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Driving performance can be significantly impacted when a person experiences

intense emotions behind the wheel. Research shows that emotions such as

anger, sadness, agitation, and joy can increase the risk of tra�c accidents.

This study introduces a methodology to recognize four specific emotions

using an intelligent model that processes and analyzes signals from motor

activity and driver behavior, which are generated by interactions with basic

driving elements, along with facial geometry images captured during emotion

induction. The research applies machine learning to identify the most relevant

motor activity signals for emotion recognition. Furthermore, a pre-trained

Convolutional Neural Network (CNN) model is employed to extract probability

vectors from images corresponding to the four emotions under investigation.

These data sources are integrated through a unidimensional network for emotion

classification. The main proposal of this research was to develop a multimodal

intelligent model that combines motor activity signals and facial geometry

images to accurately recognize four specific emotions (anger, sadness, agitation,

and joy) in drivers, achieving a 96.0% accuracy in a simulated environment.

The study confirmed a significant relationship between drivers’ motor activity,

behavior, facial geometry, and the induced emotions.

KEYWORDS

facial emotion recognition, motor activity, driver emotions, transfer learning,

convolutional neural network, ADAS

1 Introduction

Road accidents are among the leading causes of death worldwide, with approximately
1.3 million people losing their lives in traffic accidents each year. Additionally, 20 to 50
million individuals suffer non-fatal injuries, many of which lead to long-term disabilities.
These injuries result in significant economic losses for individuals, their families, and
nations as a whole (WHO, 2018). Various factors contribute to the high incidence of
accidents, underscoring the need for effective interventions. Identifying these interventions
requires a thorough analysis and classification of the factors that lead to accidents.
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One of the most common causes of road accidents is the
high cognitive load placed on drivers. They must continuously
process a stream of visual information from the road, traffic
signs, pedestrians, other vehicles, and the environment. Several
situational factors can increase this cognitive load, including
the presence of similarly aged passengers who may distract the
driver, fatigue (particularly common among young drivers), and
socioeconomic status, which can influence risk-taking behavior
behind the wheel (Rezapour and Ksaibati, 2022).

The growing use of mobile phones has further increased the
risk of accidents, especially among young drivers. The cognitive and
behavioral demands of phone usage while driving divert attention
from the road. Additionally, alcohol and drug consumption impairs
cognitive processes and increases crash risks across all age groups
(Celaya-Padilla et al., 2021). According to the National Highway
Traffic Safety Administration (NHTSA), driver distraction occurs
when attention shifts from driving to other activities, contributing
to accidents. In 2021 alone, 3,522 people were killed, and
approximately 36,241 were injured in traffic accidents caused by
distracted driving. Research shows that both internal and external
factors can lead to road accidents. One significant internal factor
is emotional state, which can affect driving behavior and lead to
erratic or inadequate driving. Emotions, which are often difficult to
control, can unexpectedly influence a driver’s behavior (Maldonado
et al., 2020). They are transient mental states that can change
rapidly in response to significant events, triggering behavioral
responses that may be difficult to regulate (Zimasa et al., 2017).

Negative emotions, in particular, can significantly affect drivers.
Studies have demonstrated a link between negative emotions and
impaired driving performance. For example, sadness has been
shown to increase location error rates, while anger slows drivers’
ability to identify road elements (Dozio et al., 2024). Emotions such
as anger, hostility, and nervousness are strongly associated with
aggressive driving behaviors (Stephens et al., 2024). These negative
emotions can impair cognitive processes and compromise road
safety (Zhang Q. et al., 2020). A study by Dingus et al. (2016) found
that drivers experiencing sadness, anger, or agitation were nearly
ten times more likely to be involved in an accident.

Advanced Driver Assistance Systems (ADAS) must ensure
safe transportation by taking into account drivers’ vulnerability
to accidents and recognizing that systems should be designed to
accommodate human error (WHO, 2018). To assess a driver’s
readiness, these systems need to monitor the driver’s physical,
emotional, and physiological state and communicate relevant
information effectively. Various real-time emotion recognition
systems have been developed within the fields of affective
computing and ADAS, with the goal of adapting to users’ emotions
for more natural and efficient interactions (Schuetz and Venkatesh,
2020). Emotion recognition allows interactive vehicle systems to
interpret human emotions and use this data to make decisions.
However, current ADAS largely implement basic mechanisms
for emotional state recognition. If ADAS could account for a
driver’s emotional state, they could make more contextualized
decisions based on the driver’s potential reactions. Developing
ADAS that continuously recognize both the driver’s emotions and
performance remains a significant challenge (Davoli et al., 2020).
Emotion recognition has therefore become a central feature of

vehicle systems, relying on various measurements–such as facial
expressions, speech, gait patterns, physiology, and eye-tracking–
analyzed using advanced techniques like artificial intelligence (Cai
et al., 2023).

Despite the significant progress in developing less intrusive
and more accurate methods for emotion recognition in automotive
environments, numerous challenges remain. Traditional
approaches often rely on camera-based systems, which can
face issues such as occlusion, lighting variability, and differences
in drivers’ physical characteristics in uncontrolled environments.
Additionally, control mechanisms based on biophysiological
data, though potentially effective, tend to be intrusive and may
cause emotional discomfort to drivers. Research into the motor
activity and driving behavior of drivers, while promising, has been
limited, with only a few studies utilizing basic artificial intelligence
techniques to explore these characteristics.

To address the challenges of emotion recognition, a novel
approach is proposed: the development of a multimodal artificial
intelligence model for objective emotion recognition. This model
will integrate data frommotor activity and facial geometric changes
to improve emotion recognition accuracy.

The remainder of this article is structured as follows: In Section
2, The most recent works in the area of emotion recognition related
to the present study are mentioned. Section 3 explains the materials
and methods used to generate an optimal and efficient multimodal
emotion recognition model. Section 4 describes the results of the
emotion induction phase and the developed emotion recognition
model. In Section 5, a comprehensive discussion of the results
obtained is made, emphasizing the contribution of the research
to the existing body of knowledge. Finally, in Section 6, final
conclusions and proposals for future research aimed at improving
emotion recognition systems in drivers covering the analysis and
processing of various information sources are presented.

2 Related studies

Related works in emotion recognition encompass a broad
spectrum of research endeavors aimed at understanding and
interpreting human emotions through various modalities. These
works often explore the utilization of machine learning techniques,
including deep learning algorithms, to detect, classify, and
interpret emotional states. Some key areas of research and
notable contributions.

2.1 Facial emotion recognition

Thanks to recent and continuous improvements in the
application of artificial neural networks, many architectures have
been proposed and employed for facial emotion recognition,
each of which has surpassed its predecessors, thus improving the
accuracy and performance of the latest generation (Ko, 2018).

Some studies propose the implementation of deep learning
algorithms, such as Convolutional Neural Networks (CNNs), for
facial emotion recognition. These studies often train CNNs with
facial emotion data and test different architectures, including
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VGG-16, VGG-19, ResNet-18, ResNet-34, ResNet-50, ResNet-152,
Inception-v3, and DenseNet-161, using facial image datasets. For
example, Mehendale (2020), proposes a CNN-based approach for
facial emotion recognition. This network consists of two stages:
the first stage removes the background of the image, while the
second stage focuses on extracting facial features. The two-level
CNN operates in series, with the final layer of the perceptron
adjusting weights and exponent values after each iteration. This
approach contrasts with the single-level CNN strategies typically
used and results in improved accuracy. Similarly, Sarvakar et al.
(2023), classified facial expressions into one of seven emotions
using various models on an emotion dataset. The models tested
include decision trees, feed-forward neural networks, and CNNs,
achieving reasonably acceptable accuracy. Additionally, Modi and
Bohara (2021) presents a CNN-based facial expression recognition
framework in which the network classifies facial expressions
as happy, sad, or neutral. In a related study, Khattak et al.
(2022), addresses emotion recognition by applying a deep learning
technique using CNNs to classify facial emotions and detect age
and gender from facial expressions. The experimental results
demonstrate that the proposed model can identify emotions, age,
and gender with a high degree of accuracy.

Also, some researches has made significant advancements in
facial emotion recognition using multimodal models. An example
is the work of (Mocanu et al., 2023), which proposes an innovative
methodology that integrates simultaneous video and audio analysis.
For visual analysis, they employ a three-dimensional CNN, and
for auditory analysis, they use a two-dimensional CNN. This
study implements the ResNet-101 and ResNet-18 architectures,
achieving impressive results with an average accuracy of 89.25% on
the RAVDESS database and 84.57% on the CREMA-D database.
These results represent a substantial improvement over previous
approaches, with accuracy increases ranging from 1.72% to 11.25%.

Other research efforts have focused on analyzing different
CNN architectures to compare their performance in facial emotion
recognition. For instance, Chowdary et al. (2023), present a
facial emotion recognition system utilizing transfer learning. The
study employs pre-trained CNNs, including VGG-19, ResNet-
50, Inception-v3, and MobileNet, with experiments conducted
on the CK+ database. The results show accuracies of 96% for
VGG-19, 97.7% for ResNet-50, 98.5% for Inception-v3, and
94.2% for MobileNet. Notably, MobileNet achieved the highest
accuracy among the four networks, demonstrating its effectiveness
in emotional facial recognition. Similarly, Sahoo et al. (2023)
reports comparable results, emphasizing that the pre-trained VGG-
19 model outperformed other models, such as AlexNet and
SqueezeNet, on most benchmark databases. Compared to state-
of-the-art technologies, the VGG-19 model achieved an accuracy
of 99.7%. These results are considered a reference point for
implementing transfer learning with the VGG-19 network to
extract the probability vector in the present investigation.

Emotion recognition is currently used in various fields such
as education, gaming, robotics, medical care and also in the
automotive field, which is why new emotion models require
more research to address the various challenges that exist around
emotion recognition through facial expressions. The work of
Bakariya et al. (2024), creates a real-time system that can analyze

unstructured data capable of recognizing human faces, evaluate
emotions and even make recommendations based on a deep
learning approach. The accuracy of their proposal is 73.02%,
objectively recognizing 6 emotions such as: anger, fear, joy,
neutrality, sadness and surprise. In the same way Talaat et al.
(2024), developed a real-time emotion identification system to
detect emotions but in autistic children, using an autoencoder for
feature extraction and selection, and applying transfer learning
with different CNNs as a reference due to the reduced number of
data. The Xception model achieved the highest performance with
an accuracy of 95.23% demonstrating the ability of the procedure
to recognize emotions. The study in question also establishes
the feasibility of using transfer learning which is a critical point
within the present research, well as Gursesli et al. (2024), which
proposes a significant reduction of computational power and
complexity for emotion recognition based on existing architectures
such as MobileNetV2. Similarly, Ravikumar et al. (2024), used
transfer learning and data augmentation procedures for model
generalization usingmultiple reference data, concluding that a deep
learning model based on transfer learning is recommended for
recognizing emotions from facial expressions.

However, work such as Mehrotra et al. (2024), states that
previous research focuses primarily on accuracy without taking
into account prediction time which is also critical for an optimal
emotion recognition system. Their suggested approach achieved an
accuracy of 71.61% in a time of 58 minutes in the training process
using the FER dataset.

2.2 Speech signals for emotion recognition

Some studies have proposed the development of Speech
Emotion Recognition (SER) systems based on features extracted
from spectrograms, implementing artificial neural network
architectures. Mustaqeem et al. (2020) presents a significant
method for selecting essential speech signal segments using a
Radial Basis Function Network (RBFN). The selected segments
are converted to spectrograms and passed to a CNN model to
extract silent and discriminative features. These CNN features
are normalized and fed into a deep bi-directional long short-term
memory (BiLSTM) network for learning temporal features to
recognize emotions. Similarly, Yao et al. (2020) developed an
integrated framework combining Deep Neural Networks (DNN),
CNN, and Recurrent Neural Networks (RNN). In their approach,
the utterance-level outputs of high-level statistical functions
(HSF), segment-level Mel-spectrograms (MS), and frame-level
Low-Level Descriptors (LLDs) are inputted to DNN, CNN, and
RNN, respectively. This yields three separate models–HSF-DNN,
MS-CNN, and LLD-RNN. A multi-task learning strategy is
employed across the models to extract generalized features by
simultaneously performing emotional attribute regression and
discrete emotion category classification.

Despite the rise of deep learning techniques, recent studies
propose less computationally expensive methodologies in terms
of time and performance. For example, Daqrouq et al. (2024)
evaluates the performance of various machine learning algorithms,
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such as Support Vector Machine (SVM), K-Nearest Neighbors
(KNN), Logistic Regression, Naive Bayes, and neural networks,
by using discrete wavelet transform (DWT) with linear predictive
coding (LPC). These findings can help guide the selection of
appropriate classifiers and feature extraction methods for future
research and real-world applications that use speech as a source
of information.

The Mel Frequency Cepstral Coefficient (MFCC) method
is widely employed for analyzing speech signals and has
demonstrated superior performance in speech-based emotion
recognition systems compared to other features. Alluhaidan et al.
(2023) presents an emotion recognition model using hybrid
features extracted from MFCC and the temporal domain, with
a One-Dimensional Convolutional Neural Network (1D CNN).
They use publicly available datasets such as EMO-DB, SAVEE,
and RAVDESS to evaluate their method’s performance, achieving
precision rates of 96.6% for EMO-DB, 92.6% for SAVEE, and 91.4%
for RAVDESS. The fusion of hybrid features with 1D CNN proved
effective for speech emotion recognition, outperforming both
conventional and deep learning approaches. Similarly, Bhangale
and Kothandaraman (2023) explores emotion recognition using
acoustic features and 1D CNN. Their study focuses on analyzing
various acoustic features, such as MFCC, Linear Predictive
Cepstral Coefficients (LPCC), Wavelet Packet Transform (WPT),
Zero-Crossing Rate (ZCR), and Root Mean Square (RMS), to
enhance the distinctiveness of speech signals. They develop a
deep 1D CNN to reduce computational complexity in emotion
recognition, testing its effectiveness on datasets like EMO-DB and
RAVDESS. Their results demonstrate high accuracy for recognizing
various emotions, including 94.83% accuracy for anger, 91.38%
for calmness, 89.66% for disgust, 89.66% for fear, and 91.38%
for happiness.

Recent studies continue to explore variations of MFCC. For
instance,Mishra et al. (2024) extracted theMFCC coefficientmatrix
from various datasets, calculating features such as the statistical
mean, MFCC-based approximate entropy, and MFCC-based
spectral entropy. Their model achieved classification accuracies of
85.61%, 77.54%, and 76.26% across three different speech datasets.

There are also cases, such as in Khan et al. (2024), where it
is suggested that reliable and robust multimodal speech emotion
recognition systems are necessary to efficiently recognize emotions
across multiple modalities, such as speech and text. In their
proposal, a deep feature fusion technique for audio and text signals
is applied to predict the emotion label. The proposed model
processes raw speech and text signals using a CNN and employs
encoders for semantic and discriminative feature extraction. The
authors evaluate their model on various datasets and conduct
extensive experiments, obtaining significant results that highlight
the robustness and versatility of models trained on data from
different sources.

However, the complexity of speech signal characteristics
continues to present many challenges in emotion recognition. A
study by Yang et al. (2024) introduces a multi-feature approach that
aims to reduce the dimensionality of features to effectively address
overfitting issues. Their experiment achieved remarkable accuracy
on diverse datasets, with their model reaching accuracies of
98.47% and 98.87%, demonstrating the ability to accurately discern

emotions from speakers. These findings underscore the importance
of incorporating feature reduction in models that use speech
cues as a primary source of information. This is an important
consideration for the research presented in this manuscript, as
reducing the dimensionality of motor cues will likely contribute to
developing an optimal model for emotion recognition.

2.3 Biophysiological signals

Physiological signals are biochemical responses to stimuli that
can be useful in identifying emotions. These data may include
Electrocardiogram (ECG) signals, Electroencephalogram (EEG)
signals, Electromyogram (EMG) signals, Galvanic Skin Response
(GSR), and Heart Rate (HR). Methods based on biophysiological
signals have shown promising results in emotion recognition.
Recent studies, such as Yang et al. (2023), propose an LSTM
system that combines smartphone sensors to capture images
of the driver and a bracelet to record electrodermal activity,
accurately determining the user’s emotional state. The system
was evaluated through a user study with 45 participants, using
affective responses (facial expressions, speech, keystroke typing)
and physiological responses (blood volume, electrodermal activity,
and skin temperature) induced by visual stimuli.

Alternatively, other researchers have explored different
methodologies for detecting emotions through ECG. For instance,
Wu and Chang (2021) conducted experiments using ECG to
investigate the impact of music on emotions. Their findings
indicated that fast, intermediate, and slow music influenced
the autonomic nervous system in different ways: fast music
stimulated it, intermediate music inhibited it, and slow music had
no significant effect. Additionally, they suggested that music could
help alleviate psychological pressure. Hu and Li (2022) collected
140 ECG signal samples triggered by Self-Assessment Manikin
(SAM) experiments using the International Affective Picture
System. They employed a Wasserstein Generative Adversarial
Network (WGAN) with a gradient penalty to augment different
classes of samples. The results showed that increasing the quantity
of data improved the accuracy and weighted F1 scores for all
three classifiers.

Similarly, Fang et al. (2024) applied an emotion recognition
method using random convolutional kernels for ECG signals. This
approach reduces computational complexity and training time
compared to methods that rely on multiple physiological signals or
deep neural networks. It was validated on three publicly available
datasets, achieving average recognition accuracies of 93.7%, 95.5%,
and 91.5% in the valence, arousal, and dominance domains,
following the three-dimensional approach to emotions proposed
by Russell. Likewise, the study presented by Sweeney-Fanelli and
Imtiaz (2024) implements deep learning techniques for emotion
recognition using ECG signals, achieving accuracies of 98.68% for
arousal and 97.30% for valence on two publicly available datasets.
The results highlight the potential of temporal convolutional neural
networks to enhance human-computer interactions and healthcare
monitoring systems through improved emotion recognition.
Additionally, Arslan et al. (2024) focuses on the processing and
analysis of ECG and GSR signals to develop a predictive model
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for emotion classification. Their methodology involves extracting
key features such as heart rate variability, morphological features,
and Hjorth parameters. A feature selection process based on
statistical analysis is applied to optimize and adapt the data for
machine learning techniques, resulting in a classification accuracy
of 97.78%. This demonstrates the feasibility of real-time emotion
recognition through statistical feature selection and machine
learning algorithms.

Changes in human emotions involve a complex process that
often triggers spatiotemporal brain activity, which can be detected
by EEG. EEG signals contain valuable information, as they reflect
the activity of countless neurons in the cerebral cortex, providing
real-time insights into brain functioning. Moreover, EEG recording
is relatively simple and cost-effective, making EEG-based methods
highly attractive for emotion recognition and evaluation.

Studies have shown a correlation between EEG signals and
different emotional states. For example, Andreu-Perez et al. (2021)
conducted a study in which participants played the video game
"League of Legends" while their brain activity was monitored using
functional near-infrared spectroscopy (fNIRS), along with video
recordings of their facial expressions. They decoded the players’
expertise level within a multimodal framework, achieving a tri-
class classification precision of 91.44%. Similarly, Zhang J. et al.
(2020) measured EEG signals, extracted features, and processed
the data using a modified radial basis function neural network
algorithm. Their experimental results demonstrated the superiority
of this modified algorithm over others. In a related study,
Zangeneh Soroush et al. (2020) reconstructed EEG phase space,
extracted Poincaré intersections as features, and integrated them
into a classification model, introducing an effective method for
emotion recognition and nonlinear signal processing. Likewise, Lu
et al. (2020) analyzed people’s physiological responses to different
lighting conditions based on EEG signals. Their findings revealed
that illumination levels and color temperatures significantly impact
the visual center’s response, which can help design optimal
lighting environments.

In recent times, EEG-based emotion recognition models
continue to evolve. Cai et al. (2024) introduced a new EEG
input format called EEG spectral imaging, which integrates
spatial domain features using Azimuthal Equidistant Projection
(AEP) and frequency domain features through differential
entropy. Experiments performed on the SEED and SEED
IV datasets demonstrated superior performance compared to
benchmark methods and state-of-the-art models. Their results
showed relative improvements of 0.6% and 0.08% in subject-
dependent experiments, achieving accuracies of 80.07% and
66.72%, respectively. The author also notes that existing approaches
(Trujillo et al., 2024; Al-Asadi et al., 2024; Tokmak et al., 2024;
Jha et al., 2024) mainly focus on the time and frequency domain
characteristics of EEG signals.

Unlike behavioral data, physiological data are considered
more objective because they typically reflect involuntary responses
that are difficult to consciously conceal or alter (Lin and Li,
2023). However, much of the research in this field depends on
medical-grade physiological sensing equipment, which tends to be
invasive, expensive, and requires technical expertise, thus limiting
its application in real-world settings (Dunn et al., 2018).

In the study by Siam et al. (2023), an approach is proposed to
identify the mental stress of automotive drivers based on selected
biosignals such as ECG, EMG, GSR, and respiration rate. Six
different machine learning models were employed to classify stress
and relaxation states. The proposed Stress Detection Technique
(SDT) consists of three main phases: biosignal preprocessing,
feature extraction, and classification. The results show that Random
Forest outperformed other techniques, achieving a classification
accuracy of 98.2%, sensitivity of 97%, and specificity of 100% using
a public driving dataset. This research aims to integrate biosignals
with the automotive industry to develop an applicable Advanced
Driver Assistance System (ADAS). Additionally, Waheed Awan
et al. (2024) suggests a method based on a one-dimensional
convolutional neural network and Vision Transformer, where the
process involves decomposing signals into segments, removing
noise, and extracting features. These features are then integrated
into a single vector for classification using a set of classifiers.
The results are synthesized using Model Agnostic Meta Learning
(MAML) to improve prediction accuracy. The model was validated
on the AMIGOS and DEAP datasets, achieving up to 98.2%
accuracy with 10-fold cross-validation, leveraging physiological
signals for comprehensive emotion assessment.

2.4 Emotion recognition in automotive
field

Although it is challenging to present a definitive or statistical
figure for accidents caused by drivers’ emotions, some researchers
have worked on proposals to determine drivers’ emotional states
in real time, based on the analysis and processing of various
sources of information, in order to prevent accidents in advance.
The following are studies related to emotion recognition in an
automotive environment.

Different methods for objectively determining drivers’
emotions have been explored. For example, Wang et al. (2020)
used feature fusion of multiple ECGs to detect driver emotions
based on a backpropagation network and the Dempster-Shafer
evidence method. In their approach, they selected ECG signals,
time-frequency domain, waveform, and nonlinear features as
parameters for emotion recognition, specifically identifying drivers’
calmness and anxiety while driving. The results demonstrated
that after fusing the ECG parameters, the proposed model could
recognize drivers’ emotions, with an accuracy of 91.34% for
calmness and 92.89% for anxiety. The study concludes that this
method holds theoretical and practical significance for improving
road safety.

Other proposals present new multimodal frameworks for
emotion recognition, integrating facial expressions and heart rate
data. For instance, Du et al. (2021) established a deep learning
model called the Bidirectional Convolutional Long-term Memory
Neural Network (CBLNN). This model predicts drivers’ emotions
based on geometric features extracted from changes in RGB
components. The facial features obtained using the CNN serve
as intermediate variables for Bidirectional LSTM (BI-LSTM) heart
rate analysis. The BI-LSTM output is then used as input to the
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CNN module to extract features. CBLNN applies multimodal
factorized bilinear clustering to fuse the extracted information and
classify five common emotions. This emotion detection method
achieved recognition rates of 91.6%, 90.50%, 91.51%, and 89.15%
for happiness, anger, sadness, and neutrality, respectively.

The implementation of artificial intelligence algorithms has
been a critical tool for objectively recognizing emotions in drivers,
due to their capacity to extract features that identify the emotions
we experience throughout the day. Naqvi et al. (2020) based their
method on gaze changes and facial emotions using NIR camera
sensors and an illuminator installed in the vehicle. They acquired
time-series data from aggressive and normal drivers by simulating
driving scenarios with racing and truck driving games. Software
was used to capture the driver’s image data, extracting images of the
face and eyes to detect gaze changes with a CNN and classify facial
emotions. Score-level fusion was applied to the scores obtained
from gaze changes and facial emotions to classify aggressive
and normal driving. The accuracy of their method, measured
through a self-generated test database, achieved a classification
accuracy of 98.93%. Similarly, Cui et al. (2020) implemented CNN
for emotion recognition, where a multitask network processed
facial expressions under varying lighting conditions. This was
accomplished by simultaneously restoring corrupted images using
a pre-trained CNN and predicting specific emotions. Their model,
evaluated on the FerPlus and Cohn-Kanade (CK+) datasets (Lucey
et al., 2010), achieved an accuracy of 83.1%.

Recent studies continue to advance emotion recognition
techniques, with a focus on image analysis and processing. For
example, Xiao et al. (2022) proposed a method that includes
three modules: facial detection, a data resampling module, and an
emotion recognition module based on a deep CNN pre-trained
with FER (Barsoum et al., 2016) and CK+ datasets. This method,
designed for real-time emotion recognition in drivers, collected
on-road facial expression data in various driving scenarios,
achieving an emotion recognition performance of 97.2%. Similarly,
Zaman et al. (2023) used CNN, RNN, and multilayer perceptron
classification models to develop a facial expression recognition
system. Their model, built on the faster region-based enhanced
CNN (R-CNN) for real-time face detection, fused CNN model
features to train an emotion classification model. By incorporating
InceptionV3 into the model, they improved accuracy, achieving
recognition rates of 98.01%, 99.53%, 99.27%, 96.81%, and 99.90%
across several datasets, including JAFFE (Lee and Kang, 2020),
CK+, FER2013 (Zahara et al., 2020), AffectNet (Mollahosseini et al.,
2017), and their own dataset. Additionally, Sukhavasi et al. (2022)
proposed a hybrid methodology combining CNN and Support
Vector Machine (SVM) to enhance classification predictions. By
fusing Local Binary Patterns (LBP) and Gabor filters to extract
robust features, their technique achieved accuracies of 84.41%,
95.05%, 98.57%, and 98.64% on FER-2013, CK+, KDEF (Goeleven
et al., 2008), and KMU-FED (Kumar et al., 2022), respectively.

Another innovative study by Jain et al. (2023) proposed the
development of an algorithm called Squirrel Search Optimization
with Deep Learning Enabled Facial Emotion Recognition (SSO-
DLFER) for detecting emotions in autonomous vehicle drivers.
This algorithm employed the RetinaNet (Lin et al., 2017) for
face detection and the NASNet-Large (Zoph et al., 2018) feature

extractor with the Gated Recurrent Unit (GRU) classifier for
emotion recognition. Hyperparameter tuning based on SSO
enhanced themodel’s performance, achieving amaximum accuracy
of 99.50% across multiple datasets, including KDEF and KMU-
FED.

A notable study that deviates from image analysis is presented
by Chen et al. (2024), who explored the relationship between
EEG signals and emotions in a simulated driving environment.
Their method used vehicle speed as a variable to simulate obstacle
avoidance at different danger levels. For data processing, graphical
neural networks with functional connectivity and attention
mechanisms were employed to simulate the brain’s physiological
structure. Their binary classification result achieved an F1 score
of 91.5%, demonstrating the effectiveness of capturing EEG signals
and monitoring emotional states through deep learning models.

In another study, Mou et al. (2023) introduced a multimodal
fusion framework for driver emotion recognition, employing
a ConvLSTM network with a hybrid attention mechanism to
integrate eye, vehicle, and environmental data. Their research
revealed correlations between driver emotions and stress, with
participants exhibiting higher levels of valence and emotional
dominance under stressful conditions. The model achieved
average precision values of 97.64% for valence, 97.27% for
arousal, and 96.47% for dominance, further validated through
ablation experiments.

Several studies have examined drivers’ behavioral
characteristics, such as motor activity signals influenced by
emotional states. For instance, CAN bus signals are commonly
used, though access to these signals is restricted to in-house
developers (Zepf et al., 2020). Despite the growing interest in
driver behavior, many studies lack sufficient detail about the
characteristics and behaviors associated with different emotions.
One of the least explored methodologies in a driving context is
the use of multimodal artificial intelligence (AI) models. These
models, which process data from various sources, have shown
potential in emotion recognition. Oh et al. (2021) proposed an
emotion recognition model that fused facial expression data with
electrodermal activity, achieving an accuracy of 86.8%. Likewise,
Zhou et al. (2023) proposed a multimodal model integrating driver
voice, facial images, and video sequences using CNN, Bi-LSTM,
and hybrid attention modules, recognizing six negative emotions
(e.g., sadness, anger, fatigue) with an accuracy of 85.52%. Ying
et al. (2024) similarly employed audio and video features to
recognize driver emotions, enhancing the safety and humanization
of advanced driver-assistance systems (ADAS).

The current state of the art highlights the feasibility of
developing reliable emotion recognition systems suitable for real-
world implementation. However, the exploration of multimodal
AI models that integrate behavioral and facial data remains
largely unexplored. Mou et al. (2023) have shown potential in
emotion identification tasks within automotive environments. Such
advancements can improve the driving experience and enhance
road safety by mitigating aggressive or distracted behaviors,
ultimately benefiting society.

Exploring alternatives for accurate, efficient emotion
recognition remains complex, yet research on behavioral
signals continues to provide insights. For instance, Paredes et al.
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FIGURE 1

Proposed methodology for generating a dataset of motor activity and facial images of drivers under di�erent induced emotional states, and a

multimodal emotion recognition model using convolutional neural networks.

(2018) demonstrated the ability to measure driver strain using a
steering angle and a mass-spring-damper model. Other studies
have established correlations between emotional states and driving
behaviors. Hu et al. (2024) proposed a multimodal emotion
recognition model using facial videos and driving behavior
(e.g., brake pedal force, Y-axis position, vehicle Z-axis position),
achieving an accuracy of 63.83% in a first approach to intelligent
emotion recognition based on facial and behavioral features.

In conclusion, while significant progress has been made,
challenges remain in improving the accuracy and robustness of
emotion recognition in dynamic environments. Integrating facial
data with motor activity data, such as steering wheel and pedal
interactions, could provide a richer context for recognizing drivers’
emotions, enhancing both the accuracy and practicality of emotion
recognition systems for real-world applications.

3 Materials and methods

Figure 1 presents the methodology followed in this research
to develop a multimodal emotion recognition model. The model
primarily utilizes the motor activity or behavior of drivers and
geometric patterns of facial expressions as inputs. The first stage,
data acquisition, focuses on generating a dataset of motor activity
signals obtained from key vehicle elements, such as steering wheel

angle, pedal movement, and braking, alongside visual data like
facial images of the participants. These data are collected during
the induction of four emotions in a simulated driving environment,
using emotion neutralization and the augmented autobiographical
recall technique.

In the second stage, the probability vector of images for each
induced emotion is extracted using a pre-trained Convolutional
Neural Network (CNN). The third stage involves selecting
the most relevant driving signals for emotion recognition by
applying intelligent feature selection methods with machine
learning algorithms such as Random Forest Classifier (RFC),
Decision Trees (DT), Adaptive Boosting Classifier (ABC),
and Linear Discriminant Analysis (LDA). The fourth stage
processes both motor signals and probability vectors through a
One-Dimensional Convolutional Neural Network (1D-CNN) to
generate a multimodal model capable of recognizing a limited set of
emotions. This step marks a preliminary attempt at analyzing and
processing these types of data using advanced artificial intelligence
algorithms simultaneously.

In the fifth and final stage, the model is validated using
key performance metrics from the field of artificial intelligence
to evaluate its accuracy in identifying emotions in a driving
environment. Additionally, a computational complexity analysis is
performed to determine themodel’s viability for real-time inference
in automotive systems.
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FIGURE 2

Map of the CARLA simulator used for driving simulation and the established route. The orange lines represent the route followed by each of the

participants.

3.1 Data acquisition

The experimental tests were conducted using the open-source
driving simulator CARLA 0.9.13 for safety reasons. CARLA
was developed to support the creation, training, and validation
of autonomous vehicles, and it is widely used for advanced
driver assistance system research, including algorithm training
for perception tasks. CARLA is freely available, and its sensor
configuration settings allow for the collection of signals that can
be used to train driving strategies (Dosovitskiy et al., 2017). For
this research, the same scenario as shown in Figure 2 (whose
specifications can be found here: https://carla.readthedocs.io/en/
latest/map_town05/) was used for all participants and emotions
tested. Each participant followed a pre-established route under
uniform virtual conditions, adhering to real-world traffic rules.
As the tests were conducted in a controlled driving environment,
only active driving data were collected. This included recording the
steering wheel angle (-180 to 180 degrees), brake pedal movement
(-1 to 1), and throttle pedal movement (-1 to 1), as driver behavior
can be influenced by emotional state, especially in interactions with
the vehicle such as steering adjustments and pedal usage (Zepf et al.,
2020).

To capture motor activity data, the Logitech Driving Force
G29, which includes the steering wheel, throttle pedal, and brake
pedal, was used. These peripherals are designed specifically for
driving simulations, making them ideal for collecting essential data.
The simulator’s built-in properties were leveraged to record critical
information, including the steering wheel angle and the amount of
movement in both the brake and throttle pedals.

For capturing images of the region of interest (ROI)—in this
case, the driver’s facial geometry—a LOGITECH C270 camera with
720 megapixels was used.

The computer used for the experiment was equipped with an
Intel Core i5-9400F processor running at 2.90 GHz, 32 GB of RAM,
and an NVIDIA GeForce GTX 1070 Ti graphics card.

Each participant signed an informed consent form, following
the ethical guidelines established in the Helsinki Declaration.

Various methods exist for inducing emotions, but
augmented autobiographical recall has proven particularly
effective in driving environments, as suggested by Braun et al.
(2018). This method is advantageous because it allows the
participant to generate the emotional stimulus themselves,
reducing the risk of misinterpretation. Additionally, it
can be smoothly integrated into driving tasks, offering
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TABLE 1 Song titles, artist who performs it and the type of emotion it can

evoke, obtained from the DEAP data set.

Emotion Artist Title

Happiness M. Franti and spearhead Say Hey (I Love You)

Sadness James Blunt Goodbye my lover

Anger Dead To fall Bastard set of dreams

a seamless transition from emotional provocation to the
driving experience.

In this method, participants are asked to recall and
write about a past event to evoke a specific emotion. They
are encouraged to provide as many details as possible
and vividly recount the events. Crucially, participants
recall the story to themselves, without the experimenter’s
presence (López-Cano et al., 2020). To further enhance the
emotional experience, scientifically validated songs known to
evoke specific emotions were played through headphones.
These auditory stimuli, sourced from the DEAP dataset
(Koelstra et al., 2012), intensified the emotions participants
experienced during the drive. Table 1 lists the songs used in
the experiment.

Before beginning the augmented autobiographical recall,
participants evaluated their emotional state using an affective
annotation platform that featured the Self-Assessment Manikin
(SAM). SAM is a widely used tool for assessing emotional states,
featuring a graphic scale for valence and arousal from 1 to 9
(Veeranki et al., 2021). After this initial evaluation, participants
were asked to write about a neutral event, such as their morning
toothbrushing routine, to establish a neutral emotional state.
This step follows the methodology of Sanghavi et al. (2020),
which demonstrates that recalling a mundane event effectively
induces neutrality. Once participants had completed this task,
they put on headphones and began the driving simulation, during
which they listened to a song designed to maintain a neutral
emotional state. This initial phase not only familiarized participants
with the simulator but also prepared them for the emotional
recall process.

After a 5-minute neutral driving session, participants reassessed
their emotional state on the platform. They were then asked to
recall a moment that elicited one of the target emotions for the
study (Happiness, Anger, or Sadness) and repeated the same tasks
as in the neutral driving phase. Finally, participants evaluated their
emotional state again, using the augmented autobiographical recall
method during driving.

All collected data, including motor activity and facial
images, were organized by the emotion associated with each
participant, ensuring control over records and allowing for
efficient storage. This organization adhered to the emotion
categories of Happiness, Anger, and Sadness, selected based on
Plutchik’s emotional model. According to Plutchik, these basic
emotions serve as building blocks for more complex emotions
(Semeraro et al., 2021). Additionally, focusing on a smaller
set of emotions allowed for a more representative and high-
quality dataset, ensuring that the data were well-labeled and

balanced (Khoo et al., 2024). Figure 3 summarizes the data
acquisition process.

3.2 Probability vector extraction

In this study, pretrained Convolutional Neural Network
(CNN) models, including VGG16, VGG19, Inception V3, and
EfficientNet, were employed. These models are widely used and
straightforward, and recent studies (Zaman et al., 2023; Gite
et al., 2023; Tauqeer et al., 2022; Oh et al., 2021; Ahmad et al.,
2024; Wawage and Deshpande, 2022) have demonstrated their
remarkable performance across a variety of applications, including
emotion recognition. The objective of the pretrained CNNs is
to calculate the probability vector of facial geometry images for
each induced emotion obtained from participants during simulated
driving using transfer learning (Kusal et al., 2024).

The probability vector represents the distribution of
probabilities across different emotions, which helps reduce
the dimensionality of the data compared to raw image feature
extraction. Emotion recognition often involves addressing
variability in facial expressions, lighting conditions, and other
environmental factors. The probability vector captures the
uncertainty associated with these variations, making the model
more robust to changes in the input data. By focusing on the
probability distribution of emotions, rather than specific image
features, the model achieves a more nuanced understanding of the
underlying semantics of facial expressions. In some cases, using
a probability vector enables end-to-end learning, allowing the
model to directly map input images to probability distributions of
emotions (Zhao et al., 2020).

The probability vector is generated before assigning a label
to each input image. The number of elements in the probability
vector corresponds to the number of induced emotions in the data
acquisition process (Neutral, Happy, Angry, and Sad), with each
element representing the likelihood of one specific emotion. Since
the total probability is 1, the sum of all elements in the probability
vector equals 1, and each element’s value ranges between 0 and 1.
The emotion associated with the highest value in the probability
vector is selected as the detected emotion. Figure 4 illustrates the
probability vector extraction process. These probability vectors,
derived from the facial images, are a key complement to the tabular
dataset (e.g., throttle pedal movement, brake pedal movement, and
steering wheel angle) in the integration phase.

The VGG16 CNN was developed by the Visual Geometry
Group (VGG) at the University of Oxford and became well-
known after winning the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) in the object identification category. This
model has also shown very promising results in emotion
recognition in other studies (Verma and Choudhary, 2018a,b).
The goal of this network is to demonstrate that increasing the
depth of the network can improve performance in certain tasks
(Shahzad et al., 2023). The VGG19 network, proposed by Simonyan
and Zisserman, consists of 19 layers, including 16 convolutional
layers and 3 fully connected layers, and it is trained to classify
1000 different objects. VGG19 is trained on the ImageNet database,
which contains over one million images (Bansal et al., 2023).
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FIGURE 3

Proposed methodology for generating a dataset of motor activity and facial images of drivers under di�erent induced emotional states, and a

multimodal emotion recognition model using convolutional neural networks.

FIGURE 4

Process of extracting probability vector from an image using a CNN.

In contrast, the Inception V3 network is a deep architecture
developed for the 2014 ImageNet visual recognition challenge. One
of its main advantages over VGGNet is its faster execution speed
(Cao et al., 2021). Finally, EfficientNet is another pretrained CNN,
designed for transfer learning in image classification tasks. This
architecture, developed by Google AI in May 2019, is available
through TensorFlow and GitHub libraries (Marques et al., 2020).

3.3 Feature selection

Once the tabular data from the driving simulator peripherals,
including throttle movement, braking, and steering wheel angle,
are collected for the different induced emotional states of the
participants, a feature selection process is performed using the
Recursive Feature Elimination (RFE) technique. This is necessary

due to the high dimensionality of the motor activity data and the
probability vectors derived from the images.

RFE is a commonly used feature selection technique in
machine learning. The main idea behind RFE is to iteratively
train a model on subsets of features and eliminate the least
important ones at each iteration until the desired number of
features is reached. The general algorithm is as follows (Ba et al.,
2023):

• Initialization:
Let F represent the set of all features, initially F = {1, 2, .., p}
where p is the total number of features

• Iteration:
For each iteration i (where i = 1, 2, ..):
Train the modelM using the features XF and target variable y.
Asses the importance of each feature based on some criterion,
denoted as I(f ) for feature f in F.
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identify the least important feature, fmin = argminf ǫFI(f ).
Remove the least important feature from F : F← F\{fmin}.

• Stopping Criteria:
Repeat the iteration until the desired number of features is
reached or a predefined stopping criterion is satisfied.

The motor activity data vector consists of windows of
50 data points per record for steering wheel angle, throttle
pedal movement, and braking movement. These data points are
processed using RFE in conjunction with various machine learning
techniques to identify the optimal data windows for emotion
recognition based on variations in specific data segments collected
under different emotional states. Ultimately, the most relevant data
segments will be integrated with the probability vectors derived
from the images. The machine learning techniques implemented
for analysis and processing are described below.

3.3.1 Random forest classifier
RFC is a machine learning algorithm that builds multiple

decision trees, where each tree is generated using a random subset
of the data. Each tree casts a vote, and the most popular class is
selected to classify the input vector (Amiri et al., 2024).

RFC uses the Gini index as a measure for selecting attributes,
which quantifies the impurity of an attribute with respect to the
target classes. The Gini index is shown in Equation 1.

∑∑

j6=i

(f (Ci,T)/ | T |)(f (Cj,T)/ | T |) (1)

where f (Ci,T) represents the frequency of class Ci in dataset T,
and |T| is the total number of instances in T.

3.3.2 Decision trees
Decision trees are supervised predictive models known for

their interpretability and robustness, and they are widely applied
in various domains. The fundamental idea behind a decision tree
is to recursively divide the dataset into smaller subsets based on
specific features until a strong prediction for the target variable is
achieved. Each division is made in such a way that it maximizes the
homogeneity of the resulting subsets in terms of the target variable
(Costa and Pedreira, 2023).

3.3.3 AdaBoost classifier
The goal of the AdaBoost algorithm is to combine multiple

weak learners to form a strong learner, thereby improving
the classification or prediction model. The algorithm works by
adjusting the weights of the misclassified points at each iteration,
givingmore weight to incorrectly classified samples. A weak learner
is trained using these weighted data points. A coefficient is assigned
to each weak learner based on its performance. For misclassified
points, their weights are increased, and the weights of correctly
classified points are decreased. The process is repeated until all data
points are correctly classified or a stopping criterion is met.

The AdaBoost algorithm is commonly used for binary
classification problems but can be extended to handle multiclass

classification using methods such as One-vs-All (OvA) or One-
vs-One (OvO). The equation for the combined classifier H(x) is
presented below:

H(x) = argmax
k

T∑

t=1

αt · I(ht(x) = k)

where T is the number of iterations, αt is the weight of the t-th
weak classifier, ht(x) is the prediction of the weak classifier, and I is
the indicator function.

3.3.4 Linear discriminant analysis
LDA is a supervised dimensionality reduction technique that

aims to find a linear combination of features that maximizes the
between-class variance while minimizing the within-class variance.
In the transformed space, samples of the same class are separated
as much as possible. For multiclass problems, LDA can be extended
using Fisher’s discriminant analysis to find a subspace that captures
the maximum variability between classes (Zhu et al., 2022).

Suppose that each classC has ameanµi and a shared covariance
matrix6. The between-class scatter matrix6b can be defined as the
covariance of the class means:

6b =
1

C

C∑

i=1

(µi − µ)(µi − µ)T (2)

where µ is the mean of the class means.

3.4 Model generation

Once the data integration process was completed, and the most
significant motor signals were identified using machine learning
algorithms, dimensionality reduction was performed using the
Recursive Feature Elimination (RFE) technique. The resulting
dataset comprised 3,361 observations and 13 columns, with the
first 9 columns representing motor activity data and the last
4 columns representing the extracted probability vectors. This
adjustment ensured consistency between the significant motor
activity data used for emotion recognition and the number of
extracted probability vectors, given that the number of images was
much smaller than the motor activity dataset.

With the final dataset established, a multimodal emotion
recognition model was developed using a proposed one-
dimensional convolutional neural network (1D-CNN).
1D-CNNs are commonly utilized to analyze one-dimensional
signals, such as vectors, time series data, and other
sequential data types, and have been applied in various
fields, including bioengineering, physiological signal
analysis, traffic analysis, marketing, and network analysis
(Tang et al., 2020).

The proposed network consists of five convolutional layers
with filter sizes of 64, 128, 256, 512, and 1024, each using the
Softplus activation function and kernel sizes of 3, 3, 2, 2, and
1, respectively. Softplus, known for its smoothness and non-zero
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gradient, was introduced by Dugas et al. (2000) in 2001 and, is
defined as follows:

Softplus(x) = ln(1+ ex) (3)

Additionally, max-pooling is applied at the end of the
convolutional layers using a 3x3 kernel size. Four dense layers are
then added with sizes 512, 256, 128, and 64, each with a Softplus
activation function. The final layer, consisting of 4 units, uses a
softmax activation function to predict the emotions.

The loss function used is Sparse Categorical Cross Entropy
(SCCE), commonly employed in classification tasks where the
target labels (ytrue) are provided as integers (class indices) instead
of one-hot encoded vectors. SCCE simplifies the process when
handling integer labels, though its formula is similar to that of
categorical crossentropy (Chaithanya et al., 2021).

Equation 5 presents the mathematical representation of sparse
categorical crossentropy:

SCCE = −
1

N

N∑

i=1

C∑

j=1

yij · log(ŷij) (4)

Where:

• N is the number of samples.
• C is the number of classes.
• yij is a binary indicator of whether class j is the true class for

sample i.
• ŷij is the predicted probability that sample i belongs to class j.

In summary, our approach integrates two types of CNNs: a two-
dimensional network that extracts the probability vector from the
visual dataset, and a one-dimensional network that processesmotor
activity signals in conjunction with the probability vector. This
integration allows the model to process information from multiple
sources and accurately and objectively identify emotions in drivers.
The proposed architecture is summarized in Figure 5.

This data integration process has been scientifically validated
in the study titled Detection of Pedestrians in Reverse Camera

Using Multimodal Convolutional Neural Networks conducted by
Reveles-Gómez et al. (2023).

3.5 Validation

To validate the performance of the model used in this study,
a comprehensive set of evaluation metrics was employed. These
metrics quantify the model’s performance and assess its ability
to effectively distinguish between different emotions. Each metric
provides insights into various aspects of the model’s quality,
offering a holistic understanding of its behavior in classifying the
emotions defined in this research.

The evaluation criteria applied include a range of metrics to
ensure a thorough assessment of the model’s efficacy. Among
the metrics used are accuracy, recall, F1-score, and K-fold cross-
validation. Together, these metrics provide valuable information
about the model’s classification performance, its ability to correctly

identify each emotion category, and its robustness when evaluated
through different validation techniques.

Accuracy is a fundamental metric that indicates the proportion
of correctly classified instances among the total number of instances
evaluated. Recall, on the other hand, measures the model’s ability
to correctly identify instances of a specific emotion class from all
instances that truly belong to that class. The F1-score takes both
precision and recall into account, providing a balanced assessment
of the model’s performance, particularly useful in cases where class
distributions are imbalanced.

In addition to these metrics, K-fold cross-validation was used
to evaluate the model’s generalization capabilities and consistency
across different subsets of the dataset. This technique involves
dividing the dataset into K equally sized folds, training the model
on K − 1 folds, and then evaluating its performance on the
remaining fold. This process is repeated K times, with each
fold serving as the validation set once, ensuring the model’s
performance is not overly reliant on any single subset of the data.

By employing this comprehensive suite of evaluation metrics,
we gain a deeper understanding of the model’s strengths and
weaknesses, ensuring a rigorous assessment of its performance in
emotion classification tasks.

4 Results

For data acquisition, 50 participants (comprising 10 females
and 40 males) aged between 18 and 39 years (with an average
age of 25.26, a standard deviation of 5.36, and a median of 25.5)
were recruited from the Autonomous University of Zacatecas
(UAZ). These participants underwent 55 simulated driving tests
at the Interactive Technologies and User Experience Laboratory
(L.I.T.U.X) and had a minimum of one year of driving experience
(with an average of 6.13 years, a standard deviation of 5.20, and a
median of 5 years).

Each of the 50 participants selected for the experiment
underwent an initial process of emotion neutralization before
inducing the emotions established in this study, using the method
of augmented autobiographical recall. Inducing emotions through
imagination and music is particularly suitable for measuring direct
effects, such as anger caused by aggressive driving, as established in
the work of Steinhauser et al. (2018).

Each participant recalled and wrote down an event that
produced a certain emotional state, which they later recalled during
the test. Below is an example of a happy autobiographical memory:

“Whenmy son was born, holding him and feeling him inmy arms

was something incredibly special. Every day he hugs me and tells me

he loves me, which makes me very happy.”

The effectiveness of this methodology was assessed using the
SAM (Self-Assessment Manikin) test, which measures emotional
states across two dimensions: valence and arousal. During
the driving tests, participants continuously characterized their
emotional states using the SAM test. The Induced Emotion (IE) for
each participant needed to closely align with the one characterized
in the continuous model. As noted by Oh et al. (2021), if the
induced emotion did not match the assigned values within the
emotional range of the continuous model, the participant’s data
were discarded. Additionally, following the approach proposed
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FIGURE 5

Proposed scheme for emotion recognition by fusing the image probability vector using the pre-trained CNN and tabular motor activity data using a

one-dimensional convolutional neural network.

by Li et al. (2022), the data were normalized using the min-max
normalization method, as shown in Equation 5, to ensure uniform
treatment of each arousal-valence value.

Xnorm =
X − Xmin

Xmax − Xmin
(5)

• Xnorm represents the normalized values.
• X is the original value.
• Xmin is the minimum value in the dataset.
• Xmax is the maximum value in the dataset.

Figure 6 shows the distribution of the 50 participants after
normalization of their SAM test results. Since the emotional states
are diverse and each corresponds to a specific region in the two-
dimensional plane (based on arousal and valence), this research
categorized the regions where the three target emotions are found:
happiness, anger, and sadness. If a participant’s induced emotion,
based on their arousal-valence values, fell within the expected
region for the emotion, their data were considered valid.

Based on the results obtained, among the 50 participants
subjected to emotion induction tests in a simulated driving
environment, only 42% of the induced emotionsmatched the actual
emotions experienced. This equated to 21 participants in total, with
9 indicating happiness, 9 indicating anger, and 3 indicating sadness.
The remaining 58% of participants did not match the induced
emotion with the actual one. The dataset contains information
from 21 participants, including motor activity data (throttle pedal

movement, brake pedal movement, and steering wheel angle)
totaling 302,626 records (Neutral = 67,462, Happy = 99,148, Angry
= 70,608, Sad = 65,408).

Additionally, visual data (images) collected from the
participants’ facial geometry totaled 3,361 (Neutral = 1,464,
Happy = 1,037, Angry = 366, and Sad = 494), based on the
discrete emotional model proposed by Paul Ekman. This research
combined discrete and continuous emotional models to assess
emotions, based on the premise that facial expressions do not
always fully reflect the participant’s emotional state, as suggested
by Ekman. Therefore, the arousal-valence model proposed by
James Russell was also used. The emotion prediction process
characterized dimensional emotion labels using both continuous
and discrete representations. Recent studies, such as Mihalache
and Burileanu (2021), have shown performance gains when
converting continuous labels into a discrete set, despite some
label quantization error. AlBadawy and Kim (2018) demonstrated
the effectiveness of using joint representations of discrete
and continuous emotions in describing dynamically changing
affective behavior.

Given this, the present study induced emotional states,
characterized them using the continuous model, and verified that
the induced emotions matched the actual ones via the SAM tool.
Next, the participant’s visual data were analyzed to ensure that
their facial expressions aligned with the expected outcomes in the
discrete model. Although the two models differ, the data collection
procedure for each emotional state was as follows: if a specific
emotion, such as happiness, was induced and matched the real
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FIGURE 6

Emotional characterization of the 50 participants of the continuous model in the two-dimensional excitation-valence plane.

emotion, and if the participant’s arousal-valence values fell within
the corresponding range (e.g., 6–9 for both valence and arousal),
the motor data and corresponding facial geometry data were
considered valid for that emotion.

Paul Ekman states that there are six basic emotions universally
expressed by humans in response to psychological triggers. For
the neutral emotion, images that did not fall into any of the six
basic emotions were collected. Figure 7 presents images showing
the discrete emotional characterization of the neutral, happy, angry,
and sad states during the driving tests.

After collecting and constructing the dataset, an in-depth
analysis of motor activity was performed. Human behavior
is complex and constantly changing, so it was essential to
study drivers’ behaviors across different emotional states while
interacting with basic driving elements. Figure 8 illustrates the
signals generated from steering wheel angle measurements in
different emotional states, visually demonstrating variations in
motor activity.

Windows of 50 records were analyzed and processed in
steps of 5 from motor activity data to identify segments that
provide relevant information for recognizing motor activity
associated with the target emotional states. While various methods,
techniques, algorithms, and transforms can perform these complex
tasks, implementing feature selection through machine learning
algorithms proved to be an effective tool for identifying key
data related to certain emotions. Feature selection is essential for
the successful application of machine learning and data mining
algorithms in real-world scenarios. Numerousmethods for relevant

feature selection have been proposed in the literature, including
RFE, which reduces irrelevant, redundant features, noisy data, and
high dimensionality (Jeon and Oh, 2020).

The process involved applying the RFE technique with different
machine learning algorithms using the motor activity dataset.
Eighty percent of the data were used for training, and the remaining
20% for blind testing. Table 2 shows the performance of the models
in terms of accuracy, which evaluates how often themodel correctly
predicts outcomes (Pacurari et al., 2023). Precision was also used,
measuring how often the model correctly predicts true positives
relative to the total number of positive predictionsmade (Imani and
Arabnia, 2023). Additionally, recall (or sensitivity) was employed
to measure how often the model correctly identifies true positives
from all positive samples in the dataset. Lastly, the F1-Score, a
metric derived from precision and recall, was used to assess the
models’ performance. F1-scores range from 0 to 1, with higher
values indicating better model performance (Imani and Arabnia,
2023).

Based on the results, the model generated by the Random
Forest Classifier (RFC) algorithm achieved the best performance
in identifying motor activity segments that best characterize target
emotional states, achieving 89% accuracy.

As a result of this procedure, 9 significant motor activity
features were identified: 5 related to steering wheel angle, 0 related
to brake movement, and 4 related to throttle movement. By
identifying key signal segments that improve the final emotion
recognition model, driving behavior could be distinguished across
different emotional states. For example, the behavior related to
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FIGURE 7

Sample images of the four emotion categories of the generated dataset.

FIGURE 8

Steering wheel angle signal in di�erent emotional states.Where each numerical value represents an emotion 0 for neutral, 1 for happy, 2 for angry,

and 3 for sad.

steering wheel movement was significantly more intense during
anger than for other emotions. Similarly, the neutral emotion also
showed greater steering wheel movement, though not as intense as
the anger emotion.

Although accelerator pedal movement signals seemed to
fluctuate within similar ranges, there were notable differences
between emotions. In particular, anger showed the highest levels of
accelerator pedal engagement, indicating that participants pressed
harder on the pedal when feeling angry.

The CNN architectures, VGG16 and VGG19, demonstrated
the highest potential in recognizing emotions from the 3,361
images of drivers in various emotional states, achieving accuracy
rates of 98% and 99%, respectively. These models generated
probability vectors between 0 and 1 for each image, which were
subsequently integrated with the engine dataset that had been
correctly classified using the RFE algorithm. In the case of the
Inception V3 network, promising results were also obtained, with
an accuracy of 97.2%. However, the accuracy and loss plots for
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TABLE 2 Results obtained from emotion classification models using

di�erent learning algorithms and motor activity as data source.

Algorithm Emotion Precision Recall F1-
Score

RFC Neutral 0.91 0.90 0.90

Happy 0.88 0.90 0.89

Angry 0.89 0.88 0.88

Sad 0.89 0.88 0.88

Accuracy 0.89

DT Neutral 0.80 0.82 0.81

Happy 0.80 0.79 0.80

Angry 0.79 0.79 0.79

Sad 0.77 0.76 0.76

Accuracy 0.79

ABC Neutral 0.42 0.37 0.40

Happy 0.42 0.50 0.46

Angry 0.57 0.52 0.54

Sad 0.44 0.40 0.42

Accuracy 0.46

LDA Neutral 0.20 0.08 0.11

Happy 0.33 0.83 0.47

Angry 0.44 0.14 0.21

Sad 0.26 0.02 0.03

Accuracy 0.32

The bold values represents the overall accuracy of each of the implemented machine learning

algorithms.

Inception V3 did not display as stable behavior as those for the
VGG networks. According to Pathar et al. (2019), for a model to
be validated satisfactorily–in this case, emotion recognition–the
validation loss should be similar to or greater than the training loss.
If the validation loss is lower than the training loss, the model may
be underfitted and should be trained formore epochs. In themodels
generated using VGG16 and VGG19, this condition was satisfied,
as the validation loss followed a similar pattern to the training loss.
Finally, EfficientNet achieved an accuracy of only 43.5%, leading to
its early dismissal from further consideration.

After identifying the most relevant motor activity features and
reducing redundancy and dimensionality through feature selection,
as well as extracting probability vectors for facial expressions using
deep learning, a mid-fusion technique was implemented. This
approach was necessary due to the distinct nature of the data: motor
signals (such as steering wheel angle, pedal movement, and braking
data) are inherently time series and require specialized feature
extraction or vectorization methods, whereas facial data, typically
extracted from images or video frames, require CNNs to identify
relevant geometric patterns associated with emotions. These two
data types differ significantly in their structures and processing
requirements. Mid-fusion enables each modality to be processed
independently, using feature extraction techniques specifically
tailored to the characteristics of each data type, preserving the

TABLE 3 1D-CNN architecture hyperparameters for training.

Hyperparameter 1D-CNN

Input 1 X 13

Activation functions softplus

Epochs 500

Optimizer Adam

Convolutional layers 5

Kernels 64,128,256,512,1024

Loss sparse categorical crossentropy

Output function softmax

Number of classes 4

Dense layers 4 of 512,256,128,64 neurons

Batch size 32

unique features of each modality prior to fusion (Hassani et al.,
2024).

In contrast, early fusion involves combining raw data from
different modalities at the initial stage. While this approach can
integrate data quickly, it may result in information overload and
make it difficult for the model to extract meaningful features
from each modality. This is especially true when raw data
from different formats (e.g., image data vs. time-series data) are
combined. Early fusion often requires significant preprocessing to
handle discrepancies between modalities, potentially diminishing
the richness of features that can be learned (Gadzicki et al., 2020).

On the other hand, mid-fusion allows for independent feature
extraction from each modality (e.g., probability vectors for facial
emotions and key motor activity features). This preserves the
unique characteristics of each modality and facilitates a more
meaningful integration of information at a higher level of
abstraction, where patterns between the modalities can be more
effectively recognized.

Late fusion, in which decisions are made independently for
each modality and then combined, may fail to capture cross-modal
interactions, as each modality is treated in isolation before fusion
(Boulahia et al., 2021). By fusing at an intermediate stage (mid-
fusion), the model can capture relationships betweenmotor activity
and facial expressions, leading to a more nuanced and effective
emotion recognition system.

In this approach, facial data were processed using a CNN
to extract geometric facial features, while motor activity data
were analyzed using feature selection algorithms (such as random
forests, decision trees, etc.). This fusion methodology ensures that
the most relevant features from each domain are incorporated
into the final model for multimodal emotion recognition, which
was built using a one-dimensional convolutional neural network
(1D-CNN). The hyperparameters for this model are presented in
Table 3.

With the architecture and hyperparameters of the one-
dimensional convolutional neural network (1D-CNN) defined, we
conducted a k-fold cross-validation process. This method involves
dividing the dataset into k subsets, as described by Wong and Yeh
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(2020). Each subset takes a turn serving as test data, while the
remaining subsets are used for training. The validation process
runs for k iterations, corresponding to the number of folds, so
that each fold is used as test data exactly once. To determine the
model’s overall performance, we calculate the arithmetic mean of
the results from all iterations. In this study, we selected k = 5,
which is a common choice for k-fold validation as it balances
computational efficiency and robust model evaluation. The k-fold
validation method is widely regarded as a robust way to assess the
effectiveness of classification models, as it partitions the dataset and
treats each group as an independent validation set (Wong and Yeh,
2020). The results of the k-fold cross-validation are presented in
Table 4.

A confusion matrix is a tabular representation of the actual
labels versus the model’s predictions, providing insight into the
performance of the model. Each row of the confusion matrix
represents the instances predicted to belong to a specific class,
while each column represents the actual instances from the dataset.
This matrix serves as the foundation for calculating other key
performance metrics (Heydarian et al., 2022). Figure 9 shows the
confusion matrices generated for classifying the target emotions
identified in this research. Of the 361 integrated motor activity
datasets combined with probability vectors from facial expression
recognition, the 1D-CNN model correctly identified 363 instances
of neutral emotion, 1,036 of happiness, 1,445 of anger, and 385
of sadness.

Figure 10 illustrates the network’s performance in
processing multimodal data over 500 epochs for each
fold using the 1D-CNN. As seen in the training process,
the accuracy and loss curves were consistently aligned,
indicating stable model performance across epochs. This
confirms that overfitting was not an issue, affirming the
network’s ability to generalize in recognizing emotions across
the dataset.

Finally, an analysis of the computational complexity of the
model was carried out. Since the model is intended for real-time
inference in automotive systems, it is crucial to address memory
usage, processing time and scalability. As a result, the following
results were obtained 383.87 MB of memory usage, with an average
processing time of 0.50 s. For real-time models, it is important to
see how the model responds to multiple simultaneous requests.
Simulations of 100 concurrent inference requests were performed
to measure how the response time changes, with an average
of 32.37 s.

The results obtained in this section are highly significant,
demonstrating the model’s ability to accurately identify four
universal emotions (neutral, happiness, anger and sadness) in
the discrete model, as well as three emotions in the continuous

model, reaching a statistically significant accuracy of over 90%. This
innovative methodology represents a valuable advance in the field

of affective computing in driving environments.

However, it is important to note that the inference time of

the model needs improvement. Accurately recognizing emotions
in real time is crucial because emotions can be brief and subject

to rapid change. Optimizing the inference time would improve

the system’s ability to respond effectively to these momentary
emotional changes.

TABLE 4 Classification results per k-fold for multimodal emotion

recognition.

K Emotion Precision Recall F1-
score

1 Neutral 1.00 1.00 1.00

Happy 1.00 1.00 1.00

Angry 0.98 0.99 0.98

Sad 0.96 0.95 0.95

Accuracy 0.99

2 Neutral 1.00 1.00 1.00

Happy 1.00 1.00 1.00

Angry 1.00 0.99 0.99

Sad 0.97 1.00 0.98

Accuracy 1.00

3 Neutral 1.00 1.00 1.00

Happy 1.00 1.00 1.00

Angry 0.99 0.98 0.98

Sad 0.94 0.96 0.95

Accuracy 0.99

4 Neutral 1.00 1.00 1.00

Happy 1.00 1.00 1.00

Angry 0.75 1.00 0.85

Sad 0.00 0.00 0.00

Accuracy 0.85

5 Neutral 1.00 0.96 0.98

Happy 1.00 1.00 1.00

Angry 1.00 0.98 0.99

Sad 0.92 0.99 0.95

Accuracy 0.99

Overall
classification
report

Neutral 1.00 0.99 1.00

Happy 1.00 1.00 1.00

Angry 0.93 0.99 0.96

Sad 0.95 0.78 0.85

Overall accuracy 0.96

The bold values represents the accuracy obtained in each K-fold.

5 Discussion

There are several studies with promising approaches to
emotion recognition in drivers that have achieved statistically
significant results in terms of accuracy. However, studies focusing
on multimodal artificial intelligence, which essentially involves
processing and understanding information from different sources,
have been less explored in driving environments. Table 5 presents
a comparison between state-of-the-art methods and the proposed
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FIGURE 9

Confusion matrices resulting from the multimodal emotion recognition model. On the left side is shown the matrix with the number of correctly

classified observations and on the right side the percentage of correctly classified observations.

methodology, examining the data sources, algorithms used, and the
performance achieved.

Training CNNs with images has yielded significant results
for driver emotion recognition, as shown in the table. However,
as mentioned in the problem statement, accurately identifying
emotions through constant monitoring of drivers presents
limitations, primarily due to occlusion caused by various factors.
Current research, such as that by Mou et al. (2023), combines
large datasets related to both the driver and the surrounding
environment. This research demonstrated that using data from the
driver’s eyes, vehicle data, and the environment across different
scenarios to generate recognized emotions can be processed
through a ConvLSTM network with an accuracy exceeding 80%.
However, the model still relies heavily on accurate visual data
from drivers in real time to achieve these levels of accuracy, which
brings back the same issues found in methodologies based on video
capture devices.

This limitation highlights the importance of multimodal
modeling approaches, which address such problems by
incorporating alternative data sources that either relieve or
complement image analysis systems. These models have also
proven to be highly relevant in the field of driver emotion
recognition, demonstrating efficient performance.

The work presented by Shafaei et al. (2019) demonstrates
the feasibility of classifying emotions using vehicle parameters
generated by 16 participants, along with facial expressions from
datasets such as CK+ and JAFFE, using SVM as a classifier.
However, the limited potential of these traditional machine
learning techniques may impede their real-world application.
Despite this, their findings align with this study in a critical way:
drivers tend to exhibit more active and abrupt behaviors when they
are angry, happy, or excited. Conversely, their driving becomes
more passive with fewer eye or body movements when they are
tired or sad. These behavioral patterns correlate with emotional
categories in the continuous model. Although the study is relevant

for emotion identification, it becomes somewhat outdated due to
the lack of more sophisticated AI algorithms like CNNs, which
are superior tools for creating models that can be implemented in
real-world settings.

Similarly, Du et al. (2021) proposes identifying emotions
through heart rate and facial features from 16 volunteers in
a simulated environment, yielding promising results. However,
current devices for acquiring cardiac data can be invasive for
drivers, leading to poor ergonomics and frequent emotional
disturbances. Despite these limitations, their results demonstrate
the ability of their methodology to recognize the emotions studied
using convolutional neural networks (CNNs). Although the study
lacks concrete details on the emotion induction process, it is
inferred that participants assumed various emotional roles and
behaviors. This suggests a subjective emotion labeling process,
which limits the methodology’s applicability to other scenarios.
Moreover, the study did not base its work on an emotion theory,
making its recognition approach less objective and precise than
this research.

In contrast, Oh et al. (2021) developed a multimodal model
combining facial images and dermal activity data from 13
volunteers (six men and seven women). This less invasive
method could potentially be integrated into vehicle manufacturing.
However, its performance is suboptimal compared to the results
of this study. One key difference is the emotion induction
techniques used. The authors applied methods such as movie
watching and passage writing, which are effective but limited
to generating emotions during the activity itself. In contrast,
autobiographical memory techniques–used in this study–work well
because participants recall emotional moments from their lives
while driving. Additionally, the study’s sampling frequency (10 Hz)
was higher than the 5Hz used in this research. The lower frequency,
combined with AI-based selection of samples from the continuous
motor activity signal, reduced noise and significantly improved
recognition model performance.
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FIGURE 10

Loss and accuracy curves over 500 epochs during the training and validation of the multimodal emotion recognition model.

Among the studies closely related to this research that include
data beyond facial geometric changes, Hieida et al. (2023) fused
several physiological signals from drivers using Sparse Logistic
Regression (SLR) on multimodal data to recognize negative
emotions. They achieved a 74.0% area under the curve (AUC)
for successful emotion classification, integrating the results into
an ADAS system for greater driver comfort. However, their
proposal’s performance is still much lower compared to other
studies, including this one. The use of SLR, while simpler and
faster with lower computational requirements, is less effective
for this type of data compared to more complex algorithms like
CNNs. CNNs generally provide higher performance due to their
ability to handle multimodal signals and automatically extract
relevant features. Additionally, the ability of motor activity alone
to recognize different emotional patterns has been demonstrated,
further validating this study’s findings.

The current proposal by Hu et al. (2024) demonstrated the
potential of facial videos and driver behavior (brake pedal force,

Y-axis position, and vehicle Z-axis position) as inputs in a multitask
training approach. However, not considering other elements of
this second data source significantly affects model performance, an
important aspect that the present study does consider to improve
accuracy in emotion identification. Also, the process that is carried
out is more complex compared to the one presented, which could
result in a longer inference time in real time.

Despite the various approaches discussed, most of the efforts
have focused on image-based models that utilize deep learning
algorithms like CNNs for emotion recognition. However, Vision
Transformers (ViTs) are gaining recognition as an effective
alternative to CNNs for various vision tasks, as they have been
shown to be more robust against image distortions. ViTs take a
different approach by exploring topological relationships between
image patches, allowing them to capture more global and far-
reaching connections, although they require more data-intensive
training (Dai et al., 2021). ViT performance also relies heavily on
factors like optimizer selection, dataset-specific hyperparameters,
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TABLE 5 State-of-the-art, data source, algorithms and accuracy for

emotion recognition.

Author Data
source

Algorithm Accuracy

Lee et al. (2018) Facial
Geometry

CNN 99.95%

Verma and
Choudhary (2018a)

Facial
Geometry

CNN 98.80%

Patil and Veni (2019) Facial
geometry

SVM 86.70%

Shafaei et al. (2019) Multimodal SVM 94.00%

Wang et al. (2020) ECG Artificial neural
network

91.11%

Cui et al. (2020) Facial
geometry

CNN 83.10%

Naqvi et al. (2020) Facial
geometry

CNN 98.93%

Du et al. (2021) Multimodal CNN 84.32%

Oh et al. (2021) Multimodal CNN 86.80%

Xiao et al. (2022) Facial
geometry

CNN 97.20%

Zaman et al. (2022) Facial
geometry

CNN 97.91%

Sukhavasi et al.
(2022)

Facial
geometry

CNN and SVM 94.09%

Mou et al. (2023) Mutimodal CNN 85.34%

Hieida et al. (2023) Mutimodal Sparse logistic
regression

67.00%

Hu et al. (2024) Mutimodal Multitask learning
network

67.92%

Our method (2023) Mutimodal CNN 96.00%

The bold values represents the overall accuracy obtained from the multimodal emotion

recognition model in drivers proposed in this research.

and network depth, more so than CNNs. Preprocessing with
overlapping convolutional filters of smaller size (stride < size) has
been shown to contribute to performance and stability (Xiao et al.,
2021).

CNNs, in contrast, deliver outstanding results even with
relatively smaller datasets, compared to the larger datasets required
by ViTs. This performance difference is largely attributed to the
different inductive biases inherent to each architecture. CNNs’
filter-based structure allows for quick identification of specific
image features, but this same architecture limits their ability to
capture more complex global relationships (Raghu et al., 2021).

This study leverages all the intrinsic properties of CNNs to
address the challenges identified in the literature. By focusing
on data related to drivers’ interactions with vehicle elements,
primarily the steering wheel, accelerator, and brake, this study
demonstrates superior performance compared to state-of-the-
art multimodal models that rely on motor activity data. The
methodology presented here achieves higher performance due to
the factors discussed throughout this section.

6 Conclusions

In conclusion, this study aimed to contribute with a new and
innovativemodel for emotion recognition in drivers throughmotor
activity data and facial expressions, implementing deep learning
techniques such as CNNs, where it was possible to obtain an
accuracy of 98.0% by giving equal weight to motor information
and facial geometry data using feature selection algorithms to
avoid outliers, redundancy and performance loss. These results
demonstrate a high viability of the model for implementation
in real environments, in addition to filling some gaps found in
current studies based on cameras and driver behavior, where the
performance of the presented proposal competes with any model
developed to date.

A significant contribution was also made as a first
approximation to the technique of augmented autobiographical
memory as a method of inducing emotions in drivers, offering
precise figures of success of the process in a specific experimental
environment, guiding researchers to explore other options for
inducing emotions in simulated driving environments.

It is essential to mention that this type of proposals could
potentially help reduce the number of accidents related to negative
emotions, since these emotions are among the main psychological
factors that can influence driving behavior (Maldonado et al., 2020;
Šeibokait et al., 2017). This study also concluded that different
emotional states effectively cause a change in driving behavior and
style. This allows us to identify emotions through the interaction
we have with the vehicle. In addition, this type of proposals could
improve the user experience, provided that vehicle systems know
the emotions of drivers in real time, giving rise to more appropriate
and personalized systems for each individual.

On the other hand, the study of motor activity is not
limited to the automotive industry, but could also be extended to
everyday life, where various emotions could be identified from data
generated by mobile devices such as smartphones, smart watches
and other smart devices for daily use. Although there are still
different sources of information and emotions related to them, this
study represents an important contribution as a first approximation
to the recognition of emotions in drivers, with the aim of improving
the quality and safety of transport systems.

6.1 Future work

As future work, it is proposed to deepen in different
methodologies to neutralize and induce emotions in drivers, since
one of the major limitations of the present study is the low level
of participants who were successfully induced an emotion through
the SAM tests, carried out in experimental simulated driving
environments. Nevertheless, these results offer guidance, cautions
and limitations of the technique in case we wish to implement
it in future research. In addition, it is suggested to expand the
group of participants to ensure a broader spectrum of emotions and
related motor activity and facial geometry data. It is also proposed
to explore other scenarios such as drowsiness, drunkenness and
distraction, where this model could potentially be applied, in order
to mitigate traffic accidents. Even the validation process could
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be extended, particularly with testing under different conditions.
This extension will improve the robustness and applicability of
the emotion recognition model. Nevertheless, the present research
establishes a first approach for real-time emotion recognition.
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