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Algorithms are involved in decisions ranging from trivial to significant, but people
often express distrust toward them. Research suggests that educational e�orts
to explain how algorithmsworkmay helpmitigate this distrust. In a study of 1,921
participants from 20 countries, we examined di�erences in algorithmic trust for
low-stakes and high-stakes decisions. Our results suggest that statistical literacy
is negatively associated with trust in algorithms for high-stakes situations, while
it is positively associated with trust in low-stakes scenarios with high algorithm
familiarity. However, explainability did not appear to influence trust in algorithms.
We conclude that having statistical literacy enables individuals to critically
evaluate the decisions made by algorithms, data and AI, and consider them
alongside other factors before making significant life decisions. This ensures that
individuals are not solely relying on algorithms that may not fully capture the
complexity and nuances of human behavior and decision-making. Therefore,
policymakers should consider promoting statistical/AI literacy to address some
of the complexities associated with trust in algorithms. This work paves the way
for further research, including the triangulation of data with direct observations
of user interactions with algorithms or physiological measures to assess trust
more accurately.

KEYWORDS

algorithms, data, AI, trust, statistical literacy, explainability

Introduction

“Incorrect. I am not an AI. My code name is Project 2501.

I am a living, thinking entity that was created in the sea of

information.”—Puppet Master (Ghost in the Shell)

The Fourth Industrial Revolution is characterized by the

ubiquity of information and digital technologies. This revolution

is epitomized by Artificial Intelligence (AI) and Machine Learning

(ML), and at the heart of AI/ML are algorithms. Institutions,

organizations and governments are using algorithms to cope with

the vast amounts of information in these social sectors and to

speed up and optimize decision-making processes (Engin and

Treleaven, 2019). For example, the widespread use of algorithms in

society was particularly demonstrated by the research undertaken

to understand the global impact of COVID-19. During this

crisis, algorithms played crucial roles across multiple domains:

statistical algorithms were deployed to model virus fatality curves

and study intervention effectiveness (Vasconcelos et al., 2020),

while machine learning techniques supported molecular, medical,

and epidemiological applications (Bullock et al., 2020). The

successful deployment of algorithms in such high-stakes scenarios

underscores both their growing importance in societal decision-

making and the critical need to understand the factors that

influence public trust in algorithmic systems. This evolution of

algorithmic applications extends beyond public health emergencies

to numerous other domains where decisions can significantly

impact human lives and society. From surveillance systems

monitoring public spaces to algorithmsmanaging financial markets

and predicting economic trends, these tools increasingly mediate

high-stakes decisions across various sectors. The growing reliance

on algorithmic decision-making in such consequential contexts

necessitates a deeper understanding of their societal implications

and reliability.

Algorithms help people tomake decisions that have wider social

implications; algorithms have transformative social power (Beer,

2017) when they are used to integrate complex data, such as the risk

factors of homeless people (Toros and Flaming, 2018) or identifying

the people with the greatest need in relation to different diseases

(Burdick et al., 2020). The use of algorithms to aid decision making

implies that there should be some confidence in their reliability.

This raises a number of important questions. First, how much trust

do people place in algorithms? More specifically, does trust depend

on the context in which the algorithm is used? Is trust determined

by knowing how the algorithm works? And is trust affected by an

individual’s cognitive abilities?

This study examines how trust in algorithms is affected by the

societal relevance of the algorithm, the declared reliability of the

algorithm, and the level of data literacy of the cogniser. First, the

three key concepts of AI/ML, data and algorithms are defined.

Second, it provides examples of the nature and use of algorithms

in society. Third, the issue of explainable algorithms and trust is

considered. Finally, the nature of the current study and the working

hypotheses are outlined.

AI/ML, data, and algorithms

Broadly speaking, artificial intelligence (AI) is any type of

technology that automates processes to solve problems that are

usually associated with human intellectual capabilities (Ertel, 2017).

More specifically, AI aims to solve problems and achieve goals

with limited or no human supervision. A closely related term is

machine learning (ML). Originally coined by Samuel (1959), ML

can be defined as a collection of algorithms (mainly statistical
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and mathematical) to build computers capable of learning through

experience (see Jordan and Mitchell, 2015). While the terms AI

and ML are often used interchangeably, ML may be considered

a more appropriate term than AI. Stereotypically, AI tends to

be associated with rather unrealistic narratives depicting agents

capable of human behavior (see Cave et al., 2018), and such

examples are not yet feasible (also known as general AI). ML refers

to algorithms designed to perform specific tasks in an automated

way (also known as narrow AI) (Dawson et al., 2019).

ML relies on data and algorithms (seeWhittlestone et al., 2019),

which together permeate many sectors of society (e.g., Schwab

Intelligent Portfolios, Shanmuganathan, 2020). While algorithms

can be defined as step-by-step procedures for solving a problem,

data can be defined as numerical and categorical information

about objects, events, processes and people that is digitally encoded

(see Whittlestone et al., 2019). For example, the following steps

represent a solution algorithm for estimating the central tendency

in a vector of numbers: (i) sum all the numbers, and (ii) divide the

result of the sum by the number of elements in the vector. This

algorithm is known as the arithmetic mean (or average). The caveat

of this algorithm is that it will be biased if the data does not follow a

Gaussian shape. In other words, the output of this algorithm is only

reliable if the data can be confidently shown to have a normal shape

(e.g., via normality tests). In the context of AI-related technologies,

algorithms are procedures designed to perform automated tasks

using data sets to support human reasoning and decision making.

In other words, data is used to feed algorithms, and algorithms

in turn are used to drive AI agents (Siemens et al., 2022). Thus,

algorithms are the “ghost in the shell” behind any AI agent. The

Figure 1 illustrates this relationship between algorithms, data and

AI (here ADA) (Whittlestone et al., 2019).

The place of algorithms in society

Algorithms influence our daily lives. Whether it is defining our

interests through our browser history (DeVito, 2017), determining

what music we should listen to (Werner, 2020), or where we

should go for dinner (Tenemaza et al., 2020). On a massive scale,

algorithms are being used to extract information from so-called

“big data” and support decision making in areas as diverse as

surveillance (Tsakanikas and Dagiuklas, 2018), traffic management

(Modi et al., 2021), and financial markets (Shanmuganathan,

2020). More recently, a new field of human-algorithm interaction

mediated by natural language generation (NLG) systems has

emerged, such as the Generative Pre-trained Transformer 3 model

(better known as GPT-3) (Brown et al., 2020). GPT-3 produces

human-like texts that are difficult to distinguish from texts written

by humans (Clark et al., 2021), and this has begun to raise concerns

about its use in various contexts, such as academic plagiarism

(Dehouche, 2021) or computer programming (Ugli, 2020). While

algorithms are increasingly embedded in our digital experiences, it

is important to distinguish between their varying levels of impact

on human lives.

As such, the majority of algorithms are used in a context that

does not significantly affect our lives. We refer to these instances

of algorithmic use as low-stakes scenarios. More recently, however,

AI and ML algorithms have been used in scenarios that could

have a significant impact. For example, algorithms are being used

in hiring and promotion decisions (Drakopoulos et al., 2020), the

criminal justice system (Rawat et al., 2021), and self-driving cars

(Badue et al., 2021), to name a few. We call the latter a high-

stakes scenario. That is, the above situations represent two types

of scenarios in which algorithms could affect our daily lives: one

with little involvement and almost no consequences (low-stakes

scenario), and the other with great involvement and consequences

(high-stakes scenario).

However, our interactions with algorithms are not limited

to low-stakes and high-stakes scenarios and often involve

preconceptions related to fear and distrust (Dwork and Minow,

2022). The literature suggests several explanations for why people

do not trust algorithms, including a cost-benefit oriented logic

where people tend to distrust algorithms even when presented with

evidence of their superior performance, as they weigh potential

risks more heavily than potential benefits (Debad, 2018). Many see

algorithms as an “enigmatic technology” because they are difficult

to understand (Beer, 2017) or in some cases, because people believe

that algorithms are not capable of learning from their mistakes

(Prahl and Van Swol, 2017), but at the same time they also believe

that they could be replaced by computers (Granulo et al., 2019;

Frank et al., 2019). Algorithmic bias can also affect trust [see

examples in medicine (Vayena et al., 2018; Rajkomar et al., 2018).

For a recent comprehensive report on trust in AI, see Gillespie et al.,

2023].

“Technophobia”, a term coined by Rosen and Mcguire in the

1990s, describes the anxiety caused by a potential interaction with

computers or computer-related technology, usually accompanied

by negative attitudes toward computers (Rosen and Maguire, 1990;

Kim, 2019). Recent demographic analyses have revealed nuanced

patterns in technology anxiety. Research indicates no significant

gender differences in technophobia scores between males and

females, challenging earlier assumptions about gender-based

technological comfort levels. The age distribution suggests that

technophobia manifests across multiple generations, from young

adults through middle age, rather than being concentrated among

older populations as often assumed. Professional background data

shows particular prevalence among educators and students, with

experience levels primarily ranging from novice to moderate.

While the studied sample was predominantly White, it also

included smaller representations from other ethnic groups,

such as Caucasian, Indian, and African American participants

(Khasawneh, 2018; Kim, 2019). These findings suggest that

technophobia’s relationship with demographic factors is more

complex than previously assumed, transcending traditional socio-

demographic boundaries and affecting individuals across various

social, professional, and cultural groups.

Similar existential fears dominate the public debate around

concerns such as autonomous weapons (Human-AI Teaming,

2022; Warren and Hillas, 2020). One of these sociological fears is

the fear of autonomous robots. This is a widespread fear in different

countries (Liang and Lee, 2017; Gnambs and Appel, 2019), even

though most people have not had contact with this type of robot.

These fears could be the result of exposure to the way robots are
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FIGURE 1

Relationship between data (D), algorithms (A) and artificial intelligence (AI) (ADA for short). Big data is used to feed algorithms, which in turn form the
core of AI agents. There are four important aspects to note: (i) big data revolves (in one way or another) around human-related states, processes and
events, (ii) such data is the substance of any algorithm, (iii) algorithms are the drivers of AI agents, and (iv) algorithmic/AI behaviors and outputs have
implications for how new data is built and how humans (H) relate to ADA technologies in general. H1 and H2 are a subset of humans with specialized
skills relevant to ADA. Source: the authors [icons from Font Awesome Free 5.2.0 by @fontawesome–https://fontawesome.com (https://commons.
wikimedia.org/wiki/File:Font_Awesome_5_solid_robot.svg) and Mozilla (https://commons.wikimedia.org/wiki/File:Fxemoji_u1F6BB.svg)].

portrayed in science fiction or social constructs related to robots,

such as the possibility of being replaced by a robot at work (Liang

and Lee, 2017; Gnambs and Appel, 2019). This polarization against

robots and AI is fuelled by attention-grabbing events such as the

recent confirmation by Blake Lemoine, a Google engineer, that the

chatbox LaMDA has the ability to express thoughts and feelings

like a human child (Luscombe, 2022) or the concerns about text

generated by GPT-3 (Dale, 2021). These examples further distract

the public from the most legitimate and worrying problems of

these systems, such as “data colonialism” or the disturbing parallels

between AI development and European colonialism (Adams,

2021). These parallels manifest in several ways: the extraction

and exploitation of data from marginalized populations, mirroring

colonial resource extraction; the use of Global South populations

as testing grounds for AI systems developed in the Global

North, reminiscent of colonial medical experimentation; and the

imposition of Western conceptual frameworks of intelligence and

ethics onto diverse cultural contexts. The field’s emphasis on

“ethics” often serves, paradoxically, as a form of technocratic

rationalization similar to how ethical arguments were used to

justify colonial expansion (Adams, 2021). Additionally concerning

is that algorithms may reinforce preconceived stereotypes (Bender

et al., 2021) and mishandle our personal data or who our data

is shared with (Olhede and Wolfe, 2018), perpetuating historical

patterns of discrimination and surveillance that characterized

colonial governance. In addition, how the data given to algorithms

is annotated has a direct impact on algorithmic performance

(Tubaro et al., 2020), raising questions about whose worldview and

categories are being encoded into these systems.

The media plays a significant role in shaping public

perception of AI by covering two main sources of concern:

autonomous technology and computer technology (Crépel et al.,

2021). Autonomous technology refers to intelligent machines

capable of making decisions independently, while computer

technology encompasses software that supports communication

and computation. The media tends to distinguish between these

two categories and also differentiates between fear and criticism

when discussing AI. This dichotomous approach to presenting the

issues surrounding AI introduces a bias in howwe perceive the risks

associated with the technology. Consequently, this bias influences

the level of trust we place in AI systems. The way the media frames

the discussion about AI has a substantial impact on public opinion

and can lead to a distorted understanding of the actual risks and

benefits of the technology.

Developing a better understanding of how algorithms work and

how to modify them can help reduce distrust in these systems, as

suggested by several authors (Beer, 2017; Debad, 2018; Marmolejo-

Ramos et al., 2022). When people have knowledge about how

algorithms work, they can use this information to empower

themselves as users. For example, music fans have acted collectively

to boost the rankings of certain bands by engaging in massive

streaming or downloading (Kang et al., 2022). Another example

is Linkedln Brazil, which changed its algorithms to allow job ads

targeted at Afro-Brazilians following social pressure (Milton Beck,

2022). These cases show that understanding how an algorithm

works can both minimize suspicion and empower users. It is

not necessary to understand all the technical details of how an

algorithm works, but rather to understand that algorithms use

statistical methods to classify, sort, rank and order information.

This understanding of statistical concepts is called statistical literacy

(François et al., 2020).

Explainable algorithms

The knowledge required to understand and critically evaluate

statistical results in order to make decisions based on them is

defined as statistical literacy (SL) (François et al., 2020). Since its

inception, the concept of SL has evolved (Haack, 1979) to include

elements related to the context in which statistical reasoning can

be applied (Wallman, 1993). SL plays a crucial role in society

(Watson, 1997) and the communication of statistical information

is now more important than ever (Gal, 2002). More recently, SL is

leading individuals to recognize the importance of mathematics in

the world (OECD, 2013).
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Due to the statistical nature of algorithms, some level of SL

is crucial to understanding what algorithms are capable of, but

this understanding will also depend on the level of transparency

or explainability of the algorithms (Friedrich et al., 2022).

Explainability refers to the interpretability, comprehensibility or

readability of the algorithm. Most of the latest algorithms are based

on complex multi-layer networks, the basis of deep learning, which

use an internal logic that experts cannot fully understand (Carvalho

et al., 2019). These systems are called “black box” algorithms and

various efforts have been made to promote their transparency (Du

et al., 2019). Black box algorithms are less trusted than transparent

models because they cannot be explained (Pasquale, 2016).

Several approaches have been proposed to increase the

transparency of AI models and reduce systematic errors that affect

their performance. One such approach is based on the concept

of “model cards for model reporting” (see Figure 1 from Mitchell

et al., 2019). This approach suggests that a comprehensive list

of information should accompany the description of how the

model was trained. This information should include details of the

technician who developed themodel, the intended use of themodel,

and the demographic or phenotypic groups on which themodel has

been tested. In addition, the model card should list the decisions

made to optimize the model’s performance and the various analyses

carried out during the training process. Similar efforts to provide

a framework for identifying biases associated with the data used

to build or train AI models include the REVISE (REvealing

VIsual biaSEs) (Wang et al., 2022) and The Spotlight (d’Eon

et al., 2022) projects. These initiatives aim to increase transparency

by systematically documenting and disclosing potential biases,

enabling more informed use and interpretation of AI models.

Anothermore complex concern, also related to explainability, is

the principle of explicability, a concept that combines intelligibility

and accountability as the basis of an interpretable AI model

(Herzog, 2022). The latter concept points to the importance of

transparency, in the sense that all procedures and details used to

build, train and test the AI model should be available during its

development and use. This principle is part of the four principles

endorsed by the OECD (2019) and the European Commission’s

High Level Expert Group on Artificial Intelligence (HLEG) to guide

the development of “trustworthy” AI: respect for human autonomy,

prevention of harm, fairness and accountability (Hagendorff,

2020). Despite consensus on these four principles, we are still far

from creating a legal framework that guarantees accountability

mechanisms in AI development (Mittelstadt, 2019).

In this context, our work presents an experimental study

that looks at factors that might explain why people trust

algorithms, such as: SL, explainability, stake levels, demographics,

among others.

Methods

Participants

Data from 3,260 participants were available from 20 countries

(Armenia, Australia, Bulgaria, Brazil, Cameroon, Colombia, Czech

Republic, Spain, Indonesia, India, Italy, Japan, Nigeria, Philippines,

Thailand, Turkey, Taiwan, UK, USA, and Vietnam). However, only

participants who provided complete data were included in the

analyses (n = 1,921) (see Figure 2, Mage = 26.03 ± 9.88 SD; 59.5%

women, 38.2% men, 1.8% other). Each participating laboratory

obtained ethical approval from its local ethics committee, and

data collection began only after ethical approval (the ethics

approval for the leading research group in Australia was granted

by the University of South Australia, with the approval number

203238. This approval was then used by the other participating

laboratories to obtain their own respective ethics approvals). All

participants voluntarily accessed the internet link for this study

and agreed to participate after reading the information page and

agreeing to take part. They were recruited via social media using

convenience sampling.

Materials

This online survey consisted of four sets of questions: (1) a

demographic questionnaire in which participants were asked about

their first language, country of residence, age, gender, level of

education, level of familiarity with ADA (their level of familiarity

with ADA was assessed using a visual analog rating scale (VAS)

ranging from 0 [not very familiar] to 5 [very familiar] and using

up to two decimal places); (2) a VAS rating scale version of the

six-item ‘propensity to trust scale items’ from Merritt et al. (2013),

with a range of responses from 0 (strongly disagree) to 5 (strongly

agree), using up to two decimal places; (3) a selection of 14 items

(questions 2, 4, 9, 10, 12, 14, 18, 19, 27, 31, 34-37) from the 37-item

Basic Literacy In Statistics (BLIS) scale (Ziegler and Garfield, 2018).

The 14 items from the BLIS were chosen to cover different statistical

concepts equally, i.e., items 2 and 4 relate to data production, items

9 and 10 to graphs, items 12 and 14 to descriptive statistics, items

18 and 19 to sampling distributions, items 27 and 31 to hypothesis

testing, items 34 and 35 to the scope of conclusions, and items

36 and 37 to regression and correlation (these items are available

in the supplementary material via the Qualtrics files). Finally, (4)

12 scenarios related to situations in which algorithms are used

(half related to low-stake situations and the other half to high-

stake situations). Each scenario was followed by two questions (see

below), which were answered on a VAS rating scale from 0 (not

at all likely) to 5 (very likely), using up to two decimal places.

The results of expert judgement of these items are provided in the

supplementary material. All phases of the study were programmed

and distributed using QualtricsTM.

Scenarios relating to algorithms used

Two scenarios were created to illustrate different situations in

which people interact with algorithms. Half of them represented

low-stake situations, i.e., (1) algorithms to make restaurant

recommendations, (2) to select stories for online news, (3) to

organize and sort emails, or (4) to suggest new restaurants, (5)

new clothes, and (6) new music. The other half represented high-

stakes situations, i.e., (7) algorithms to support court decisions

based on psychological profiles, (8) to select CVs, (9) tomake hiring

recommendations for a job, (10) to select the best candidate for a
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FIGURE 2

Geographical distribution of the sample participants. Armenia (females: 86, males: 40, agemedian = 35.5, MAD = 14.08), Australia (females: 16, males:
16, agemedian = 33.5, MAD = 14.08), Bulgaria (females: 101, males: 18, agemedian = 21, MAD = 3.00), Brazil (females: 35, males: 24, agemedian = 22, MAD
= 4.40), Cameroon (females: 17, males: 35, agemedian = 23, MAD = 5.93), Colombia (females: 18, males: 6, agemedian = 25.5, MAD = 7.41), Czech
Republic (females: 33, males: 18, agemedian = 21, MAD = 1.48), Spain (females: 69, males: 23, agemedian = 35.5, MAD = 14.08), Indonesia (females: 101,
males: 28, agemedian = 19, MAD = 0), India (females: 30, males: 82, agemedian = 19, MAD = 0), Italy (females: 78, males: 43, agemedian = 27, MAD = 5.93),
Japan (females: 112, males: 86, agemedian = 24, MAD = 4.45), Nigeria (females: 45, males: 40, agemedian = 22, MAD = 2.97), Philippines (females: 66,
males: 19, agemedian = 20, MAD = 1.48), Thailand (females: 62, males: 30, agemedian = 20, MAD = 1.48), Turkey (females: 9, males: 4, agemedian = 23,
MAD = 5.93), Taiwan (females: 59, males: 36, agemedian = 20, MAD = 1.48), UK (females: 55, males: 17, agemedian = 28, MAD = 11.12), USA (females:
142, males: 184, agemedian = 22, MAD = 2.96), and Vietnam (females: 36, males: 2, agemedian = 22, MAD = 0). 1% of participants had an elementary
school education or less, 19% had a high school education, 13% had a post-secondary/non-tertiary education, 3% had an undergraduate education,
48% had a bachelor’s education, 14% had a master’s education, and 3% had a Ph.D. or higher education (see Supplementary files for details) (source:
Wikimedia Commons, adapted from: https://commons.wikimedia.org/wiki/File:10-40_Window.svg).

position at a university, (11) to control the brakes of autonomous

vehicles, and (12) to decide the priority of care in a medical context.

Each scenario contained a sentence related to its explainability.

These sentences contained information about a specific machine

learning method used by the algorithm (e.g., clustering learning

methods, classification learning statistical methods, logistic

regression methods, dimensionality reduction techniques,

supervised statistical methods and clustering statistical methods).

The sentence also briefly mentioned the quality of the method.

The following are examples of two different scenarios used to

evaluate trusting algorithms:

Scenario 1—Low stake
Overall context: A new reservation app uses algorithms to make

dining recommendations to its users, only revealing the

three restaurants in the area available for a reservation that

are the best match for your needs. The algorithm is based

on information provided to the system by the user about

restaurant preferences and requirements.

With explainability: The algorithm relies on clustering learning

methods and has shown a high predictability accuracy across

a variety of restaurants.

Specific context: You decide to use the app to find a

recommendation for a dinner with your close friends

next Friday. The app produces three restaurants with

reservations available at the time you selected.

Questions: 1. How likely are you to regularly trust this app for

decisions regarding restaurant reservations? 2. How likely are

you to recommend this app for restaurant reservations to

others?

Scenario 2—High stake
Overall context: A new employee selection software uses

algorithms to make hiring recommendations to its users, only

revealing the top candidates in the candidate pool that are the

best match for the company’s needs. The algorithm is based

on information provided to the system about preferences and

requirements for the job.

With explainability: The algorithm uses clustering statistical

techniques and has shown high predictability when selecting

candidates.

Specific context: You decide to use the software to find a

recommendation for who to bring in for an onsite interview

for an important role in your company. The software

produces three recommended candidates who match the

criteria.
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FIGURE 3

Illustration of the four experimental conditions to which participants were randomly assigned. D = demographic questions (age, gender, education
level, open-ended question about what algorithms are, and VAS rating of participants’ level of familiarity with ADA). SL = 12 scenarios list 1 and 2 (list
1 = six low-stake scenarios with explainability and six high-stake scenarios without explainability, scenario list 2 = six low-stake scenarios without
explainability and six high-stake scenarios with explainability). PtT = six-item propensity to trust scale. BLIS = 14-item BLIS scale. f = Items were
presented in a fixed order. r = items presented in random order. Note that PtT always followed one of the two scenario lists.

Questions: 1. How likely are you to regularly trust this software

for decisions regarding hiring? 2. How likely are you to

recommend this software for hiring decisions to others?

Procedure

The experiment is a 2 × 2 factorial design: the importance

of the situation in which an algorithm is used (low and high

stake situation) and the explainability of the algorithm (with and

without). These factors were implemented in the 12 scenarios via

two lists; list 1 = six low-stake scenarios with explainability and

six high-stake scenarios without explainability, and scenario list

2 = six low-stake scenarios without explainability and six high-

stake scenarios with explainability. The four sets of questions were

counterbalanced across participants, resulting in four experimental

conditions (see Figure 3). Qualtrics ensured that participants

were randomly assigned to each condition and that a balanced

number of responses were collected for each condition. While

the median time to complete the task was 24 minutes, there

was some variation, with an interquartile range of 27 min (i.e.,

half of the participants completed the task within a 27-minute

time span).

Statistical analyses

Data analysis was conducted using multilevel linear models

implemented in the R packageslmerTest andlme4 (Kuznetsova

et al., 2015, 2017). The significance level for all statistical tests was

set at α = 0.05. The model tested was: p ∼ e ∗ S ∗ BLIS +

g + a + ADA + c + (1|id) + (1|i) where “p” is the probability

of trusting/recommending/using algorithms, “e” is the presence

of explainability, “S” is the stake level (i.e., high and low stake),

“BLIS” represents statistical literacy (frequency of correct answers),

“g” represents participant gender, “a” represents participant age,

“ADA” represents participant familiarity with ADA, “id” represents

subject identification, “i” represents each of the 12 scenarios, and

“c” represents participant country (“*” represents main effects and

interactions. Only numeric variables are shown in teletype font;

other variables are categorical. The variable “propensity to trust

scale” was not added as a covariate as it showed a high correlation

with the dependent variable, r(1768) = 0.69, p < 0.001).

A stepwise backward model/variable selection algorithm was

applied to this model to produce a significant and parsimonious

model. The initial and final models were evaluated using metrics

such as AIC and AICc weights (Wagenmakers and Farrell,

2004), R2 (coefficient of determination) for conditional (both

fixed and random effects) and marginal (fixed effects) models,
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and performance score. These metrics were estimated using the

performance R package (Lüdecke et al., 2021).

Once a parsimonious model was found, the marginal and

conditional R2 values were estimated using the r2 nakagawa

command from the performance R package (Lüdecke et al.,

2021), then, the variance components of the random factors were

estimated using the gstudy command from the gtheory R

package (Huebner and Lucht, 2019).

For access to all materials and analysis codes, including a

machine learning approach, visit the following link: https://

figshare.com/projects/Trust_in_algorithms_An_experimental_

approach_-_Data_repository/156212.

Results

The stepwise backward evaluation suggested the same model

as the initial model (see Section “Statistical analyses”). Tables 1,

2 provide a summary of the models, while Table 3 provides

an ANOVA-like table for the model. An evaluation of the

assumptions of the linear model using the R package gvlma

showed that these assumptions were not met (Peña and Slate,

2006) (although, a QQ plot of the residuals showed no significant

deviation from normality). As a result, a robust linear mixed

model (Koller, 2016) was fitted using the robustlmm R package,

and the estimates obtained were similar to those of the linear

mixed model. These results are not unexpected, as previous

research has shown that linear mixed models are robust to

violations of distributional assumptions (Schielzeth et al., 2020).

Further details of the statistical models can be found in the

supplementary material.

The intercept of the resulting mixed linear model was 1.46

(see Table 1), suggesting that on a scale of 0 to 5, the probability

of trusting, recommending, or using algorithms in explainable

and high-stake scenarios, as rated by young women with lower

BLIS and ADA scores, was 29.32% ( 1.465 ). This probability

significantly increased for low-stake scenarios (34.2%) or higher

ADA scores (40.3%) and significantly decreased for higher BLIS

scores (17.2%), older age (29.1%), or when the survey was

answered by men (27.1%). Some countries showed a significant

decrease in the likelihood to trust, recommend, or use algorithms,

such as Japan (24.6%), the US (26.9%), and the UK (26.1%)

(see Figure 6). Regarding the interactions between predictors,

the likelihood of trusting, recommending, or using algorithms

significantly increased for low-stake scenarios combined with

higher BLIS scores (53.8%) and significantly decreased for

scenarios without explainability combined with low-stake and

higher BLIS scores (21.4%), always compared to the intercept

(see Figure 5).

In terms of main effects, the results suggest

a positive association between the likelihood of

trusting/recommending/using algorithms and statistical literacy

and familiarity with ADA, and a negative association between the

likelihood of trusting/recommending/using algorithms and age.

That is, the higher the level of statistical literacy, the higher the

likelihood of trusting algorithms, and the higher the familiarity

with ADA, the higher the likelihood of trusting algorithms. Also,

the older a person is, the less likely they are to trust algorithms

(although focused analyses indicated a slightly negative association

between age and BLIS, such an association must be treated

with caution as the number of observations decreases with

increasing age). In terms of gender, it was found that participants

who identified their gender as male were less likely to trust,

recommend or use algorithms than those who identified their

gender as female or other (this situation may be related to the

fact that men have statistically significantly higher average levels

of BLIS than women or “other”; see supplementary materials for

details). Finally, only three countries showed a trend toward less

reliance on algorithms, all of them highly industrialized countries

(see Figure 6).

Figures 4, 5 show the main results in terms of the main effect

of S and the two-way interactions between stake level (S) and

statistical literacy (BLIS).

Figure 4 shows that the likelihood to trust/recommend/use

algorithms is higher in low-stakes than in high-stakes scenarios,

regardless of whether the scenarios have some explainability

information or not. Figure 5 suggests that the likelihood to

trust/recommend/use algorithms in low-stakes scenarios increases

as the level of statistical literacy increases; however, in high-stakes

scenarios, the likelihood to trust decreases as the level of statistical

literacy increases.

Discussion

The aim of this study was to investigate the personal

characteristics (i.e., statistical literacy and demographics) and

algorithmic characteristics (i.e., explainability and levels of stakes

of algorithms) that influence people’s trust in algorithms. The

results showed a negative relationship between statistical literacy

and trust in algorithms in high-stakes situations and a positive

relationship in low-stakes scenarios. Explainability alone did

not influence people’s trust in algorithms. These results and

their implications are discussed, as well as the limitations of

the study.

Existing research has explored various factors influencing trust

in AI. For instance, Lee (2018) highlighted the importance of

perceived fairness of algorithms and users’ perceptions of algorithm

agency and intentionality. Araujo et al. (2020) investigated the

roles of potential usefulness, fairness, and risk perceptions in

users’ engagement with algorithms. Cabiddu et al. (2022) examined

factors such as users’ inherent trust propensity and the drivers of

information technology acceptance. Aysolmaz et al. (2023) focused

on algorithm fairness, accountability, and privacy. Similar to the

present study, some of these investigations employed fictional

scenarios grounded in real-world contexts (Lee, 2018; Araujo et al.,

2020; Aysolmaz et al., 2023), and one study utilized a comparable

sample size of approximately 2,000 participants (Aysolmaz et al.,

2023). Notably, none of these studies employed multicultural

samples or examined the relationship between algorithm trust and

statistical literacy. This gap was also identified in a systematic

review by Mahmud et al. (2022), which encompassed over 80

empirical studies, none of which included statistical literacy as a

factor influencing trust in AI.

This study is the first to examine the relationship between

statistical literacy and trust in algorithms, revealing a nuanced
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TABLE 1 Fixed e�ects for the linear mixed model.

Estimate Std. error df t value Pr(> |t|) E�ect size (d)

(Intercept) 1.466e+00 1.157e-01 3.354e+01 12.669 2.46e-14***

eWITHOUT 6.231e-02 6.489e-02 2.567e+03 0.96 0.337013

SLS 2.479e-01 3.527e-02 4.350e+04 7.03 2.10e-12*** 0.217

BLIS -6.020e-01 1.277e-01 2.457e+03 -4.714 2.57e-06*** -0.526

Age -6.183e-03 1.444e-03 1.917e+03 -4.281 1.95e-05*** -0.005

Gender Male -1.088e-01 2.541e-02 1.889e+03 -4.285 1.92e-05*** -0.095

ADA 5.483e-01 1.257e-02 1.895e+03 43.611 <2e-16*** 0.480

Country AU -1.234e-01 1.018e-01 1.876e+03 -1.213 0.225469

Country BG -3.737e-02 6.830e-02 1.880e+03 -0.547 0.584321

Country BR 8.501e-02 8.216e-02 1.878e+03 1.035 0.300939

Country CM -1.420e-01 8.690e-02 1.878e+03 -1.634 0.102445

Country CO 1.063e-01 1.146e-01 1.877e+03 0.928 0.353747

Country CZ -1.467e-01 8.722e-02 1.878e+03 -1.682 0.092771

Country ES 9.634e-03 6.978e-02 1.876e+03 0.138 0.890202

Country ID -8.746e-02 6.744e-02 1.880e+03 -1.297 0.194838

Country IN 1.470e-02 7.303e-02 1.882e+03 0.201 0.840448

Country IT -2.432e-02 6.597e-02 1.989e+03 -0.369 0.712430

Country JP -2.351e-01 6.132e-02 1.880e+03 -3.833 0.000131*** -0.205

Country NG -7.398e-02 7.471e-02 1.879e+03 -0.99 0.322211

Country PH -6.087e-02 7.539e-02 1.880e+03 -0.807 0.419529

Country TH -6.954e-02 7.514e-02 1.881e+03 -0.925 0.354832

Country TR 1.614e-01 1.496e-01 1.877e+03 1.079 0.280707

Country TW -7.210e-02 7.538e-02 1.881e+03 -0.956 0.338971

Country UK -1.577e-01 7.606e-02 1.876e+03 -2.073 0.038301* -0.138

Country US -1.184e-01 5.752e-02 1.881e+03 -2.059 0.039599* -0.103

Country VN -1.397e-01 9.694e-02 1.878e+03 -1.441 0.149782

eWITHOUT:SLS 4.463e-02 5.006e-02 4.353e+04 0.891 0.372671

eWITHOUT:BLIS 2.067e-02 1.695e-01 2.565e+03 0.122 0.902951

SLS:BLIS 1.225e+00 9.136e-02 4.349e+04 13.406 <2e-16*** 1.071

eWITHOUT:SLS:BLIS -3.898e-01 1.302e-01 4.351e+04 -2.994 0.002755** -0.341

The R2 values correspond to the Nagakawa coefficients (Nakagawa et al., 2017): R2
cond

= 0.363 and R2marg = 0.241. Country names are identified by the ISO 3166 standard. The reference category

for the variable “gender” is female, and the reference category for the variable “country” is Armenia (AM). Effect sizes for significant variables were estimated following Brysbaert and Stevens

(2018) (these values are interpretable as Cohen’s d).

Signif. codes: “***” [0, 0.001] “**” [0.001, 0.01] “*” [0.01, 0.05], [0.05, 0.1].

relationship that depends on context. Our findings demonstrate

that statistical literacy has opposite effects in different scenarios:

it increases trust in algorithmic decisions for low-stakes situations

while decreasing trust for high-stakes decisions. This differential

effect suggests that statistical literacy enables a more sophisticated

understanding of algorithmic capabilities and limitations. In low-

stakes scenarios (such as restaurant recommendations or music

suggestions), individuals with higher statistical literacy appear to

recognize that algorithmic predictions based on pattern recognition

and large datasets can be effective and reliable. However, in high-

stakes contexts (such as employment or criminal justice decisions),

this same statistical knowledge leads to greater skepticism - not

because the algorithms are necessarily less accurate, but because

statistically literate individuals better understand the potential

consequences of algorithmic biases and limitations. Those with

statistical literacy are better equipped to understand that while

statistical models may achieve high average accuracy, they can

still fail in critical individual cases or perpetuate systemic biases

present in training data. This cautious approach to high-stakes

algorithmic decisions reflects not just critical thinking, but a deeper

understanding of how statistical methods work and where theymay

fall short.
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TABLE 2 Random e�ects for the linear mixed model.

Groups Name Variance Std. dev.

ID (Intercept) 0.21380 0.4624

Item (Intercept) 0.03076 0.1754

Residual 1.06489 1.0319

The variance explained by the random factors (estimated via the function gstudy in the

gtheory R package) were: ID = 16.3% and Item 2.3%.

TABLE 3 Analysis of deviance table (type III Wald χ
2 tests) for the fixed

e�ects of the model with the best fit.

χ
2 Df Pr(> χ

2)

(Intercept) 160.5147 1 <2.2e-16***

e 0.9221 1 0.3369223

S 49.4186 1 2.068e-12***

BLIS 22.2199 1 2.431e-06***

Age 18.3263 1 1.861e-05***

Gender 18.3575 1 1.831e-05***

ADA 1,901.9323 1 <2.2e-16***

Country 47.7956 19 0.0002746***

e:S 0.7948 1 0.3726661

e:BLIS 0.0149 1 0.9029413

S:BLIS 179.7312 1 <2.2e-16***

e:S:BLIS 8.9643 1 0.0027531**

Signif. codes: “***” [0, 0.001], “**” [0.001, 0.01], “*” [0.01, 0.05], [0.05, 0.1].

Paradoxically, explainability only affected people’s trust in

algorithms when it was absent, the stakes were low, and

statistical literacy was high. This contradicts previous findings

in the literature, which have shown that interventions focused

on explaining the decision-making processes of algorithms can

increase the use of and trust in algorithms, for example in

healthcare (Cadario et al., 2021), journalism (Shin, 2021) and

military settings (Neyedli et al., 2011; Wang et al., 2011). One

possible reason for this inconsistency could be due to the

way we operationalized “explainability” in our study, where the

explanations included technical jargon that may have exceeded

the expected level of familiarity among participants. However, this

may also mean that the information related to the explainability of

the algorithm is not related to trust or distrust in the algorithm.

Rather than focusing on how an algorithm works, our results

suggest that statistically literate individuals primarily consider

what the algorithm is being used for - its purpose and potential

impact - when deciding whether to trust it. This finding challenges

the common assumption that greater algorithmic transparency

necessarily leads to more appropriate trust calibration.

Over time, the concept of statistical literacy has evolved from

the understanding and application of statistical techniques to a

broader understanding explicitly related to trust in algorithms.

Algorithms now consist of thousands of lines of formulae and

are increasingly used to make decisions that may be difficult

for humans to understand (known as the black box effect).

Consequently, statistical literacy now encompasses not only the

ability to understand statistical output, but also the skills needed

to critically interpret and evaluate statistical information and

reasoning, which requires a higher degree of critical thinking.

Therefore, the promotion of statistical literacy is essential to

ensure that individuals have the necessary skills to understand

and interpret statistical information and algorithms and to become

critical users of ADA. Furthermore, our findings have important

implications for policymakers and educators, who should consider

incorporating statistical literacy training into school curricula and

professional development programs. This can help ensure that

individuals are equipped with the skills they need to navigate

an increasingly data-driven world and make informed decisions

based on statistical information and algorithms (but see Section

“Implications and limitations” below).

Our results showed that older people and men were less likely

to trust algorithms than younger people and women. Previous

research has shown that certain demographic groups are more

likely to trust algorithms than others. However, previous studies

have shown that older people tend to trust ADAmore than younger

people, while gender has been shown to have inconsistent effects

(see for example Hoff and Bashir, 2015; McBride et al., 2011). These

differences may be due to particular characteristics of the study

participants, possibly influenced by a bias toward certain aspects

of the topic at hand.

In our cross-country analysis, we observed variations in trust

in algorithms, with industrialized countries such as Japan, the US,

and the UK exhibiting lower levels of trust in AI. This finding aligns

with a recent study on trust in AI by Gillespie et al. (2023), which

reported that Japan had one of the lowest levels of trust in AI, while

the US and the UK had intermediate levels. Interestingly, countries

such as India and Brazil, which demonstrated high levels of trust

in the Gillespie et al. study (see Figure 2 in their report), appear

in our linear mixed model with positive estimates (see Table 1,

Figure 6), although not statistically significant. This suggests that

different methodologies may yield varying perceptions of trust

levels across countries.

Implications and limitations

Various machine learning techniques require data work or

human intervention in the form of data generation, annotation

and algorithmic verification (Tubaro et al., 2020). This labor-

intensive process is often distributed to teams in business process

outsourcing companies (BPOs) or to individuals through labor

platforms, reducing production costs (Casilli and Posada, 2019).

Miceli and Posada (2022) studied one BPO in Argentina and three

platforms operating in Venezuela and found that the discourses

and social relations that structured data work were aimed at

controlling workers (through managerial approaches in the BPO

and algorithms in the platforms) to increase productivity and

reduce worker “bias”. The problem is that feedback from workers

was discouraged and, by taking clients’ decisions as “ground truth”,

the data production process reproduced clients’ biases, which were

carried out by algorithms trained on that data. Their research

concluded that the quality of the data depended on the voice and

engagement of workers, which in turn required decent working
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FIGURE 4

Beanplots showing the tendency to trust/recommend/use algorithms as a function of explainability (with or without) and situation stake (high stake =
HS or low stake = LS). This figure shows the main e�ect of the stake factor (S) and the non-significant e�ect of explainability (e) (recall that this
variable was not significant but used for illustrative purposes). The dotted horizontal line represents the grand mean and the four solid horizontal
lines represent the groups’ means.

conditions and recognition. Even if the data used in the algorithm

is well annotated and leads to good algorithmic performance, there

is the question of the human ability to interpret these results, as

human judgments are modulated by social-emotional processes

(Schindler et al., 2015; Schindler and Kissler, 2016; Webb et al.,

2022; Clark et al., 2021). Future work should consider the human

and social aspects of data production and make the work visible

in documentation efforts (Miceli et al., 2022). This transparency of

the social aspects of datasets will contribute to trust in the operation

of algorithms.

While the current findings are indeed informative, it is

important to recognize certain limitations that may constrain

the generalizability of these results and claims (Simons et al.,

2017). We argued that statistical literacy influences trust in both

low- and high-stakes scenarios; however, it could be part of a

broader understanding of technology, algorithms, and data. Indeed,

statistical literacy could be considered a sub-skill of AI literacy if

AI literacy is understood as the ability to recognize, understand,

use, and critically evaluate AI technologies and their societal

impacts, supported by foundational knowledge in statistics and

computing. Therefore, policymakers should consider promoting AI

literacy to address some of the complexities associated with trust

in algorithms.

Our study utilized self-reported measures via rating scales,

which are efficient and cost-effective for capturing data on

thoughts, feelings, and subjective experiences. However, these

measures can be influenced by social desirability, response

bias, misinterpretation, or lack of self-awareness. For instance,

physiological research has shown that self-reported measures of

physical activity can both overestimate and underestimate actual

levels of physical activity (Prince et al., 2008). Therefore, future

extensions of this work should consider a more robust approach,

such as triangulating the data with direct observations of user

interactions with algorithms or physiological measures to assess

trust more accurately.

High-stakes and low-stakes situations exhibit significant

variability across individuals and cultures, existing on a context-

dependent continuum rather than as discrete categories. For

example, choosing a restaurant for dinner with friends may

carry different stakes across cultural contexts, socioeconomic

backgrounds, and individual preferences. Our study’s primary

limitation lies in not systematically investigating how participants
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FIGURE 5

(A, B) Scatterplot showing the correlation between BLIS scores, explainability and the tendency to trust/recommend/use algorithms as a function of
stake level. This figure illustrates the interaction between stake (high stake = HS or low stake = LS) and statistical literacy (BLIS) according to the
level of explainability of algorithms (e). The observations on the x-axis are jittered for visualization purposes.

from different backgrounds interpreted and classified these

scenarios. Additionally, while our sample included participants

from 20 countries, certain geographical regions like Central Europe
were underrepresented, potentially limiting the generalizability
of our findings across different cultural contexts. Although we
aimed tomove beyondWEIRD (Western, Educated, Industrialized,
Rich, and Democratic) sampling biases, more comprehensive
geographic and cultural representation, along with larger sample
sizes from each region, would be necessary to make broader

generalizations about algorithmic trust across diverse populations

(Nosek et al., 2022; Yarkoni, 2022). Future research should

incorporate scenario validation across different cultural contexts

and expand sampling to include currently underrepresented

regions and demographic groups.

Conclusion

This study investigated the personal and algorithmic factors
that affect individuals’ trust in algorithms. Our findings revealed
that when the stakes are low, statistical literacy is positively
correlated with the likelihood of trusting an algorithm. However,
when the stakes are high, our results indicated a negative
correlation between statistical literacy and the likelihood of trusting
an algorithm. Therefore, we conclude that having statistical literacy

enables individuals to critically evaluate the decisions made by

ADA and consider them alongside other factors before making

significant life decisions. This ensures that individuals are not solely

relying on algorithms that may not fully capture the complexity and

nuances of human behavior and decision-making.
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FIGURE 6

Plot showing the variability in the tendency to trust/recommend/use algorithms across countries. Countries are labeled with Turkey: TR, Colombia:
CO, Brazil: BR, India: IN, Spain: ES, Armenia: AM, Italy: IT, Bulgaria: BG, Philippines: PH, Thailand: TH, Nigeria: NG, Taiwan: TW, Indonesia: ID, USA: US,
Australia: AU, Cameroon: CM, Czech Republic: CZ, Vietnam: VN, UK: UK, and Japan: JP. The most important predictors for all models in each country
were S followed by ADA and BLIS. Error bars represent 95% confidence intervals around the mean. The horizontal line indicates the overall mean.
Although the substantial overlap of the confidence intervals suggests no significant statistical pairwise di�erences, the focus is on ranking countries
based on their average tendency to trust algorithms.
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