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Sequence labeling via
reinforcement learning with
aggregate labels

Marcel Geromel* and Philipp Cimiano

Center for Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany

Sequence labeling is pervasive in natural language processing, encompassing

tasks such as Named Entity Recognition, Question Answering, and Information

Extraction. Traditionally, these tasks are addressed via supervised machine

learning approaches. However, despite their success, these approaches are

constrained by two key limitations: a common mismatch between the

training and evaluation objective, and the resource-intensive acquisition of

ground-truth token-level annotations. In this work, we introduce a novel

reinforcement learning approach to sequence labeling that leverages aggregate

annotations by counting entity mentions to generate feedback for training,

thereby addressing the aforementioned limitations. We conduct experiments

using various combinations of aggregate feedback and reward functions for

comparison, focusing on Named Entity Recognition to validate our approach.

The results suggest that sequence labeling can be learned from purely count-

based labels, even at the sequence-level. Overall, this count-based method has

the potential to significantly reduce annotation costs and variances, as counting

entity mentions is more straightforward than determining exact boundaries.

KEYWORDS

reinforcement learning, reward functions, annotations, sequence labeling, information

extraction

1 Introduction

Sequence labeling represents a pervasive framework in Natural Language Processing

(NLP), encompassing tasks such as Named Entity Recognition (NER), Part-Of-Speech

tagging (POS), and Semantic Role labeling (SR), as well as Question Answering (QA) and

Information Extraction (IE). These tasks have frequently been addressed using supervised

learning approaches that require a labeled dataset with ground-truth sequences. Notable

examples of supervised approaches for tackling sequence labeling include conventional

Hidden Markov Models (HMM) (Kupiec, 1992), Conditional Random Fields (CRF) (Sha

and Pereira, 2003), and (neural) sliding windows (Gallo et al., 2008), as well as deep neural

networks such as Recurrent Neural Networks (RNN) (Graves, 2012) and, more recently,

the Transformer architecture (Vaswani et al., 2017; Devlin et al., 2019). However, despite

the continually improving performance in sequence labeling (Li et al., 2020; Zhang et al.,

2023), supervised approaches are constrained by two technical limitations:

• Training vs. evaluation: There exists a common disparity between the training

objective, typically a differentiable loss function, and the task-specific, possibly

discrete evaluation metric, such as the F1-score. Consequently, minimizing the

loss function might not directly optimize the evaluation measure, resulting in

off-target training.
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• Labeling datasets: In (standard) supervisedmachine learning,

a labeled dataset D with fine-grained, task-specific ground-

truth annotations y1, ..., yn is normally required, but the

process of acquiring such ground-truth annotations can be

resource-intensive, depending on the application.

In reinforcement learning (RL), the learning progress is

achieved by maximizing an arbitrary, possibly discrete reward-

function R (the training objective). Since R is arbitrary, it

exhibits two important properties: (a) R can directly represent

and therefore optimize the evaluation measure (e.g. F1-score),

and (b) training does not explicitly demand a labeled dataset D.

Thus, RL naturally overcomes the above-mentioned limitations for

supervised machine learning approaches (Keneshloo et al., 2020).

Yet, despite achieving notable success in gaming (OpenAI

et al., 2019; Vinyals et al., 2019; Ye et al., 2020), robotics (Zhu

et al., 2020; Akalin and Loutfi, 2021; Raffin et al., 2022), and

planning (Zhu et al., 2021; Hamrick et al., 2021; Esteso et al.,

2022), the utilization of reinforcement learning in natural language

processing remains limited.While RLmethods have been employed

in, e.g., question answering (Choi et al., 2017; Buck et al., 2018)

and information extraction (Narasimhan et al., 2016; Qin et al.,

2018), the approaches considered are specifically engineered for

rephrasing questions (Buck et al., 2018), denoising datasets (Qin

et al., 2018), and assembling or condensing information (Choi et al.,

2017; Narasimhan et al., 2016), as opposed to directly tackling the

objective as an RL problem. As noteworthy exceptions, RLmethods

have been adopted to directly optimize policies in dialogue systems

(Li et al., 2016; Lu et al., 2019; Liu et al., 2020) and paraphrase

generation (Li et al., 2018; Qian et al., 2019; Siddique et al., 2020),

including the fine-tuning processes of large language models such

as InstructGPT (Ouyang et al., 2022) and GPT-4 (OpenAI, 2023),

albeit with supervised pre-training.

Similarly, various methods have been proposed to address

NER with RL (Wang et al., 2018; Yang et al., 2018; Wan et al.,

2020; Peng et al., 2021a,b), but the proposed techniques only

formulate secondary operations from an RL perspective. In some

works, the RL methods are employed to pre-process incomplete or

inaccurate annotations to accommodate strong(er) supervision by

detecting and removing, sampling or cleaning negative and noisy

instances (Yang et al., 2018; Peng et al., 2021a,b). In other works,

the RL methods are instead utilized to complement a (traditional)

supervised tagging approach by identifying and correcting invalid

predictions (Wang et al., 2018; Wan et al., 2020).

The limited adoption of RL in NLP could, depending on

the application (Uc-Cetina et al., 2022), be explained by the

challenge of expressing the environment as an appropriate and

well-defined sequential Markov decision process, as well as the

notorious instability in training and low sample-efficiency when

addressing complex learning problems or environments (Yu, 2018).

In addition, designing a suitable reward function for effective

learning can be challenging and is oftentimes accompanied by

delayed rewards (Eick, 1988) or sparse rewards (Minsky, 1961),

resulting in the well-known (temporal) credit assignment problem

(Minsky, 1961). To mitigate this, meticulous reward shaping

(Eschmann, 2021) or extensive exploration (Amin et al., 2021) may

be necessary.

In this work, we present a novel RL-based approach that (a)

considers sequence labeling exclusively from an RL perspective,

and (b) does not strictly require token-level annotations for

training. To accomplish this, we condense (or aggregate) standard

token-level labels to summarize the ground-truth annotations

by counting entity mentions. Then, we generate feedback for

training by comparing the predicted and annotated entity counts.

We experiment with combinations of feedback aggregation (i.e.,

multiple predictions are assigned a single reward signal) and

reward functions, both count-based and standard (that is, with

direct access to token-level labels), while evaluating our approach

on the NER datasets CoNLL-2003 (Sang and Meulder, 2003),

OntoNotes 5.0 (Hovy et al., 2006), and BC5CDR (Wei et al., 2016).

In multiple instances for standard feedback, we obtain results

that are competitive with a standard supervised baseline (i.e., that

minimizes the cross-entropy loss), even outperforming the baseline

by 2.33 points in F1-score on BC5CDR. For count-based feedback

at the sequence-level, we obtain results that are only 11.37 and

9.56 points behind the standard baseline for CoNLL-2003 and

BC5CDR, respectively. In summary, our findings indicate that

learning sequence labeling tasks, such as NER, simply by counting

entity mentions is possible and feasible, achieving remarkably

solid performance. Such count-based methods could significantly

reduce annotation costs as well as variances between annotations,

as counting specific entity mentions is more straightforward and

less subjective than determining precise entity boundaries.

2 Method

2.1 Preliminaries

(Deep) reinforcement learning algorithms are conventionally

implemented through a sequential Markov decision process

(MDP)—a mathematical framework used to determine a suitable

environment E to be interacted with – and is denoted by M =
(S ,A,T,R) with state space S , action space A, transition function

T (potentially stochastic) and reward function R. Subsequently, an

agent (i.e, the learning system), whose actions at ∈ A on states

st ∈ S are dictated by a (typically stochastic) policy function

π(st), interacts with the environment E over a sequence of discrete

time-steps via state-action pairs (s0, a0), (s1, a1), ..., (st , at), and, in

turn, observes rewards rt = R(st , at , st+1) upon each transition

st+1 ∼ T(·|st , at) as feedback from the environment. Ultimately,

the objective function to be optimized by the policy function π

is the expected cumulative discounted reward Eπ [
∑

t=0 γ trt] with

a discount factor γ , when following the policy function π , i.e.,

by selecting the action at ∼ π(·|st) that maximizes the expected

cumulative discounted reward Rt = Eπ [
∑

i=t γ
i−tri] at each

time-step t.

2.2 Framework

We begin by formalizing the well-known framework of

sequence labeling as a straightforward Markov decision process.

Let (x, y) ∈ D denote a sequence of tokens x = x1, ..., xn with

Frontiers in Artificial Intelligence 02 frontiersin.org

https://doi.org/10.3389/frai.2024.1463164
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Geromel and Cimiano 10.3389/frai.2024.1463164

ground-truth annotations y = y1, ..., yn from a labeled dataset D

(e.g., CoNLL-2003). We comprehend the sequence x = x1, ..., xn
with respective predictions ŷ = ŷ1, ..., ŷn (i.e., the actions a1, ..., an
chosen by the agent) as an episode, and therefore construct the state

spaceS from the starting state spaceS0, intermediate state spaceSI ,

and terminal state space ST as S : = S0 ∪ SI ∪ ST, with:

S0 : =
⋃

x∈D
{(x, 1)} (1)

SI : =
⋃

x∈D
{(x, 2), ..., (x, |x|)} (2)

ST : =
⋃

x∈D
{(x, |x| + 1)} (3)

where the states (x, t) ∈ S denote that position t (token xt) in

sequence x shall be processed next.

Notice that, by construction of the state space S , an inherent

disregard (or independence) for previously generated predictions

ŷ1, ..., ŷt−1 and subsequent predictions ŷt+1, ..., ŷn, respectively, is
entailed, therefore suggesting (the application of) a memoryless

policy function π . As further implied by the state space S , once

an action a ∈ A is selected, each non-terminal state st = (x, t)

is deterministically transformed into an intermediate (or terminal)

state st+1 = (x, t + 1) by the transition function T, regardless of

the assigned prediction, i.e., T describes a bijection from S \ ST to

S \ SI. The token labels task-specific to named entity recognition

(e.g., O, B-PER, and I-MISC) must, of course, be accordingly

represented by the action space A, and shall be characterized by

non-negative integers 1, ..., |A|. Lastly, we implement a framework

of reward functions R to evaluate a sequence of consecutive

predictions ŷi, ..., ŷj (i.e., actions ai, ..., aj) against the ground-

truth annotations yi, ..., yj, permitting any evaluation measure, and

subsequently communicate the aggregated reward (or feedback)

through the environment E.

2.3 Agent

We proceed by describing the architecture and behavior of

our learning system (i.e. the agent) when operated by the policy

function π . In value-based RL, such as Q-Learning, we choose some

action a ∈ A based on the estimated state-action value Qπ (st , a)

given state st ∈ S \ ST at time-step t. Specifically, this Q-value

estimate represents the expected, long-term cumulative discounted

reward Eπ [Rt] when choosing action a at time-step t while being in

state st , and greedily following π thereafter. Thus, we estimate the

state-action values Q(st , · ), where st = (x, t) and x = x1, ..., xn, as

follows:

h1, ..., hn = Encoder(x1, ..., xn) (4)

q̂t =Wht + b (5)

The Encoder is assumed to generate the contextualized

representations (or hidden states) h1, ..., hn ∈ R
d, with d ∈ N,

corresponding to the sequence x1, ..., xn, and the weight matrix

W ∈ R
|A|×d and bias term b ∈ R

|A| generate the state-action value
predictions q̂1, ..., q̂n ∈ R

|A| from h1, ..., hn.

To address the dilemma of balancing exploration and

exploitation (thereby defining our policy function π), we simply

pursue an ǫ-greedy strategy, due to the relatively compact action-

spaceA. Therefore, π(s) can be expressed as:

π(s) =
{

a ∼ Uniform(A) with prob. ǫ

argmaxa Q(s, a) otherwise
(6)

where a ∼ Uniform(A) denotes uniform sampling fromA.

2.4 Reward schemes

We continue by establishing the partitioning mechanism by

which the reward signals are delayed and aggregated. Each episode

(i.e., a sample to be labeled) is segmented into independent

subsections, each of which, once traversed and processed by the

learning algorithm, is evaluated with an aggregated (and singular)

reward signal. We segment an episode according to (a) the

respective ground-truth annotations, and (b) the currently active

reward scheme, which governs the breadth of a segment and, as

a consequence, directly controls the degree by which the reward

signals are delayed and aggregated. We implement the following

reward schemes:

• By action: each prediction ŷ1, ..., ŷn is evaluated separately by

R(yt , ŷt).

• By region: a sequence of predictions ŷi, ..., ŷj corresponding to

a homogeneous (and maximal) sub-sequence of annotations

yi, ..., yj (i.e., named entities and non-entities) is evaluated in

aggregate by R(yi...j; ŷi...j).
• By entity: a sequence of predictions ŷi, ..., ŷj generated by

separating the annotations y1, ..., yn behind each named-entity

is evaluated in aggregate by R(yi...j, ŷi...j).

• k-grouped: The concatenation of k completed sequences of

predictions ŷ1, ..., ŷk with corresponding annotations y1, ..., yk

is evaluated in aggregate by R(y1...k, ŷ1...k), whereby the

frequency of reward-signals decreases from rewards-per-

sample to samples-per-reward.

We provide an example for the By-Action, By-Region, By-Entity,

and 1-Grouped reward scheme in Figure 1. The example assumes

a gold-label sequence y1, ..., y7 with one LOC-type entity and one

PER-type entity, spanning one LOC and two PER token labels,

respectively. Obviously, the underlying input sequence x1, ..., x7 is

irrelevant when calculating the rewards. For predictions ŷ1, ..., ŷ7,

the By-Action scheme evaluates each individual prediction ŷt via

the corresponding token label yt through R. The By-Region scheme,

in contrast, aggregates successive token labels into sub-sequences

based on label class, e.g., consecutive LOC, O, and PER token labels

in Figure 1. For predictions ŷi, ..., ŷj over any such homogeneous

sub-sequence, the feedback (one reward per section) is calculated in

aggregate via the corresponding token labels yi, ..., yj through R. As

an extension, the By-Entity reward scheme combines two adjacent

sections (or regions) as outlined in By-Region – e.g., by merging the
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FIGURE 1

The considered reward schemes. Here, visually clustered sections

(i.e., partitioned annotations) are to be evaluated in aggregate.

initial O-region with the subsequent PER-region in Figure 1—thus

providing one reward per two regions. Lastly, the k-Grouped reward

scheme evaluates k prediction sequences ŷ1, ..., ŷk (using k = 1 in

Figure 1) via the corresponding gold-label sequences y1, ..., yk, thus

communicating one reward per k input sequences x1, ..., xk.

We simplify our notation by assuming that, supposing a

sequence of predictions ŷi, ..., ŷj to be evaluated in aggregate, the

environment E communicates a reward signal rt following each

interaction at such that ri, ..., rj−1 are valueless (e.g., ⊥) and rj
represents the evaluation of the predictions ŷi, ..., ŷj against the

ground-truth labels yi, ..., yj. By design, the aggregated reward

schemes are both delayed and sparse, because a singular non-empty

reward (that is, our feedback for training) is only communicated

through the environment E once a partition, as dictated by the

current scheme, has been processed by the agent.

2.5 Reward functions

We consider various types of reward functions in our

framework. Beyond Exact Match, Accuracy, and F1-score as a

reward function R, we further experiment with several variants of

the Cosine Similarity to compute a similarity between the predicted

and target sequence. Apart from measuring the Cosine Similarity

between the ground-truth annotations yi, ..., yj (again, represented

by non-negative integers 1, ..., |A|) and the generated predictions

ŷi, ..., ŷj, we further compare (i.e., calculate the similarity) of the

entity counts per class between the predictions and ground-truth

labels. This aggregate reward abstracts from the actual token-level

annotations as, in contrast to standard reward functions such as

Accuracy and Exact Match, these count-based reward functions

only consider the amount of entities annotated in yi, ..., yj and

predicted in ŷi, ..., ŷj, see Figure 2.

Note that, when calculating count-based feedback, the function

R is actually computed over vectors of entity counts count(yi...j)

and count(ŷi...j) rather than token labels yi...j and predictions ŷi...j
directly. In practice, count(yi...j) would, of course, be obtained from

x via annotation. To simplify our notation, we assume that R

FIGURE 2

The method for calculating similarities by comparing the overall

number of entities annotated in y (in green) and predicted in ŷ (in

blue).

Require:

Hyper Parameters: ǫ, γ, α

Model Parameters: θ

Input Sequence: x = x1, ..., xn

Ensure:

Updated Model Parameters: θ

1: for t← 1, ..., n do

2: st ← (x, t)

3: at ← πθ (st | ǫ)
4: rt ← E(at | R)
5: q̂t ← Qθ (st , at)

6: end for

7: for t← n, ..., 1 do

8: γt ← γ · (rt = ⊥)
9: qt ← rt + γt · qt+1
10: end for

11: return θ ← θ − α∇θL(θ)

Algorithm 1. Update step.

handles the counting whenever necessary. For further details, see

Section 4.1.

A cardinal problem with employing Cosine Similarity as a

reward function R, however, becomes apparent when the generated

predictions ŷi, ..., ŷj (or amount of inferred entities) represent a

multiple of the ground-truth annotations yi, ..., yj, because only the

directions of vectors A and B are considered. As a consequence, a

sequence of sub-optimal predictions ŷi, ..., ŷj might be recognized as

an optimal solution, as R(y, ŷ) = R(y, y). To address this problem,

we incorporate a modification to the original formula to account

for deviations in magnitude by which, therefore, a perfect reward is

only achieved, if and only if A = B:

σ (A,B) = A · B
‖A‖ · ‖B‖ ·

(

1− |‖A‖ − ‖B‖|‖A‖ + ‖B‖

)

(7)

Frontiers in Artificial Intelligence 04 frontiersin.org

https://doi.org/10.3389/frai.2024.1463164
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Geromel and Cimiano 10.3389/frai.2024.1463164

2.6 Algorithm

We outline our single-episode learning procedure in

Algorithm 1 where, because our reward schemes are considered a

characteristic of the environment E (to simplify our notation), the

reward schemes and functions are indirectly addressed via E(at|R).
In Line 11, the model parameters θ are optimized according to

the Mean Squared Error between the predicted and resulting

state-action values q̂1, ..., q̂n and q1, ..., qn, respectively:

L(θ) = 1

n

n
∑

t=1
(qt − q̂t)

2 (8)

We implemented several modifications to standard Deep Q-

Learning (Mnih et al., 2013):

Firstly, we eliminated the experience replay (Lin, 1992; Fedus

et al., 2020), because a sequence of continuous predictions ŷi, ..., ŷj
(as determined by the reward scheme) might, in consequence,

not be evaluated in aggregate, since the evaluation of a particular

prediction ŷt is dependent on the evaluation of the associated

sequence ŷi, ..., ŷj containing ŷt . Additionally, by discarding the

experience mechanism, each prediction ŷ1, ..., ŷn can be computed

from the same contextualized representation h1, ..., hn, requiring

only a single encoding per sequence x1, ..., xn, as the parameters θ

are yet to be updated.

Secondly, because the aggregated subsections are evaluated

separately (predictions are independent by design of our

framework), we introduce gated discounting (via γt) to encourage

short-term strategies within aggregated subsections and discourage

long-term strategies across aggregated subsections. To accomplish

this, we condition γ on the received feedback:

γt : =
{

0 if rt 6= ⊥
γ otherwise

(9)

Note that γt is always 0 whenever a non-empty reward-signal

is observed by the learning algorithm, effectively separating two

consecutive subsections (as seen by the agent).

Thirdly, we replace the original Q-value estimates (Mnih et al.,

2013) with non-terminal ground-truth Q-values qt to propagate

the upcoming, non-empty reward-signals directly within their

respective partitions.

qt = rt + γt · qt+1 (10)

By introducing this modification, we associate a single (yet

discounted) evaluation rj with a complete sequence of predictions

ŷi, ..., ŷj and, as opposed to producing purely local estimates,

encourage the agent to estimate the sectional evaluation of ŷi, ..., ŷj
through each Q-value estimate q̂i, ..., q̂j.

2.7 Experiments

We utilize a comparatively lightweight BERT checkpoint (bert-

base-cased1) sourced from HuggingFace as our base-model. This

1 https://huggingface.co/bert-base-cased

FIGURE 3

The method by which +O and +P counting variants (in yellow)

calculate and provide feedback. In this sketch, the reward signal r (in

red) is communicated at the sequence-level 1-Grouped. The +O

counting variant includes contiguous O-intervals. The +P counting

variant provides 0-rewards for predictions yt (in blue) that are

impossible given the ground-truth annotations y (in green).

checkpoint is configured with 12 transformer blocks, a hidden

dimension of 768, and 12 attention heads, totaling approximately

110 million pre-trained parameters. As a consequence, the output-

layerW (which is used for classification) is composed of 768× |A|
parameters, which we randomly initialize fromU(−

√
k,
√
k), where

k = 1
768 .

The individual experiments are conducted over 400 rounds,

during each of which 250 updates are performed on the model-

parameters θ , amounting to 100,000 updates per experiment.

The updates are performed over batches of 8 sequences, sampled

uniformly at random. The exploration-exploitation dilemma is

addressed by selecting ǫ = max (0.005, 0.5round−1), such that ǫ is

never below 0.5%, while discounting is handled with γ = 1. We

maintain a constant learning rate α of 1e-5 and utilize AdamWwith

standard parameters for optimization. We calculate the learning

system’s performance using seqeval,2 an open-source framework for

sequence labeling evaluation.

We implement Exact Match, Accuracy, F1-score, and the

enhanced Cosine Similarity from Equation 7 as standard reward

functions. Additionally, we use the enhanced Cosine Similarity

function for comparing the entity counts contained in the ground

truth annotations and predictions, utilizing four configurations:

Counts, Counts +O, Counts +P, and Counts +OP. The Counts

function enumerates all annotated or predicted named entities,

while +O variants also consider the contiguous O-intervals (regions

of consecutive O token labels) in a sequence, and +P variants may

only enumerate the true-positive entity counts (and O-intervals,

if +O), directly assigning a 0-reward to predictions ŷt that are

impossible considering the annotated entity counts, see Figure 3.

We consider the following reward schemes: By-Action, By-Region,

By-Entity, 1-Grouped, 2-Grouped, and 4-Grouped.

2 https://github.com/chakki-works/seqeval
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TABLE 1 The number of instances (sequences) per default dataset split.

CoNLL-
2003

OntoNotes
5.0

BC5CDR

Train 14.041 59.924 5.228

Validation 3.250 8.528 5.330

Test 3.453 8.262 5.865

Total 20.744 76.714 16.423

We evaluate our approach on the following datasets for

named entity recognition in English: CoNLL-2003, OntoNotes 5.0,

and BC5CDR. CoNLL-2003 (Sang and Meulder, 2003), a dataset

sourced from news articles, encompasses four categories of named

entities: person (PER), location (LOC), organization (ORG), and

miscellaneous (MISC). OntoNotes 5.0 (Hovy et al., 2006), compiled

from news articles, weblogs, and dialogues, presents a wider array

of named entities, featuring 18 categories that include 11 entity

classes (such as building, event, and product) and 7 value types

(such as percent, time, and quantity). The original BC5CDR dataset

(Wei et al., 2016) consists of biomedical documents annotated for

mentions of diseases and chemicals. However, for our purposes, we

utilize the sentence-based version pre-processed for T-NER (Ushio

and Camacho-Collados, 2021).We employ the default dataset splits

(see Table 1).

Finally, to establish a benchmark for comparison, we introduce

a standard baseline. This baseline is obtained by training our base-

model (BERT) via standard supervised learning, minimizing the

cross-entropy loss. In contrast to our RL approach, the baseline

has direct access to the token-level annotations. The experimental

procedures and evaluations are otherwise identical.

3 Results

We showcase our main experimental results in Table 2. The

reported results are clustered by standard feedback, count-based

feedback, and the standard baseline, and represent the maximum

observed F1-scores on the validation split (averaged over 5 runs).

In the following, we distinguish between standard and count-based

feedback.

3.1 Standard feedback

Unsurprisingly, the results reached by training the learner using

standard reward functions that calculate feedback based on token-

level annotations are relatively consistent when combined with

sub-sequence reward schemes like By-Action, By-Region, and By-

Entity. For CoNLL-2003 and OntoNotes 5.0, the highest results

(using Accuracy as feedback) are generally competitive with the

standard supervised baseline of 94.16 and 86.06 points in F1-score,

respectively. Notably, the highest results for BC5CDR outperform

the standard baseline (83.45 F1-score) by 1.08 to 2.33 points in F1-

score for reward schemes By-Action to By-Entity, even remaining

competitive for feedback aggregated to sequence-level 2-Grouped

(81.31 F1-score).

As we transition from reward scheme By-Action to sequence-

level 1-Grouped, performance naturally deteriorates as feedback

becomes more aggregated; this decrease is especially noticeable

for OntoNotes 5.0, with the highest results falling by 30.69 points

in F1-score, whereas the decrease for CoNLL-2003 and BC5CDR

is limited to 5.82 and 2.74 points, respectively. Notably, when

switching from 1-Grouped to 2-Grouped, the highest results are

relatively stable for BC5CDR, only dropping by 0.48, while results

for CoNLL-2003 and OntoNotes 5.0 decrease by 11.07 and 18.00

points in F1-score.

When providing feedback via the By-Action reward scheme,

Exact Match and Accuracy as reward functions (whereby each

individual prediction ŷt is assigned a 0/1-reward) produce the

highest results across all evaluated scenarios and datasets, even

outperforming the standard supervised baseline. Notice that

when the feedback is conveyed as an F1-score, performance

drops significantly. While the reward signals for By-Action are

communicated as reward-per-action, the F1-score, unlike Exact

Match or Accuracy, is generally not applicable to NER when

calculated over singular token-labels. To illustrate this, we propose

a scenario where the ground-truth label is yt = I-PER and the

prediction is ŷt = B-PER. In this case, the F1-score calculated

by seqeval yields F1(yt , ŷt) = 1.0, whereby the learner is unable to

distinguish between B-PER and I-PER.

For aggregate feedback via By-Region and By-Entity, Accuracy

mostly yields the highest results for all datasets, with performance

shrinking by 0.66, 3.47, and 0.50 points for CoNLL-2003,

OntoNotes 5.0, and BC5CDR, respectively. In comparison,

feedback produced by the much less informative Exact Match

achieves only slightly worse results for CoNLL-2003 and BC5CDR.

However, results plummet by 24.48 points for OntoNotes 5.0. Once

feedback is provided at sequence-level 1-Grouped to 2-Grouped,

we observe a notable decrease in the results yielded by Accuracy

and Exact Match. In general, F1-score achieves the highest results

for feedback provided at sequence-level k-Grouped, remaining

remarkably stable as k increases, with performance dropping by at

most 23.78, 25.88, and 26.40 points for CoNLL-2003, OntoNotes

5.0, and BC5CDR.

3.2 Count-based feedback

In general, count-based feedback is expected to facilitate a

reduced performance when compared to token-based supervision,

as it provides less concrete feedback to the learning system. For

instance, when considering the sub-sequence reward schemes By-

Action, By-Region, and By-Entity, we observe a substantial decrease

in performance between conventional and count-based reward

functions.

However, when considering sequence-level reward aggregation

1-Grouped, the difference in performance between standard

feedback (e.g., F1-score) and count-based feedback (e.g., Counts

+OP) is surprisingly low. Specifically, metrics only decrease by

4.64 and 7.90 points for CoNLL-2003 and BC5CDR, and increase

by 4.79 points for OntoNotes 5.0, when switching from F1-score

to Counts +OP. This is remarkable given the stark contrast in

training regimes and, even more so, the supposedly unreliable
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TABLE 2 The average maximum F1-scores (computed over validation datasets) with respective standard deviations.

CoNLL-2003

By-Action By-Region By-Entity 1-Grouped 2-Grouped 4-Grouped

Exact Match 94.32 ± 0.06 93.81± 0.06 91.52± 1.01 4.38± 0.05 4.17± 0.33 4.42± 0.47

Accuracy 94.32 ± 0.06 93.91 ± 0.10 93.25 ± 0.20 87.43 ± 2.13 58.21± 5.29 47.69± 3.87

F1-Score 83.72± 2.72 92.23± 0.31 91.41± 0.61 84.94± 4.05 76.36 ± 2.10 61.16 ± 11.23

Cosine Sim. 93.20± 0.39 90.44± 0.65 87.21± 2.24 74.64± 0.96 68.11± 5.68 50.18± 4.42

Counts 87.38 ± 3.58 75.78± 6.64 33.83± 13.10 9.59± 1.34 9.21± 3.86 7.99± 1.69

Counts +O 87.38 ± 3.58 77.74± 8.48 74.28 ± 6.82 82.79 ± 2.26 74.53± 5.21 49.06± 20.78

Counts +P 87.38 ± 3.58 74.76± 8.23 50.33± 4.84 8.95± 1.67 14.15± 8.14 26.33± 15.38

Counts +OP 87.38 ± 3.58 81.74 ± 3.49 72.61± 4.68 78.96± 3.87 79.76 ± 3.59 78.10 ± 3.70

Baseline 94.16± 0.08

OntoNotes 5.0

By-Action By-Region By-Entity 1-Grouped 2-Grouped 4-Grouped

Exact Match 86.10 ± 0.06 82.51± 0.56 57.35± 4.69 2.34± 0.11 2.49± 0.44 1.71± 0.01

Accuracy 86.10 ± 0.06 85.30 ± 0.08 81.83 ± 0.26 24.04± 4.04 2.05± 1.39 2.18± 1.02

F1-Score 58.75± 5.49 81.86± 0.50 66.86± 5.62 51.14 ± 4.33 33.14 ± 2.57 25.26 ± 2.39

Cosine Sim. 78.61± 0.34 55.37± 1.14 52.52± 2.64 28.20± 0.56 17.33± 0.88 16.68± 1.15

Counts 56.42 ± 3.84 58.88± 5.38 11.12± 1.06 4.94± 0.41 6.53± 1.27 5.44± 0.80

Counts +O 56.42 ± 3.84 59.05± 7.67 53.97± 6.18 53.31± 5.41 57.85 ± 2.18 48.61 ± 5.35

Counts +P 56.42 ± 3.84 53.68± 10.50 11.72± 0.47 19.86± 18.51 44.84± 4.80 25.90± 13.86

Counts +OP 56.42 ± 3.84 62.35 ± 9.45 56.32 ± 8.13 55.93 ± 1.33 55.35± 2.71 45.12± 0.91

Baseline 86.06± 0.06

BC5CDR

By-Action By-Region By-Entity 1-Grouped 2-Grouped 4-Grouped

Exact Match 85.78 ± 0.11 84.91± 0.21 84.53 ± 0.22 1.55± 0.58 4.54± 1.89 3.21± 1.84

Accuracy 85.78 ± 0.11 84.95 ± 0.15 84.45± 0.07 73.50± 1.76 68.68± 3.70 48.13± 5.40

F1-Score 85.00± 0.12 84.20± 0.20 82.88± 1.53 81.79 ± 0.20 81.31 ± 0.37 55.39 ± 7.74

Cosine Sim. 84.03± 0.10 81.42± 0.04 77.70± 0.21 71.06± 1.70 64.62± 0.35 50.80± 3.61

Counts 83.56 ± 0.07 77.99± 1.17 22.05± 8.15 17.24± 1.38 8.21± 4.70 5.72± 0.83

Counts +O 83.56 ± 0.07 80.70± 0.48 68.02± 2.17 58.23± 5.55 39.51± 4.76 27.44± 11.59

Counts +P 83.56 ± 0.07 78.28± 1.45 41.86± 0.43 30.99± 10.69 37.73± 7.98 24.68± 4.21

Counts +OP 83.56 ± 0.07 81.46 ± 0.67 74.81 ± 1.53 73.89 ± 1.77 62.74 ± 2.68 47.78 ± 0.49

Baseline 83.45± 0.40

The highest obtained F1-scores for standard and count-based reward functions are highlighted in bold.

information conveyed by count-based feedback over feedback

directly computed from token-level annotations. Furthermore, the

results gained via Counts +O and Counts +OP are competitive

with token-based feedback for sequence-level reward aggregation

k-Grouped, even outperforming the strongest standard reward

functions for CoNLL-2003 and OntoNotes 5.0 (i.e., F1-score and

Accuracy) by 16.94 and 24.71 points. Obviously, the highest scores

are generally obtained via informed counting with Counts +OP,

as it provides the most nuanced feedback to the learning system,

whereas naïve (or uninformed) counting, as executed in Counts,

consistently yields diminished performance for all experiments.

In addition, results remain reasonably consistent across By-

Action to 4-Grouped for count-based feedback, exhibiting a

maximumdifference (over highest scores) of 13.10, 13.74, and 35.78

points for CoNLL-2003, OntoNotes 5.0, and BC5CDR, respectively.

In contrast, results for token-based feedback have relatively high

variance, displaying a maximum difference (again, over highest

scores) of 33.16, 60.84, and 60.52 for CoNLL-2003, OntoNotes 5.0,

and BC5CDR.

Notice that, by design of the reward schemes By-Region and

By-Entity (and, trivially, for By-Action), even when considering

count-based annotations, the learner is implicitly provided with
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information about the underlying token-level annotations, as

partitions from By-Region and By-Entity are constructed such that

they comprise at most one named entity. The reward schemes

By-Region and By-Entity thus provide an interesting perspective

on the differences in performance when transitioning from By-

Region to By-Entity to 1-Grouped. For instance, looking at the

highest results for count-based feedback, we observe a significant

decrease in performance from By-Region to By-Entity, suggesting

that recognizing the boundaries of singular named entities is

particularly challenging when provided only with count-based

feedback. However, when feedback aggregation is elevated from

By-Entity to 1-Grouped (i.e., to sequence-level), results decrease

only slightly for OntoNotes 5.0 and BC5CDR, even increasing

by 8.51 points for CoNLL-2003, indicating that detecting (the

boundaries of) multiple named entities is relatively straightforward

when viewed from By-Entity.

4 Discussion

The findings outlined in Section 3 demonstrate that learning

sequence labeling tasks, such as NER, with aggregate feedback is

feasible, even when the feedback is derived entirely by counting

entity mentions per class, although with some obvious caveats. In

comparison to feedback computed from token-level annotations,

the count-based rewards facilitate a reduced learning capacity,

providing relatively imprecise and, in part, unreliable information

to the learning algorithm. By design, reward signals derived from

entity counts over generated predictions ŷ1, ..., ŷn and ground-truth

annotations y1, ..., yn only communicate information pertaining the

existence of an entity, not its respective boundaries. Nevertheless,

overall results are remarkably solid considering these constraints.

In Section 1, we briefly explore the advantages of utilizing RL

methods over standard supervised learning techniques, especially

pertaining to the implications of an arbitrary reward function

R dictating the learning progress. This function R can directly

represent and therefore optimize the evaluation measure, including

the F1-score. Looking at Table 2, the experiments on standard

reward functions, which calculate feedback from token-level

annotations, support this assumption for sequence-level feedback

1-Grouped (and beyond), as designing the function R to compute

the current F1-score between the gold-labels y1, ..., yn and the

predictions ŷ1, ..., ŷn) is indeed shown to outperform the token-

based alternatives, such as Accuracy. However, while token-based

feedback at the sequence-level k-Grouped achieves its greatest

potential when representing the F1-score between y1, ..., yn and

ŷ1, ..., ŷn, we observe that count-based feedback often surpasses

token-based feedback (including the F1-score) while achieving

more consistent performance.

As detailed in SubSection 3.2, our results reflect the significance

of informed counting, as demonstrated by Counts +OP versus

Counts. While Counts +O (considering contiguous O-intervals,

i.e., non-entities) and Counts +P (providing 0-rewards on false-

positive counts) both provide some contrasting information to

the learning system, the resulting increase in performance from

Counts +O overshadows the improvements gained from Counts

+P. Furthermore, when integrated as Counts +OP, a significant and

consistent improvement in performance (and standard deviation)

is achieved over both configurations, especially for CoNLL-2003

and BC5CDR.

Notably, our results suggest that learning progress for count-

based feedback may be negatively influenced by the number of

entity types, that is, the cardinality of the action space A. For

instance, even when considering the reward scheme By-Action,

the difference in performance to the standard baseline is 6.78

points for CoNLL-2003 and -0.11 points for BC5CDR, which have

|A| = 9 and |A| = 5, respectively. In comparison, this difference

is exacerbated to 29.64 points for OntoNotes 5.0, where |A| =
37, thus raising questions regarding the suitability of count-based

feedback at the sequence-level when handling sequence labeling

tasks with a relatively large action spaceA.

As an alternative explanation, the divergence in performance

could instead be caused by class label imbalances during training.

In fact, OntoNotes 5.0 (k = 18 classes) exhibits the greatest

label imbalance, with 4 entity types constituting more than 66%

of overall entity mentions, whereas CoNLL-2003 (k = 4) and

BC5CDR (k = 2) feature a more balanced class distribution, see

Table 3. Hence, our overall results might be improved by employing

a more sophisticated algorithm for sampling training instances

from D (as opposed to uniform random sampling). We provide

further material for this correlation in Section 4.1.

4.1 Case study

In this Section, we provide some concrete model

predictions to demonstrate how count-based feedback is

calculated and distributed over predictions, thus promoting

a more comprehensive understanding of our methodology.

In addition, considering the imprecision and granularity of

count-based feedback, where no boundary-related information

is communicated, the exemplary predictions shall emphasize the

remarkable performance on boundary detection.

The following examples were generated for CoNLL-2003 and

obtained by training with count-based feedback (Count +OP) at

the sequence-level 1-Grouped as described in Section 2.7. The

example predictions and resulting per-class and absolute model

performance are presented in Tables 4, 5, respectively. Notably,

although no token-level information is communicated via count-

based feedback, the learner reaches an astonishing performance on

boundary detection, as demonstrated by examples (a) through (f)

in Table 4.

We observe that incorrect label predictions are almost always

encountered in one of the following cases: scenario (1), wherein the

learning system (entirely) ignores MISC- and ORG-class tokens, as

illustrated by examples (c) and (d), or scenario (2), wherein the

learning system only detects the LOC-related segment in MISC-

and ORG-class entities, as illustrated by examples (e) and (f).

Note that scenario (1) can result from scenario (2). To support

this observation, we present the resulting confusion matrix (per

token) in Table 6. Additionally, as anticipated in Section 4, we

observe an apparent decrease in performance for infrequent token

labels, specifically the previously mentioned MISC-class entities,

see Tables 5, 6. However, looking more closely at Tables 3, 5, this

correlation is only partially supported. The results indicate that the
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TABLE 3 The absolute (ci) and relative (ci/n) entity counts per label class and dataset (train split).

CoNLL-2003 OntoNotes 5.0 BC5CDR
(k = 4) (k = 18) (k = 2)

ci ci/n ci ci/n ci ci/n

LOC 7,140 30.38% PER 15,429 18.86% CHEM 5,203 55.43%

PER 6,600 28.09% GPE 15,405 18.83% DISE 4,182 44.56%

ORG 6,321 26.90% ORG 12,820 15.67% – – –

MISC 3,438 14.63% DATE 10,922 13.48% – – –

– – – (...) 27,252 33.30% – – –

Total 23,499 100% Total 81,828 100% Total 9,385 100%

TABLE 4 A selection of predictions (and common mistakes) from a model trained on CoNLL-2003 via Counts +OP with sequence-level feedback

1-Grouped.

CoNLL-2003

PER MISC LOC ORG

(a) Labels: Interfax said Judge Olga Lavrentyeva ordered the confiscation of several overcoats, suits and shirts which vendor

Valery Ivankov was illegally trading on Moscow streets.

Model: Interfax said Judge Olga Lavrentyeva ordered the confiscation of several overcoats, suits and shirts which vendor

Valery Ivankov was illegally trading on Moscow streets.

(b) Labels: In Milwaukee, Marc Newfield homered off Jose Parra (5-4) leading off the bottom of the 12th as the Brewers rallied

for a 5-4 victory over the Minnesota Twins.

Model: In Milwaukee, Marc Newfield homered off Jose Parra (5-4) leading off the bottom of the 12th as the Brewers rallied

for a 5-4 victory over the Minnesota Twins.

(c) Labels: Coach Berti Vogts has called up a virtually identical squad for next week’s friendly against Poland – Germany’s first

match since Euro 96.

Model: Coach Berti Vogts has called up a virtually identical squad for next week’s friendly against Poland – Germany’s first

match since Euro 96.

(d) Labels: Prime Minister John Major says the 300-year-old union of the Scottish and English parliaments will be a main

plank in his Conservative Party’s election platform.

Model: Prime Minister John Major says the 300-year-old union of the Scottish and English parliaments will be a main

plank in his Conservative Party’s election platform.

(e) Labels: The move to Bergamo-based Atalanta reunites Lentini, who fell out with ex-Milan coach Fabio Capello last season,

with his former coach at Torino, Emiliano Mondonico.

Model: The move to Bergamo-based Atalanta reunites Lentini, who fell out with ex-Milan coach Fabio Capello last season,

with his former coach at Torino, Emiliano Mondonico.

(f) Labels: “I request the immediate repatriation of Kim In-so to North Korea,” North Korean Red Cross president Li Song-ho

said to his southern counterpart, Kang Young-hoon.

Model: “I request the immediate repatriation of Kim In-so to North Korea,” North Korean Red Cross president Li Song-ho

said to his southern counterpart, Kang Young-hoon.

The examples (a) and (f) were pruned for brevity.

TABLE 5 The overall metrics achieved by training on CoNLL-2003 via Counts +OP with sequence-level feedback 1-Grouped.

CoNLL-2003

ci Precision Recall F1-Score Accuracy

PER 1,842 90.26 93.54 91.87 –

LOC 1,837 71.20 79.26 75.01 –

ORG 1,341 72.52 79.12 75.68 –

MISC 922 44.58 45.99 45.27 –

Overall 5,942 73.24 78.49 75.78 88.81

The absolute entity mentions per label class and dataset (validation split) are denoted by ci .
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overall PER and MISC-class mentions are roughly proportional to

the corresponding F1-Scores, yielding PER-to-MISC ratios of 1.92

(mentions) and 2.03 (F1-Score). In contrast, despite the notably

more frequent mentions of LOC over ORG-class entities (7140 vs.

6321 mentions, ratio 1.13), we observe an unexpected, marginal

decrease in performance (75.01 vs. 75.68 F1-Score, ratio 0.99). A

similar pattern can be observed when comparing LOC with PER-

class entities, having ratios of 1.08 (mentions) and 0.82 (F1-Score).

Overall, these results suggest that absolute mention frequency does

not consistently correspond with performance.

4.1.1 Reward calculation
To demonstrate the procedure for calculating feedback as

illustrated in Figure 3, we manually determine the count-based

feedback under reward scheme 1-Grouped for examples (b) and

(e) in Table 4. Let countc(y) denote the overall entity counts for

class c in a sequence y. For CoNLL-2003, we further denote by

count(y) the ordered sequence of (entity) counts countc(y) for

c =PER, LOC, ORG, MISC, and O (whenever +O counting variants

are considered). We obtain the following ordered sequences for

examples (b) and (e):

b) count(y) =
[

2 1 2 0 6
]

and

count(ŷ) =
[

2 1 2 0 6
]

e) count(y) =
[

3 0 2 2 7
]

and

count(ŷ) =
[

3 2 2 0 8
]

where the values 6 , 7 , and 8 indicate the number of contiguous

O-intervals (beware the punctuation) for the respective gold-label

sequence y and predictions ŷ. Subsequently, we calculate the

modified cosine similarity σ between count(y) and count(ŷ) to

obtain our (global) reward signal r over the predictions ŷ for the

learning system (see Equation 7):

b) reward r = σ (
[

2 1 2 0 6
]

,
[

2 1 2 0 6
]

)

= 1.00 (1.00 for +O)

e) reward r = σ (
[

3 0 2 2 7
]

,
[

3 2 2 0 8
]

)

≈ 0.76 (0.89 for +O)

Further, when +P counting variants are considered, we assign

a (local) 0-reward to predictions ŷt that are impossible given the

ground-truth counts. For instance, in example (e), we observe that

countLOC(y) = 0 and countLOC(ŷ) = 2, thus resulting in 0-rewards

for any prediction ŷt that matches the label class LOC.

Note: In this work, we compute singular rewards (per partition)

based on overall entity counts, jointly. One could, however, provide

one reward signal per entity class instead, e.g., by computing and

evaluating the deviation between countc(y) and countc(ŷ) directly,

thus assigning feedback at the sub-sequence level without requiring

token-level annotations. This modification would naturally extend

and generalize the +P counting variants.

4.2 Related work

As suggested in Section 1 and discussed in Section 4,

reinforcement learning techniques can—by virtue of an

arbitrary reward function R—potentially overcome the

aforementioned limitations of (standard) supervised machine

learning, namely the prevalent mismatch between the training

objective and the evaluation measure, as well as the requirement

of a labeled dataset D with fine-grained annotations (e.g.,

at token-level).

Yet, despite this apparent potential, and although various RL

methods have been proposed to complement sequence labeling

approaches for weakly supervised learning—where training is

conducted on approximate annotations, meaning incomplete,

inexact, or inaccurate (Zhou, 2018), as fine-grained, high-quality

annotations are generally expensive to assemble—we notice that

RL techniques are generally not utilized to (a) address NLP

tasks directly, that is, without extending or requiring a pre-

trained model, and (b) overcome the aforelisted limitations for

supervised machine learning (in NLP), particularly the reliance on

fine-grained annotations.

For instance, Yang et al. (2018) propose an approach that

involves partial annotation learning to address the incomplete

annotations, followed by an RL-based instance selector that

identifies positive (or clean) samples for training, thus handling

the inaccurate annotations. In similar fashion, Peng et al. (2021a,b)

propose an RL-based instance selector for pre-training a classifier,

followed by (a) training on negative samples (Peng et al.,

2021a), or (b) an adversarial training mechanism (Peng et al.,

2021b) to improve the classifier’s robustness against incomplete

or inaccurate annotations. In contrast, Wang et al. (2018) and

Wan et al. (2020) employ an RL-based system for detecting

and rectifying (a) incorrect predictions generated by some pre-

trained tagging system (Wang et al., 2018), or (b) incorrect token-

labels from annotations auto-generated via distant supervision

(Wan et al., 2020).

In this work, we have thus introduced (a) a framework for

sequence labeling that directly addresses the problem from a

standalone and value-based RL perspective, without requiring

a pre-trained model, and (b) the utilization of count-based

rewards for training that are obtained by counting entity

mentions at the sequence-level (as opposed to considering

token-level annotations).

Notably, token-label counts have previously been leveraged to

formulate a consistency loss function to maintain consistent entity

mentions across paraphrased sequences (Chen et al., 2020). Beyond

this, we are not aware of comparable count-based approaches

in NLP. However, count-based learning has been investigated

in various computer vision settings, such as Weakly Supervised

Object Detection (Hsu and Li, 2020), where object-counts are

considered over ground-truth candidate proposals (e.g., object

classes and specific locations), and Crowd Counting (Savner and

Kanhangad, 2023), where count-based annotations are utilized

instead of point-level annotations. In other works, a clustering

framework for Multiple Instance Learning is presented (Oner et al.,

2020), where the training approach relies solely on collection-

level annotations that indicate the number of distinct classes
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TABLE 6 The confusion matrix obtained by training on CoNLL-2003 via Counts +OP with sequence-level feedback 1-Grouped.

Prediction

O PER LOC ORG MISC

G
o
ld

L
ab
el

O 0.990 0.001 0.006 0.002 0.001

PER 0.008 0.979 0.004 0.008 0.001

LOC 0.016 0.003 0.939 0.038 0.004

ORG 0.112 0.008 0.048 0.827 0.005

MISC 0.265 0.019 0.097 0.060 0.560

The confusion scores are normalized per gold label. The colors scale with the scores in the matrix. Higher scores mean higher intensity.

within a collection of instances, labeled unique class counts. Count-

based learning has also been employed for weakly-supervised

temporal localization (Schroeter et al., 2019), specifically the

localization and detection of instantaneous event occurrences

(lasting for one time-step) in sequential data, with training

being conducted on occurrence-counts only. Unfortunately,

when transferred to NER, this method requires token-level

annotations, since the problem definition assumes that event

occurrences (named entities) are instantaneous (composed of a

single token).

5 Conclusion and future work

In this work, we presented a unique method to sequence

labeling that leverages count-based annotations, e.g., obtained

by counting (rather than marking) specific entity mentions

in a text, for training. Therefore, we introduced a framework

that directly formulates the sequence labeling task from

an RL perspective. To validate our approach for NER, we

experimented with various degrees of feedback aggregation

(multiple predictions are assigned a single reward) in combination

with standard and count-based reward functions, where standard

feedback is calculated via token-level labels, and count-based

feedback is calculated solely by comparing the entity counts

per class between the predictions and ground-truth labels.

The results indicate that learning sequence labeling tasks,

such as Named Entity Recognition, with aggregate feedback

is feasible, even from count-based annotations. Furthermore,

our findings suggest that informed counting can significantly

increase performance.

We acknowledge that the experimental results have potential

for considerable improvements, especially regarding the method

by which count-based feedback is calculated and attributed to

individual label predictions, even when feedback is provided

at sequence-level. Although our approach does not completely

eliminate the need for labeled datasets, we demonstrate that

learning from count-based (or aggregate) annotations can achieve

reasonable performance for Named Entity Recognition. By

proposing this training approach, we are pushing toward more

general and less biased annotations, e.g., counting instead of

marking specific entities may lower inter-annotator disagreement.

In further studies, the effectiveness of aggregate labels should

be explored for more advanced NLP tasks, such as Question

Answering or Event Extraction.
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