over to deployment, the phases

rather serve as a structure for the survey than an actionable

methodology for practitioners developing XAI systems. Similarly,

in Amershi et al. (2019), a general software engineering approach

for developing ML systems is derived from practical experience.

However, it does not cover any aspects of transparency. A unified

framework for designing and evaluating XAI systems, based on

a categorization of design goals and corresponding evaluation

measures according to different target groups, is presented in

Mohseni et al. (2021). However, the framework lacks guidance in

terms of concrete XAI method selection. Moreover, it is worth

mentioning that the European Commission provides a loose set

of requirements for trustworthy AI systems (Floridi, 2019). In

addition to the valuable insights provided by the publications

mentioned above, we also rely on the taxonomies outlined in

Burkart and Huber (2021), Adadi and Berrada (2018), Guidotti

et al. (2018b), Arrieta et al. (2020), Meske et al. (2022), and Markus

et al. (2021).

Similar to our work, research on XAI is often motivated

by specific applications and use cases. Case studies have been

conducted in many domains, including the insurance industry (van

Zetten et al., 2022), finance (Purificato et al., 2023; Zhu et al., 2023),

the public sector (Maltbie et al., 2021), auditing (Zhang et al., 2022),

and healthcare (Gerlings et al., 2022). Usually, these studies can

be grouped into either purely technically focused studies, without

end-user or domain expert involvement, (e.g., Zhu et al., 2023;

Orji and Ukwandu, 2024) or studies where feedback regarding

the explanations and their comprehensibility is also collected from

domain experts or end-users (e.g., van Zetten et al., 2022; Maltbie

et al., 2021). The study presented by Baum et al. (2023) stands

out as it follows the conceptual model presented by Langer et al.

(2021), which considers explanation approaches and information

as a means to satisfy different stakeholder desiderata (e.g., interests,

expectations, needs, etc.) in particular contexts. Baum et al. adapt

this conceptual model in a more practical way by starting with

the different stakeholders, which they consider the main context

of the explanation, and their particular needs. Based on this,

explanation information and concrete XAI methods can then be

derived. However, the study lacks empirical validation.

Moreover, beyond these logical paradigms, there are cognitive

semantic interpretations that address non-formalisable (black box)

aspects of AI. XAI can be conceptualized as a hybrid space where

human and machine cognition interact distinctly. For instance,

Miller (2019) discusses the importance of cognitive approaches in

XAI, highlighting how cognitive semantics can make AI systems

more understandable and trustworthy. Several researchers have

proposed unique convergent methodologies from a wide array of

disciplines (e.g., cognitive modeling, neural-symbolic integration)

to ensure XAI’s purposefulness and sustainability.

Due to most of the presented works only focusing on specific

aspects of XAI and the lack of a coherent methodological

framework for XAI system development, which was, for instance,

amongst others acknowledged by Bhatt et al. (2020), Langer

et al. (2021), and Vermeire et al. (2021), we see an urgent need

for a holistic XAI system development process model providing

guidance to deploy XAI systems in practice. Even more, as Bhatt

et al. (2020) notice that the majority of XAI deployments are not

for end users affected by the model but rather for machine learning

engineers, who use explainability to debug the model itself, which

shows a severe gap between explainability in practice and the goal

of transparency for all involved stakeholders.

3 Application domain

As mentioned earlier, the process model proposed in this work

is motivated by a real-world application in the automotive domain,

where an ML system should support human decision-makers. In

the following, we outline the requirements of said application and

motivate the need for explainable machine learning models in the

respective domain.

3.1 Warranty and goodwill in the
automotive industry

Warranty and goodwill are essential aspects of after-sales

management in the automotive industry. Vehicles are often costly,

so customers have high expectations regarding the reliability of

these products. Even if significant efforts are put into quality

control, due to the vast number of vehicles sold by original

equipment manufacturers (OEMs), many warranty claims and

goodwill requests must unavoidably be dealt with each year.

Warranty—in contrast to goodwill—is a legal obligation of the

OEM. If a customer notices a defect within a legally defined period

of time, the manufacturer must rectify the problem at his own
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expense. If no adequate solution can be provided, the customer

may even have the option to withdraw from the purchase contract.

However, it should be noted that the exact legal provisions for

warranty may vary from country to country.

Goodwill describes an OEM’s willingness to offer repairs,

replacements, or financial compensations in the event of defects

beyond the scope of warranty. There are no legal obligations

here, i.e., an OEM can freely choose a strategy according to

which goodwill requests should be handled. However, many

manufacturing companies consider goodwill a vital tool to increase

customer loyalty. From an OEM’s point of view, compensations

paid in response to goodwill requests can be understood as

marketing investments that may positively affect the loyalty of its

existing customers.

Since the duties that come with warranty are clear and legally

binding, it is relatively straightforward to process warranty claims

automatically, e.g., via rule-based systems. Only in difficult cases,

or if the warranty process should be audited, it might be necessary

for human experts to check individual claims manually. When

we refer to manual expert activity within this study, we refer to

expert judgement, in which single automotive after-sales experts or

assessors leverage the accumulated knowledge, skills, and intuition

they have developed over time to make a decision. This is in

contrast to networked expertise, where the skills and knowledge

of multiple experts are combined, or a more guided approach

like quality function deployment (QFD). Unfortunately, in the

case of goodwill assessments, it is much more challenging to

achieve a high degree of automation. For example, even though

the car manufacturer employs a rule-based system to deal with

goodwill requests in an automated manner, a large fraction of

the received requests require a manual examination by human

experts. Among 688, 879 goodwill requests considered in Haas and

Hüllermeier (2023), only 349, 488 (50.73%) could be processed

automatically, whereas 339, 391 (49.27%) demanded a manual

assessment. Consequently, there is great potential to increase the

degree of automation in the goodwill assessment process through

machine learning techniques.

3.2 The use of machine learning in the
goodwill assessment process

Supporting human assessors responsible for goodwill decisions

through machine learning techniques is appealing from an OEM’s

perspective, as it can potentially reduce labor costs and foster a

standardized goodwill strategy. Unlike decisions made by humans,

which are often based on personal experience and intuition rather

than being purely rational, assessments provided by MLmodels are

deterministic. This helps to prevent cases where similar goodwill

requests result in vastly different responses, which may damage

the OEM’s reputation. Figure 1 illustrates two different approaches

considered in Haas and Hüllermeier (2023) for integrating ML

models into the goodwill assessment process. Themodels can either

be used for automated decision-making (ADM), where goodwill

requests are processed automatically without human intervention,

or as a decision support system (DSS), which merely provides

recommendations to human experts and keeps them in control of

FIGURE 1

Integration of machine learning models into a goodwill assessment

system using automated decision-making (Top) or a decision

support system (Bottom).

the final decision. Whereas, ADM has a greater potential for cost

savings, it does also come with a higher risk of incorrect decisions

than the DSS approach, since no human supervision takes place.

Regardless of whether an ADM or a DSS approach is

pursued, we consider the problem of providing automated goodwill

decisions as a prescriptive machine learning problem, a term that

has recently been coined by Hüllermeier (2021). It emphasizes

differences between the tasks of predicting an outcome and

prescribing some sort of action or decision in a certain situation.

The former is commonly considered in the standard setting of

supervised learning, which assumes a kind of objective ground

truth (used as a reference to assess the prediction). In the

prescriptive setting, on the other side, there is normally nothing like

a “true” or “correct” decision or action—in general, not even the

optimality of a prescription can be verified retrospectively, because

consequences can only be observed for the one decision made, but

not for those other actions that have not been taken.

This lack of ground truth is inherent to goodwill decisions,

too, as it cannot be guaranteed that decisions made by experts

in the past have always beneficial regarding the OEM’s business

strategy in the long run. Nevertheless, mimicking the behavior

of experts appears to be a natural strategy, as historical data

D =
{(

Ex1, y1
)

, . . . ,
(

Exn, yn
)}

, which incorporates information

about goodwill requests ∈ X and corresponding decisions y ∈ Y ,

can easily be used for supervised machine learning. On the one

hand, a goodwill request is represented in terms of several features.

They describe the properties of a vehicle, such as its age, mileage,

or whether it was serviced regularly. In addition, they may provide

information about a defect that was encountered, including the type

of malfunction and the expected repair costs. On the other hand,

the possible outcomes of a goodwill assessment depend on the

OEM’s business strategy. For example, BMW requires assessors to

decide for a percentage between 0%, in which case themanufacturer

does not offer any compensation, and 100%, which means that the

manufacturer fully bears the repair costs. To support the work of

Frontiers in Artificial Intelligence 04 frontiersin.org

https://doi.org/10.3389/frai.2024.1471208
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Haas et al. 10.3389/frai.2024.1471208

the assessors at BMW, Haas and Hüllermeier (2023) propose an

ordinal classification method that models the outcome of goodwill

decisions in terms of the compensation (multiples of 10%) as target

variable y ∈ {0%, 10%, . . . , 100%}.

3.3 The need for explaining automated
goodwill decisions

The previously mentioned ordinal classification method,

developed at BMW and discussed in detail in Haas andHüllermeier

(2023), can be considered a black-box model. Even though it is able

to achieve high accuracy compared to the historical decisions of

human assessors, the model’s opaqueness poses several challenges

for its successful adoption in a business context. Due to its

complexity originating from the usage of gradient boosted trees

in combination with a hierarchical cost-sensitive framework (Haas

and Hüllermeier, 2023), the model can neither be analyzed by

human experts as a whole, nor does it provide any information

about why certain decisions have been made. This leads to

several issues regarding the acceptance and trustworthiness of the

automated goodwill system. First, the lack of transparency impedes

the ability of domain experts to audit the model and ensure that it

adheres to the OEM’s goodwill strategy. Second, because no reasons

are given for a particular decision, it is hard to reason about cases

where the system and human assessors disagree. This makes it

difficult to provide valuable feedback that may help to improve

the model and hinders the discovery of inconsistencies or biases

in human decision-making.

Nevertheless, modern black-box models are valued for

achieving state-of-the-art performance. Moreover, there is no legal

obligation in goodwill for complete transparency of the assessment

process. In settings like these, a solution that overcomes the

aforementioned shortcomings while retaining the existing model is

desirable. This motivates the use of post-hoc explanation methods

that can provide insights into an existing black-box model. In

particular, model-agnostic explanation approaches are appealing

in this regard. They are intended to work with any ML model,

regardless of the technical principles it relies on. Figure 2 provides

a high-level overview of the interaction between a black-box model

and an associated post-hoc explainer that aims to clarify the model’s

behavior. Section 4.2 discusses the characteristics and goals of

commonly used explanation methods in more detail.

Due to the unavoidable risk of incorrect decisions in an ML-

driven assessment process, in the following, we focus on using

machine learning models in the context of decision support

systems rather than for automated decision-making. Integrating

explanation methods into a DSS, which by design requires human

practitioners to closely interact with the automation system,

facilitates its employment in high-stake domains and opens the

door to the human-in-command (HIC) approach (Floridi, 2019)

outlined in Figure 3. In this approach, a goodwill assessor can

consult an explainable decision support system to safeguard his or

her decisions. The assessor and theMLmodel decide independently

on a given goodwill request. If the recommendation provided by

the latter differs from the manual assessment, the assessor must

be able to obtain a human-understandable explanation for the

model’s outcome to decide whether it is appropriate to revise the

own decision.

4 A process model for developing
post-hoc explanation systems

As argued in Section 1, there is an urgent need for increased

transparency and trust in black-box machine learning models to

be used in high-stake domains. Among others, transparency and

trust are two of the main goals of XAI (see, e.g., Burkart and Huber,

2021; Arrieta et al., 2020; Lipton, 2018; Fiok et al., 2022). However,

selecting the best-suited XAI tools for a specific use case from

the vast amount of available methods can be challenging. Usually,

not all available solutions can satisfy the explanatory needs of

stakeholders equally. Hence, a deliberate selection of suitable tools

and a careful evaluation of feedback received from stakeholders

is crucial to meet the expectations in an XAI system. For this

reason, we propose a process model for developing an explainable

decision support system (eDSS) using a design-science-research

approach (Simon, 1988). An overview of the iterative procedure,

including the individual phases it consists of, is shown in Figure 4.

The focus of the process model is to identify and validate

suitable post-hoc XAI methods, which allow for turning an ML-

based DSS into an eDSS. The process starts with an existing black-

box model and the intended result is a post-hoc explanation system

that is tailored to the problem domain and the explanatory needs

of the system’s stakeholders. The different phases of the proposed

process model are, on the one hand, motivated by the XAI literature

review presented in Section 2 and the herein identified gaps and

requirements, but are also grounded in several complementary

theoretical perspectives from the fields of stakeholder theory,

human-computer interaction (HCI), and decision support systems

(DSS), which further justify the phases themselves and their

sequence. At the core of the process model is a strong emphasis on

stakeholder engagement, which is informed by stakeholder theory

(Freeman and McVea, 2005; Mitchell et al., 1997; Mahajan et al.,

2023). Stakeholder theory posits that organizations should consider

the needs and interests of all parties affected by their decisions and

actions, not just their shareholders, which in turn leads to a broader

perspective, long term sustainability, ethical considerations, shared

value creation, and eventually a competitive advantage. In the

context of XAI system development, this translates to actively

involving diverse stakeholder groups, such as end-users, domain

experts, policymakers, and management, throughout the design

and evaluation process, which is also common sense in XAI

research (Kim et al., 2024; Langer et al., 2021; Longo et al., 2024;

Baum et al., 2023). For instance, Baum et al. (2023) consider

the different stakeholders and their needs as the main context

of XAI system development that needs to be elucidated first.

The explanation design phase of the process model is informed

by principles and theories from the field of human-computer

interaction (HCI). Specifically, the model draws on research on

cognitive fit (Vessey, 1991) and mental models (Johnson-Laird,

1983) to ensure that the explanations generated by the eDSS

are aligned with the mental representations and information

processing capabilities of the target end-users and stakeholders, and

hence useful and actionable. Additionally, the stakeholder-centric
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FIGURE 2

Model-agnostic post-hoc explainer for the black-box goodwill decision model.

FIGURE 3

Human-in-command approach for an explainable decision support system.

FIGURE 4

Iterative process model for developing an explainable decision support system, based on an existing black-box model.

evaluation phase is grounded in user-centered design approaches

(Norman, 2002; Mao et al., 2005), which emphasize the importance

of feedback from end-users to inform the design and refinement of

interactive systems. By incorporating qualitative and quantitative

assessments of stakeholder satisfaction and comprehension, the

process model aims to develop explanations that are not only

technically sound but also meaningful and useful to the intended

users. There is also consensus in XAI research that a solid

validation of an XAI system requires both a user-centered and

a technical evaluation (Mohseni et al., 2021; Longo et al., 2024;

Lopes et al., 2022). The overall structure of the process model, with

its focus on developing an explainable decision support system,
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is informed by classic theories and frameworks from the field

of decision support systems (Keen, 1980; Sprague, 1980). DSS

research has long emphasized the importance of user involvement,

information presentation, and the integration of human judgment

with analytical models to support complex decision-making (Shim

et al., 2002; Power, 2002). By adapting these DSS principles

to the context of XAI, the proposed process model ensures

that the resulting eDSS not only provides accurate predictions

but also supports stakeholders in understanding, trusting, and

appropriately using theML-based decision support system (Turban

et al., 2010; Arnott and Pervan, 2005). This is also in line with

Burkart and Huber (2021), who suggest to consider three aspects

for building a useful explanation system:Who should be addressed

by the explanations, what aspects of an ML system should be

explained, and how should the explanation be presented. In the

following subsections, we elaborate on the individual phases of our

process model related to these fundamental questions.

4.1 Phase 1: Stakeholder identification and
segmentation

Complex computer systems typically have several stakeholders

that finance, design, build, use, or audit the system. Developing an

eDSS should therefore start with identifying these interest groups,

which may have varying expectations in the system and demand

for different types of explanations (Gerlings et al., 2022; Kim et al.,

2024). In the literature, the stakeholders of ML-based systems are

usually separated into three main groups (see, e.g., Burkart and

Huber, 2021; Mohseni et al., 2021; Arrieta et al., 2020; Meske et al.,

2022), albeit named inconsistently. We rely on the terminology

introduced by Hong et al. (2020):

• Model consumers or users are the persons affected by the

decisions of an ML system. They can interact with the

system passively or actively. In the former case, decisions are

merely presented to the users, e.g., informing them about

the approval or rejection of a loan. In the latter case, the

predictions and explanations provided by the system should

support human decision-makers, e.g., the person in charge of

approving or rejecting a loan. In general, model consumers

are not necessarily technical experts. And if they interact with

a system passively, they can most likely not be considered

domain experts.

• Model builders are responsible for developing and operating

an ML model. They are proficient in ML but typically not

domain experts.

• Model breakers are domain experts who have the necessary

knowledge to verify that a model behaves correctly and meets

the desired goals from a business perspective. However, they

are usually not ML experts.

4.2 Phase 2: Explanation design

Once the interest groups of a system have been identified, the

next step is to determine which aspects of an ML system need to be

FIGURE 5

Taxonomy of commonly used explanation methods and

presentation forms.

explained to each. Following Clement et al. (2023), we refer to this

process as the “explanation design phase”. Possible explanations

can hereby differ in their scope and the technical principles

they are based on Burkart and Huber (2021). As the usefulness

of available explanation methods depends on the application

context and the needs of the stakeholders, their individual goals

and limitations must be considered for a well-informed choice.

Figure 5 provides an overview of the technical differences between

commonly used explanation methods discussed below. In the

literature, different XAI methods are often characterized by the

scope of the explanations they provide (see, e.g. Burkart and Huber,

2021; Adadi and Berrada, 2018; Molnar et al., 2020; Bodria et al.,

2021):

• Global explanations aim to provide a comprehensible

representation of an entire ML model. Their goal is to make

the overall behavior of a model transparent by capturing

general patterns used by it.

• Local explanations focus on individual predictions provided

by an ML system. They aim to disclose the reasons for why

a particular decision has been made.

As previously mentioned, the preferred scope of explanations

depends on the target audience and the application context. For

example, product managers might be more interested in global

explanations, as they allow them to verify a model’s behavior by

comparing the patterns it uses to their mental model. In contrast,

human decision-makers might prefer local explanations, which can

help them make specific decisions.

The most suitable explanationmethod also depends on the type

of data used for training a model, such as tabular data, images or

text (Bodria et al., 2021). As the application presented in Section 3

requires the handling of tabular data, we restrict ourselves to this

particular scenario, where the following types of explanations are

commonly used:

• Rule-based models and the conceptually related decision trees

are often considered as inherently interpretable (Burkart and

Huber, 2021). Hence, it is a natural choice to use rule-based

representations for explaining black-box models (Guidotti

et al., 2018a).
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• Feature importancemethods provide a ranking of the features

found in the data, based on their contribution to a model’s

decisions (Ribeiro et al., 2016; Lundberg and Lee, 2017).

• Prototypes are the minimum subset of data samples that can

be viewed as a condensed representation of a larger data

distribution. Prototypes can either be obtained for general

concepts found in the data or chosen based on their similarity

to a particular example at hand (Bien and Tibshirani, 2011).

• Counterfactuals provide additional information about a

model’s predictions in the form of “what-if ” scenarios. For

example, they can expose the minimal changes of the input

required to obtain a different outcome (Mc Grath et al., 2018;

Molnar et al., 2020; Wachter et al., 2017). Unlike the other

types of explanations listed above, counterfactuals cannot

explain a model globally.

4.3 Phase 3: User interface design

Once the most suitable technical methods for explaining an

ML model’s behavior to stakeholders have been identified, an

appropriate representation of the explanations must be found.

Following Clement et al. (2023), we refer to this phase as the

“user interface design”. As the form in which explanations are

presented to the target audience may significantly influence their

intelligibility and usefulness, it is crucial to our process model.

Burkart and Huber (2021) distinguish between the following types

of representations:

• Textual explanations rely on natural language to inform the

user, e.g., using complete sentences or bullet lists to justify

why a particular decision was made. Textual descriptions can

be intuitive because humans tend to explain their decisions

verbally.

• Graphical explanations make use of visual illustrations, such

as plots or diagrams. They may convey complex information

in a condensed manner and are supported by many software

libraries (e.g., Nori et al., 2019).

• Multimedia explanations may combine several types of

representation forms, including text, graphics, audio,

and video.

Again, the type of representation that best fits the stakeholders’

explanatory needs is context-dependent. For example, human

decision-makers who must present decisions to customers might

prefer a textual description over a visual one. If the information

provided by an XAI system is given in text form, they can more

easily adopt the explanation and verbally communicate it to the

customer. This might ease their work significantly compared to a

graphical representation, where they must first extract the essential

information and reformulate it in an appropriate verbal response.

4.4 Phase 4: Implementation

After one has decided on XAI methods and corresponding

representation forms that are most promising to fulfill the demands

FIGURE 6

Taxonomy of technical and stakeholder-centric evaluation methods.

in a particular use case, the technical groundwork must be laid

for further testing the pursued solution. Generally, this requires

implementing the selected explanation methods, integrating them

with an existing ML model, and deploying the resulting software.

As these steps highly depend on the infrastructure used in a

particular application context, it is impossible to provide general

advice on the implementation phase of our process model. So,

instead, we continue with the technical and user-centric evaluation

to be conducted afterward.

4.5 Phase 5: Technical evaluation

In the literature, there is a consensus that the evaluation of

an XAI system should comprise a technical and a stakeholder-

centric evaluation (Lopes et al., 2022; Mohseni et al., 2021).

This obligation is also underpinned by several case studies

that employ qualitative and quantitative methods to assess the

correctness and suitability of explanations in a given setting

(e.g., van Zetten et al., 2022; Maltbie et al., 2021). Moreover,

Doshi-Velez and Kim (2017) provide a taxonomy for categorizing

XAI evaluation methods. They distinguish between “functionally

grounded” approaches based on formally defined metrics and

“application-” or “human-grounded” techniques, where humans

rate the quality of explanations. Similarly, Figure 6 provides

an overview of commonly used evaluation techniques that we

consider technical or stakeholder-centric. In the following, we first

focus on the former before we continue with the latter in the

subsequent section.

Technical evaluation methods aim to ensure the soundness of

explanations. This is crucial because faulty behavior of an XAI

systemmay fool an expert into making wrong decisions with severe

consequences in high-stake domains. Bodria et al. (2021) highlight

the following metrics for safeguarding the functional correctness

of explanations:
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• Stability validates how consistent the explanations provided by

an XAI method are for similar examples.

• Faithfulness assesses how closely an explanation method can

approximate the decisions of a black-box model.

Additional evaluation metrics for use in XAI are constantly

proposed (see, e.g., Belaid et al., 2022 for a more extensive

overview). For example, we also take runtime and usage of

computational resources into account in Section 5.5.

4.6 Phase 6: Stakeholder-centric
evaluation

A conceptionally sound and, according to technical criteria,

properly working post-hoc explanation system might still not

entirely fulfill the expectations and demands of individual

stakeholders. For this reason, an essential building block of

our process model is to evaluate an XAI system’s usefulness

with regard to the previously identified interest groups. As

stressed by Lopes et al. (2022), this second evaluation phase

aims to ensure the system’s trustworthiness, measure the users’

satisfaction, and verify the understandability and usability

of the provided explanations. Because a purely technical

approach cannot assess these qualitative goals, Doshi-Velez

and Kim (2017) emphasize the need to gather feedback from

humans working with the system in a real-world setting. When

conducting such a user study, the technical background and

(possibly lacking) domain knowledge of different interest

groups must be considered to allow a realistic assessment of the

explanations’ comprehensibility. After all, if an explanation is not

understandable from an end-user’s perspective or is communicated

inadequately, this may hamper the ML system’s usefulness

and trustworthiness.

One challenge of user-centric studies is to gather

feedback from humans about their, most likely subjective,

opinions regarding predefined goals in a structured and

comparable way. Unfortunately, transcripts of personal

interviews or reports written by participants (see, e.g., van

Zetten et al., 2022; Maltbie et al., 2021; Cahour and Forzy,

2009) can be difficult to analyze. As an alternative, we

advocate using Likert-scale questionnaires (see, e.g., van

Zetten et al., 2022; Bussone et al., 2015), as discussed in

Section 5.6.

5 Case study on automotive goodwill
assessment

To demonstrate how the process model introduced in

the previous section can be used in practice, we applied it

to the application outlined in Section 3. Our goal was to

extend an existing black-box model for goodwill assessment

in the automotive domain with a post-hoc explanation

system tailored to the needs of different stakeholders.

Moreover, evaluating a conceptual method artifact and its

effect on a real-world situation through a case study is

a common evaluation method in design science research

(Peffers et al., 2012).

5.1 Phase 1: Stakeholder identification and
segmentation

According to the first step of our process model, we

started by identifying the different stakeholders of the goodwill

system. Based on our knowledge about the business use case

at hand and discussions with representatives from potential

interest groups in focus group meetings, we identified the

following stakeholders:

• IT specialists employed by the OEM are responsible for

developing, maintaining, and operating the goodwill system

and its underlying ML model. They are technical experts but

not domain experts.

• Business specialists at the OEM steer and control the company’s

global goodwill strategy from a business perspective and

are responsible for all operational tasks. They are domain

experts but not technical experts. Moreover, they collaborate

closely with business specialists from national sales companies

(NSCs), as described below.

• Business specialists at NSCs define guidelines for handling

goodwill requests specific to a particular market and supervise

the assessors operating in the respective area. They work

closely with the parent organization’s business specialists

and, similar to the latter, are domain experts rather than

technical experts.

• Assessors are domain experts who decide if the OEM should

contribute to the costs of individual goodwill requests. Their

decisions are based on the information available about a

specific request and adhere to the guidelines established by

business specialists. Moreover, assessors are active consumers

of the ML system’s recommendations.

• Internal revisionists audit the goodwill process. As goodwill

does not come with legal obligations, they primarily ensure

compliance with the OEM’s strategic goals and guidelines.

• Managers responsible for quality control must ensure an

efficient, fair, and transparent goodwill assessment process

that benefits customer loyalty and, at the same time, keeps

costs at an acceptable level.

Section 4.1 suggests assigning stakeholders to one of three

groups: model consumers, model builders, andmodel breakers. The

organizational structure outlined above matches this segmentation

quite well. Assessors, who decide on goodwill requests and should

actively be supported by the ML model, can be considered

model consumers. IT specialists working on the ML system’s

technical aspects fulfill the roles of model builders. Finally, the

responsibilities of business specialists at the OEM and NSCs are

complementary. Like internal revisionists and managers, they are

most interested in the ML system behaving consistently with

their respective goals. Consequently, we consider them model

breakers. Figure 7 illustrates the assignment of the goodwill

system’s stakeholders to distinct interest groups.
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FIGURE 7

Segmentation of the goodwill system’s stakeholders into interest

groups.

5.2 Phase 2: Explanation design

After identifying and segmenting the goodwill system’s

stakeholders, our process model’s next phase aims at identifying

XAI methods that can satisfy their explanatory needs. When

dealing with tabular data, we consider feature importance methods,

prototypes, and rule-based explanations as technically suitable

approaches. We conducted a five-point Likert-scale survey (Likert,

1932) to assess their usefulness regarding the stakeholders’

expectations. In this survey, each explanation method was

described on a non-technical level. In addition, we provided

real-world examples of how the resulting explanations might be

presented. Based on this information, we asked participants to

what degree different explanations meet their requirements. For

illustration, one of the questions included in the explanation design

survey is shown in Figure 8.

To ensure the understandability of the web-based survey

by non-technical users and due to the limited availability of

all stakeholders, it was iteratively refined together with model

consumer and breaker team leads in focus group sessions before it

was sent to the final pool of stakeholders. The survey was answered

by 36 persons working on goodwill assessment in a single market

where the decision support system was planned to be deployed.

Among the participants were 16 model consumers, eight model

breakers, and 12 model builders, representing the majority of the

target audience in the considered market. Figure 9 shows how

many participants from the different interest groups agreed with

the usefulness of potential explanation methods according to a

five-point Likert-scale.

We conducted a Shapiro-Wilk test (Shapiro and Wilk, 1965)

to check for an approximately normal distribution of answers

per group. For none of the stakeholder groups and explanation

methods, the p-values exceeded the significance level α = 0.05.

Consequently, the null hypothesis that the answers per group and

method are normally distributed was rejected. Due to the non-

normal data distribution, we conducted a non-parametric Kruskal-

Wallis test (Kruskal and Wallis, 1952) to identify any statistically

significant differences between the median answers of different

stakeholder groups regarding the usefulness of individual XAI

methods. The null hypothesis that the median is the same across

all groups could not be rejected for counterfactuals and rule-

based explanations (with α = 0.05). However, it was rejected for

prototypes and feature importance methods. To discover which

groups of stakeholders assess the usefulness of these explanation

methods differently than the others, we finally conducted a post-

hoc Dunn (1964) test. It revealed that the answers of the model

users regarding the usefulness of local feature importance methods

differ from those of the other groups to a statistically relevant

degree (with α = 0.05). Table 1 summarizes the results of

our analysis regarding the perceived helpfulness of explanation

methods per stakeholder group. We conclude that all stakeholders

of the goodwill system—especially model builders and breakers—

consider local feature importance methods as the most promising

XAI approach.

5.3 Phase 3: User interface design

According to the previously conducted design study, all

stakeholders of the goodwill system expect that explanations

based on feature importance can best satisfy their requirements

and provide valuable insights into the system’s behavior. Hence,

we focused on this particular type of explanation during the

user design phase that lays the conceptual groundwork for the

remaining steps of our process model. In particular, it requires

identifying the information the selected approach can provide from

a technical standpoint and exploring possibilities to present it to

the user.

To explain goodwill decisions by disclosing the impact of

individual features, we planned to employ Shapley additive

explanations (SHAP) (Lundberg and Lee, 2017). This method

derives feature importance scores from so-called Shapley values

originating from game theory (Shapley, 1953). Unlike related

methods such as LIME (Ribeiro et al., 2018) or permutation feature

importance (Breiman, 2001), it provides theoretical properties well-

suited for explaining ML models (Covert et al., 2020). As necessary

in our use case, SHAP and the closely-related Kernel SHAP

approximation method are model-agnostic post-hoc approaches

that can be used with any black-box decision model. Moreover, an

open-source implementation of these methods, including support

for different visualizations, is available.1

SHAP provides local explanations in the form of an additive

feature attribution function (Lundberg and Lee, 2017; Molnar,

2022)

g(z′) = φ0 +

d
∑

j=1

φjz
′
j ,

where g is the local linear surrogate explanation model and z′ ∈

{0, 1}M is a data point represented byM binary features also called

simplified features. In the simplified features, a value of 1 means that

the feature is present whereas a value of 0 indicates absence. The

importance of the j-th feature is specified by the absolut value of

the Shapley value φj ∈ R. Its sign indicates whether the feature has

1 https://github.com/slundberg/shap
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FIGURE 8

Question regarding the usefulness of local feature importance methods included in our explanation design survey.

FIGURE 9

Frequency of agreement with the usefulness of prototypes (PT), rule-based explanations (RB), feature importance (FI), and counterfactuals (CF) by

stakeholder group.

a positive or negative impact on the point prediction ŷ. This impact

needs to be interpreted relative to a baseline Ex

[

f̂ (x)
]

that denotes

the average of all model predictions.

In practice, the exact computation of Shapley values is

often computationally infeasible, as 2d feature subsets must be

evaluated. To overcome this limitation, Kernel SHAP employs

a sampling strategy for approximating Shapley values. For

each data point x to be explained, the model is re-evaluated

using a limited number of feature subsets (simplified features).

Features that are missing from a subset (are set to 0) are withheld

from the decision model. Unfortunately, individual feature

values can only be removed from a data point if the model

can handle missing values. Otherwise, they must be replaced

by randomly sampled values to break the relationship between

feature values and target variables (Covert et al., 2020). In

case of tabular data, an absent feature equals replacement by a

random feature value from the data. By adjusting the number

of re-evaluations or samples, Kernel SHAP’s computational

demands and approximation quality can be traded off

(see Section 5.5.3).
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In the end, the linear explanation model g is trained by

optimizing the following weighted sum of squared errors loss

function L:

L(f̂ , g,πx) =
∑

z′∈Z

(

f̂ (hx(z
′))− g(z′)

)2
πx(z

′)

The estimated weights of the linear model g are then the

Shapley values φj ∈ R. f̂ is the original model and hx a helper

function mapping simplified features to corresponding values from

the actual instance x to be explained (hx :{0, 1}
M → R

M). πx is

the SHAP kernel providing a weight for each simplified feature

vector. The basic idea is hereby to give small (few 1’s) and large

(many 1’s) vectors the highest weights, as they provide the most

information regarding the effect of individual features (isolated

and total).

To obtain a global explanation for the model, the absolute

Shapley values per j-th feature can simply be averaged over

the data:

Ij =
1

n

n
∑

i=1

|φ
(i)
j |

As outlined in Section 3, we utilize an ordinal classification

method to decide on the percentage of goodwill costs to be

taken by the OEM. In this context, features with negative

Shapley values result in less compensation to be paid. In contrast,

positive values correlate with a higher contribution. During the

user interface design, we considered the following textual and

graphical representations (see Figures 10, 11 for examples) to

disclose the positive and negative factors that lead to a particular

goodwill decision:

• We refer to a simple enumeration of the most influential

features according to their Shapley values as the text

baseline. It is restricted to features with positive (negative)

values greater (smaller) than the quantile q = 0.85

(q = 0.15). The features are grouped by the sign

of their Shapley values and sorted by their size in

decreasing order.

• Decision-logic-enhanced text compares features supporting

the financial claims that come with a goodwill request

to those speaking against them or favoring a lower

financial contribution. As before, only the most influential

features favoring or contradicting a request are given in

sorted order.

• Force plots visualize the contribution of individual features to

a prediction based on their Shapley values. For this purpose,

the positive or negative impact of each feature is shown

relatively to the final prediction and the baseline value on a

one-dimensional scale.

• Like the textual representations above, text-enriched decision

plots provide a description of features sorted by their

importance, albeit independently of whether they influence

a prediction positively or negatively. However, similar to

force plots, the contribution of each feature to the final

prediction is shown graphically and put in relation to the

baseline value.

TABLE 1 Median agreement with the usefulness of XAI methods per

stakeholder group.

Explanation
method

Stakeholder
group

Useful?

Local feature importance Model breaker/builder Strongly agree

Model user Agree

Global feature

importance

All Agree

Prototypes All Agree

Local rule-based All Agree

Global rule-based All Agree

Counterfactuals All Agree

5.4 Phase 4: Implementation

Once the requirements in the explanation system have been

identified, and one has settled for a technical approach that meets

these demands, it must be implemented and integrated into the

existing ecosystem. Figure 12 outlines the software architecture of

the goodwill system. Dealers submit goodwill requests on behalf of

their customers via the dealer frontend. As described in Section 3,

requests are handled by a rule-based assessment if possible.

Otherwise, a manual assessment must be performed. It starts with

the invocation of the ML prediction service that recommends the

compensation to be paid by the OEM for a particular goodwill

request. In addition, the prediction service asynchronously triggers

the ML explanation service by dispatching an explanation request

to a FIFO queue monitored by the latter. Separating prediction

and explanation into distinct micro-services is favorable as the

execution of Kernel SHAP can be computationally costly and time-

consuming. With micro-services, the underlying hardware can

be scaled independently. Moreover, there is no need to provide

explanations immediately after a new goodwill request arrives

since it typically takes time until a human assessor can inspect

them. Shapley values computed by the explanation service are

stored in a central database. They are accessible through a web

application called the explanation dashboard. Offering a standalone

application for accessing explanations enables one to adjust to

different stakeholder groups more flexibly. For example, assessors

are most interested in explanations for pending goodwill requests.

In contrast, other stakeholders like auditors or business experts

might want to inspect goodwill decisions made in the past.

5.5 Phase 5: Technical evaluation

As the next step of our process model, a technical evaluation

of the previously implemented explanation system should be

conducted to ensure that it generates sound explanations. Such

an evaluation is crucial as faulty explanations may trick human

decision-makers into making wrong decisions. As part of our

case study, we verify if the explanations based on Kernel SHAP

fulfill two well-established evaluation metrics, namely stability, and
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FIGURE 10

Graphical explanations of a goodwill decision based on feature importance. (A) The force plot displays feature values in favor of a higher contribution

as red arrows, with their length indicating the magnitude of the contribution. Conversely, blue arrows represent feature values that contribute to a

lower output value. Importantly, the importance of each feature value is always measured in relation to the base value in SHAP. (B) The text-enriched

decision plot lists feature value descriptions in descending order of importance on the y-axis and the model’s output on the x-axis. It is centered on

the x-axis at the base value and shows through the oscillating line how the model’s prediction changes through the contribution of the di�erent

feature values from bottom to top.

faithfulness (Bodria et al., 2021; Belaid et al., 2022; Alvarez-Melis

and Jaakkola, 2018; Rong et al., 2022). Fidelity (Bodria et al., 2021),

another common evaluation metric, which measures how well an

interpretable surrogatemodel reflects the predictions of the original

black-box model, is given by the Shapley value’s efficiency property
∑M

j=1 φj = h(Ex)− E
[

h(Ex)
]

(Lundberg and Lee, 2017), which states

that the feature contributions must add up to the difference of the

prediction for Ex and the average or base value (E
[

h(Ex)
]

). Hence,

there is no need to assess this experimentally. In addition, to ensure

that the implementation adheres to operational constraints, we

measure the computation time and memory consumption needed

to generate explanations. The literature lists many more metrics

like completeness, actionability, compactness, interpretability, and

plausibility, among others (Markus et al., 2021; Zhou et al.,

2021). However, quantifying them can be challenging without

incorporating user feedback, as they often involve subjective

judgments and context-specific considerations that are not easily

captured through technical means alone. That’s why we focus on

the established technical key metrics stability and faithfulness for

Kernel SHAP here.

5.5.1 Stability
The stability of an explanation in the context of machine

learning models is a crucial concept that refers to how sensitive

the explanation is to small changes in the model’s input.

Explanation stability is an important consideration because it

helps assess the reliability and robustness of the explanations

provided by a machine learning model. If the explanations

are highly sensitive to minor input perturbations, it can raise
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concerns about the trustworthiness and consistency of the model’s

decision-making process.

Stability can be assessed in terms of the Lipschitz constant

Lx = max
x′∈Nx

||ex − ex′ ||

||x− x′||
.

The test instance for which an explanation should be provided

is denoted by x, whereas ex is the corresponding explanation in

the form of Shapley values. We normalize both of these vectors by

the sum of their elements. Moreover, Nx denotes a neighborhood

consisting of instances x′ similar to x (Bodria et al., 2021; Alvarez-

Melis and Jaakkola, 2018).

Based on domain knowledge, we explore the neighborhood x′

of a test instance x by applying random changes to some of its

numerical features. This procedure is carried out formileage (±100)

with an interquartile range (IQR) of 72, 017.25, vehicle age in month

(±1) with an IQR of 26.0, labor costs (±10) with an IQR of 415.0,

parts costs (±10) with an IQR of 1, 150.0, and open time costs (±1)

with an IQR of 34.96. For these relatively small changes we do not

necessarily expect any changes in the model’s predictions or the

corresponding explanations.

Table 2 shows the results of our stability evaluation. Large

values indicate great instability, meaning that for similar inputs

quite different explanations are generated. In addition to the

stability, its mean, and its standard deviation, we report the fraction

of test instances for which predictions have changed compared

to its neighbors. Finally, the table also includes the fraction of

instances for which the top-2, -3, and -5 most important features

according to Shapley values have changed due to the perturbations

in some numerical features of neighboring instances. We observe

that explanations of goodwill contributions to labor costs are far

more unstable than those related to part costs according to the

Lipschitz constant. For both of these explainers, the top-2 and top-3

most important features remain unaffected for the vast majority of

test instances. However, for about 50% of the instances the top-5

ranks change, which indicates the limitations of Kernel SHAP’s

stability. Nevertheless, we consider this explanation method to be

stable enough for our use case, because of the small number of

changes in predictions and top-2 feature importance rankings.

5.5.2 Faithfulness
The faithfulness of an explanation assesses how well the

explanation approximates the true behavior of the underlying

black-box machine learning model (Alvarez-Melis and Jaakkola,

2018). It measures how well the explanation captures the actual

decision-making process of the model, rather than just providing

a simplified or approximate representation. When dealing with

explanations based on feature importance, their faithfulness can

be evaluated by using so-called deletion curves (Petsiuk et al.,

2018). According to this method, feature values are removed from

test instances successively, depending on the importance of the

corresponding features. The values of the most important features

are removed first and after each deletion the model’s prediction

error is measured. The intuition behind this procedure is the

following: If a particular feature is considered highly important

by a feature importance method, its removal should lead to a

drastic increase in prediction error. In contrast, the prediction error

A

B

FIGURE 11

Textual explanations of a goodwill decision based on feature

importance. (A) The text baseline approach displays the feature

values contributing the most positively (+) as well as negatively (−)

grouped and with descending importance, as well as the final

recommendation by the model. (B) The decision-logic-enhanced

text also groups the feature values with regards to their positive or

negative contribution, but also puts the model’s prediction into

relation to what the dealer requested from the manufacturer on

behalf of the end customer.

should only slightly deteriorate if one of the least important features

is removed. When removing multiple features with decreasing

importance, this should cause the prediction error to increase

monotonically. Unfortunately, the used black-box models cannot

handle tabular data from which individual features have been

removed. To overcome this limitation, we sample from the

marginal feature distribution to simulate the removal of features

as suggested by Covert et al. (2021).

Figure 13 illustrates the faithfulness of the feature importance

rankings that explain goodwill contributions to labor and part

costs, respectively. In both cases, we observe that the removal

of the most important feature already results in a significant

change of the deletion curve. Moreover, the removal of additional

features results in a monotonically increasing deletion curve until

a plateau is finally reached. This testifies the faithfulness of the

explanations provided by Kernel SHAP. For the labor costs, the

average prediction error increases faster. However, in the limit, the

prediction error is not affected as much as for the part costs.
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FIGURE 12

Software architecture of the decision support system for goodwill assessment.

TABLE 2 Stability of the Kernel SHAP explainer over a subset of 100 test samples.

Explainer Stability Prediction
changes

Top-2 FI
changes

Top-3 FI
changes

Top-5 FI
changes

Labor 1,026.4 ±1,507.4 0.01 0.04 0.12 0.47

Parts 544.0 ±939.6 0.00 0.00 0.18 0.53

A B

FIGURE 13

Deletion curves obtained for labor and part costs based on 578 randomly selected test instances. Features are removed by randomly sampling

10, 000 replacement values. The prediction error is computed as the relative error compared to the maximal possible error, which may vary

depending on the prediction and therefore is normalized. (A) Labor. (B) Parts.

5.5.3 Runtime and memory consumption
The runtime and memory consumption of Kernel SHAP,

apart from the underlying data and number of features, mainly

depend on the size of the dataset and the number of times the

model is re-evaluated, respectively, simplified features are sampled

(nsamples parameter in the Kernel SHAP implementation)

when explaining a prediction. In our use case, we have to deal

with 26 features in total. As a result, the memory consumption
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TABLE 3 Maximum runtime and resource consumption of Kernel SHAP

for 100 samples.

Explainer Max.
runtime

Max.
memory

Max. CPU

Labor 24.92 s 9.99 GB 1,659 mc

Parts 24.15 s 9.02 GB 1,713 mc

of Kernel SHAP is the most limiting factor. We therefore

enforced a memory limit at around 10 GB to keep the memory

consumption at an acceptable level. As a result, the implementation

was deployable on a high density cluster environment

without the need to provide dedicated machines with larger

main memory.

Table 3 shows the runtime and memory consumption of Kernel

SHAP when generating explanations of the contribution to labor

and part costs, respectively. The algorithm was provided with a

dataset consisting of 100 instances. It was configured to perform

3, 000 re-evaluations or samples per explanation. In our use case,

an average runtime of 25 s is acceptable, because explanations are

provided to human assessors asynchronously instead of in real-

time. The CPU utilization of ∼1.7 millicores is moderate. The

test was carried out on a machine with 8 vCPUs and 28 GB

main memory.

5.6 Phase 6: Stakeholder-centric
evaluation

To evaluate the suitability of the considered explanation designs

and the overall satisfaction with the explainable decision support

system, we conducted a second web-based survey. Like the previous

survey, it was iteratively refined together with non-technical

stakeholders in focus group sessions before it was sent out to all

stakeholders to ensure that the survey was also understandable

for non-technical users and that the explanations’ design was

as clear as possible, e.g., with descriptive labels and meaningful

exemplary cases. It addressed the same stakeholders as the first

survey. In total, 23 stakeholders participated (11 model consumers,

six model builders, six model breakers). Again, we relied on a

Likert-scale questionnaire. The first part of the survey focused on

the considered representations of explanations (cf. Figures 10, 11),

whereas the second part aimed at evaluating the decision support

system as a whole.

5.6.1 Preferences regarding the di�erent
explanation designs

The survey asked all stakeholders to pick their favorite

representation of explanations among the four considered variants.

Figure 14 illustrates how many stakeholders preferred each of the

available options. To identify any statistically significant deviations

from a uniform distribution (H0 : τ = 0.25), a right-sided binomial

test was conducted for each option vs. the other options using

a significance level of α = 0.05. In addition, the same test

was applied to the overall preferences of all stakeholders. When

focusing on model users, the p-values obtained for the decision-

logic-enhanced text visualization were smaller than α, which leads

to a rejection of the null hypothesis and indicates a statistically

significant preference for this representation form. The same result

was obtained when considering the overall preferences of all

stakeholders. Furthermore, the Wald confidence intervals were

(30.71%, 69.29%) for all stakeholders and (39.22%, 89.67%) when

focusing on the model users. Because even the lower bound of these

confidence intervals is greater than τ = 0.25, we consider the

preference for the decision-logic-enhanced text design to be very

strong. We also evaluated the comprehensibility and actionability

of this preferred option using a Kruskal-Wallis test (with α =

0.05). According to the reuslts, all stakeholder groups agree that

this particular form of explanations is understandable, easy to

comprehend, and helps making decisions.

5.6.2 Acceptance of the explainable decision
support system

Besides the evaluation of different representation forms, we

were also eager to testify if explanations based on feature

importance are suited to increase the stakeholders’ trust in the

decision support system and if they believe that the system will

have a positive impact on their task performance. Table 4 shows

the questions included in our survey regarding these goals. The

frequency distribution of the answers received for these questions

are depicted in Figure 15. It should be noted that the null

hypothesis of the non-parametric Kruskal-Wallis test, which states

that the median is the same across all stakeholder groups, holds

for all questions in Table 4, i.e., all stakeholders agree that the

provided explanations increased their trust in the decision support

system from which they believe that it will positively impact their

task performance.

6 Discussion and conclusion

This paper presented a process model rooted in the XAI

literature. It covers all the necessary steps for developing a

post-hoc explanation system that enhances the transparency and

trustworthiness of an existing black-box decision system. To

demonstrate the usefulness of the proposed methodology, we

applied it to a real-world problem in the automotive domain,

which encompasses several characteristics like multiple stakeholder

groups and a need for increased automation in conjunction with

transparency, which are certainly present in other domains as well.

Concretely, this study aimed to increase the trust and acceptance

of stakeholders in an ML-based goodwill system. By following the

process model, we were able to identify an XAI method, together

with a suitable representation of the explanations it provides, that

meets the requirements of different stakeholder groups. According

to a final survey, all stakeholders agree that the selected and

implemented XAI approach increases their trust in the decision

system and can be expected to improve the performance of

employees working with the system. From a design science research

perspective, we believe that through our successful case study

we have demonstrated our process model’s ease of use, efficiency,

generality and operationality, which are common evaluation
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FIGURE 14

Number of stakeholders preferring the considered representation forms.

TABLE 4 Questions regarding the trust in the eDSS and its impact on task

performance, as well as the median answers among all stakeholder

groups.

Statement Answer

The explanation increased my trust in the

decision support system.

Agree

I would follow the contribution suggestion

for the cases because of the explanation.

Agree

I could finish my task faster with the help of

this explanation.

Agree

criteria for method type artifacts (Sonnenberg and Vom Brocke,

2012). We further believe that our proposed process model can

be transferred to other domains facing similar challenges, as

presented in this study, such as multiple stakeholder groups and

a tailored model requiring model-agnostic, post-hoc explanation

methods for different stakeholder groups. In the following, we

elaborate on some findings and limitations we identified during

our study.

6.1 The importance of stakeholder
involvement

The results of both surveys that we conducted in the course of

our study emphasize the importance of stakeholder involvement in

the XAI development process. Initially, we did neither anticipate

the potential of XAI methods based on feature importance to meet

their expectations nor their preference for text-based explanations.

Regarding the considered XAI methods, we expected that

stakeholders favor rule-based explanations because a rule-based

decision system is already used in the domain. Most probably, their

choice for feature importance methods can be explained by the

bad experiences with the decade-old and hence overly complex

rule system, which might not be considered interpretable anymore.

Moreover, although we expected counterfactual explanations to be

less valuable for assessors working at the OEM, we saw them as

an attractive solution for car dealers and their customers. After

all, learning how changes in goodwill requests would affect the

outcome of the goodwill process would allow them to maximize

the compensation paid by the manufacturer. Finally, we expected

that model breakers, i.e., managers, business specialists, and

revisionists, would be more interested in a global perspective

on the decision-making process than in analyzing individual

goodwill requests. However, there appears to be a general

preference across all stakeholders to inspect specific cases and

draw conclusions from them instead of being provided with

global explanations.

Another interesting outcome of our case study was the

stakeholders’ preference for text-based explanations over graphical

representations, although the former are restricted to rankings

of features and cannot convey information about their absolute

importance. Nevertheless, many users, particularly model

consumers, i.e., assessors responsible for goodwill decisions,

preferred to be provided with textual information. These results

may indicate that text-based feedback is perceived as natural by

users without a technical background and can be understood more

easily, even without previous training.

6.2 E�ects on the acceptance of machine
learning

The feedback we obtained from different interest groups via

the previously discussed surveys indicates that their trust in the

decision support system has increased. Compared to the initial

reluctance of stakeholders to rely on a black-box model, the

employment of XAI positively impacted the acceptance of ML-

based technology. On the one hand, we attribute this newfound

openness to the increase in transparency achieved through XAI.

On the other hand, we believe that the involvement of stakeholders

in the design and development process positively influenced their

attitude toward the system.

Furthermore, we noticed that the possibility to analyze

recommendations made by the ML model fosters discussions

about the model’s fairness and possible biases in human goodwill
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FIGURE 15

Frequency of agreement with statements regarding the trust in the eDSS and its impact on task performance per stakeholder group.

decisions. This suggests that XAI technologies can help to

encourage fairness and increase awareness of unwanted biases

in decision processes. However, increased trust in automated

decision-making may also lead to over-reliance on the system,

which is not desired in a high-stake business context built around

the human-in-command principle. Instead, the goal should be

an interplay between critically thinking human experts and the

decision support system. As a countermeasure, the assessment

process could be monitored to detect trends toward unilateral

decisions that indicate algorithm aversion (Dietvorst et al., 2015)

or automation bias (Lee and See, 2004).

6.3 Limitations and future work

Since the choice of suitable XAI approaches is very domain-

specific, the process model proposed in this paper can only provide

rough guidance. Consequently, it needs to be tailored to the specific

use case, e.g., by considering appropriate explanation methods

and presentation forms. Providing more guidance and even tool

support to practitioners with regards to suitable explanation

methods and designs depending on the domain, e.g., healthcare,

finance, or the public sector, could be an interesting future

avenue of research. As we have seen with the preference for

textual explanation representation within this study, suitable

methods and designs can be very domain-specific and contrary to

common assumptions.

Moreover, the current process model only focuses on

identifying, implementing, and evaluating post-hoc explanation

methods that help to gain insights into an existing black-box

model. In addition, future work may also deal with use cases

where the goals of XAI should be considered from the start of the

development process. In such cases, inherently interpretable white-

box models can also play an important role and must therefore be

taken into account.

The results of the first survey regarding the different

explanation methodologies may also indicate that many

stakeholders may not have fully understood the differences

between the various explanation methods. This is evidenced by

the agreement that all explanations are useful, but little difference

in preferences among the methods. The purely textual web-based

survey format could have been a limiting factor in this case.

The second survey, which incorporated both textual and visual

representations of the explanation methods, led to more nuanced

results. This suggests that presenting explanations in a more

tangible way, with more concrete domain-specific examples that

stakeholders can relate to, appears beneficial.

In general, gathering feedback from human stakeholders

remains a cumbersome and challenging task due to their
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limited availability and ML/XAI expertise, which may also

explain the primary usage of XAI by developers (Bhatt et al.,

2020). Hence, there is a severe risk of biased feedback results

originating from poorly designed XAI surveys, leading to

misguided XAI systems. Pre-validating designs and surveys in

focus groups, as done in our study, may be a way to prevent

larger misconceptions andmisunderstandings among stakeholders.

However, automating, validating, and easing the collection of

user feedback may be an important avenue for future research

(Confalonieri and Alonso-Moral, 2024), as collecting stakeholder

feedback is of utmost importance when developing XAI systems.

Guidance in terms of XAI survey creation, visualization, and

validation could reduce the risk of misconceptions and misguided

XAI systems.

In terms of stakeholder segmentation, as discussed in Section

5.1, a more structured and fine-grained approach may also

be beneficial, particularly to further split the model breaker

stakeholders into more distinct interest groups. Model breakers

usually encompass several interest groups, each of which may

have distinct explanation needs, whereas the builder and user

groups appear more homogeneous. Due to time and resource

constraints, user segmentation was not carried out to the full extent

in this study.

In terms of computational efficiency, the utilization of Kernel

SHAP was not an issue in this study, where explanations could

be generated in an asynchronous way. However, for applications

that require real-time explanations, the usage of Kernel SHAP

could be problematic due to the high memory usage and runtime

as demonstrated in Section 5.5.3. Here, more efficient SHAP

estimators may be required.
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