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Introduction: In clinical, the echocardiogram is the most widely used for 
diagnosing heart diseases. Different heart diseases are diagnosed based on 
different views of the echocardiogram images, so efficient echocardiogram 
view classification can help cardiologists diagnose heart disease rapidly. 
Echocardiogram view classification is mainly divided into supervised and 
semi-supervised methods. The supervised echocardiogram view classification 
methods have worse generalization performance due to the difficulty of labeling 
echocardiographic images, while the semi-supervised echocardiogram view 
classification can achieve acceptable results via a little labeled data. However, the 
current semi-supervised echocardiogram view classification faces challenges 
of declining accuracy due to out-of-distribution data and is constrained by 
complex model structures in clinical application.

Methods: To deal with the above challenges, we proposed a novel open-set 
semi-supervised method for echocardiogram view classification, SPEMix, which 
can improve performance and generalization by leveraging out-of-distribution 
unlabeled data. Our SPEMix consists of two core blocks, DAMix Block and SP 
Block. DAMix Block can generate a mixed mask that focuses on the valuable 
regions of echocardiograms at the pixel level to generate high-quality 
augmented echocardiograms for unlabeled data, improving classification 
accuracy. SP Block can generate a superclass pseudo-label of unlabeled data 
from the perspective of the superclass probability distribution, improving the 
classification generalization by leveraging the superclass pseudolabel.

Results: We also evaluate the generalization of our method on the Unity dataset and 
the CAMUS dataset. The lightweight model trained with SPEMix can achieve the best 
classification performance on the publicly available TMED2 dataset.

Discussion: For the first time, we applied the lightweight model to the 
echocardiogram view classification, which can solve the limits of the clinical 
application due to the complex model architecture and help cardiologists 
diagnose heart diseases more efficiently.
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1 Introduction

When diagnosing heart diseases based on the echocardiogram, 
different heart diseases depend on different views of the 
echocardiogram. For example, aortic stenosis can be diagnosed by 
analyzing the PLAX and PSAX views (Huang et al., 2021), and early 
myocardial infarction can be detected via A4C and A2C (Degerli et al., 
2024). Hence, cardiologists usually need to identify the critical 
echocardiogram view during the clinical diagnostic process. Automated 
echocardiogram view classification can effectively reduce the clinical 
diagnosis time (Zhu et  al., 2022). Figure  1 illustrates the clinical 
application process of the automated echocardiogram view 
classification. In practical clinical applications, automated view 
classification involved four steps. First, the cardiologist collected the 
echocardiogram data from the patient. Then, the cardiologist inputted 
the data into the automated view classification model to perform the 
echocardiogram view classification. Next, the cardiologist got the 
classification results of the echocardiogram. Finally, the cardiologist 
selected the expected view when making a diagnosis of a different 
disease and performed the diagnosis. Obviously, the core of automated 
echocardiogram view classification methods is to classify by the 
classification model. In this situation, developing a classification model 
that can identify the critical view precisely and efficiently will be vital 
in medicine. So many studies aim to develop echocardiogram view 
classification methods to assist cardiologists in diagnosing heart disease.

With the development of deep learning in medical images, there 
are many studies (Kusunose et al., 2020; Madani et al., 2018; Gao et al., 
2017) focused on the classification of echocardiogram views by deep 
learning. These methods can be divided into supervised methods and 
semi-supervised methods.

Supervised studies used a large number of labeled data to train a 
model. Madani et al. (2018) performed the classification task by building 
a convolution model consisting of traditional convolution layers and fully 
connected layers. They classified 15 different echocardiogram views and 
got impressive classification results on their private dataset. Kusunose 
et al. (2020) collected 17,000 echocardiogram images from 340 patients 
and built a neural network model. The model consisted of five convolution 
layers and five pooling layers to classify them into five categories. Gao 
et al. (2017) fused the spatial and temporal information to perform eight 
view classifications based on their 432 video data. Although these 
supervised methods have gotten good results in identifying or detecting 
tasks (Gao et al., 2017; Han et al., 2024; Han et al., 2024), they need 
massive labeled data. Unfortunately, it will take a lot of time and energy 
for medical experts to label the medical images. Furthermore, these 
studies (Kusunose et al., 2020; Madani et al., 2018; Gao et al., 2017) used 
proprietary datasets, which made the generalization of their methods 
cannot be guaranteed. The private datasets also made it challenging to 
apply actual clinical needs. To address these issues, our study focused on 
the development of a semi-supervised algorithm within the publicly 
available dataset. We evaluated the generalization of our method in two 
different public datasets to prove the feasibility of our SPEMix in 
clinical application.

Semi-supervised studies (Madani et al., 2018; Hagberg et al., 2022) 
tried to decrease the cost of labeling data and improve efficiency by 
utilizing small labeled data and massive unlabeled data. Therefore, 
semi-supervised learning has been revealed to have superior potential 
(Xiaojin, 2008), and it has also been widely used in medicine (Chebli 
et  al., 2018; Bai et  al., 2017). Many scholars (Madani et  al., 2018; 
Hagberg et al., 2022; Huang et al., 2023; Huang et al., 2024) have used 

semi-supervised learning for the echocardiogram view classification 
task. Madani et al. (2018) developed a semi-supervised generative 
adversarial network model to classify 15 views of echocardiogram via 
only a little labeled data. This method revealed the huge potential of 
semi-supervised. Hagberg et al. (2022) innovatively developed a semi-
supervised learning method using natural language processing for 
right ventricle view classification, which improved the efficiency of 
classification. Although these methods had good classification 
efficiency, their classification accuracy was usually worse than the 
classification accuracy of supervised methods due to ignoring the 
damage caused by the out-of-distribution data. Most current methods 
have not achieved accurate and reliable classification accuracy to meet 
practical clinical needs. We proposed a novel efficient mixup method 
for our semi-supervised method to solve the above problem. Different 
from other mixing methods (Zhang et al., 2018; Yun et al., 2019; Liu 
et al., 2022) applied to natural images, our proposed efficient mixup 
method can automatically focus on the valuable pixel of the 
echocardiogram based on dynamic attention and produce high-
quality augmented echocardiogram images. Specifically, we proposed 
a DAMix Block for our SPEMix to achieve our efficient augmentation.

Otherwise, many studies have observed that out-of-distribution of 
unlabeled data can harm the accuracy of semi-supervised learning 
(Oliver et al., 2018; Li et al., 2023; Zhao et al., 2022). Out-of-distribution 
data means the data does not belong to any of the known classification 
categories. The semi-supervised methods achieved good results only 
when the unlabeled data shared the same class space with labeled data. 
Unfortunately, the collected unlabeled medical image datasets often 
included out-of-distribution data in practical medical applications. 
This phenomenon usually leads to unlabeled data sharing a different 
class space with labeled data. Some approaches tried to improve the 
medical image classification accuracy via adversarial attacks and 
defenses (Lee et al., 2024; Kwon, 2023; Kwon and Lee, 2023). However, 
the dominant approaches to tackle the harm caused by the out-of-
distribution data in natural images were to detect and filter the out-of-
distribution data (Saito et al., 2021; Calderon-Ramirez et al., 2022). 
Huang et al. (2023) used augmentation and step direction modification 
to reduce the harm of out-of-distribution for echocardiogram view 
classification. The proposed method utilized the gradient information 
from unlabeled data from out-of-distribution only when the out-of-
distribution data could improve the model performance. Different 
from the previous techniques, filtering out the out-of-distribution or 
modifying the gradient descent updates, we designed a novel, effective 
open-set framework to make better use of the out-of-distribution 
unlabeled data. Inspired by the success of the superclass work (Li et al., 
2023) in solving the harm of out-of-distribution, we  modeled the 
unlabeled data from superclass distribution. We assigned the superclass 
pseudo-label for unlabeled data. Specifically, we regarded all of the 
classes out of the distribution as a new superclass, and we designed the 
SP Block to generate superclass pseudo-labels to leverage the 
information in unlabeled datasets better. The SP Block included a 
multiclass classifier and a close-set classifier to calculate the out-of-
distribution class probability distribution and the in-the-distribution 
class probability distribution. SP Block can calculate the superclass 
probability distribution and generate the superclass pseudo-labels 
based on these probabilities. Then, our superclass pseudo-labels can 
be leveraged by an open-set classifier, and our model can learn the 
semantic features of unlabeled data that are out of the distribution.

On the other hand, some researcher (Avola et al., 2024) focused on 
developing more complex models to improve the accuracy of 
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classification. Avola et al. (2024) built a multi-scale feature transformer 
model to capture different scale details to get better classification results 
in the TMED2 (Huang et al., 2022) dataset. Although this model can 
provide multi-view and single-view recognition, the transformer model 
has a more significant number of parameters and lower computational 
efficiency compared with the lightweight models. To satisfy real medical 
clinical needs, for the first time, we applied the lightweight model to 
echocardiogram view classification to improve the classification efficiency. 
RepViT (Wang et al., 2024) model designed a novel lightweight CNN 
based on the structures of lightweight VIT and achieved the best 
performance of the lightweight model. Inspired by the great work, 
we designed a four-layer lightweight encoder based on the RepViT for 
view classification. To improve our training efficiency, we decoupled the 
mixed data generate stage and the pseudo-label generate stage. Specifically, 
we embedded the DAMix Block into the teacher encoder to provide high-
quality mixed data to the classifier. We embedded the SP Block into the 
student model to leverage the out-of-distribution.

In this paper, we proposed a lightweight open-set semi-supervised 
method, SPEMix, for echocardiogram view classification. Different 
from traditional semi-supervised learning classification algorithms, 
such as FixMatch and OpenMatch, our proposed SPEMix can classify 
the echocardiogram views accurately and efficiently, providing a new 
perspective on practical clinical application. FixMatch achieves semi-
supervised learning by assigning pseudo-labels to unlabeled data but 
discards unlabeled data with low thresholds, making it difficult to 
consider unseen classes. In contrast, our SPEMix assigns open-set 
pseudo-labels to each unlabeled data point, leveraging the semantic 
information of each unlabeled instance. Compared to OpenMatch, 
our open-set semi-supervised method introduces mixup data 
augmentation, which improves classification accuracy through joint 
supervision of unseen classes and mixed data. In summary, our 
contributions are as follows:

 1. We innovatively proposed a mixed data generator (DAMix) 
which introduced the dynamic attention mechanism for the 
medical echocardiogram. The DAMix Block can provide the 
mixed mask embedded with the mixing ratio. The mixed 
mask, which consists of valuable information, can mix up the 
unlabeled echocardiogram efficiently at the pixel level.

 2. We proposed a novel method to leverage the out-of-distribution 
unlabeled data from superclass probability contribution. 
We designed an SP Block to model the unlabeled data in terms 
of superclass distribution to generate the pseudo-labels of 
unlabeled data. Then, we introduced an open-set classifier to 
calculate the superclass prediction. We also proposed a novel 
open-set loss based on consistent regularization to utilize the 
superclass pseudo-label.

 3. Finally, we  applied the lightweight model to our semi-
supervised method and built a lightweight encoder based on 
RepViT, which improved the accuracy and efficiency of our 
proposed method.

2 Methods

In this section, we  introduced the detailed information of the 
proposed novel framework, SPEMix, for echocardiogram view 
classification. The framework of the proposed SPEMix was shown in 
Figure 2. The two core components of the SPEMix, DAMix Block and 
SP Block, can, respectively, generate the mixed mask to mix up data 
and superclass pseudo-label to leverage the out-of-distribution data. 
Meanwhile, the SPEMix used the lightweight encoder model to 
improve efficiency. The lightweight teacher model consisted of the 
DAMix Block to generate the augmentation data. The lightweight 
student model consisted of the SP Block to generate the superclass 

FIGURE 1

The clinical application process of an automated echocardiogram view classification.
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pseudo-label. The teacher model and student model were trained in 
an end-to-end manner to enable data enhancement and superclass 
pseudo-labels generation to work together.

2.1 DAMix block for the generation of 
high-quality augmented echocardiograms

Mixing augmentation technology (Zhang et al., 2018) is useful for 
improving the accuracy and generalization of classification tasks. 
However, the traditional mixing augmentation methods did not work 
well for echocardiogram view classification because most 
echocardiograms are grayscale images (Shorten and Khoshgoftaar, 
2019). To address these issues and improve the accuracy and 
generalization of echocardiogram view classification, we  proposed 
DAMix Block to perform pixel-level Efficient Mixup. The DAMix 
Block generated the mixed mask M that contains crucial information 
for performing the pixel-level Efficient Mixup process. This DAMix 
Block was capable of embedding the mixing ratio into the mixed mask. 
The framework of the DAMix Block was shown in Figure 3.

Inspired by the improvement of the sparse self-attention in the 
vision transformer (Zhu et  al., 2023), the DAMix Block first 
introduced the dynamic attention mechanism for the echocardiogram. 
The dynamic attention mechanism divided the echocardiogram into 
sub-regions and searched for the regions containing critical 
information in the feature map. This process helped the generated 
mask to capture the global features of the entire image efficiently. The 
process of the dynamic attention mechanism was as follows: Initially, 
the dynamic attention mechanism divided the echocardiogram feature 

H W Cx × ×∈  into 2S  different small square regions, so the size of 

each region will be  2
HW
S

. We regarded each of the square regions as a 

token. Each token had 2
HW
S

 features and there were 2S tokens in total. 

This process can be  achieved by reshaping the feature map into 
2

2

HW S C
S .x

× ×
∈′   After the divided step, we  will get the 

echocardiogram token features x′. Then, the dynamic attention 
mechanism calculated the region Query(Q), region Key(K), and 
region Value(V) of the token features x′ by linear projections. The 
process is shown in Equation 1:

 
q k vQ W ,K W ,V Wx x x′= =′ ′=  (1)

Where qW  was the linear projection weight of the region query, 
kW  was the linear projection weight of the region key, and vW  was 

the linear projection weight of the region value.
Furthermore, the dynamic attention mechanism calculated the 

average matrix of the region Query Q, and region Key K . Specifically, 
this dynamic attention can calculate the average feature of each token. 
This process can be achieved by performing 2D average pooling with 

a kernel size of 2 1HW
S

×  and reshaping the pooling results into 2S ×C 

as the average matrix 
2a S CQ ×∈  and 

2a S CK R ×∈ .

To search for the crucial regions of the echocardiogram efficiently, 
the similarity between each region was calculated by the result of the 
dot product of the average matrix of the query and key. The process of 
calculating the similarity is shown in Equation 2:

 ( )TP a aQ K=
 

(2)

Where 
2 2S SP ×∈  denoted the similarity of the regions; 

2a S CQ ×∈  denoted the average matrix of the Q, 
2a S CK R ×∈  

denoted the average matrix of the K . The last step of the dynamic-
attention mechanism was to find the index ( )1 2 3, , , , kid id id id…  of the 
top k most relevant tokens for each token, then we collected all of the 
relevant tokens of K  and V as a new cK  and a new cV , which can 
be achieved by searching for the index of P. The dynamic attention can 
be represented as the Equation 3:

 

( )Tc
c

Q K
output softmax V

c

 
 

=  
 
   

(3)

DAMix Block was guided by the dynamic attention mechanism 
to find regions in the echocardiogram that are useful for the 
classification task. In addition, DAMix Block embedded the mixing 
rates into the corresponding feature maps and used the idea of 
cross-attention to generate appropriate mixed masks for the 
echocardiogram. The process of mixed mask generation can 
be formulated as follows: getting an unlabeled image pair ( )1 2,u u  
from the minibatch of the unlabeled dataset. The feature maps from 
the k-th layer of the unlabeled image pair were inputted into the 
DAMix Block. The dynamic attention module was subsequently 
employed to calculate the weighted feature maps 1 2,z z′ ′ . Furthermore, 
to achieve the pixel-level mixup, we  designed the Value Block, 
Query Block, and Key Block to calculate the Value matrix embedded 
with λ, Query matrix embedded with λ, and Key matrix embedded 
with λ respectively, where λ [ ]0,1∈  is the mixing ratio that satisfies 
Beta distribution ( ),λ −β α α . Specifically, these modules can splice 
a mixing rate matrix of the same size as the feature over the channel 
dimension of the feature, where each element of the mixing rate 
matrix was a randomly generated lambda .λ  Then the DAMix 
Block got the Query matrix Q, Value matrix V, and Key matrix K, 
respectively, via the query block, value block, and key block. The 
structure of these blocks were shown in the right part of Figure 3. 
Notably, the Key block had the same structure as the Query block. 
To get the mixed mask M, we calculated the similarity matrix P of 
Q and K by the cross-attention mechanism, and generated the 
mixed mask M by using the similarity matrix 2P and Value matrix 
V. The function of generating M can be  formulated as the 
Equations 4, 5:

 

( ) ( )1 2
2

K

C

T
z Q z

P softmax
′ ′ ⊗ 

=  
 
  

(4)
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FIGURE 2

The framework of the proposed method (A). Specifically, the DAMix Block was embedded behind the third layer of the teacher model and generated 
the mixup mask to mix up the input of the unlabeled data. The SP Block was added at the end of the student model to generate the superclass 
pseudo-label. The open-set classifier can calculate the superclass prediction. The legend of the framework (A) is shown in (B). The process of updating 
SPEMix is shown in (C). The parameters of the student model were updated via backpropagation, and the teacher parameters were updated by the 
exponential moving average strategy of the student model parameters.

FIGURE 3

The overall framework of the DAMix Block is shown in (A). The structure of the Value Block, Key Block and Query Block is shown in (B).
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( )( )( )2 1M U VP z′= σ ⊗

 
(5)

Where σ  was the Sigmoid activation function, V denoted the 
value block, K denoted the key block, Q denoted the query block, ⊗ 
denoted the matrix multiplication, and C was a normalization factor, 
U denoted upsample function.

Based on the mixed masks generated by DAMix Block, 
we proposed the Efficient Mixup. The Efficient Mixup will generate 
high-quality mixed images via the mixed mask. Efficient Mixup 
achieved linear interpolation through pixel-wise multiplication 
between data and masks, generating high-quality mixed 
echocardiograms. When performing the efficient mixup between 1u  
and 2u , we regard unlabeled image 1u  as the value. The DAMix Block 
calculated the mixed mask M for the value image. Similarly, the mixed 
mask of the value image 2u was 1-M generated via the DAMix Block. 
The specific formula for efficient mixup was the Equation 6:

 ( )1 2Efficient Mixup 1M u M u= + − 
 (6)

Where   denoted element-wise product, mixu  was the output 
result of the DAMix Block. The visualization results of the mixed 
masks generated via DAMix Block and visualization results of 
mixup data generated via Efficient Mixup were shown in the 
Figure 4.

In the training process of our SPEMix, following the previous 
successful work (Liu et al., 2022), we also embedded our DAMix Block 
behind the third layer of the encoder. The DAMix loss function can 
update the parameters of the DAMix Block, a combination of the 
unlabeled augmentation data generation loss and the labeled data 
classification loss. To calculate the augmentation generation loss, 
we proposed the novel generation loss based on the mixed cross-
entropy loss function (Liu et  al., 2022) for the mixed unlabeled 
augmentation data. In the previous work, the cross entropy loss 
between mixed prediction and the mixup of labels was represented by 
the mixed cross-entropy loss function. Hence, we calculate our mixed 
generation loss by modifying the mixed cross-entropy. The view of our 
unlabeled mixed cross-entropy loss function was as follows: 
we considered the prediction 1 2,p p  of unlabeled data 1 2,u u  before 
augmentation as the label of the unlabeled data. The generation loss 
function can be formulated as the Equation 7:

 ( ) ( ) ( )1 2, 1 ,gen ce mix ce mixp p p pλ λ= + −  

 (7)

Where λ meant the mixing ratio, and ce meant the cross-
entropy loss function.

However, the encoder’s predictions of the unlabeled data before 
augmentation were unreliable in the early stages of training, which 
leaded to the wrong optimization of the generation loss. To address 
this issue, we also used the supervision of labeled data to assist in the 
generation of the mixup mask to guide the process of optimizing the 

FIGURE 4

Visualization results of the mixed masks generated via DAMix Block and visualization results of mixup data generated via Efficient Mixup.
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DAMix Block. The process can be achieved by the cross-entropy of the 
labeled data, the process can be formulated as the Equation 8:

 ( ),labeled ce xy p=   (8)

where y denoted the ground truth of the labeled data, and xp  
denoted the prediction of the labeled data. Finally, the loss of the DAMix 
Block denoted the combination of the generation loss and the cross-
entropy loss of the labeled data, be formulated as the Equation 9:

 DAMix gen labeled= +    (9)

2.2 SP block for the generation of the 
echocardiogram superclass pseudo-label

To utilize the unlabeled data of out-of-distribution, we proposed 
a novel superclass pseudo-label from the perspective of superclass 
probability. Specifically, our approach first considered all in-the-
distribution classes as the in-the-distribution superclass and all out-of-
distribution class data as an out-of-distribution superclass. Then, 
we modeled the superclass from the perspective of the probability 
distribution to generate the superclass pseudo-label.

We designed the SP Block(short for Superclass Pseudo-label 
generator) to achieve the above process. The framework of the SP 
Block is shown in Figure  5. The SP Block included a multiclass 
classifier to calculate the out-of-distribution class probability 
distribution, a close-set classifier to calculate the in-the-distribution 
class probability distribution, and a SP Generator to get the superclass 
pseudo-label. The black column of P in Figure  5 represented the 
probability of the sample belonging to each in-the-distribution class 
only considering the presence of the in-the-distribution classes. The 
blue columns of Q in Figure  5 represented the probability of the 

sample belonging to each in-the-distribution class accounting for the 
unknown classes. Notably, the black column of P was not the same as 
the blue column of Q. While the orange columns of Q in Figure 5 
represented the probability of the sample not belonging to each in-the-
distribution class.

Our SP Block generated the superclass pseudo-label for unlabeled 
samples from the perspective of superclass probability distributions. 
Our SP Block acquired the in-the-distribution probability distribution 
P by calculating the probability that the sample belongs to each class 
in the distribution. Specifically, the close-set classifier, which is a 
normal fully connected layer, calculated the in-the-distribution 
probability P, P∊ 1 4× . However, we  can only get the true class 
prediction when this unlabeled sample belongs to the in-the-
distribution classes. Furthermore, we  calculated the out-of-
distribution probability distribution Q to model the out-of-
distribution classes, which can be  calculated by multi-binary 
classifiers. The multi-binary classifier has been proven to be able to 
detect whether a sample belongs to each in-the-distribution class,and 
the technology has been used widely in the previous open semi-
supervised learning of filtering the out-of-distribution (Saito et al., 
2021). The multiclass classifier consisted of four binary classifiers and 
each binary classifier predicted the sample whether belonging to the 
k-th class. Specifically, kΨ  is a multiclass classifier consisted of k 
binary classifier kΨ ={ 1 2 3, , , }kϕ ϕ ϕ ϕ… . kϕ  can output 

( )k ko q ,1 q ,= −  where kq  means the probability belongs to the k-th 
class of the sample. The output of kΨ  was a matrix of k rows and 
2 columns.

Then the SP Generator combined Q and P to generate the 
superclass pseudo-label, which can be  achieved by the matrix 
multiplication of P and Q. The process of generating the superclass 
pseudo-label by the SP Generator had three steps: First, the SP 
Generator calculated the superclass probability distribution 

( ) 1 2,p in outD D D ×= ∈ , where inD  denoted the in-the-distribution 
superclass probability, outD  denoted the out-of-distribution 
superclass probability. Second, the SP Generator got the in-the-class 

FIGURE 5

The framework of the SP Block. Specifically, the multiclass classifier calculated the probability distribution of out-of-distribution class Q, ∈ ×Q .4 2  
The close-set classifier calculated the probability distribution of in-the-distribution class P, ∈ ×P .1 4  Then the SP Generator acquired the superclass 
probability distribution and generated the Superclass Pseudo-label by assigning the weight matrix for the in-the-distribution superclass.
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probability weight matrix WM of the sample. Finally, the SP 
Generator assigned weights for the in-the-distribution superclass 
according to WM and got the superclass pseudo-label. The process of 
generating a superclass pseudo-label can be formulated as the process 
of Equations 10–12:

 pD P Q= ⊗  (10)

 

( ) 1 2 i
1 2 n n n n

i i ii 1 i 1 i 1

p p pWM , , , , ,
p p p

= = =

 
 = α α …α = …  
 ∑ ∑ ∑  

(11)

 ( )SP WM ,in outD D=  (12)

Where 1 nWM R ×∈ , where n denoted the number of the in-the-
distribution class. SP denoted the superclass pseudo-label. ip  denoted 
the i-th element of the in-the-distribution probability P.

To optimize the SP Block, we, respectively, optimized the multiclass 
classifier and the close-set classifier with labeled data. For the loss of the 
multiclass classifier, we used the hard-negative sampling strategy (Saito 
and Saenko, 2021), following the previous work. The loss function of the 
multiclass classifier can be formulated as the Equation 13:

 
( ) ( )( )min

,
1

1 log log
i i

B
mul i y kk y

i
p p

B ≠
=

= − −∑

 
(13)

Where B represented the batch size of the labeled data, ,i yp  
represented the first element in the y-th row of the out-of-distribution 
probability Q. kp  represented the second element in the k-th row of 
the out-of-distribution probability Q.

For the loss of the close-set classifier, we used the cross-entropy 
loss function of the labeled data to optimize, was shown in the 
Equation 14:

 ( ),close ce xy p=   (14)

 SP close mul= +    (15)

The total loss of the SP Block was shown in Equation 15. In our 
SPEMix, we hoped the proposed DAMix Block and SP Block could 
work together to utilize the unlabeled datasets efficiently. Specifically, 
the SP Block can assign the superclass pseudo-label for augmentation 
data generated by the DAMix Block. To achieve the process, we built an 
open-set classifier to predict the superclass pseudo-label. We proposed 
the open-set loss function of SP Block based on the mixed process of 
the superclass pseudo-label to utilize the augmentation of unlabeled 
images. Specifically, the processes of calculating the open-set loss 
function are shown in the Equations 16–18:

 ( ) ( ) ( )1 2y , 1 y ,op ce spu mix ce spu mixo oλ= λ + −  

 (16)

 ( )1 1y maxspu uSP=  (17)

 ( )2 2y maxspu uSP=  (18)

Where 1uSP  meant the superclass pseudo-label of 1u , 2uSP  meant 
the superclass pseudo-label of 2u . 2yspu  meant the corresponding class 
of the pseudo-label 2uSP . 1yspu  meant the corresponding class of the 
pseudo-label 1uSP . max was the function to caculate the index of the 
maximum probability. mixo  denoted the superclass pseudo-label 
prediction of augmentation image from 1u  and 2u  via the 
open-set classifier.

2.3 Lightweight encoder and end-to-end 
efficient learning paradigm

For the first time, we  applied the lightweight model to the 
echocardiogram view classification. Specifically, we  designed a 
lightweight encoder based on the RepViT (Wang et al., 2024) network 
for our SPEMix. RepViT implemented the design of lightweight 
networks by using the structural re-parameterization (Ding et al., 
2019) principle. Hence, we built our lightweight encoder following the 
structure of RepViT to improve the efficiency of echocardiogram view 
classification. We built the lightweight student encoder and lightweight 
teacher encoder for our SPEMix. To satisfy our view classification 
tasks, our RepViT lightweight encoder only had four blocks.

Inspired by the success of AutoMix (Liu et al., 2022), we also 
adopted the momentum update pipeline to decouple the process of 
augmentation of unlabeled images and the process of assigning the 
superclass pseudo-label. The architecture was shown in Figure  2. 
We constructed two lightweight encoders with identical initialized 
parameters, which can help SPEMix synchronize the two processes by 
employing end-to-end training and achieve better accuracy and 
generalization. Specifically, the DAMix Block in the teacher model 
mixed up the unlabeled data, and the SP Block in the student model 
generated superclass pseudo labels for unlabeled data. The parameters 
of the student model can be updated by back propagation, while the 
teacher parameters were updated by the exponential moving average 
strategy (Polyak and Juditsky, 1992) from the parameters of the 
student model. The total loss function of our SPEMix was the 
Equation 19:

 Ptotal DAMix S op= + +     (19)

The process of updating the teacher model can be reformulated as 
the Equation 20:

 ( )1teacher teacher studentm mθ θ θ= + −  (20)

where m was the momentum coefficient and ( ]0,1 , studentm θ  
denoted the parameters of the student model, teacherθ  denoted the 
parameters of teacher model.

3 Results and discussion

3.1 Implement details

3.1.1 Dataset
We used the Tufts Medical Echocardiogram Dataset 2 (TMED2) 

(Huang et al., 2022) to train the proposed SPEMix and the CAMUS 
(Leclerc et al., 2019) dataset and Unity (Howard et al., 2021) dataset 
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to evaluate the generalization. Specifically, the TMED2 contains 
four types of echocardiogram views, including PLAX, PLSX, A2C, 
and A4C. This dataset provides 353,500 unlabeled images and 
24,964 labeled data collected from different patients. For TMED2, 
we used the officially released training sets, test sets, and validation 
sets. All of the resolution of this dataset is 112×112 pixels. We used 
the RandomCrop and RamdomHorizontalFlip as basic augments 
for the training dataset during training. The CAMUS (Leclerc et al., 
2019) dataset contains two view types including A2C, and 
A4C. We resized the resolution to 112×112 pixels to evaluate the 
generalization of the classification. The Unity (Howard et al., 2021) 
dataset contains three view types, including PLAX, A2C, and 
A4C. We resized the resolution to 112×112 pixels to evaluate the 
generalization of the classification.

3.1.2 Training setting
For training our SPEMix, we  used our designed lightweight 

encoder with 112×112 size inputs. For the hyper-parameter of the 
SPEMix, the momentum coefficient was set to 0.999. For labeled data 
batch size and unlabeled data batch size, we set them to 64. We used 
the Adam optimizer to update the model parameters. For learning 
rate, we  chose from the set of {0.1,0.01,0.001,0.0001}, and 
we reported the different best learning rate in different experiments. 
The learning rate of the SPEMix was set to 0.0001, we trained the 
SPEMix 500 epochs and adapted the learning rate by the Cosine 
Schedule (Loshchilov and Hutter, 2022). We  did not use the 
warm-up strategy. During the process of training, the parameters of 
the student model were updated via back propagation. And the 
parameters of the DAMix Block can update via the loss function of 
DAMix. The parameters of the DAMix Block will be frozen when the 
parameters of the teacher model update based on the parameters of 
student model. For comparison experiments, we used the Adam 
optimizers to train the other methods and we chose the best learning 

rate for each method. All of the comparison methods were trained 
on the TMED2. To make a fair comparison, all of our experiments 
were implemented on the GPU of the model NVIDIA A40.

3.2 Results of SPEMix

We reported the performance of our lightweight encoder via 
SPEMix on the TMED2 test dataset, the confusion matrix of the test 
dataset was shown in the left diagram of Figure 6. Each element of the 
matrix represented the probability of being predicted as the 
corresponding class, and the diagonal value represented the prediction 
accuracy of each view. The classification accuracy of the A2C view 
reached 96.97%, the classification accuracy of A4C reached 96.05%, 
the PLAX classification accuracy reached 98.29%, and the PSAX 
classification reached 96.61%. These results demonstrated that our 
SPEMix predicted every view very well. At the same time, we also 
provided the ROC curve to evaluate our classifier. We gave the ROC 
curve of SPEMix and calculated the AUC for each class. The larger 
values of the AUC mean the better the performance of our classifier.

3.3 Comparison results with mixing 
methods

In this section, we  compared our proposed SPEMix with the 
previous SOTA mixup methods to prove the advanced performance 
of our SPEMix, including CutMix (Yun et al., 2019), SaliencyMix 
(Uddin et al., 2006), and AutoMix (Liu et al., 2022). CutMix represents 
the typical mixup method in natural images. SaliencyMix is the SOTA 
mixup that can generate mixed data by utilizing the saliency 
information of the natural images. AutoMix is the SOTA of the pixel-
level mixup method which gets the most advanced performance in 

FIGURE 6

The evaluation result of the SPEMix. The left diagram has some problems due to decimal retention, so we provide a new confusion matrix on TMED2 
(A) represents the confusion matrix of SPEMix on TMED2 and the right diagram (B) represents the ROC curve of TMED2.
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natural images. To compare these methods fairly, we, respectively, 
trained a common WideResNet encoder classifier and our lightweight 
encoder classifier by using each mixup method. We chose the best 
parameters for all of the methods in this comparison experiments. The 
best learning rate was set to 0.01. The batch size was set to 64, we all 
used the Cosine Schedule to adapt the learning rate and the training 
epoch was set to 500. All of the experiments did not use the warm-up 
strategy. The comparison result was shown in Table 1. We reported the 
mean accuracy and standard deviation on the TMED2 from three 
different trails.

To better investigate the classification process of each method, 
we visualized the performance of each method via the technique of 
CAM (Selvaraju et al., 2017). The visual results of the comparison 
experiment are shown in Figure 7. From the visual result, we can 
intuitively observe that the proposed SPEMix is more adept at 
focusing on crucial information compared to other advanced data 
augmentation methods. Based on the comparison experiment results 
in Table 1 and Figure 7, we got the following conclusions:

 1. Our proposed SPEMix is less affected by the echocardiogram’s 
background information than CutMix. Our SPEMix can 
improve by 2.91% with the encoder of Wideresnet and improve 
by 1.31% with the lightweight encoder compared to CutMix. 
To better understand the experimental results, we compared 
the visualization results of CutMix and SPEMix in Figure 7. 
These results illustrated that CutMix focuses more on the 
background information of the echocardiogram. This is mainly 
because cutmix performs mixup augmentation by randomly 
selecting regions of the image. This approach results in the 
appearance of augmentation data containing only background 
information, leading to the trained model not differentiating 
well between the foreground and background regions of a 
medical image. Hence, the classification performances of 
Cutmix are more affected by irrelevant information.

 2. Our proposed SPEMix focused on more regions containing 
salient echocardiogram information than SaliencyMix. Our 
SPEMix improved by about 0.9% with the encoder of 
Wideresnet and about 0.41% with the encoder of RepViT 
compared to SaliencyMix. The saliency information helped our 
SPEMix and SaliencyMix focus on the vital information from 
the visual results in Figure 7. However, the SPEMix focused 
more regions on the salient information of the 
echocardiographic foreground region when performing view 

classification. The main reason is that our SPEMix can include 
more salient details in the foreground by seeking detailed 
salient information at the pixel level. However, SaliencyMix 
seeks salient areas at the image level, and this method cannot 
consider the detailed features.

 3. Our proposed SPEMix sought vital information more easily 
from an echocardiogram than Automix. Our SPEMix can 
improve by 0.87% with the encoder of Wideresnet and by 
0.37% with the encoder RepViT compared to AutoMix. These 
visualization results illustrated that SPEMix more easily 
focused on vital information. These results were mainly 
because our SPEMix generated the mixed mask with the 
assistance of dynamic attention. The mixed masks containing 
vital information helped the model easily seek important 
details. However, Automix generated the mixed mask only 
considering the similarity of the two images. The background 
information of the medical images was also similar between 
different views. This background information prevented the 
model from seeking vital information.

 4. Furthermore, the experimental results also revealed the 
potential of the designed lightweight network for application 
in different methods. The designed lightweight network 
improved the performance of TMED2 compared to the 
traditional WideResnet encoder using various techniques for 
training. In CutMix, SaliencyMix, and AutoMix, the 
lightweight network enhanced by 1.67%, 0.56%, and 0.57%, 
respectively. Using our SPEMix method for training, the 
lightweight network still maintains better performance. The 
experimental results demonstrate the greater feasibility of 
lightweight networks in view classification.

In summary, our SPEMix can achieve the best test classification 
accuracy on the WideResNet encoder and our lightweight encoder 
compared to other mixup methods. These experiment results 
demonstrate our SPEMix has advanced performance in view 
classification tasks.

3.4 Comparison results with 
semi-supervised learning

In this section, we compared the performance of SPEMix with 
other competitive semi-supervised learning methods, which 

TABLE 1 Comparison results between SPEMix and the previous Sota mixing methods. All results are expressed as percentages (%).

Method Encoder Test accuracy

CutMix (Yun et al., 2019) Wideresnet (Zagoruyko and Komodakis, 2016) 94.30 ± 0.2

CutMix (Yun et al., 2019) Lightweight encoder(Ours) 95.97 ± 0.67

SaliencyMix (Uddin et al., 2006) Wideresnet (Zagoruyko and Komodakis, 2016) 96.31 ± 0.43

SaliencyMix (Uddin et al., 2006) Lightweight encoder(Ours) 96.87 ± 0.2

AutoMix (Liu et al., 2022) Wideresnet (Zagoruyko and Komodakis, 2016) 96.34 ± 0.19

AutoMix (Liu et al., 2022) Lightweight encoder(Ours) 96.91 ± 0.27

SPEMix(Ours) Wideresnet (Zagoruyko and Komodakis, 2016) 97.21 ± 0.10

SPEMix(Ours) Lightweight encoder(Ours) 97.28 ± 0.11

To make a fair comparison, we ran each method with three trials and reported the mean and standard deviation of test accuracy on the TMED2 dataset. The best performance of each encoder 
was highlighted in bold.
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include FixMatch (Sohn et  al., 2020), Fix-a-step (Huang et  al., 
2023), OpenMatch (Saito et al., 2021), and InterLUDE (Huang et al., 
2024). We test different methods on TMED2, CAMUS, and Unity 
datasets to evaluate the accuracy and generalization of these 
methods. We  trained the FixMatch and OpenMatch with the 
optimal parameters. Specifically, each method was trained with our 
lightweight encoder, the Adam optimizer, and 500 epochs. The 
learning rate was set to 0.001. We also trained Fix-a-step with the 
optimal parameters(Wideresnet as encoder and SGD optimizer) 
given in their paper to ensure that their method can achieve the 
most accurate classification results. For the InterLUDE and 

IntereLUDE+(IntereLUDE with Self-Adaptive Threshold and Self-
Adaptive Fairness), we  directly quote the results given in the 
paper(the code is not yet open source). The comparison results for 
accuracy and training time are presented in Tables 2, 3, respectively.

From the comparison results, we  found that our SPEMix can 
achieve better accuracy on the three datasets. Compared to the 
FixMatch, the accuracy, and generalization of our SPEMix are 
improved by 1.79%, 6.25%, and 3.3% on TMED2, CAMUS, and Unity, 
respectively. The reason is that the proposed SP Block can leverage the 
out-of-distribution data to improve the accuracy. FixMatch focuses 
on the close-set problem and does not pay attention to the 

FIGURE 7

The class activation mapping (CAM) for classifiers that are trained based on different mixing methods. The data of each view is chosen from the 
validation datasets randomly. The visualization results of regions focused on lightweight models trained by different methods. Our proposed SPEMix 
can better focus on the vital regions than other SOTA methods.

TABLE 2 The performance of different semi-supervised methods on three datasets. All results are expressed as percentages (%).

Methods TMED2 (Huang et al., 2022) CAMUS (Leclerc et al., 2019) Unity (Howard et al., 2021)

FixMatch (Sohn et al., 2020) 95.49 ± 0.07 81.39 ± 0.72 91.41 ± 1.28

†Fix a step− −  (Huang et al., 2023)
95.64 ± 0.16 83.20 ± 0.74 93.72 ± 0.65

OpenMatch (Saito et al., 2021) 96.31 ± 0.06 83.37 ± 2.42 92.11 ± 1.08

IntereLUDE* (Huang et al., 2024) 96.55 ± 0.39 86.25 ± 6.22 96.14 ± 0.48

IntereLUDE+* (Huang et al., 2024) 96.75 ± 0.17 81.88 ± 8.37 94.47 ± 0.85

SPEMix(Ours) 97.28 ± 0.11 87.64 ± 0.67 94.71 ± 0.24

†Means the method follows the parameters of the cited work with the encoder of Wideresnet and uses SGD optimizer. *Means the results cited from the SOTA work. Other methods used our 
lightweight encoder and the Adam optimizer. The best performances of different datasets in bold.
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out-of-distribution echocardiograms so FixMatch has worse results 
and is not suitable for open-set tasks (Saito et al., 2021). Meanwhile 
compared to OpenMatch, the accuracy of our SPEMix is improved by 
0.97%, 4.27%, and 2.6% on TMED2, CAMUS, and Unity, respectively. 
The reason is that our SPEMix can also gain more improvement from 
the unlabeled datasets via the proposed mixed unlabeled consistency 
regularization. However, OpenMatch filtered out out-of-distribution 
data during the training process via its consistency regularization to 
process the open set data. In this way, OpenMatch neglected some 
vital information of out-of-distribution so that it has worse results. 
Compared to the advanced method for similar medical tasks, Fix-a-
step, the SPEMix also improves the classification accuracy on different 
three datasets. Specifically, the accuracy and generalization of SPEMix 
compared to Fix-a-step improved by 1.64%, 4.44%, and 0.99% on 
TMED2, CAMUS and Unity, respectively. The reason for these results 
is that our SPEMix modeled the out-of-distribution data using 
superclass distribution to utilize all of the unlabeled data efficiently. 
However, Fix-a-step only used limited unlabeled data, which can 
improve the classification accuracy. In this way, Fix-a-step only got 
finite information from the limited out-of-distribution data. 
Simultaneously, our SPEMix also compares recent SOTA semi-
supervised methods in view classification tasks, IntereLUDE and 
IntereLUDE+(IntereLUDE with Self-Adaptive Threshold and Self-
Adaptive Fairness). Compared to the IntereLUDE, our SPEMix can 
improve by 0.73% and 1.39% on TMED2 and CAMUS. Compared to 
the IntereLUDE+, our SPEMix can improve by 0.53%, 5.76%, and 
0.24% on TMED2, CAMUS, and Unity, respectively. SPEMix has less 
accuracy in the Unity dataset than IntereLUDE. However, IntereLUDE 
evaluated the accuracy on the widereset and did not explore a 
lightweight model. Therefore, our SPEMix still outperforms 
IntereLUDE overall.

These demonstrate that the accuracy and generalization of our 
proposed SPEMix outperform the SOTA methods in the view 
classification task. In summary, all of these results indicate the 
superior performance and generalization ability of the 
proposed SPEMix.

3.5 Comparison results between different 
encoders

In this section, we explored the performance of our proposed 
lightweight encoder. We reported the number of parameters of the 
different encoders used in our comparison experiments of Section 3.3, 
i.e., the number of the parameters of the WideResNet-28-2 and our 
proposed lightweight encoder. We also reported the accuracy of the 
two encoders on the TMED2 test dataset after training via SPEMix. 
The comparison results were shown in Table 4.

The results in Table 4 demonstrated that the parameter number of 
our proposed encoder is reduced by 88.2% compared with the 

parameter number of the WideResNet-28-2. Additionally, the results 
also demonstrated that our proposed lightweight encoder can also 
maintain the classification performance compared with the 
WideResNet-28-2 when training via the proposed SPEMix. Otherwise, 
these results of Table  1 also denoted that, with different mixing 
methods, our proposed lightweight encoder was better than the 
WideResNet-28-2. These results demonstrated that our proposed 
SPEMix got better performance with fewer parameters. Hence, our 
proposed method had the potential for clinical application.

3.6 Results of ablation experiments

The proposed SPEMix included two core components, DAMix 
and SP Block, to perform the mixed data augmentation and superclass 
pseudo-label generation, respectively. In order to explore the effect of 
each component in SPEMix, the lightweight network was regarded as 
the baseline in the ablation experiment, and we added DAMix Block 
and SP Block to the baseline step by step. The final results of the 
ablation experiments were in Table 5.

Through the results of the ablation experiment, we can observe that 
the DAMix Block improved the baseline by 1.82%, 6.63%, and 6.04% on 
TMED2, CAMUS, and Unity. These results demonstrated the Efficient 
Mixup based on our proposed DAMix Block can improve accuracy. 
Furthermore, the SP Block improved the baseline by 2.01%, 0.73%, and 
8.29% on TMED2, CAMUS, and Unity. The results denoted the 
advancement of utilizing the out-of-distribution data from the superclass 
probability perspective. The SPEMix can increase the baseline by 3.14%, 
12.18%, and 9.35% on TMED2, CAMUS, and Unity, which illustrates the 
SPEMix can fuse the advantages of the DAMix Block and SP Block. These 
results demonstrated the effectiveness of the proposed SPEMix. The 
DAMix Block can generate corresponding mixed masks embedded with 
a mixing ratio for unlabelled data. The high-quality mixed data generated 
through the mixed masks can improve classification accuracy and 
generalization. SP Block can assign superclass pseudo-labels to unlabelled 
data through the perspective of superclass distribution to make use of the 
out-of-distribution data. This out-of-distribution information improved 
the classification accuracy and generilization. SP Block used an 
end-to-end approach to fuse two phases. Firstly, the unlabelled mixed 
data was generated using DAMix, while the information of generated 
mixed data was leveraged by assigning superclass pseudo-labels through 
SP Block. The high-quality mixed data generated by DAMix can also 
enrich the information of out-of-distribution that be leveraged by the 
SP Block.

4 Conclusion

In this work, we  proposed a novel lightweight open-set semi-
supervised learning method, SPEMix, to improve the accuracy and 
generalization of the echocardiogram view classification. The proposed 

TABLE 3 The comparison results of training time between the traditional 
semi-supervised method and SPEMix.

Method Total time Average time

OpenMatch 4595.57 s 15.32 s

FixMatch 2746.83 s 9.16 s

SPEMix(Ours) 2714.18 s 9.05 s

TABLE 4 The comparison results of different encoders in our comparison 
experiments. All accuracies are expressed as percentages (%).

Encoder model Parameters Accuracy

WideResNet-28-2 (Zagoruyko and 

Komodakis, 2016)

5.93 M 97.24

Lightweight encoder(Ours) 0.70 M 97.34
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DAMix Block generated the masks embedded with the mixing ratio 
containing vital information. These masks efficiently generated high-
quality mixed data at the pixel level. Then, the proposed SP Block can 
generate the superclass pseudo-label from the superclass probability 
perspective to utilize the vital information from the unlabeled medical 
dataset. In this way, the proposed SP Block used the out-of-distribution 
data more effectively. Meanwhile, a novel loss function based on unlabeled 
consistent regularization was proposed to make the classification model 
better optimized from the supervision of the mixed unlabeled data and 
the super pseudo-label. Otherwise, we built a lightweight encoder based 
on RepViT to decrease the model parameters and improve the 
classification efficiency. Experiment results indicated that our proposed 
SPEMix achieved better performance and generalization than other semi-
supervised learning methods. Our SPEMix had the potential for clinical 
application. Although the proposed SPEMix method shows encouraging 
results for echocardiogram view classification, there are still several areas 
that require further investigation. Future research could aim to adapt the 
method for more complex or multi-modal medical datasets, incorporating 
additional imaging modalities (such as CT or MRI) and patient metadata 
into the semi-supervised framework.
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