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The impressive performance of modern Large Language Models (LLMs) across

a wide range of tasks, along with their often non-trivial errors, has garnered

unprecedented attention regarding the potential of AI and its impact on everyday

life. While considerable e�ort has been and continues to be dedicated to

overcoming the limitations of current models, the potentials and risks of

human-LLM collaboration remain largely underexplored. In this perspective,

we argue that enhancing the focus on human-LLM interaction should be a

primary target for future LLM research. Specifically, we will briefly examine some

of the biases that may hinder e�ective collaboration between humans and

machines, explore potential solutions, and discuss two broader goals—mutual

understanding and complementary team performance—that, in our view,

future research should address to enhance e�ective human-LLM reasoning

and decision-making.
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1 Introduction

The release of chatGPT has raised unprecedented attention and generated high

expectations on the capabilities of AI systems that leverage large language model (LLM)

technologies. These systems have demonstrated impressive results across a wide range of

tasks (Liu et al., 2023b; Yang et al., 2024), such as language translation (Jiao et al., 2023),

text summarization (Pu and Demberg, 2023), question-answering (Bahak et al., 2023),

reasoning (Bang et al., 2023), and text generation (Chen et al., 2023b; Jeblick et al., 2022),

prompting questions about the potential emergence of “thinking machines” and artificial

general intelligence sparks (Bubeck et al., 2023). However, several studies have highlighted

the limitations of these systems. Just to provide a few examples, they have been shown to

provide entirely fabricated information (Huang et al., 2023), to exhibit sensitivity to small

changes in the way questions are posed (Pezeshkpour and Hruschka, 2023), and to agree

with human opinions regardless of content (Sharma et al., 2023).

Human beings are also far from being entirely rational, and not in an obvious way.

The deviations of human reasoning from normative benchmarks create an intriguing

puzzle that is not yet completely understood in Cognitive Science. On the one hand,

systematic and persistent biases manifest even in well-motivated and expert individuals

engaged in simple, high-stakes probability tasks (Baron, 2023). This suggests that

reasoning errors do not stem from carelessness, computational limitations, or lack of

education, nor are they necessarily caused by “external constraints” such as inadequate

information or time pressure. On the other hand, individuals are often capable of complex
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inferences (Tenenbaum et al., 2011; Mastropasqua et al., 2010).

In particular, evidential reasoning—i.e., the assessments of

the perceived impact of evidence—appears to be quite

effective, demonstrating greater accuracy and consistency

over time compared to corresponding posterior probability

judgments (Tentori et al., 2016). This holds true even though,

from a formal standpoint, calculating the former is no easier than

calculating the latter.

Notably, there are solid reasons to believe that neither LLM-

based AI systems nor humans will turn into completely rational

agents anytime soon. With regard to the former, the inherent

mechanisms of LLMs impose significant constraints on their

capabilities. Bender and Koller (2020) and Bender et al. (2021)

coined the term “stochastic parrots” to highlight the fact that

LLMs focus on form over meaning and stressed the difficulty of

getting the latter from the former. More recently, Mahowald et al.

(2024) formalized the problem in terms of the distinction between

formal and functional linguistic competence, arguing that LLM

architectures require substantial modifications to have a chance

of achieving the latter. Finally, Xu et al. (2024b) indicated that

inconsistencies between LLMs and the real world are, to some

extent, inevitable. In a similar vein, efforts to enhance human

rationality by using visual aids (Khan et al., 2015), promoting

accountability (e.g., Boissin et al., 2023), or shaping external

environments (e.g., nudging, Thaler and Sunstein, 2009) have often

yielded modest results that are not easily generalizable to other

contexts (Chater and Loewenstein, 2023). The limited effectiveness

of these interventions suggests that the causes of reasoning biases

are deeply ingrained in our cognitive processes, and we cannot

expect to eradicate them, at least not in the near future.

Humans and LLMs are not only imperfect yet highly capable,

but they also differ significantly in their respective strengths and

weaknesses (Chang et al., 2023; Shen et al., 2023; Felin and Holweg,

2024; Leivada et al., 2024). Thus, while mere interaction between

the two does not guarantee success, a carefully designed human-

LLM synergy has the potential to prevent critical problems and

achieve results that surpass what either could accomplish alone.

Indeed, recent research highlights human-LLM collaboration

as a key direction toward realizing genuinely human-centered

AI. (Dellermann et al., 2019; Akata et al., 2020; Lawrence, 2024;

Wang et al., 2024; Ma et al., 2024; Liao and Wortman Vaughan,

2024). However, in our view, effectively addressing this issue

necessitates a significant shift in perspective. The primary

challenge we must confront—and one that will increasingly be

faced in the future—lies not so much in the specific boundaries

of human rationality or the current technological limitation of

LLMs, but rather in the nature and severity of biases that can arise

from their interaction. For this reason, we do not aim to provide

an exhaustive list of the many cognitive biases that individuals—

and, in some cases, LLMs—exhibit. Instead, we will focus on

three major problems of LLMs—hallucinations, inconsistencies

and sycophancy—demonstrating how they can impact the

interplay with humans. We will then discuss two key desiderata,

mutual understanding and complementary team performance,

which, in our opinion, future research should address more

comprehensively to foster effective human-LLM reasoning and

decision-making.

2 Potential weaknesses in human-LLM
interaction

One of themost well-known problems of LLMs is hallucination,

which refers to their distinct possibility of generating outputs that

do not align with factual reality or the input context (Huang

et al., 2023). Hallucinations in LLMs have several causes, from

flawed data sources (Lin et al., 2022b) to architectural biases (Li

et al., 2023b; Liu et al., 2023a). To exacerbate the issue, when

LLMs engage in hallucination, they maintain an aura of authority

and credibility by generating responses that appear coherent and

well-formed in terms of natural language structure (Berberette

et al., 2024; Su et al., 2024). Such a behavior can easily lead

to an automation bias (Cummings, 2012), where users tend to

over-rely on information and suggestions from automated systems

compared to those from their peers. Indeed, while people can

easily detect nonsensical or blatantly unrelated outputs from LLMs

when they have a good knowledge of the topic, they are more

likely to overlook such errors when they lack expertise in the

subject. This creates a paradox: one must already possess the

correct answer to reliably avoid beingmisled by LLMs. Nonetheless,

expertise itself is not a guarantee that everything will go smoothly.

Humans, including professionals such as, for example, physicians,

often exhibit a tendency known as overconfidence (Hoffrage,

2022), where they tend to overestimate their abilities or the

accuracy of their knowledge. Predicting which of these somewhat

opposite attitudes would prevail in a given interaction between

humans and LLMs is extremely difficult. LLMs could, in principle,

counteract overconfidence by providing negative feedback to users.

However, what might seem like an easy solution runs into another

characteristic of these systems: their tendency toward sycophancy,

which is the inclination to please users by generating responses

that are agreeable rather than strictly accurate, especially when

trained with biased human feedback or tasked with generating

content in subjective domains (Sharma et al., 2023; Ranaldi

and Pucci, 2023; Wei et al., 2023). Furthermore, overly critical

feedback may lead to algorithm aversion bias (Dietvorst et al.,

2014), where users disregard information that conflicts with

their previous beliefs, even when it is actually pertinent and

correct. This bias reflects the skepticism with which humans—

especially professionals in high-stakes fields like healthcare and

law, where accountability is paramount—often view the advanced

capabilities of LLMs (Park et al., 2023; Cheong et al., 2024;

Choudhury and Chaudhry, 2024; Eigner and Händler, 2024;

Watters and Lemanski, 2023). Additionally, algorithm aversion

may be fueled by a loss of confidence following unsatisfactory

initial interactions (Huang et al., 2024; McGrath et al., 2024).

In particular, LLM inconsistency—reflected in their tendency to

produce varying outputs for very similar (or even identical)

inputs—can easily leave lasting impressions of unreliability. This

issue is exacerbated by high prompt sensitivity, where the LLM

tend to provide different answers even with slight changes in

how questions are phrased (Pezeshkpour and Hruschka, 2023;

Voronov et al., 2024; Mao et al., 2024; Sayin et al., 2024). As

a consequence, individuals may become increasingly reluctant

to utilize LLMs when confronted with important reasoning and

decision-making tasks.
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Let us now consider a situation that, in principle, would

be expected to unfold more smoothly—namely, one in which

neither LLMs nor humans are outright incorrect. It might be

assumed that accuracy alone would suffice to prevent errors;

however, unfortunately, this is not necessarily the case. A well-

known bias that could persist or even intensify in interactions

where humans feel competent and LLMs provide reliable evidence

is confirmation bias: the tendency to selectively seek, interpret,

and recall information that supports existing beliefs (Nickerson,

1998). Indeed, when users query LLMs based on initial hypotheses

and the models provide selective answers mainly based on local

context, a vicious cycle can be fueled. A closely related cognitive

bias that may similarly be exacerbated in interactions with LLMs

is belief bias, that is the tendency to conflate the validity of an

argument with the confidence placed in its conclusion (Evans

et al., 1983). For instance, users might fail to realize that evidence

obtained too easily, thanks to the “efficiency” of LLMs in supporting

a cherished hypothesis, is not as comprehensive or conclusive

with respect to the hypothesis in question as it may seem.

Another risk is overestimating redundant information: without full

control over the sources LLMs draw from, users may overlook

redundancy and mistakenly believe they are gaining new evidence

to support a particular belief or prediction, when in fact they are

not (Bohren, 2016). Similarly, interactions between individuals and

LLMs might be susceptible to the so-called anchoring to initial

hypotheses or inquiries (Tversky and Kahneman, 1974), as well as

to order effects (Hogarth and Einhorn, 1992). These biases refer,

respectively, to the tendency to rely excessively on reference points

(even if irrelevant) when making estimates, and to assign greater

importance to, or better recall, the first or last pieces of information

encountered, at the expense of less available content.

Ex-post evaluation of interactions between human reasoners

and LLMs (i.e., the assessment of their interactions after they have

taken place) is not immune to errors either. Among the major

issues, one cannot help but consider the well-known hindsight

bias, which is the tendency to perceive events, once they have

occurred, as more predictable than they actually were (Arkes,

2013). For instance, individuals might overestimate the accuracy

of LLM predictions simply because they overlook how often the

original outputs of these models are tentative and inconclusive.

Similarly, due to the selective information provided by the models,

individuals may underestimate their own initial uncertainties.

The concern is that if this misinterpretation of the interaction

occurs collaboratively, biases like the one discussed above could be

reinforced rather than mitigated.

In conclusion, interactions between the LLM and the user can

amplify their inherent weaknesses or even create new ones. This

underscores the urgent need for methodological innovations that

integrate LLM behaviors with new, interactively designed solutions;

without this, they may fail or even backfire.

3 Toward e�ective human-LLM
interaction

In this section, we will first present potential solutions to

three major challenges of LLMs: hallucinations, inconsistencies,

and sycophancy. We will then discuss how fostering mutual

understanding and enhancing complementary team performance

are crucial for achieving effective collaboration in reasoning and

decision-making between humans and LLMs.

3.1 Detecting and mitigating the impact of
hallucinations

Hallucinations are extensively studied in the field of Natural

Language Processing (NLP), with various approaches proposed

to prevent, detect, or mitigate their occurrence (Huang et al.,

2023; Ji et al., 2023a; Rawte et al., 2023; Zhang et al., 2023).

Following Huang et al. (2023), we categorize hallucinations into

factuality hallucinations, where the model generates responses

that contradict real-world facts, and faithfulness hallucinations,

where the model’s responses are not aligned with user instructions

or the provided context. The latter can be further divided into

intrinsic hallucinations, involving responses that directly contradict

the context, and extrinsic hallucinations, in which the generated

content cannot be verified or refuted based on the context (Maynez

et al., 2020).

One way to improve the factuality of model-generated content

is via retrieval augmented generation (Lewis et al., 2020), which

conditions the generation process on documents retrieved from a

corpus such as Wikipedia or Pubmed (Shuster et al., 2021; Xiong

et al., 2024; Zakka et al., 2024). However, LLMs can still disregard

provided information and rely on their parametric knowledge

due to intrinsic mechanisms (Jin et al., 2024; Xu et al., 2024a)

or sensitivity to prompts (Liu et al., 2024). Another solution

is adapting the generation process—referred to as decoding—to

produce more factual responses (Lee et al., 2022; Burns et al., 2023;

Moschella et al., 2023; Li et al., 2023a; Chuang et al., 2023), and

post-editing to refine the originally generated content, leveraging

the self-correction capabilities of LLMs (Dhuliawala et al., 2023; Ji

et al., 2023b). Decoding can also be adapted to generate outputs that

are more faithful to the user instructions or the provided context.

Recent efforts to mitigate faithfulness hallucinations focus on

two main areas: context consistency, which aims to improve the

alignment of model-generated responses with user instructions and

the provided context (Tian et al., 2019; van der Poel et al., 2022;

Wan et al., 2023; Shi et al., 2023; Gema et al., 2024; Zhao et al.,

2024b); and logical consistency, which seeks to ensure logically

coherent responses in multi-step reasoning tasks (Wang et al.,

2023a). Decoding-based methods can be coupled with post-hoc

hallucination detection approaches (Manakul et al., 2023;Min et al.,

2023; Mishra et al., 2024) to define a reward model and adaptively

increase the likelihood of hallucination-free generations (Wan

et al., 2023; Amini et al., 2024; Lu et al., 2022, 2023; Deng

and Raffel, 2023). From the user’s perspective, a crucial factor

in reducing LLM hallucinations is ensuring that queries are

well-constructed, unambiguous, and as specific as possible, since

vague or poorly phrased prompts can increase the likelihood of

hallucinations (Watson and Cho, 2024).

Although the solutions discussed above can help reduce

hallucinations, they will remain, to some extent, inevitable due to

the complexity of the world that LLMs attempt to capture (Xu

et al., 2024b). A complementary approach is to enhance humans’
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awareness in managing such occurrences by enabling LLMs

to provide uncertainty estimates alongside their outputs. The

approaches implemented so far in this line of research fall into three

categories (Xiong et al., 2024): logit-based estimation, verbalization-

based estimation, and consistency-based estimation. Logit-based

estimation requires access to the model logits and typically

measures uncertainty by calculating token-level probability or

entropy (Guo et al., 2017; Kuhn et al., 2023). Verbalize-based

estimation works by directly requesting LLMs to express their

uncertainty via prompting strategy (Mielke et al., 2022; Lin

et al., 2022a; Xiong et al., 2024; Kadavath et al., 2022). Finally,

consistency-based estimation works under the assumption that

the most consistent response signifies the least hallucination in

the LLM generations (Lin et al., 2023; Chen and Mueller, 2023;

Wang et al., 2023b; Zhao et al., 2023). Additionally, recent studies

are exploring a new and promising strategy in which LLMs

learn to generate citations (Gao et al., 2023; Huang and Chang,

2023). In this way, users can assess the reliability of the outputs

provided by LLMs by examining, and potentially directly accessing,

their sources.

3.2 Improving robustness

Variability, prompt brittleness, and inconsistencies in LLM

outputs across different conditions, domains, and tasks (Gupta

et al., 2023; Zhou et al., 2024; Tytarenko and Amin, 2024)

pose significant challenges for ensuring effective interaction

with humans and can substantially exacerbate their algorithmic

aversion. Efforts to enhance the robustness of LLMs have included

adjustments during training, as well as post-hoc solutions applied

after learning has taken place. Regarding the former, recent

research has increasingly recognized the value of including

domain experts within development teams (e.g., Med-Gemini in

healthcare; Saab et al., 2024, FinMA in finance; Xie et al., 2023,

and SaulLM; Colombo et al., 2024). Post-training techniques aimed

at mitigating prompt sensitivity while preserving performance

include in-context learning adjustments (Gupta et al., 2023), task-

specific context attribution (Tytarenko and Amin, 2024), and batch

calibration (Zhou et al., 2024).

Among the solutions for enhancing LLM robustness are

those that directly involve humans, within both perspectives

mentioned above. Zhao et al. (2024c) introduced consistency

alignment training to better align LLM responses with human

expectations, fine-tuning LLMs to provide consistent answers to

paraphrased instructions Post-training methods involving humans

often focus on improving in-context learning examples to be

given to the LLMs, by coupling input-output pairs with their

corresponding human-generated natural language explanations

(He et al., 2024).

Another approach to increasing robustness involves

introducing an intermediate step between the user and the

model, known as guardrailing (Inan et al., 2023; Rebedea et al.,

2023), which literally means ’keeping the model on track.’ This

step evaluates the input and/or output of LLMs to determine if

and how certain enforcement actions should be implemented.

Common instances include refraining from providing answers that

could lead to misuse or blocking responses that contain harmful,

inappropriate, or biased content.

3.3 Dealing with sycophancy

Sycophancy is a sort of ‘side effect’ of the attempt to maximize

user satisfaction and the training of LLMs on datasets that

include texts generated by humans, where interlocutors often

seek to meet each other’s expectations. This issue with current

LLMs is, of course, not independent of other limitations, but

they can exacerbate one another. Indeed, LLMs often hallucinate

and become inconsistent in order to appease user prompts,

especially when these are misleading. By compelling LLMs not

to accommodate these prompts, it could thus lead to a reduction

of multiple limitations. On this line, Rrv et al. (2024) showed

how popular hallucination mitigation strategies can be effectively

used also to reduce the sycophantic behavior of LLMs in factual

statement generation.

Other solutions to address sycophancy involve fine-tuning

LLMs over aggregated preferences of multiple humans (Sharma

et al., 2023), generating synthetic fine-tuning data to change

model behavior (Wei et al., 2023) or applying activation editing

to steer the internal representations of LLMs toward a less

sycophantic direction (Panickssery et al., 2024). To preserve the

original capabilities of the LLM as much as possible, Chen et al.

(2024) propose supervised pinpoint tuning, where fine-tuning is

confined to specific LLM modules identified as responsible for the

sycophantic behavior.

Finally, Cai et al. (2024) proposed a shift in perspective, termed

antagonistic AI, a provocative counter-narrative to the prevailing

trend of designing AI systems to be agreeable and subservient.

According to this approach, human-LLM interactions could benefit

from confrontational LLMs that challenge users, even to the point

of being blunt if necessary. More specifically, the authors argue

that forcing users to confront their own assumptions would, at

least in certain situations, promote critical thinking. This intriguing

proposal has yet to be implemented or undergo empirical testing.

Complementary to this, Tessler et al. (2024) demonstrated that

LLMs can assist humans in finding common ground during

democratic deliberation by facilitating effective perspective-taking

among group members. We believe these approaches could

indeed help people identify potential pitfalls in their reasoning

and decision-making processes if complemented by cognition-

aware interaction strategies to avoid exacerbating algorithmic

aversion bias.

3.4 Fostering mutual understanding

The blossoming area of Explainable AI (XAI; Miller, 2018;

Gunning et al., 2019; Longo et al., 2024) aims at addressing

the problem of explaining the outputs of black-box models to

humans, focusing either on single predictions (local explainability)

or the entire model (global explainability). Explanatory interactive

learning (Teso and Kersting, 2019) builds upon XAI approaches to

allow humans to guide machines in learning meaningful predictive
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patterns while avoiding confounders and shortcuts. However,

XAI faces several challenges, from the lack of faithfulness in the

generated explanations (Camburu et al., 2019) to the impact of

human cognitive biases on evaluating these explanations (Bertrand

et al., 2022), including the risk of increasing automation

bias (Bansal et al., 2021; Buçinca et al., 2021). The opposite

direction—helping machines to understand humans—is equally

challenging. Eliciting human knowledge proves inherently difficult,

as it is often implicit, incomplete, or incorrect (Patel et al.,

1999). Expert judgments, although intuitive, depend on rich

mental models that manage incomplete or conflicting information,

complicating the representation of this knowledge for machine

learning models (Klein et al., 2017; Militello and Anders, 2019).

Compared to other black-boxmodels, LLM-based architectures

offer both advantages and disadvantages in terms of mutual

understanding. A clear advantage is their use of natural language

for communication, enabling conversational sessions where human

feedback is integrated into subsequent interactions. However,

this natural mode of interaction can be misleading for human

partners. Indeed, empirical studies show that users increase

their trust in LLM responses when these are accompanied by

explanations, even if the responses are deceptive (Sharma et al.,

2024). Although various attempts to foster human-LLM alignment

through training and interaction strategies have been made (Wang

et al., 2023c), LLMs still represent concepts through distributional

semantics (Lenci and Sahlgren, 2023), which differs significantly

from human semantic understanding (Bender and Koller, 2020).

One consequence is that, like many other sub-symbolic machine

learning models, LLMs are prone to shortcut learning (Du et al.,

2023), a tendency to rely on non-robust features that are spuriously

correlated with ground-truth supervision in the training data, yet

fail to generalize in out-of-distribution scenarios. XAI approaches

are starting to shed light on the reasoning mechanisms of

LLMs (Zhao et al., 2024a), but further research is needed for them

to produce reliable proxies of the trustworthiness of LLM outputs.

Finally, effective interaction between humans and LLMs

requires a form of mutual understanding that involves a theory

of mind (ToM; Premack and Woodruff, 1978)—the ability to

infer what others are thinking and how this differs from our

own thoughts, a crucial precondition for effective communication

and cooperation. Recent studies (van Duijn et al., 2023; Kosinski,

2024; Strachan et al., 2024) have shown that larger LLMs, such

as GPT-4, made significant progress in ToM, performing on

par with, and sometimes even surpassing, humans under certain

conditions. However, this competence primarily reflects an ability

to simulate human-like responses rather than a genuine mastery

of the cognitive processes involved in ToM reasoning. Achieving

authentic ToM in LLMs will require further advancements,

such as leveraging external memory systems (Li and Qiu,

2023; Schuurmans, 2023) and, eventually, developing machine

metacognition (Johnson et al., 2024).

3.5 Targeting complementary team
performance

Machine learning methods are typically evaluated in terms of

their performance as standalone entities. LLMs are no exceptions to

this rule andmost research focuses on improving their performance

over pre-defined benchmarks (Hendrycks et al., 2021; Liang et al.,

2022; Petroni et al., 2021; Chiang et al., 2024). A recent trend

has started to question this perspective, advocating for explicit

inclusion of the human component in the development and use of

these systems (Donahue et al., 2022; Hemmer et al., 2021; Guszcza

et al., 2022; Sayin et al., 2023). The notion of complementary team

performance (CTP; Bansal et al., 2021) has been introduced to

evaluate whether team accuracy is higher than either the human

or the AI working alone (Hemmer et al., 2021, 2024; Campero

et al., 2022). Quite interestingly, studies have shown that human-

AI teams can outperform humans but often do not exceed the

performance of AI alone (Bansal et al., 2021; Hemmer et al., 2021),

highlighting the complexity of achieving good CTP in practice.

Within the machine learning community, researchers have

developed ad hoc learning strategies to improve CTP. The most

popular is selective classification (Geifman and El-Yaniv, 2017),

where the machine selectively abstains from providing predictions

it deems too uncertain. Several selective classification strategies

have been proposed in the NLP community, especially in question-

answering tasks (Xin et al., 2021; Varshney et al., 2022). A limitation

of selective classification is that it does not take into account the

characteristics of the person to whom the prediction is deferred.

Learning to defer (Madras et al., 2018) is an advancement over

selective classification, in which human expertise is being modeled

and accounted for in choosing when to abstain. Learning to

complement (Wilder et al., 2021) further extends this line of

research by designing a training strategy that directly optimizes

team performance. The next challenging yet crucial step will be to

adapt these strategies to handle arbitrary users and general-purpose

human-LLM reasoning and decision-making tasks.

A major limitation of current solutions for learning to

defer/complement is that they rely on a separation of responsibilities

between the human and the machine. Banerjee et al. (2024)

argued that this is suboptimal because it leaves humans completely

unassisted in the (presumably difficult) cases where the machine

defers, while fostering their automation bias when the machine

does not defer. The authors proposed an alternative strategy,

learning to guide, in which the machine is trained to provide helpful

hints to assist the user in making the right decision.

Other promising research directions include adapting strategies

that have been developed and proven effective in other areas of AI

to LLMs. Among these is conformal prediction (Angelopoulos and

Bates, 2023), which allows a model to return prediction sets that,

according to a user-specified probability, are guaranteed to contain

the ground truth. This has been empirically shown to improve

human decision-making (Straitouri et al., 2023; Cresswell et al.,

2024), and it is beginning to be extended to LLM architectures

[conformal language modeling (Quach et al., 2024)]. Another

approach is mixed-initiative interaction (Allen et al., 1999; Barnes

et al., 2015), where each agent contributes its strengths to the

task, with its level of engagement dynamically adjusted to the

specific issue at hand. Recent studies have introduced methods

for formalizing prompt construction to enable controllable

mixed-initiative dialogue generation (Chen et al., 2023a). Finally,

argumentative decision making (Amgoud and Prade, 2009) applies

argumentation theory to enhance team performance by structuring

interactions as sequences of arguments and counter-arguments.

Recently, argumentative LLMs (Freedman et al., 2024) have
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been proposed and tested as a method using LLMs to construct

formal argumentation frameworks that support reasoning

in decision-making.

4 Conclusion

A human-centered approach to AI has been increasingly

promoted by governmental institutions (European Commission,

2020), with legal requirements in many countries mandating

human oversight for high-stakes applications (Government

of Canada, 2019; European Commission, 2021). Building

on this perspective, we have discussed a range of strategies

through which the main limitations of current LLMs could be

addressed and proposed two fundamental desiderata—mutual

understanding and complementary team performance—that, in

our view, should guide future research on LLMs and beyond.

Indeed, while this manuscript focuses on LLMs due to their

widespread adoption, including among lay users, many of

the points raised may well apply to multimodal and general-

purpose foundation models (Sun et al., 2024) when interacting

with humans.

The advocated shift in perspective would require greater

involvement of cognitive scientists in shaping approaches

to overcome LLM limitations and assess their effectiveness,

significantly altering priorities regarding problems and goals for

the success of LLMs. Future work could explore new evaluation

metrics inspired by cognitive science to better measure the

effectiveness of these approaches. Indeed, only by combining the

knowledge and exploiting the strengths of both humans and LLMs

can we have a real chance to achieve a true partnership—one that

is not only more effective in reducing human-machine biases but

also more transparent and fair.
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