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In recent years, large language models (LLMs) have seen rapid advancement

and adoption, and are increasingly being used in educational contexts. In

this perspective article, we explore the open challenge of leveraging LLMs to

create personalized learning environments that support the “whole learner” by

modeling and adapting to both cognitive and non-cognitive characteristics.

We identify three key challenges toward this vision: (1) improving the

interpretability of LLMs’ representations of whole learners, (2) implementing

adaptive technologies that can leverage such representations to provide tailored

pedagogical support, and (3) authoring and evaluating LLM-based educational

agents. For interpretability, we discuss approaches for explaining LLM behaviors

in terms of their internal representations of learners; for adaptation, we examine

how LLMs can be used to provide context-aware feedback and sca�old non-

cognitive skills through natural language interactions; and for authoring, we

highlight the opportunities and challenges involved in using natural language

instructions to specify behaviors of educational agents. Addressing these

challenges will enable personalized AI tutors that can enhance learning by

accounting for each student’s unique background, abilities, motivations, and

socioemotional needs.
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1 Introduction

In recent years, generative artificial intelligence (GenAI)—and more specifically,

LLMs—have exploded into global public awareness (Barreto et al., 2023). ChatGPT, for

example, is available in 188 countries with over 180million users (as of August 2023)1. Such

rapid adoption and ongoing development continues to disrupt many industries and areas

of study, particularly as each new generation of LLMs offers new capabilities (e.g., memory,

multimodality, longer input context sizes). LLMs have made their impact in the world of

education as well—for instance, one notable example is Khanmigo2, an LLM-powered AI

1 https://clickup.com/blog/chatgpt-statistics/#6-chatgpt-users-and-usage-

2 https://blog.khanacademy.org/harnessing-ai-so-that-all-students-benefit-a-nonprofit-

approach-for-equal-access/
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tutor that provides personalized support to students and assists

teachers with developing instructional materials. This type of

personalized support highlights the great potential for LLMs in

educational contexts (Pardos and Bhandari, 2023).

We argue that such personalized support systems can and

should be further expanded to provide “whole learner” support,

moving beyond the paradigm of understanding and supporting

only students’ academic proficiency to also address social, affective,

motivational, cultural, and linguistic characteristics that are known

to impact learning (Bernacki et al., 2021; Mercado, 2018;

Walkington and Bernacki, 2018; Lehman et al., 2024). This work

focuses on “non-cognitive skills,” describing aspects of a learner

beyond subject knowledge and proficiency, such as resilience,

persistence, empathy, motivation, self-regulation, and a growth

mindset (Kautz et al., 2014).

Personalized learning environments (PLEs) leverage learner

models, which are structured representations of students, to guide

personalized support (Abyaa et al., 2019; Ismail et al., 2023).

However, existing learner models cannot support the “whole

learner,” as they typically limit themselves to modeling knowledge

acquisition (e.g., level of mastery over a concept), and at best,

one additional characteristic (e.g., prior knowledge) or behavior

(e.g., engagement; Ismail et al., 2023)3. The complexity of whole-

learner modeling stems from the fact that it is not enough to

simply model each characteristic and behavior independently—

instead, these factors must be considered holistically to understand

and support the whole learner. While the complex interaction of

these factors presents a significant challenge for existing PLEs, we

know that such holistic support is possible to provide in practice

given that human teachers successfully combine these elements to

support their students every day.

By pairing whole-learner modeling with GenAI, LLMs present

an opportunity to bridge the long-standing gap between the quality

and range of learner support offered by present-day computational

systems and that offered by expert human tutors (Lepper et al.,

1993; Cade et al., 2008; D’Mello et al., 2010). However, rapid

innovation in the field of LLMs has raised questions about their

appropriate use in PLEs. We explore some of the challenges

and opportunities that exist around the vision of using LLMs to

build whole-learner models and eventually create adaptive learning

systems. We first explore the challenges and potential of LLMs in

doing so (Section 2) and then identify several promising research

directions to address these challenges (Section 3).

2 Challenges and the state of the art

We identify three key areas where the community needs to

progress to achieve the larger vision of whole-learner modeling:

• Interpretable representations of learners: It is necessary

to represent a learner explicitly and faithfully, including

both cognitive and non-cognitive aspects. Although deep

learning methods have traditionally been viewed as “black-

box” approaches with opaque internal mechanisms, recent

3 However, models considering more learner characteristics have been

proposed (Shute and Zapata-Rivera, 2008; Zapata-Rivera and Greer, 2004).

advances in interpretability and explainability research are

working to address this challenge, and are well-positioned for

applications in the context of whole learner modeling and

support.

• Adaptive technologies to support whole learners: Given

an interpretable learner representation, it should be used

to tailor the delivery of pedagogical content and support

to suit a learner’s characteristics, including both cognitive

and non-cognitive states. By leveraging data on learner

behavior, preferences, and characteristics, and dynamically

adjusting instructional strategies to address individual needs,

adaptive systems can provide personalized learning pathways

that evolve with learners’ cognitive and non-cognitive skill

development.

• Authoring and evaluating agents: In the context of PLEs and

pedagogical agents (PAs), the term “authoring” refers to the

manual process of specifying behaviors (or “policies") of the

agent. For instance, in an intelligent tutoring system (ITS),

classroom instructors can author common misconceptions

based on their teaching experience. Authors can come

from varying backgrounds (e.g., researcher, educator, and

developer), so a key challenge in designing authoring tools is

balancing accessibility and minimizing cognitive load. Finally,

authoring is tightly-coupled with the issue of evaluation,

a critical step in smoothly deploying these systems to real

learners.

2.1 Interpretable representations of
learners

Two key concerns in deploying LLMs to potentially sensitive

application contexts such as education are interpretability (what

a “black box” model is doing and representing internally)

and explainability (why the model outputs A instead of B,

given input C). Without reliable interpretation, we do not

know what information the models use to make decisions

or generate responses. Unlike trained educational professionals,

automated models cannot be trusted to reliably take students’ prior

knowledge or emotional state into account to provide relevant

and compassionate guidance, nor can we be certain that they will

not use sensitive demographic information inappropriately. On the

other hand, when we cannot reliably explain LLM behaviors, we

cannot ensure that desired behaviors in one context will generalize

to others (e.g., whether attentiveness to the emotional needs of

students with high socioeconomic status will translate to less

advantaged students).

Integrating interpretable learner models with LLMs is a

promising approach to develop PLEs, providing the benefits of

GenAI while maintaining a high level of interpretability. Such a

hybrid approach need not be overly complex; for instance, one

may begin by training a traditional learner model and passing

its inferences to the LLM as an additional component of input

prompts. However, it is crucial to ensure that (1) LLMs actually

consider learner model’s output, and that (2) they use this

information in a way that is faithful to the learner model and

consistent with educational best practices – otherwise, the approach
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will not benefit educational stakeholders like teachers and students

(Pinto et al., 2023).

LLMs are also well-suited for advancing open learner models

(OLMs) due to their natural language dialogue capabilities.

OLMs enable learners to view and interact with the model’s

representation of their knowledge, promoting reflection and self-

regulated learning. This transparency and interactivity can enhance

traditional OLMs, allowing learners to modify their learning paths

more freely. However, the use of LLMs in OLMs also raises

concerns about how LLMs use learner information and relate their

actions to educational best practices. Indeed, the integration of

LLMs with OLMs has the potential to revolutionize educational

technology by making learning processes more adaptive and

personalized (Conati et al., 2018; Kay et al., 2020; Zapata-Rivera

and Arslan, 2021; Bull, 2020), but implementation must be guided

by strong ethical and pedagogical standards.

Despite important recent advances in understanding the inner

workings of LLMs (e.g., Elhage et al., 2021; Olsson et al., 2022;

Conmy et al., 2023; Templeton et al., 2024), reliably explaining

model behavior to relevant stakeholders remains a significant

challenge. This inability to interpret LLM representations and

explain model behaviors leads to a lack of trust (Shin, 2021;

Liao and Vaughan, 2023), which can inhibit these models’

deployment to educational contexts where they have potential

for transformational impact. By contrast, many traditional learner

models are designed with interpretability as an inherent feature,

such as Bayesian Knowledge Tracing (Baker et al., 2008) and

Item Response Theory (Yen and Fitzpatrick, 2006). There are

even efforts underway to develop intrinsically interpretable neural-

network-based learner models (Pinto et al., 2023; Lu et al., 2020;

Swamy et al., 2024). We discuss how such approaches can address

the challenges of interpretable LLMs for education in 3.1.

2.2 Whole learner support through
adaptive technologies

The next challenge in deploying LLMs for education is

adaptivity, which involves assessing various learner characteristics

and tailoring the learning experience to individual needs to

improve learning outcomes (Plass and Pawar, 2020). Through the

natural language capabilities of LLMs, adaptive technologies for

whole learner support can offer nuanced support for developing

both cognitive and non-cognitive skills in diverse learners. For

instance, Arroyo et al. (2014) demonstrated that intelligent adaptive

tutors effectively address students’ unique needs and emotions,

enhancing engagement and affect, while Liu et al. (2024) found

that conversational agents offering emotional scaffolding improved

students’ emotional experiences.

Such findings highlight the importance of design principles

focused on non-cognitive learner characteristics, such as fostering

a growth mindset through praising learners’ efforts (Liu et al.,

2024), attributing struggles to external factors (Calvo and D’Mello,

2011), utilizing an anthropomorphic language style, and employing

proactive inquiry (McQuiggan et al., 2008; Sabourin et al., 2011) to

guide learners to self-report their emotional states. For instance, a

review found that empathetic agent feedback, including affective

feedback and confidence- and motivation-enhancing dialogue,

positively influences students’ attitudes (Liu et al., 2024; Ortega-

Ochoa et al., 2024). Similarly, another study demonstrated how

conversational agents can support children’s social-emotional

learning by teaching self-talk. These lines of research also

emphasize the importance of designing conversational dialogue

based on an evidence-based framework (Fu et al., 2023). Building

on this foundation, recent AI advancements have facilitated the

development of natural language dialogue systems to scaffold non-

cognitive skills (Acosta et al., 2015; Anghel and Balart, 2017; Cinque

et al., 2021).

2.3 Authoring and evaluating agents

LLMs are also transforming the landscape for authoring

educational agents such as PAs, intelligent tutors (Sottilare et al.,

2015), and even simulated learners (Käser and Alexandron, 2023).

Before the widespread adoption of modern LLMs, agent authoring

was bottlenecked by supervised and reinforcement learning

methods that required machine learning expertise (Mannekote

et al., 2023; Liu and Chilton, 2022), lots of data, labor-intensive

manual annotation, or some combination of these factors. In

contrast, the recent development of instruction-tuned LLMs

(Wang et al., 2023) enables educational experts to define agent

behaviors using natural language instructions in “zero-shot” or

“few-shot” setups (i.e., using no annotated examples or only a few,

respectively). In addition to reducing the training and expertise

needed for authoring the dialogue system, LLMs also open up

new avenues of agent behavior—for instance, where classical ITSs

predominantly focused on supporting the cognitive aspects of

learning (e.g., subject proficiency) (Sottilare et al., 2015), authors

can now leverage LLMs capabilities such as their abilities to emulate

human-like decision-making (Miliv cka et al., 2024) and perform

high-level planning (Kambhampati et al., 2024) to equip them with

the ability to support non-cognitive aspects of learning as well.

However, LLMs are not (yet) a “turn-key” solution to agent

authoring, as several key challenges remain. Authoring LLM-

based agents requires effectively navigating an unbounded space

of possible prompts, which may be difficult to do without prompt

engineering expertise (Oppenlaender et al., 2023; Zamfirescu-

Pereira et al., 2023; Mannekote et al., 2023). Moreover, it has

been shown that LLM outputs are highly sensitive to minor

prompt variations, often leading to inconsistent (Lu et al., 2022;

Liu and Chilton, 2022; Loya et al., 2023; Mohammadi, 2024)

and confounding (Gui and Toubia, 2023) results. Finally, when

authoring complex agent behaviors, the issue of evaluating the

faithfulness of an agent’s behavior to the authors’ intended

expectations becomes pertinent (Koedinger et al., 2015;Weitekamp

et al., 2023). In fact, within the context of AI models like LLMs, this

issue can be considered to be a specific instance of the alignment

problem (Yudkowsky, 2016).

3 Ways forward

For each of the three challenge areas delineated in Section 2, we

outline a broad roadmap for future advancements. Specifically, we
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identify promising directions that the field is likely to pursue in the

medium to long term.

3.1 Interpretable representations of
learners

We face two primary challenges in enhancing the

interpretability of LLMs. First, rather than merely adding more

information to the prompt and hoping that the model will use it

appropriately, we need a direct method to explain why a model

generated a particular output. This involves determining whether

the output was produced due to explicit learner information

that has been added to prompts or implicit learner information

that LLMs have inferred from learner behavior. Second, we must

predict whether its behavior will remain consistent when applied in

different contexts, such as in learning environments for which they

have not already been tested. Although neural networks like LLMs

are usually seen as “black boxes” whose internal representations

and mechanisms are treated as unknowable beyond the outputs

they produce, recent work in deep learning interpretability

has made substantial strides in addressing this challenge. For

instance, current interpretability methods can detect what latent

representations are used by models in producing a particular

output (Elazar et al., 2021; Belinkov, 2022; Davies et al., 2023) and

characterize how these representations are leveraged in producing

particular behaviors (Elhage et al., 2021; Olsson et al., 2022; Conmy

et al., 2023).

Beyond simply interpreting LLMs’ representation and use

of information about learners, it is also important to utilize

counterfactual explanation techniques to predict how their

behaviors will change in response to different input prompts

(Wachter et al., 2017; Ribeiro et al., 2020)—for instance, if we add

a minor typo to a student’s essay that is otherwise exemplary, will

the model provide a substantially lower assessment of the student’s

knowledge in response? Conversely, it is equally important to

characterize when and how models will remain invariant with

respect to a given input property (Schwab and Karlen, 2019)—

for example, it may be important to understand whether models

always provide the same answer to different ways of phrasing the

same question, meaning that they are invariant with respect to

question semantics. Knowing the set of properties to which a given

model is invariant allows us to predict whether its behavior will

remain consistent if those same properties are held constant, even

as other input properties may vary (Peters et al., 2016; Arjovsky

et al., 2019). Between these two lines of research, we can build a

systematic picture of when, how, and why model behaviors are

expected to change (under counterfactuals) or remain the same

(given invariances).

3.2 Whole learner support through
adaptive technologies

Our vision for personalized learning that supports whole-

learner adaptation necessitates a dynamic approach to learner

modeling, capable of capturing and integrating the learner’s

complex states and needs. High-quality adaptive feedback is

contingent on an accurate representation of the learner. Crafting

and updating this representation is the job of the learner model,

which is typically considered a separate component from the

adaptation module that produces feedback in ITSs and PLEs (Shute

and Zapata-Rivera, 2008). While learner models can come in many

forms, such as cognitive models, machine learning models, or

Bayesian networks, GenAI models like LLMs are beginning to be

tested for this task (Zhang et al., 2024).

Integrating whole learner models with LLM-based support

involves using cognitive, affective, or behavioral states from

learner models as inputs to the adaptation module or dialogue

engine (Zapata-Rivera and Forsyth, 2022). To capture the whole

learner, multiple traditional models representing distinct aspects

of the learner can either form a larger learner module or be

integrated into a holistic model. Alternatively, a single LLM

might serve as both the learner model and the adaptation

module, though the current lack of LLM interpretability

challenges trustworthiness and validation. Another viable

option is leveraging a LLM to integrate outputs from various

traditional learner models, providing a comprehensive inference

to the adaptation module. This approach could be very useful,

despite the limited research on integrating diverse types of

learner information, as it offers a more nuanced understanding of

the student.

Regardless of the specific system architecture used, LLMs

enable just-in-time adaptive conversational feedback. This allows

conversational complexity to adjust dynamically based on the

learner’s real-time progress, maintaining an appropriate level of

challenge and promoting engagement (Zapata-Rivera and Forsyth,

2022). By basing this feedback on a rich understanding of the

learner from the learner model, it offers whole-learner adaptation,

potentially providing more nuanced, personalized support than

existing PLEs.

3.3 Authoring and evaluating agents

When building agents to support the whole learner, the

ability to operationalize a given theoretical model or dynamically

incorporate new developments from learning sciences into agentic

behavior “on the fly” is a desirable trait, helping to avoid the tedious

process of manually re-authoring the agents. Efficient attention

mechanisms (Shen et al., 2021), attention-alternatives (Gu and

Dao, 2023), techniques such as retrieval-augmented generation

(RAG) (Lewis et al., 2020), and needle-in-the-haystack capabilities

(Kuratov et al., 2024) will enable authors to quickly reshape agent

behavior, potentially even allowing them to directly operationalize

longer documents such as scientific reviews or books describing

evidence-based practices.

Equally important to authoring is evaluating the model

outputs for faithfulness and robustness. Although preliminary

experimental results with using LLMs in economics and

psychology suggest that LLMs are capable of accurately

mimicking aspects of human behavior like decision-making

(Jia et al., 2024) and personality traits (Frisch and Giulianelli,

2024), further research is needed to generalize these findings to

educational settings.
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Finally, authoring is not just about designing agents for

pedagogical support, but also developing realistic testbeds to

evaluate them. For this line of work, authoring multi-agent social

simulations (see, e.g., Park et al., 2022, 2023) will be an integral

component of the end-to-end development process of ITSs and

PAs. Such evaluations can ensure that the agents perform well

across a wide range of scenarios, increasing educator confidence.

For instance, instead of testing a PA against a single learner

simulation, authoring an entire classroom of LLMs comprising

multiple learner agents allows for more holistic and rigorous

testing, ensuring the PA is pedagogically effective, equitable, safe,

and robust before being deployed to real learners.

4 Ethical considerations

Several important ethical considerations must be addressed

before deploying GenAI for educational applications. First,

interpretability is crucial for trustworthiness: one cannot fully

trust a model in sensitive applications like education without

understanding how it represents and interacts with users (Huang

et al., 2020). Second, it is important to ensure that LLMs do not

exacerbate the digital divide in education (i.e., inequitable access to

educational technologies and associated benefits), as anticipated by

Capraro et al. (2024). For instance, given the substantial compute

required to deploy the largest and most capable LLMs, it may be

helpful to develop more compute-efficient language models for use

in educational settings with limited resources (Hoffmann et al.,

2022); and interdisciplinary collaborations betweenAI research and

learning sciences will be essential in ensuring that new technologies

are actually improving learning outcomes and student welfare (cf.

Dahlin, 2021).

Finally, perhapsmost important are concerns regarding student

privacy—for instance, in the adaptive support modules envisioned

above, LLMs might be provided with information about learners’

emotional states to provide more holistic, empathetic feedback;

but in order to protect students’ privacy and ensure that sensitive

information about them cannot be used for non-educational

purposes such as advertising, student data should only be visible

to systems with robust security and data privacy guarantees (and

not, e.g., included in prompts used as input to third-party AI

systems, which may use such information to train future public-

facing models). These concerns are particularly significant for

minors, who have special legal privacy protections andmay bemore

vulnerable to unintended GenAI behaviors.

5 Conclusion

In this paper, we explored the potential integration of

LLMs into PLEs to support the whole learner addressing both

cognitive and non-cognitive characteristics. Our discussion has

highlighted significant opportunities as well as challenges in

integrating LLMs into PLEs, focusing on developing interpretable

learner representations, adaptive technologies for personalized

support, and authoring and evaluating PAs. For future research,

it will be important to develop methods to enhance LLM

interpretability and explainability within educational settings,

facilitating trustworthiness and appropriate use of student

information. Additionally, LLMs’ adaptability must also be refined

to ensure that models can offer individualized support that

accounts for diverse learner needs and backgrounds. Finally,

authoring PAs will require more principled prompting protocols,

including an understanding of both relevant subject matter and

pedagogical best practices, in order to engender more faithful and

robust agents. By advancing each of these areas, LLMs can be

better positioned to fulfill their potential as transformative tools

in education, making widely-accessible personalized learning a

practical reality. Through all these advancements, it is essential

to be mindful of the security, privacy, and ethical concerns

surrounding the handling of learner data.
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