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Knowledge Graphs (KGs) have revolutionized knowledge representation,

enabling a graph-structured frameworkwhere entities and their interrelations are

systematically organized. Since their inception, KGs have significantly enhanced

various knowledge-aware applications, including recommendation systems

and question-answering systems. Sensigrafo, an enterprise KG developed by

Expert.AI, exemplifies this advancement by focusing on Natural Language

Understanding through a machine-oriented lexicon representation. Despite the

progress, maintaining and enriching KGs remains a challenge, often requiring

manual e�orts. Recent developments in Large Language Models (LLMs) o�er

promising solutions for KG enrichment (KGE) by leveraging their ability to

understand natural language. In this article, we discuss the state-of-the-art LLM-

based techniques for KGE and show the challenges associated with automating

and deploying these processes in an industrial setup. We then propose our

perspective on overcoming problems associated with data quality and scarcity,

economic viability, privacy issues, language evolution, and the need to automate

the KGE process while maintaining high accuracy.

KEYWORDS

LLMS, knowledge graph, relation extraction, knowledge graph enrichment, AI,

enterprise AI, carbon footprint, human in the loop

1 Introduction

A Knowledge Graph (KG) represents real-world knowledge using a graph structure,

where nodes denote entities and edges represent relationships between them (Hogan et al.,

2021). Since Google introduced the Knowledge Graph in 2012, KGs have become essential

in knowledge representation, enhancing various tasks Companies use them to improve

product performance, boosting data representation and transparency in recommendation

systems, efficiency in question-answering systems, and accuracy in information retrieval

systems (Peng et al., 2023).

This work presents the perspective of Expert.AI, a leading enterprise in Natural

Language Understanding (NLU) solutions, centered on meticulously created and curated

KGs by expert linguists. While manual curation ensures high precision and data quality,

it demands significant human effort, and the rapid evolution of real-world knowledge

requires frequent updates to KGs.
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Recent advancements in Large Language Models (LLMs)

suggest potential for partial automation of this process. LLMs, deep

learning architectures designed for natural language processing,

have demonstrated impressive results in NLU tasks. Their advanced

capabilities represent a promising avenue for automating and

enhancing Knowledge Graph Enrichment (KGE), refining, and

adding new entities and relationships in KGs. By leveraging the

implicit knowledge embedded within pre-trained LLMs (PLMs),

companies can streamline the identification of new entities and

relationships in external corpora, enriching their KGs withminimal

manual intervention (Valmeekam et al., 2024).

However, automating KGE from external text in an industrial

context is far from straightforward. It is crucial to choose

an appropriate methodological framework: various PLM-based

KGE techniques require model finetuning, while others rely on

prompting. We will discuss the advantages and disadvantages of

both approaches. For instance, while finetuning is generally costly

and requires large amounts of annotated data, prompting is more

cost-effective but poses privacy-related risks.

We will also examine the primary challenges of implementing

corporate KGE solutions, categorizing them into four areas: (i) the

quality and quantity of public or automatically annotated data,

(ii) developing sustainable solutions in terms of computational

resources and longevity, (iii) adaptability of PLM-based KGE

systems to evolving language and knowledge, and (iv) creating

models capable of efficiently learning the KG structure.

We review existing solutions for each issue and identify

promising options for automating KGE in industrial settings using

PLMs while maintaining high quality. We recommend a hybrid

approach that combines PLMs, KG structure understanding,

and domain expertise, ensuring privacy compliance. To adapt

to evolving LLMs, we suggest treating PLMs as plug-and-play

components for versatility and longevity.

This paper is structured as follows: Section 2 presents Expert.AI

and its research investment objectives. Section 3 discusses the state-

of-the-art in PLM-based KGE. Section 4 provides our perspective

on the challenges of deploying these methods in an enterprise

environment. Finally, conclusions are drawn in Section 5.

2 Sensigrafo: an enterprise KG and its
characteristics

Expert.AI, formerly known as Expert System, is a leading AI

enterprise specializing in solving complex language challenges.

With over 300 natural language solutions, Expert.AI has

transformed language-intensive processes across various sectors.

Central to Expert.AI’s NLU solutions is a collection of large KGs

called Sensigrafos, meticulously built by linguists and domain

experts and carefully modified to gain performance in downstream

NLU tasks. 1 Each Sensigrafo includes attributes like grammatical

role, semantic relation, definition/meaning, domain, and frequency

that establish the characteristics of words and concepts (Buzzega

et al., 2023). Terms with the same meaning are grouped into

syncons, interconnected by millions of logical and linguistic links,

organized hierarchically. For example, the English Sensigrafo

1 https://www.expert.ai/products/expert-ai-platform/knowledge-graph/

contains about 440,000 syncons, grouping more than 580,000

words, and 80+ relation types, yielding around 7.1 million links.

In contrast, most collaborative open-source KGs are generated

automatically, resulting in numerous triples. DBpedia, for instance,

contains about 900 million triples. The number of entity classes

varies across KGs, with Wikidata having over 110 million items

and 500 million facts, and YAGO encompassing knowledge of

more than 67 million entities and 343 million facts (Suchanek

et al., 2023). The number of relation types also varies, with

Freebase having 1,345 and YAGOholding only 140 (Suchanek et al.,

2023). These KGs span diverse domains, primarily derived from

text corpora like Wikipedia, aiming to cover extensive real-world

knowledge. Conversely, each Sensigrafo is carefully constructed

using only information sources from its intended domain, making

the information extraction operation much more reliable and

accurate.

However, the accuracy of Sensigrafo’s information comes at a

high maintenance cost. Adding new syncons and relations requires

full human supervision, aided by Expert.AI’s semantic engine,

Cogito. Cogito uses a Sensigrafo to resolve ambiguities related to

wordmeanings and can expand its knowledge through expert input

or analyzing tagged content using ML algorithms.

As real-world information grows and the cost of upgrading

Sensigrafo increases, Expert.AI plans to integrate symbolic and

statistical technologies, combining expert-validated rules with AI

methods to automate Sensigrafo updates. This hybrid approach

is expected to reduce the costs of developing and maintaining

symbolic AI solutions. Nevertheless, any AI solution should be

accompanied by a high degree of explainability, robustness, and

precision to make enrichment systems transparent and reliable.

To identify the crucial aspects in developing such a solution, we

will present state-of-the-art KGE techniques based on PLMs.

3 Pretrained LLM for KG management
and enrichment

Relation extraction (RE) and named entity recognition (NER)

are key challenges in automatic KGE. RE identifies and categorizes

relationships between entities in unstructured text, expanding

the KG’s structure. NER focuses on recognizing, classifying,

and linking entities in the text to the knowledge base. These

processes are crucial for accurately identifying entities and their

interconnections, enhancing KGs. Recent literature highlights two

approaches to NER and RE: creating large training sets with hand-

curated or extensive automatic annotations to fine-tune LLMs,

or using precise natural language instructions, replacing domain

knowledge with prompt engineering efforts (Levy et al., 2017; Li

et al., 2019; Soares et al., 2019; Peng et al., 2020; Agrawal et al., 2022;

Wang et al., 2023).

Supervised methods for NER and RE usually include a

pretraining stage followed by zero-shot learning (Wang et al., 2022)

or the use of specialized architectures and training setups (Yu et al.,

2020; Li et al., 2022b). Due to the lack of large annotated corpora,

many approaches for RE and NER rely on distant supervision (DS),

an automated data labeling technique that aligns knowledge bases

with raw corpora to produce annotated data.
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Early DS approaches to RE use supervised methods to align

positive and negative pair relations for pre-training language

models, followed by few-shot learning to extract relations (Soares

et al., 2019; Peng et al., 2020). DS methods for NER involve tagging

text corpora with external knowledge sources like dictionaries,

knowledge bases, or KGs. A common DS method for NER is

the teacher-student framework. For example, Liang et al. (2020)

proposed a two-stage method: fine-tuning a LLM on DS labels,

followed by teacher-student system self-training with pseudo soft

labels to improve performance.

While DS is useful when labeled data is scarce or expensive,

it can introduce incomplete and inaccurate labels. To address

this, recent works have focused on mitigating DS label noise and

improving results (Wan et al., 2022). A commonmethod to address

DS noise in RE is multi-instance learning (MIL) (Zeng et al.,

2015), which groups sentences into bags labeled as positive or

negative with respect to a relation, shifting the RE task from single

sentences to bags. However, MIL is not data-efficient, leading to

recent extensions into contrastive learning setups. These efforts aim

to cluster sentences with the same relational triples and separate

those with different triples in the semantic embedding space (Chen

et al., 2021; Li et al., 2022a).

Recent years have seen a significant increase in work on NER

and RE involving prompt engineering. Prompting for NER includes

using entity definitions, questions, sentences, and output examples

to guide LLMs in understanding entity types and extracting answers

(Ashok and Lipton, 2023; Kholodna et al., 2024). For RE, tasks

are rephrased as question-answering (Levy et al., 2017), often

injecting latent knowledge contained in relation labels into prompt

construction (Chen et al., 2022) and iteratively fine-tuning prompts

to enhance the model’s ability to focus on semantic cues (Son et al.,

2022). In general, zero-shot learning methods have been shown

to perform better than supervised settings when the amount of

training data is scarce.

Choosing between prompt engineering and fine-tuning is

challenging. While prompting with large LLMs like GPTs

is appealing for handling complex tasks with minimal data

annotation, it can underperform in NER compared to fine-

tuned smaller PLMs like BERT derivations, especially with more

training data (Gutierrez et al., 2022; Keloth et al., 2024; Pecher

et al., 2024; Törnberg, 2024). Large LLMs, such as GPT-3,

struggle with specific information extraction tasks, including

managing sentences without named entities or relations (Gutierrez

et al., 2022). Prompting also faces hallucination issues, often

overconfidently labeling negative inputs as entities or relations.

Some approaches, such as Wang et al. (2023), address this

by enriching prompts and reducing hallucinations via self-

verification strategies. Other methods correct inaccurate NER and

RE prompting results through active learning techniques (Wu et al.,

2022) or by distilling large PLMs into smaller models for specific

tasks (Agrawal et al., 2022).

4 Perspective

Summarizing the previous sections, the main challenges for

enterprise LLM-based solutions for KGE include:

• Computational resources and longevity: creating tailored PLM-

based KGE solutions can be costly and resource-intensive.

There is a need for lightweight, sustainable, and durable

training pipelines.

• Data quality and benchmarking: collaborative and Enterprise

KGs have different structures, causing a mismatch between

public benchmark datasets and enterprise use cases.

• Evolving knowledge: robust methods are needed to combine

automated novelty detection (new links and nodes for the KG)

with high-quality human-curated interventions.

• Lack of adaptive hidden representations: the learning paradigm

should shift from classification to representation learning to

accommodate novelty and efficiently encode KG features.

In the following sections, we will provide a comprehensive

analysis of each of these challenges.

4.1 Computational resources and longevity
of solutions

When developing enterprise-level NLU solutions, it’s crucial

to consider computational resources and carbon footprint due to

the high environmental and economic costs of traditional model

training (Patil and Gudivada, 2024). Fully fine-tuning PLMs, while

effective for specific tasks, is often costly and inefficient, requiring

substantial computational resources and time. These models are

tailored for narrow applications, making updates challenging

(Razuvayevskaya et al., 2023).

In contrast, in-context learning provides greater flexibility,

facilitating adaptation to the rapidly evolving field of LLMs.

However, prompt engineering is time-consuming and requires

methods not universally applicable across models (Zhao et al.,

2024). Balancing these factors is essential for creating sustainable

and effective NLU solutions that meet the dynamic requirements of

modern enterprises (Faiz et al., 2023).

Given the continuous release of new LLMs, we advocate for

PLM-based KGE approaches that treat the LLM as a modular

component, easily replaceable to integrate context-specific models

trained on domain-specific knowledge, enhancing system relevance

and accuracy.

The choice between fine-tuning and in-context solutions is

closely tied to selecting an encoder or decoder architecture for

NLU. The need for regularly updated tools favors encoder-

based solutions. Generative models like ChatGPT, while user-

friendly, can quickly become outdated or change unexpectedly,

compromising the reproducibility and efficiency of prompting

techniques (Törnberg, 2024). Additionally, the opacity of their

training data makes these models less reliable in zero-shot

scenarios. Ethical and legal considerations further limit the use

of proprietary generative LLM APIs with private or confidential

data, making them unsuitable for most enterprise environments

(Törnberg, 2024). Prompt engineering for full KGE is also

impractical due to the structural mismatch between natural

language and KGs, complicating the creation of satisfactory,

automated prompts for large KGs beyond simple proof-of-concept

examples.
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FIGURE 1

Flowchart illustrates the integration of human feedback in the Expert.AI process, from dataset preparation and disambiguation to knowledge graph

querying, data processing, and representation learning.

Thus, we advocate for adapter-based fine-tuning for efficient

KGE solutions. Instead ofmodifying all LLMweights, this approach

adds a small network to the existing encoder architecture and

trains that module. Adapters are trained on task-specific data,

while the original model’s weights remain mostly unchanged,

acting as prior knowledge. This method is more computationally

efficient, allowing LLMs to be plug-and-play components in the

data pipeline, making the system more flexible and easily updated.

This approach would manage the carbon footprint of extensive

computational processes and extend the lifespan of KGE solutions.

4.2 Data quality and solution
benchmarking

Asmentioned, all supervised methods for KGE require creating

large, annotated datasets. While leveraging benchmark datasets

from literature would be ideal, most of these datasets are built

from collaborative KGs. This can pose challenges and performance

depletion when trying to export solutions to sparser KGs for NLUs.

Additionally, the quality and properties of annotated corpora are

significant concerns as manual annotation, themost reliable source,

is scarcely available.

According to Bassignana and Plank (2022), cross-dataset and

cross-domain setups for RE are particularly deficient. To combat

data sparsity, several semi-automatically labeled datasets have been

constructed, but they have issues, such as missing relation labels

(NA). For example, the NYT10d dataset has 53% incorrect labels,

while NYT10m and Wiki20m have 96 and 60% of triples labeled

as “NA” (Gao et al., 2021; Lin et al., 2022). Datasets defined as

manually annotated often only include human annotations in the

test set.

Also popular NER datasets show limitations, such as the

limited number of entity classes. For instance, the CoNLL

2003 dataset contains only four entity types, ACE 2005 has
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As part of our diagnostic system, we designed a custom Google Glass RDT reader application for capturing RDT images, a Web

portal for generating custom QR code-based identifiers and viewing test results, and the server processes for rapid and high-

throughput digital evaluation of test results from any number of devices, with results ready within 8 s per test (see Figures 3 and 4).

TRUE RELATION: adjective/class

Relation ranking:

76.67% adjective/class

5.4% syncon/corpus

5.36% verb/object.

At position 56 in VH, glutamic acid (E) and histidine (H) are very similar in size, but the E56H substitution may cause side-chain

changes of D368 in Env and form more stable hydrogen bonds with Env for more stable binding.

TRUE RELATION: syncon/corpus

Relation ranking:

35.98% syncon/corpus

24.96% supernomen/subnomen

12.81% noun + of/noun

9.67% adjective/class.

FIGURE 2

Sample of predicted links in a text. Results of Expert.ai Visualization Tool for RE, represented as solid lines. They show the relations expressing the

semantic role of the terms (blue) that are connected to a verb (red). The LLM-based RE framework predicts the relations (ranked in confidence order)

shown in the text boxes and the most probable relations are depicted in the corresponding Sensigrafo portions as dashed lines.

7, and Ontonotes v5 includes 18 entities (Zhang and Xiao,

2024). This scarcity challenges the extraction of diverse entity

types for KGs. This can cause robustness problems leading

to poor generalization in out-of-domain scenarios (Ma et al.,

2023). Moreover, most NER datasets are not constructed

from a KG, failing to capture complex KG structures and

relationships, which affects the quality and completeness of

extracted entities.

Given these challenges, generating KG-centered datasets via DS

appears to be the safest choice for custom KGE solutions. However,

DS can introduce errors due to its reliance on assumptions that are

not always valid (Riedel et al., 2010), especially when KGs and the

corpus do not align closely, leading to hallucinations. Furthermore,

DS principles struggle to accommodate the evolving nature of

knowledge in free texts, as text annotation is based on a static,

pre-existing KG.

4.3 Ever evolving knowledge and LLMs

Maintaining and updating NLU solutions must account for the

evolving nature of language and knowledge. KGE relying solely on

DS may be inadequate, as weak annotations come from existing

KG entities and relations, limiting the prediction of new types.

Enterprises require precise solutions and cannot rely solely on self-

/unsupervised tools, necessitating some level of human curation in

KG updating methods.

This need can be addressed using the human-in-the-loop

(HITL) paradigm, which integrates human expertise into the

modeling process to manage ML models uncertainty (Wu et al.,

2022). In NLU, HITL methods iteratively correct or predict text

annotations. Typically, this involves starting with a small set

of annotated data (human-curated or weakly labeled), selecting

challenging samples for the model, having humans annotate these
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samples, updating the model with the new annotations, and

repeating the process.

HITL effectively handles scarce or sparse data for NER (Shen

et al., 2017), can address mislabeling (Muthuraman et al., 2021) and

enhance different stages of theML pipeline, such as data processing,

model training, and inference (Zhang et al., 2019; Klie et al., 2020;

Wu et al., 2022). Moreover, this paradigm was already successfully

employed to dynamically curate and expand databases based on

subject matter expert feedback (Gentile et al., 2019). Although a

comprehensive HITL method for KGE does not yet exist, Qian

et al. (2020) provides a promising starting point. The authors focus

on disambiguating entity names with various textual variations

using non-annotated examples, DS to generate pseudo labels, and

active learning to address DL models’ data requirements. They

rank predictions based on model confidence and involve users

in labeling the top and bottom elements. This framework could

be extended to simultaneously handle KG entities and relations,

engaging with the full KG structure.

4.4 Need for adaptive hidden
representations

As previously described, KGE subtasks are often modeled as

classification problems, which pose several issues.

Modeling NER or RE as classification outcomes forces the

model to predict an entity or a relation, leaving little room

for uncertainty. This is problematic especially given the risk of

conceptual hallucinations in LLMs leading to false positives (Peng

et al., 2022), an undesirable feature in non-transparent models that

can compromise disambiguation tasks.

Furthermore, modeling KGE as a classification problem

prevents the correct handling of KGs where multiple relations

connect two entities. This affects both disambiguation, which must

identify the correct triple in a sentence, and link prediction, which

aims to detect the appropriate relation.

KGs are dynamic, frequently updating entities and

relationships. While HITL can address this, systems must

incorporate new classes or modify existing ones. Classification

tasks constrain outcomes by a fixed structure, preventing real-time

adaptation to evolving KGs and necessitating full retraining when

new relations or entity classes are added, making the process

inefficient.

We advocate for designing ML models for downstream tasks

to consider KG structures. Instead of classification, representation

learning methods should be used to minimize noise impact and

manage uncertainty and evolving output structures. Methods like

contrastive learning can mimic and learn the principles of symbolic

KGs and disambiguation systems, leading to a consistent and

dynamic deep-learning approach to KGE.

4.5 Outlining the process: a simplified
pipeline for expanding knowledge graph
relations

Our proposed KGE solution for enterprises involves creating

customized datasets via DS, using lightweight supervised

representation learning, and integrating human feedback for

high-quality updates. Figure 1 illustrates this operational pipeline.

Such a pipeline aligns with explainable AI in NLU, addressing

computational efficiency, data quality, evolving knowledge, and

adaptive representations simultaneously. To illustrate these steps,

consider the task of enriching the life sciences-oriented Sensigrafo

through RE. We use a collection of PubMed2 documents.

Entities in the text are marked leveraging Cogito, the Expert.ai’s

disambiguator, and a DS module grounded on Sensigrafo produces

the possible relations in the annotated documents. We select a

field-specific PLM, such as BioBERT (Lee et al., 2020). Annotated

documents are transformed into contextualized embeddings using

the PLM as a prior knowledge base. A small neural network added

to the PLM performs adapter-based fine-tuning for RE using

techniques like contrastive learning. After training, the model

can recognize relations between marked entities in free text, with

predictions ranked by model confidence. Figure 2 shows two RE

use cases in text boxes. High-confidence predictions are injected

into the KG, while low-confidence ones are reviewed by domain

experts. Experts validate model results, insert new relations into the

KG, and provide feedback by adding new data to the training set.

They also assess data quality and identify potential disambiguation

mistakes.

5 Conclusions

Integrating LLM solutions into enterprise environments reliant

on KGs holds great potential for automated and data-driven

maintenance and updates. Drawing on the experience of Expert.AI,

a leader in NLU solutions, we identify critical issues in current

approaches and outline future challenges. Key aspects to address

include data quality, computational resources, the role of human

expertise, and choosing the right technique to machine-learn the

foundational principles of KG construction. Future efforts should

aim to develop resilient frameworks that blend automated and

human-involved processes, ensuring business applications of LLMs

are effective, efficient, and sustainable.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

LM: Investigation, Methodology, Writing – original draft,

Writing – review & editing. VG: Investigation, Methodology,

Supervision, Writing – original draft, Writing – review

& editing. FM: Conceptualization, Funding acquisition,

Project administration, Supervision, Writing – original

draft, Writing – review & editing. AB: Conceptualization,

Funding acquisition, Writing – original draft, Writing

– review & editing. PL: Conceptualization, Funding

2 https://pubmed.ncbi.nlm.nih.gov/

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2024.1460065
https://pubmed.ncbi.nlm.nih.gov/
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Mariotti et al. 10.3389/frai.2024.1460065

acquisition, Writing – original draft, Writing – review

& editing.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This paper

was partially funded by Region Emilia-Romagna through the

LR 14 year 2021 Project “IbridAI-Hybrid approaches to Natural

Language Understanding”.

Acknowledgments

We would like to extend our sincere gratitude to Expert.ai for

their invaluable support and contributions to this research.

Conflict of interest

AB and PL were employed by Expert.ai.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Agrawal, M., Hegselmann, S., Lang, H., Kim, Y., and Sontag, D. (2022). Large
language models are few-shot clinical information extractors. arXiv [Preprint].
arXiv:2205.12689. doi: 10.48550/arXiv.2205.12689

Ashok, D., and Lipton, Z. C. (2023). Promptner: prompting for named entity
recognition. arXiv [Preprint]. arXiv:230515444. doi: 10.48550/arXiv.230515444

Bassignana, E., and Plank, B. (2022). “What do you mean by relation extraction? A
survey on datasets and study on scientific relation classification,” in Proceedings of the
60th Annual Meeting of the Association for Computational Linguistics: Student Research
Workshop, eds. S. Louvan, A. Madotto, and B. Madureira (Dublin: Association for
Computational Linguistics), 67–83. doi: 10.18653/v1/2022.acl-srw.7

Buzzega, G., Guidetti, V., Mandreoli, F., Mariotti, L., Belli, A., Lombardi, P., et al.
(2023). “Automated knowledge graph completion for natural language understanding:
Known paths and future directions,” in CEUR Workshop Proceedings, Vol. 3478
(CEUR-WS), 160–172.

Chen, T., Shi, H., Tang, S., Chen, Z., Wu, F., Zhuang, Y., et al. (2021). Cil:
contrastive instance learning framework for distantly supervised relation extraction.
arXiv [Preprint]. arXiv:2106.10855. doi: 10.4550/arXiv.2106.10855

Chen, X., Zhang, N., Xie, X., Deng, S., Yao, Y., Tan, C., et al. (2022). “Knowprompt:
knowledge-aware prompt-tuning with synergistic optimization for relation extraction,”
in Proceedings of the ACM Web Conference 2022 (New York, NY: ACM), 2778–2788.
doi: 10.1145/3485447.3511998

Faiz, A., Kaneda, S.,Wang, R., Osi, R., Sharma, P., Chen, F., et al. (2023). Llmcarbon:
modeling the end-to-end carbon footprint of large language models. arXiv [Preprint].
arXiv:2309.14393. doi: 10.48550/arXiv.2309.14393

Gao, T., Han, X., Bai, Y., Qiu, K., Xie, Z., Lin, Y., et al. (2021). “Manual evaluation
matters: Reviewing test protocols of distantly supervised relation extraction,” in
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, eds. C.
Zong, F. Xia, W. Li, and R. Navigli (Association for Computational Linguistics),
1306–1318. doi: 10.18653/v1/2021.findings-acl.112

Gentile, A. L., Gruhl, D., Ristoski, P., and Welch, S. (2019). “Explore and
exploit. dictionary expansion with human-in-the-loop,” in The Semantic Web: 16th
International Conference, ESWC 2019, Portorož, Slovenia, June 2-6, 2019, Proceedings
16 (Cham: Springer), 131–145. doi: 10.1007/978-3-030-21348-0_9

Gutierrez, B. J., McNeal, N., Washington, C., Chen, Y., Li, L., Sun, H., et al. (2022).
Thinking about GPT-3 in-context learning for biomedical IE? Think again. arXiv
[Preprint]. arXiv:2203.08410. doi: 10.48550/arXiv.2203.08410

Hogan, A., Blomqvist, E., Cochez, M., D’amato, C., Melo, G. D., Gutierrez, C., et al.
(2021). Knowledge graphs. ACM Comput. Surv. 54:71. doi: 10.1145/3447772

Keloth, V. K., Hu, Y., Xie, Q., Peng, X.,Wang, Y., Zheng, A., et al. (2024). Advancing
entity recognition in biomedicine via instruction tuning of large language models.
Bioinformatics 40:btae163. doi: 10.1093/bioinformatics/btae163

Kholodna, N., Julka, S., Khodadadi, M., Gumus, M. N., and Granitzer, M.
(2024). Llms in the loop: Leveraging large language model annotations for
active learning in low-resource languages. arXiv [Preprint]. arXiv:2404.02261.
doi: 10.48550/arXiv.2404.02261

Klie, J.-C., de Castilho, R. E., and Gurevych, I. (2020). “From zero to hero: human-
in-the-loop entity linking in low resource domains,” in Proceedings of the 58th Annual

Meeting of the Association for Computational Linguistics, eds. D. Jurafsky, J. Chai, N.
Schluter, and J. Tetreault, (Association for Computational Linguistics), 6982–6993.
doi: 10.18653/v1/2020.acl-main.624

Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., et al. (2020). Biobert: a
pre-trained biomedical language representation model for biomedical text mining.
Bioinformatics 36, 1234–1240. doi: 10.1093/bioinformatics/btz682

Levy, O., Seo, M., Choi, E., and Zettlemoyer, L. (2017). Zero-shot relation
extraction via reading comprehension. arXiv [Preprint]. arXiv:1706.04115.
doi: 10.48550/arXiv.1706.04115

Li, D., Zhang, T., Hu, N., Wang, C., and He, X. (2022a). Hiclre: a hierarchical
contrastive learning framework for distantly supervised relation extraction. arXiv
[Preprint]. arXiv:2202.13352. doi: 10.48550/arXiv.2202.13352

Li, J., Fei, H., Liu, J., Wu, S., Zhang, M., Teng, C., et al. (2022b). Unified named
entity recognition as word-word relation classification. Proc. AAAI Conf. Artif. Intell.
36, 10965–10973. doi: 10.1609/aaai.v36i10.21344

Li, X., Feng, J., Meng, Y., Han, Q., Wu, F., Li, J., et al. (2019). A unified
mrc framework for named entity recognition. arXiv [Preprint]. arXiv:1910.11476.
doi: 10.48550/arXiv.1910.11476

Liang, C., Yu, Y., Jiang, H., Er, S., Wang, R., Zhao, T., et al. (2020). “Bond:
bert-assisted open-domain named entity recognition with distant supervision,” in
Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery
& data mining (New York, NY: ACM), 1054–1064. doi: 10.1145/3394486.3403149

Lin, Y., Xiao, H., Liu, J., Lin, Z., Lu, K., Wang, F., et al. (2022). Knowledge-
enhanced relation extraction dataset. arXiv [Preprint]. arXiv:2210.11231.
doi: 10.48550/arXiv.2210.11231

Ma, R., Wang, X., Zhou, X., Zhang, Q., and Huang, X. (2023). “Towards building
more robust NER datasets: an empirical study on NER dataset bias from a dataset
difficulty view,” in Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, eds. H. Bouamor, J. Pino, and K. Bali (Singapore: Association for
Computational Linguistics), 4616–4630. doi: 10.18653/v1/2023.emnlp-main.281

Muthuraman, K., Reiss, F., Xu, H., Cutler, B., and Eichenberger, Z. (2021). “Data
cleaning tools for token classification tasks,” in Proceedings of the Second Workshop
on Data Science with Human in the Loop: Language Advances, eds. E. Dragut, Y.
Li, L. Popa, and S. Vucetic (Association for Computational Linguistics), 59–61.
doi: 10.18653/v1/2021.dash-1.10

Patil, R., and Gudivada, V. (2024). A review of current trends, techniques,
and challenges in large language models (LLMS). Appl. Sci. 14:2074.
doi: 10.3390/app14052074

Pecher, B., Srba, I., and Bielikova, M. (2024). Fine-tuning, prompting, in-context
learning and instruction-tuning: How many labelled samples do we need? arXiv
[Preprint]. arXiv:2402.12819. doi: 10.48550/arXiv.2402.12819

Peng, C., Xia, F., Naseriparsa, M., and Osborne, F. (2023). Knowledge
graphs: Opportunities and challenges. arXiv [Preprint]. arXiv:2303.13948.
doi: 10.48550/arXiv.2303.13948

Peng, H., Gao, T., Han, X., Lin, Y., Li, P., Liu, Z., et al. (2020). Learning from
context or names? an empirical study on neural relation extraction. arXiv [Preprint].
arXiv:2010.01923. doi: 10.48550/arXiv.2010.01923

Frontiers in Artificial Intelligence 07 frontiersin.org

https://doi.org/10.3389/frai.2024.1460065
https://doi.org/10.48550/arXiv.2205.12689
https://doi.org/10.48550/arXiv.230515444
https://doi.org/10.18653/v1/2022.acl-srw.7
https://doi.org/10.4550/arXiv.2106.10855
https://doi.org/10.1145/3485447.3511998
https://doi.org/10.48550/arXiv.2309.14393
https://doi.org/10.18653/v1/2021.findings-acl.112
https://doi.org/10.1007/978-3-030-21348-0_9
https://doi.org/10.48550/arXiv.2203.08410
https://doi.org/10.1145/3447772
https://doi.org/10.1093/bioinformatics/btae163
https://doi.org/10.48550/arXiv.2404.02261
https://doi.org/10.18653/v1/2020.acl-main.624
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.48550/arXiv.1706.04115
https://doi.org/10.48550/arXiv.2202.13352
https://doi.org/10.1609/aaai.v36i10.21344
https://doi.org/10.48550/arXiv.1910.11476
https://doi.org/10.1145/3394486.3403149
https://doi.org/10.48550/arXiv.2210.11231
https://doi.org/10.18653/v1/2023.emnlp-main.281
https://doi.org/10.18653/v1/2021.dash-1.10
https://doi.org/10.3390/app14052074
https://doi.org/10.48550/arXiv.2402.12819
https://doi.org/10.48550/arXiv.2303.13948
https://doi.org/10.48550/arXiv.2010.01923
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Mariotti et al. 10.3389/frai.2024.1460065

Peng, H., Wang, X., Hu, S., Jin, H., Hou, L., Li, J., et al. (2022). Copen:
Probing conceptual knowledge in pre-trained language models. arXiv [Preprint].
arXiv:2211.04079. doi: 10.48550/arXiv.2211.04079

Qian, K., Raman, P. C., Li, Y., and Popa, L. (2020). Partner: human-in-the-loop
entity name understanding with deep learning. Proc. AAAI Conf. Artif. Intell. 34,
13634–13635. doi: 10.1609/aaai.v34i09.7104

Razuvayevskaya, O., Wu, B., Leite, J. A., Heppell, F., Srba, I., Scarton, C., et al.
(2023). Comparison between parameter-efficient techniques and full fine-tuning:
a case study on multilingual news article classification. PLoS ONE 19:e0301738.
doi: 10.1371/journal.pone.0301738

Riedel, S., Yao, L., andMcCallum, A. (2010). “Modeling relations and their mentions
without labeled text,” in Proceedings of the 2010th European Conference on Machine
Learning and Knowledge Discovery in Databases - Volume Part III, ECMLPKDD’10
(Berlin: Springer-Verlag), 148–163. doi: 10.1007/978-3-642-15939-8_10

Shen, Y., Yun, H., Lipton, Z. C., Kronrod, Y., and Anandkumar, A. (2017). Deep
active learning for named entity recognition. arXiv [Preprint]. arXiv:1707.05928.
doi: 10.48550/arXiv.1707.05928

Soares, L. B. FitzGerald, N., Ling, J., Kwiatkowski, T. (2019). Matching the blanks:
Distributional similarity for relation learning. arXiv [Preprint]. arXiv:1906.03158.
doi: 10.48550/arXiv.1906.03158

Son, J., Kim, J., Lim, J., and Lim, H. (2022). Grasp: guiding model with
relational semantics using prompt for dialogue relation extraction. arXiv [Preprint].
arXiv:2208.12494. doi: 10.48550/arXiv.2208.12494

Suchanek, F. M., Alam, M., Bonald, T., Paris, P.-H., and Soria, J. (2023). Yago 4.5: A
large and clean knowledge base with a rich taxonomy. arXiv [Preprint].

Törnberg, P. (2024). Best practices for text annotation with large
language models. arXiv [Preprint]. arXiv:2402.05129. doi: 10.48550/arXiv.2402.
05129

Valmeekam, K., Marquez, M., Olmo, A., Sreedharan, S., and Kambhampati, S.
(2024). “Planbench: an extensible benchmark for evaluating large language models on

planning and reasoning about change,” in NIPS ’23 (Red Hook, NY: Curran Associates
Inc).

Wan, Z., Liu, Q., Mao, Z., Cheng, F., Kurohashi, S., Li, J., et al. (2022). Rescue
implicit and long-tail cases: nearest neighbor relation extraction. arXiv [Preprint].
arXiv:2210.11800. doi: 10.48550/arXiv.2210.11800

Wang, C., Liu, X., Chen, Z., Hong, H., Tang, J., Song, D., et al. (2022).
Deepstruct: pretraining of language models for structure prediction. arXiv [Preprint].
arXiv:2205.10475. doi: 10.48550/arXiv.2205.10475

Wang, S., Sun, X., Li, X., Ouyang, R.,Wu, F., Zhang, T., et al. (2023). Gpt-ner: named
entity recognition via large language models. arXiv [Preprint]. arXiv:2304.10428.
doi: 10.48550/arXiv:2304.10428

Wu, X., Xiao, L., Sun, Y., Zhang, J., Ma, T., He, L., et al. (2022). A survey of
human-in-the-loop for machine learning. Future Gener. Comput. Syst. 135, 364–381.
doi: 10.1016/j.future.2022.05.014

Yu, J., Bohnet, B., and Poesio, M. (2020). Named entity recognition as dependency
parsing. arXiv [Preprint]. arXiv:2005.07150. doi: 10.48550/arXiv.2005.07150

Zeng, D., Liu, K., Chen, Y., and Zhao, J. (2015). “Distant supervision for relation
extraction via piecewise convolutional neural networks,” in Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing, eds. L. Màrquez,
C. Callison-Burch, and J. Su (Lisbon: Association for Computational Linguistics),
1753–1762. doi: 10.18653/v1/D15-1203

Zhang, S., He, L., Dragut, E., and Vucetic, S. (2019). “How to invest my time: lessons
from human-in-the-loop entity extraction,” in Proceedings of the 25th ACM SIGKDD
international conference on knowledge discovery & data mining (New York, NY: ACM),
2305–2313. doi: 10.1145/3292500.3330773

Zhang, Y., and Xiao, G. (2024). Named entity recognition datasets: a classification
framework. Int. J. Comput. Intell. Syst. 17:71. doi: 10.1007/s44196-024-00456-1

Zhao, H., Andriushchenko, M., Croce, F., and Flammarion, N. (2024). Is in-
context learning sufficient for instruction following in LLMS? arXiv [Preprint].
arXiv:2405.19874. doi: 10.48550/arXiv.2405.19874

Frontiers in Artificial Intelligence 08 frontiersin.org

https://doi.org/10.3389/frai.2024.1460065
https://doi.org/10.48550/arXiv.2211.04079
https://doi.org/10.1609/aaai.v34i09.7104
https://doi.org/10.1371/journal.pone.0301738
https://doi.org/10.1007/978-3-642-15939-8_10
https://doi.org/10.48550/arXiv.1707.05928
https://doi.org/10.48550/arXiv.1906.03158
https://doi.org/10.48550/arXiv.2208.12494
https://doi.org/10.48550/arXiv.2402.05129
https://doi.org/10.48550/arXiv.2210.11800
https://doi.org/10.48550/arXiv.2205.10475
https://doi.org/10.48550/arXiv:2304.10428
https://doi.org/10.1016/j.future.2022.05.014
https://doi.org/10.48550/arXiv.2005.07150
https://doi.org/10.18653/v1/D15-1203
https://doi.org/10.1145/3292500.3330773
https://doi.org/10.1007/s44196-024-00456-1
https://doi.org/10.48550/arXiv.2405.19874
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

	Combining large language models with enterprise knowledge graphs: a perspective on enhanced natural language understanding
	1 Introduction
	2 Sensigrafo: an enterprise KG and its characteristics
	3 Pretrained LLM for KG management and enrichment
	4 Perspective
	4.1 Computational resources and longevity of solutions
	4.2 Data quality and solution benchmarking
	4.3 Ever evolving knowledge and LLMs
	4.4 Need for adaptive hidden representations
	4.5 Outlining the process: a simplified pipeline for expanding knowledge graph relations

	5 Conclusions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


