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SineKAN: Kolmogorov-Arnold
Networks using sinusoidal
activation functions

Eric Reinhardt*, Dinesh Ramakrishnan and Sergei Gleyzer

Department of Physics and Astronomy, The University of Alabama, Tuscaloosa, AL, United States

Recent work has established an alternative to traditional multi-layer perceptron

neural networks in the form of Kolmogorov-Arnold Networks (KAN). The

general KAN framework uses learnable activation functions on the edges of

the computational graph followed by summation on nodes. The learnable edge

activation functions in the original implementation are basis spline functions (B-

Spline). Here, we present a model in which learnable grids of B-Spline activation

functions are replaced by grids of re-weighted sine functions (SineKAN). We

evaluate numerical performance of our model on a benchmark vision task. We

show that our model can perform better than or comparable to B-Spline KAN

models and an alternative KAN implementation based on periodic cosine and

sine functions representing a Fourier Series. Further, we show that SineKAN

has numerical accuracy that could scale comparably to dense neural networks

(DNNs). Compared to the two baseline KAN models, SineKAN achieves a

substantial speed increase at all hidden layer sizes, batch sizes, and depths.

Current advantage of DNNs due to hardware and software optimizations are

discussed along with theoretical scaling. Additionally, properties of SineKAN

compared to other KAN implementations and current limitations are also

discussed.
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machine learning (ML), periodic function, Kolmogorov-Arnold Representation,
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1 Introduction

Multi-layer perceptrons (MLPs) are a fundamental component ofmany current leading

neural networks (Rumelhart et al., 1986a,b). They are often combined with feature

extracting tools, such as convolutional neural networks (LeCun et al., 1989; He et al., 2015;

Lecun et al., 1998) and multi-head attention (Vaswani et al., 2017), to create many of the

best performing models, such as transformers. One of the key mechanisms that makes

MLPs so powerful is that the layers typically end in non-linear activation functions which

enables universal approximation from any arbitrary input space to any arbitrary output

space using only a single sufficiently wide layer (Hornik et al., 1989). While MLPs enable

any such arbitrary mapping, the number of neurons required to achieve that mapping can

also be arbitrarily large.

Recent work (Liu et al., 2024) has presented an alternative to the MLP architecture,

based on the Kolmogorov-Arnold Representation Theorem (Kolmogorov, 1956, 1957;

Braun and Griebel, 2009), accordingly denoted as Kolmogorov-Arnold Networks (KANs)

(Liu et al., 2024). In earlier seminal work, Kolmogorov (1956, 1957), it was established

that any arbitrary multivariate function can be approximated with a sum of continuous

univariate functions over a single variable. In Liu et al. (2024), it was shown that this

approximation can be extrapolated to neural network architectures leading to competitive

performance with MLPs at often significantly smaller model sizes (Rumelhart et al.,

1986a,b). In this work, we will use an efficient implementation of the KAN with learnable

B-Spline activation functions (B-SplineKAN) (Cao, 2024) that is numerically consistent

with the original implementation of KAN, but on the order of three to five times faster
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than the original implementation (Liu et al., 2024) for the purpose

of performance comparison.

As Figure 1 shows, the order of operations in traditional

MLPs is: on-edge weight multiplication, summation on node,

addition of bias, followed by the application of the activation

function. In KANs, the order of operations is: learnable activation

function on edge, summation on node and optional addition of

bias on node. This alternative order of operations satisfies the

Kolmogorov-Arnold Representation Theorem and can potentially

allow significantly smaller computational graphs compared to

MLPs (Liu et al., 2024).

The work establishing KAN as a viable model (Liu et al.,

2024) explored the use of B-Splines as the learnable activation

function. There is a strong motivation for the choice of B-Splines.

Using B-Splines, it is possible to change the size of layer’s grid of

spline coefficients without meaningfully affecting the model itself,

enabling downstream fine-tuning. It is also possible to sparsify the

model through a process of pruning low-impact spline terms. It

is additionally possible to determine the functional form of the

model symbolically. Liu et al. (2024) found that B-Spline models

achieved competitive results with MLP layers on a broad range

of tasks. The choice of B-Splines isn’t without its costs however,

as B-SplineKAN layers are significantly slower than MLPs and,

while recent implementations have helped to close the gap, MLPs

are still substantially faster. Furthermore, there are many tasks

presented in Liu et al. (2024) where MLPs still outperformed

the B-SplineKAN. Recent work has shown that alternatives to

B-SplineKAN can achieve competitive performance under fair

comparison (Shukla et al., 2024). In this paper we present SineKAN,

a KAN implementation with sine activation functions which aims

to address size and speed limitations of common KAN models by

replacing B-Spline functions with periodic sine functions. We will

also compare to an existing periodic KAN model, the FourierKAN

(Xu et al., 2024).

In this work we will introduce the novel SineKAN model

functional form and provide empirical evidence that it can achieve

comparable performance to B-Spline KANmodels and outperform

FourierKAN models on some common benchmark tasks. We also

show that it can partially avoiding catastrophic forgetting during

continual learning, a property which has helped drive interest

in other KAN models. In Section 3 we describe the SineKAN

architecture, whether it satisfies a universal approximation, and

outline a weight initialization strategy that scales consistently with

differing grid sizes and stabilizes numerical performance across

FIGURE 1

Flow of operations. Top: MLP. Bottom: KAN.

multi-layer models. In Section 4, we present results of model

inference speed and performance on the MNIST benchmark and

compare it with B-SplineKAN and FourierKAN implementations.

We discuss our results in Section 5 and summarize our findings in

Section 6.

2 Related work

A number of alternative univariate functions to B-Splines have

been explored for use in KANs, including wavelets (Bozorgasl

and Chen, 2024), Chebyshev polynomials (Sidharth et al., 2024),

fractional functions (Aghaei, 2024a), rational Jacobi functions

(Aghaei, 2024b), radial basis functions (Ta, 2024), and even

variations on Fourier expansions (Xu et al., 2024), discussed in

detail in Section 3.2.

Periodic activation functions in neural networks have been

explored extensively and shown to provide strong approximations

for a broad class of problems. Such problems include general

functional modeling (Gallant andWhite, 1988), image classification

(Zhumekenov et al., 2019; wo Wong et al., 2002), and (Sopena

et al., 1999; Parascandolo et al., 2016) for general classification

tasks. Work using sinusoidal representational networks (Sitzmann

et al., 2020) has shown that sinusoidal activation functions lead

to strong performance on problems with continuous domains

(Lei et al., 2022) and potentially discontinuous domains (Origer

and Izzo, 2024; Li et al., 2024). These promising results in

sinusoidal activations motivate sine functions as a potentially

strong alternative to other explored activation functions for KANs.

3 SineKAN

3.1 Sinusoidal activation function

Here, we propose an alternative to the B-SplineKAN

architecture described in Section 1 that is based on sine functions.

Mathematically each layer can be expressed as:

yi =
∑

j,k

Aijk sin(ωkxj + φjk)+ bi (1)

where yi are the layer output features, xj are the layer input features,

φjk is a phase shift over the grid and input dimensions, ωk is a grid
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frequency, Aijk are the amplitude weights, and bi is a bias term.

The base functional form of the sines are fixed, while the functional

form of the sine activations is learned through learnable frequency

and amplitude terms performed over a grid of fixed phases.

3.2 Grid phase shift

In previous work using Fourier series, KAN networks use the

form of a full Fourier series expansion, denoted as the following

(Xu et al., 2024):

yi =
∑

j

∑

k

Aijk sin(kxj)+ Bijk cos(kxj)+ bi (2)

where yi are the layer output features, xj are the layer input features,

Aijk and Bijk are Fourier weight matrices, and bi is a bias. Here,

there is an additional three-dimensional weight matrix compared

to SineKAN:

yi =
∑

j,k

Aijk sin(ωkxj + φjk)+ bi (3)

By introducing learnable frequencies ωk over a grid with fixed

phase shifts φjk and input dimensions, we reduce the number of

learnable parameters from O(2oig) to O(oig + g) where o is the

output dimension, i is in the input dimension, and g is the grid size.

We conjecture later in Section 3.4 that this still satisfies universal

approximation in the large model limit.

Under the initial assumption for the first layer of the model,

a naive approach for initializing the grid weights is to cover a full

phase shift range, where the grid phase shift terms would be a

range of values from 0 to π . However, it can be shown that, for

the following case:

g
∑

i=1

sin

(

x+
i

g

)

(4)

where g is the grid size, the total sum increases non-linearly as

a function of g. Most importantly, the total sum is independent

of input value, x. This makes finding the appropriate grid weight

scaling inconsistent across types of inputs and grid dimension. We

present an alternative strategy, in which grid weights are initialized

as:

g
∑

i=1

sin

(

x+
i

g + 1

)

(5)

In the case where frequencies are all fixed at the same constant

value, the sum converges to:

g
∑

i=1

sin

(

x+
i

g + 1

)

= C(g) sin

(

x+
1

2

)

(6)

where C(g) is a constant that scales with g. This means that, for

fixed frequencies, the scaling behavior of the model output would

be independent of x.

Furthermore, we find that introducing an additional input

phase term along the axis of the number of input features with

values ranging from zero to π leads to strongermodel performance.

Finally, to stabilize the model scaling across different grid sizes,

we find a functional form that helps scale the total sum across the

grid dimension as a ratio of phase terms:

R = Ag−K + Cφg+1 = φgR(g) (7)

where A = 0.97241, K = 0.988440, and C = 0.999450, R is a scale

factor by which all phase terms aremultiplied as you increase from a

grid size of one upward, and φg is the phase at a particular grid size.

To determine A, K, and C we perform least squares minimization

of:

L(g, x) = σ 2

(

f (g + 1, x)

f (g, x)

)

+

(

1− µ

(

f (g + 1, x)

f (g, x)

))2

(8)

where L is a cost function, f(g,x) is the sum of sines across input

values from −π to π , µ is the mean value and σ 2 is the standard

deviation.

Using this functional formwe can initialize layers with arbitrary

grid sizes by using the exponential expression in a recursive formula

while initializing the grid phase weights. The original ratios of sums

of sines are shown in Figure 2 and the ratios after applying the

recursive formula are shown in Figure 3.

In Figure 4B, we see the outputs of subsequently connected

layers when recursive grid size phase scaling is not applied. In

Figure 4A, we see the same scenario but with recursive grid size

phase scaling applied and see an increase in similarity of layer

outputs across various grid sizes.

3.3 Scaling of phase terms with grid size

We find a weight initialization strategy which results in

strong performance and stability in higher depth models. For the

first layer, the weights are initialized as a random distribution

with a mean of 0 and and a standard deviation of 0.4 and

for the subsequent layers, the weights are initialized from a

uniform distribution between –1 and 1. This not only leads

to consistent layer weight distributions, but also leads to

consistent output across connected layers of same size, as shown

in Figure 5B.

It also features a desirable property that, given a fixed

initialization on the first layer and a random input vector,

the features span a broader range of values at deeper layers,

as shown in Figure 5A. This implies that no value collapse is

introduced. Comparatively, we see in Figure 5C, that the model

layer outputs in B-SplineKAN implementations decrease in multi-

layer models, which can play a significant role in results in

Section 4.2.
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FIGURE 2

Value of
∑g

i=1 sin
(

x+ i
g+1

)

as a function of x with the ratio of sum at g+1 over the sum at g as the color scale. Left to right: g = 2, g = 10, and g = 20.

FIGURE 3
∑g

k=1 sin
(

x+ kπ
g+1

R(g)
)

with the ratio of sum at g+ 1 over the sum at g as the color scale. Left to right: g = 2, g = 10, and g = 20.

FIGURE 4

(A) Outputs of layers of same size (N = 1,000) with the recursive function applied for grid size scaling. (B) Outputs of layers of same size (N = 1,000)

without the recursive function applied for grid size scaling.

3.4 Universal approximation

The combination of learnable amplitudes and sinusoidal

activation functions have previously been shown to be viable

for implicit neural representations (Sitzmann et al., 2020).

The models have been shown to be effective for applications

including control systems (Origer and Izzo, 2024), medical

applications (Li et al., 2024), and physics applications (Lei

et al., 2022). However, these models only satisfy universal

approximation on a single layer when combined with linear

transformations in sufficiently wide or deepmodels. By introducing

an additional degree of freedom in the form of learnable
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FIGURE 5

(A) Outputs of consecutive layers of di�erent sizes in a SineKAN model. (B) Outputs of consecutive layers of same size in a SineKAN model. (C)

Outputs of consecutive layers of same size in a B-SplineKAN model.

FIGURE 6

Fits of SineKAN with grid size of 100 to assorted functions.

frequencies over phase-shifted grids, one can eliminate the linear

transformation layers.

Any sufficiently well-behaved/smooth 1 dimensional function

f :R → R can be expressed in terms of a Fourier transform f̃ :R →

C w.r.t. a continuous phase space of frequencies ω:

f (x) =

∫

R

dω f̃ (ω)eiωx

= Re
(∫

R

dω f̃ (ω)eiωx
)

=

∫

R

dω A(ω) cos
(

ωx+ φ′(ω)
)

=

∫

R

dω A(ω) sin
(

ωx+ φ(ω)
)

where A(ω) and φ(ω) = φ′(ω) − π
2 are real-valued functions.

The above integral can be discretized using Riemannian sums over

a finite set of frequencies � = {ω1,ω2 . . . ωG} where cardinality

G of the set is the grid size. We henceforth propose the following

variational function gθ as an ansatz for f (x):

gθ (x) =
∑

i

Bi sin (ωix+ φi)

where we make the replacements
∫

R
→

∑

i, dωA(ω) → Bi and

ω,φ(ω) → ωi,φi. Here, φi are G fixed, finite points from (0,π +

1] while we treat all other subscripted symbols Bi,ωi as weights

whose values can trained to optimize a loss function between f

and gθ , which converges to the Fourier transform integral of f

as G → ∞. Hence, in the limit where G → ∞, it’s a valid

candidate for a learnable activation function ansatz to be used in

a Kolmogorov-Arnold Network (KAN).

In Figure 6 we show that with a layer with grid size of 100,

a single-input, single-output SineKAN layer can map inputs to
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FIGURE 7

Left: SineKAN model predictions across entire domain. Right:

Portion of domain shown to model during progressive training.

outputs in 1D functions including over non-smooth functional

mappings. The functions explored are:

• f (x) = tanh(10x+ 0.5+ ReLU(x2) · 10)

• g(x) = sin(x)+ cos(5x) · e−x2 + ReLU(x− 0.5)

• h(x) = σ (3x)+ ReLU(sin(2x)+ x3)

• k(x) = tanh(5x− 2)+ 3 · ReLU(cos(x2))

• m(x) = Softplus(x2 − 1)+ tanh(4x+ 0.1)

• n(x) = e−x2+0.3x + ReLU(tanh(2x− 1))

4 Results

4.1 Continual learning

A desirable property demonstrated for B-SplineKAN models is

the ability to fit to sections of the total domain without “forgetting”

other sections. In Liu et al. (2024), this was performed by fitting

FIGURE 8

Left: SineKAN model predictions across entire domain. Right:

Portion of domain shown to model during progressive training.

a repeating Gaussian waves one period at a time. The first period

is fit then the first period is removed from the training data and

replaced with the second period. This is repeated for each of the five

periods. The original B-SplineKAN work showed that the model

could learn to fit data in the new portion of the domain without

catastrophically forgetting the other portions of the data it had

been shown.

This task presents challenges for SineKAN due to the fact

that the range of the function is periodically repeating even

beyond the subsection of the domain where the model is initially

fit. Due to this we expect SineKAN to have greater difficulty

avoiding some amount of “forgetting”. However, because the

model is periodic, another behavior can emerge in which the

model, if able to generalize the pattern across subsections, can

potentially forecast into regions of the domain it hasn’t been

exposed to. This is a potentially very desirable property for

tasks where there is any kind of periodic symmetry across

the domain.

We see in Figure 7 that the SineKAN model exhibits the

expected behavior of experiencing some amount of forgetting. We

also see that by the second period it begins to generalize the periodic

behavior to the third period and, by the third period, it’s generally

able to capture the period behavior across the entire domain.

In Figure 8, we show that exposing the model to more that one

disconnected period at a time (period 1 and 3 then 2 and 4 then

3 and 5) also allows the model to capture the periodic behavior

across the entire domain with twice as many forward passes but

with the same number of total back propagation steps. This implies

that discontinuous domains wouldn’t necessarily limit the model’s

generalization behavior.
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FIGURE 9

Validation accuracy of B-SplineKAN, FourierKAN, and SineKAN on MNIST with a single hidden layer of size (A) 16, 32, and 64 and (B) 128, 256, and 512.

TABLE 1 Model performance metrics by layer size with the best scores

bolded.

Layer size Model Accuracy Precision Recall F1

16 Sine 0.9616 0.9617 0.9616 0.9616

16 B-Spline 0.9568 0.9571 0.9568 0.9568

16 Fourier 0.9337 0.9337 0.9337 0.9336

32 Sine 0.9766 0.9766 0.9766 0.9766

32 B-Spline 0.9711 0.9711 0.9711 0.9711

32 Fourier 0.9499 0.9500 0.9499 0.9499

64 Sine 0.9818 0.9818 0.9818 0.9818

64 B-Spline 0.9790 0.9790 0.9790 0.9790

64 Fourier 0.9597 0.9597 0.9597 0.9596

128 Sine 0.9850 0.9850 0.9850 0.9850

128 B-Spline 0.9802 0.9802 0.9802 0.9802

128 Fourier 0.9656 0.9656 0.9656 0.9656

256 Sine 0.9853 0.9853 0.9853 0.9853

256 B-Spline 0.9834 0.9834 0.9834 0.9834

256 Fourier 0.9709 0.9709 0.9709 0.9709

4.2 KAN numerical performance on MNIST

The MNIST dataset is a classification dataset which contains

60,000 training examples and 10,000 testing examples of

handwritten characters (Deng, 2012). The characters can have

values between 0 and 9. We train and compare single-layer

B-SplineKAN and SineKAN networks on the MNIST dataset. We

use a batch size 128, learning decay rate of 0.9 and learning rates

of 5e-3 for B-Spline, 1e-4 for FourierKAN, and 4e-4 for SineKAN,

optimized with grid search. The models are trained using the

AdamW optimizer with a weight decay of 0.01 for B-SplineKAN,

1 for FourierKAN, and 0.5 for SineKAN also found via grid search

(Loshchilov and Hutter, 2019). We test model performance with

single hidden layer dimensions of 16, 32, 64, 128, 256, 512 training

for 30 epochs using cross entropy loss (Rumelhart et al., 1986a).

FIGURE 10

B-SplineKAN, FourierKAN, and SineKAN validation accuracy on

MNIST with a 1, 2, 3, and 4 hidden layers of size 128.

Figure 9 shows the model validation accuracy as a function

of the number of epochs. The best accuracies are shown

in Table 1. The SineKAN model achieves better results than

the FourierKAN and B-SplineKAN models for all hidden

layer sizes.

We additionally explore fitting using the same hyperparameters

but with 1, 2, 3, and 4 hidden layers of size 128. Figure 10 shows that

the SineKAN outperforms the FourierKAN and B-SplineKAN at

lower layer depths. We also find, however, that without additional

tuning of hyperparameters, all three models generally decrease in

performance at higher depths.

4.3 KAN inference speeds

We benchmark the speed of SineKan and B-SplineKANmodels

using NVIDIA T4 GPU with 16GB of RAM. We test performance

on variable batch sizes of 16, 32, 64, 128, 256, and 512 on single

inputs of 784 features using a single hidden layer of size 128

with a grid size of 8. We test performance on single hidden layer

hidden dimensions of 16, 32, 64, 128, 256, and 512 under the same
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FIGURE 11

Average inference times (averaged over 1,000 passes) as a function of (a) batch size, (b) hidden dimension, (c) hidden layers of B-SplineKAN,

FourierKAN, and SineKAN run on NVIDIA Tesla T4 GPU (16GB RAM).

TABLE 2 MLP performance metrics by layer size.

Layer size Model Accuracy Precision Recall F1

16 MLP 0.9183 0.9181 0.9183 0.9181

32 MLP 0.9557 0.9557 0.9557 0.9556

64 MLP 0.9682 0.9682 0.9682 0.9682

128 MLP 0.9797 0.9797 0.9797 0.9797

256 MLP 0.9822 0.9822 0.9822 0.9822

512 MLP 0.9842 0.9842 0.9842 0.9842

1024 MLP 0.9843 0.9843 0.9843 0.9843

2048 MLP 0.9863 0.9863 0.9863 0.9863

conditions. We test performance with single batch of 784 features

with 1, 2, 3, and 4 hidden layers of size 128.

As Figure 11 shows, the SineKAN has the best inference times

at all batch sizes compared to B-SplineKAN and FourierKAN. It

also has the best inference times across all hidden layer dimensions

explored with all three models showing roughly flat scaling as

a function of model depth. Due to differences in hardware

optimization and cuda kernel optimization, it is difficult to directly

compare the performance of the three models on-device. To

account for idealized performance optimizations, we also derive

analytically the expected model scaling behavior in Appendix. We

find that the expected scaling for the three models in approximate

FLOP compute units are as follows:

• SineKAN:O(2b dout din g)

• FourierKAN:O(4b dout din g)

• B-SplineKAN:O(2b dout din (g + s))

Here b is the batch size, din and dout are the input and output

dimensions, g is the grid size, and s is the basis-spline order.

We therefore expect that, with full device-level and software-level

optimization, the relative performance of B-SplineKAN will scale

like g/(g + s) relative to SineKAN and FourierKAN to scale like

half the speed of SineKAN.

4.4 MLP comparison

We also compare performance to MLP in Table 2. For MLP we

performed a similar grid search and found a learning rate of 8e-4,

weight decay of 0.01, and learning decay rate of 0.9 to be the best

performing. We find that MLP exceeds SineKAN’s performance at

a grid size of 8 and hidden layer size of 256 once it reaches a hidden

layer size of 2,048.

Due to previously mentioned differences in device-level and

software-level optimizations for the different models, it’s difficult to

directly compare the performance of MLP and SineKAN. However,

the characteristic FLOPs of an MLP layer scales as O
(

2bdoutdin
)

.

We therefore would consider that, for a SineKAN model with

a grid size of 8, a competitive MLP performance would be at

8 times the hidden layer dimension. However, it’s also worth

acknowledging that as the first hidden layer size in the MLP

increases, additional parameters are added in the output layer. MLP

under-performing SineKAN (0.9853 accuracy) at a hidden layer

size of 1,024 (0.9843 accuracy) and outperforming SineKAN at a

hidden layer size of 2,048 (0.9863 accuracy) is consistent with a

competitive performance to MLP as a function of FLOPs under full

optimization.

5 Discussion

The SineKAN model, which uses sine functions as an

alternative to existing baseline B-Spline activation functions (Liu

et al., 2024), shows very good performance on the benchmark task.

Model stabilization techniques described in Section 3.2 lead to

consistent model layer output weights at different depths and sizes

of phase shift grids. We also show that it actively mitigates value

collapse in deep models.

In Section 4.2, we show that SineKAN increasingly outperforms

the B-SplineKAN model at very large hidden layer dimensions.

These results suggest that the SineKAN model may be a better

choice compared to B-SplineKAN for scalable, high-depth, large

batch models such as large language models (LLMs). However,

when comparing to MLP we also account for difference in scaling
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resulting from lack of a grid. We find that MLP models perform

similarly to SineKAN when accounting for idealized model scaling.

However, at very large sizes (hidden dimension of 2048), MLP

outperforms SineKAN with comparable idealized inference time.

We show in Section 4.3 that the SineKAN model is faster

than both FourierKAN and B-SplineKAN as a function of batch

size, hidden layer dimension, and depth. Due to device-level

and software-level optimizations to computation, we also derive

empirically in Appendix what the expected true scaling is under

optimal conditions. We find that SineKAN is roughly (g+s)/g times

faster than B-SplineKAN where g is grid size and s is basis-spline

order and roughly two times faster than FourierKAN.

We also found that SineKAN had a significantly different

optimal learning rate and weight decay compared to B-SplineKAN

and FourierKAN which motivates the idea that a fair comparison

cannot be done across different KAN implementations without

performing a grid search to find optimal hyperparameters. Further,

we also showed in Section 3.3, that B-SplineKAN has an inherent

flaw in scaling to multi-layer models in that it increasingly

constricts layer outputs at higher depths. This likely necessitates

additional layer normalization between B-SplineKAN layers. We

recommend that approaches for stabilizing model weights at

different sizes and depths, similar to those outlined in Sections 3.2,

3.3, should be employed in other KAN models to improve deep

model stability and performance.

Regarding general KAN properties, SineKAN is able to

demonstrate some avoidance of catastrophic forgetting in the

continual learning task. It also shows a potentially favorable

behavior in generalization of repeating patterns to as-of-yet unseen

portions of the domain space. However, we introduce a recursive

phase scaling which improves model stability and performance

at different model sizes. This makes the current implementation

of SineKAN incapable of directly transferring weights to a larger

grid. Absence of grid expandability could present major limitations

in use cases where extremely large grid sizes might be required.

Further, SineKAN currently does not support symbolic expressions.

In summary, sinusoidal activation functions appear to be a

promising candidate in the development of Kolmogorov-Arnold

models. SineKAN has superior performance in inference speed

and accuracy, as well as multi-layer scaling when compared with

B-SplineKAN. However, a number of other activation functions

mentioned in Section 1 have also shown to have superior inference

speed and better numerical performance. Further exploration is

needed to compare the performance both in terms of inference

speed and numerical performance on the broad range of KAN

implementations, and on a broader range of tasks, under fair

conditions.

6 Conclusion

We present the SineKAN model, a sinusoidal activation

function alternative to B-SplineKAN and FourierKAN

Kolmogorov-Arnold Networks and multi-layer perceptrons.

We find that SineKAN has one desirable property of KAN models

in avoidance of catastrophic forgetting during continual learning

and an additional property of generalization of patterns to unseen

regions of the domain. We also find that this model leads to better

numerical performance on the MNIST benchmark task compared

to other KAN models and comparable performance to MLP when

all models are trained using near-optimal hyperparameters found

with a parameter grid search. The SineKAN model outperforms

B-SplineKAN at higher hidden dimension sizes with more

predictable performance scaling at higher depths. We further

find that SineKAN outperforms efficient implementations of

FourierKAN and B-SplineKAN on speed benchmarks and are

expected to outperform even at full device- and software-level

optimization. We find that SineKAN performs similarly to

MLP when accounting for idealized scaling though MLP can

still outperform SineKAN given sufficiently large hidden layer

dimensions.

Future work should aim to compare other KAN models under

similar, optimized conditions. Additional explorations are also

needed regarding deep-model stabilization techniques for various

KANmodels. Due to competitive performance of SineKANmodels

with MLP, we find it worth exploring use of SineKAN models

in place of MLP in more complex architectures involving feature

extractors such as convolutional neural networks (He et al., 2015)

and transformers (Vaswani et al., 2017). Further work is also needed

to include features in SineKANmodels which are available in some

other KAN models (Liu et al., 2024) such as symbolic equation

representing and transfer of weights during grid size expansion of

the model. Finally, further exploration is needed to determine use

cases which best leverage the periodic behavior of the SineKAN

model.
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Kolmogorov-Arnold networks. arXiv preprint arXiv:2404.19756.

Loshchilov, I., and Hutter, F. (2019). Decoupled weight decay regularization. arXiv
preprint arXiv:1711.05101.

Origer, S., and Izzo, D. (2024). Guidance and control networks with periodic
activation functions. arXiv preprint arXiv:2405.18084.

Parascandolo, G., Huttunen, H., and Virtanen, T. (2016). “Taming the waves: Sine
as activation function in deep neural networks,” in ICLR 2017.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986a).
Learning representations by back-propagating errors. Nature 323, 533–536.
doi: 10.1038/323533a0

Rumelhart, D. E., McClelland, J. L., and PDP Research Group (1986b). Parallel
Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1:
Foundations. Cambridge, MA, USA: MIT Press.

Shukla, K., Toscano, J. D., Wang, Z., Zou, Z., and Karniadakis, G. E. (2024).
A comprehensive and fair comparison between MLP and KAN representations for
differential equations and operator networks. arXiv preprint arXiv:2406.02917.

Sidharth, S. S., Keerthana, A. R., and Anas, K. P. (2024). Chebyshev polynomial-
based Kolmogorov-Arnold networks: an efficient architecture for nonlinear function
approximation. arXiv preprint arXiv:2405.07200.

Sitzmann, V., Martel, J. N. P., Bergman, A. W., Lindell, D. B., and Wetzstein,
G. (2020). “Implicit neural representations with periodic activation functions,” in
Advances in Neural Information Processing Systems, 7462–7473.

Sopena, J. M., Romero, E., and Alquezar, R. (1999). “Neural networks with periodic
andmonotonic activation functions: a comparative study in classification problems,” in
Proceedings of the ICANN. doi: 10.1049/cp:19991129

Ta, H.-T. (2024). BSRBF-KAN: a combination of b-splines and radial basic functions
in Kolmogorov-Arnold networks. arXiv preprint arXiv:2406.11173.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
(2017). Attention is all you need. CoRR, abs/1706.03762.

Wong, K. W., Leung, C. S., and Chang, S. J. (2002). “Handwritten digit recognition
using multilayer feedforward neural networks with periodic and monotonic activation
functions,” in Object Recognition Supported by User Interaction for Service Robots
(IEEE), 106–109.

Xu, J., Chen, Z., Li, J., Yang, S., Wang, W., Hu, X., et al. (2024). Fourierkan-GCF:
fourier Kolmogorov-Arnold network-an effective and efficient feature transformation
for graph collaborative filtering. arXiv preprint arXiv:2406.01034.

Zhumekenov, A., Uteuliyeva, M., Kabdolov, O., Takhanov, R., Assylbekov, Z., and
Castro, A. J. (2019). Fourier neural networks: a comparative study. arXiv preprint
arXiv:1902.03011.

Frontiers in Artificial Intelligence 10 frontiersin.org

https://doi.org/10.3389/frai.2024.1462952
https://doi.org/10.1007/s00365-009-9054-2
https://github.com/Blealtan/efficient-kan
https://doi.org/10.1109/MSP.2012.2211477
https://doi.org/10.1109/ICNN.1988.23903
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1109/5.726791
https://doi.org/10.1038/323533a0
https://doi.org/10.1049/cp:19991129
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Reinhardt et al. 10.3389/frai.2024.1462952

Appendix

Code

The SineKAN code can be found at

https://github.com/ereinha/SineKAN.

Model scaling derivations

For these derivations we assume that addition, multiplication,

and subtraction will require on average 1 FLOP, division and

exponential will require on average 5 FLOPs, and trigonometric

functions (sine/cosine) will require on average 10 FLOPs. We

will also assume any boolean logic and reshaping will require

0 FLOPs. Here b is the batch size, g is the grid size, s is

the basis-spline order, din is the input dimension, dout is the

output dimension.

SineKAN Layer:

Initial multiplication:

M1 = bding (A1)

Add phase:

A1 = bding (A2)

Trigonometric evaluations:

Nsin = 10bding (A3)

Einsum multiplications:

M2 = bdoutding (A4)

Einsum additions:

A2 = bdout(ding − 1) (A5)

Add bias:

A3 = bdout (A6)

Total FLOPs: bding(2dout + 12)+ bdout
Leading order: O(2bdingdout)

FourierKAN Layer:

Initial multiplication:

M1 = bding (A7)

Trigonometric evaluations:

Ncos = Nsin = 10bding (A8)

Multiplication by Fourier coefficients:

M2 = 2bdoutding (A9)

Addition over dimensions:

A1 = 2bdout(ding − 1) (A10)

Cosine and sine combination:

A2 = bdout (A11)

Add bias:

A3 = bdout (A12)

Total FLOPs: bding(4dout + 21)+ bdout
Leading order: O(4bdingdout)

EfficientKAN Layer:

SiLU activation:

Nsilu = 13bdin (A13)

Base linear multiplication:

Mbase = bdoutdin (A14)

Base linear addition:

Abase = bdout(din − 1) (A15)

B-Spline basis calculation:

Nspline = 17sbdin(g + 2s) (A16)

Spline linear multiplication:

Mspline = bdoutdin(g + s) (A17)

Spline linear addition:

Mspline = bdout[din(g + s)− 1] (A18)

Combine outputs:

Acombine = bdout (A19)

Total FLOPs: 13bdin + 2bdoutdin + 17sbdin(g+ 2s)+ 2bdoutdin(g+

s))+ bdout
Leading order: O(2bdoutdin(g + s))
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