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The prevalence of long-term conditions such as cardiovascular disease, 
chronic obstructive pulmonary disease (COPD), asthma, and diabetes mellitus 
is rising. These conditions are leading sources of premature mortality, hospital 
admission, and healthcare expenditure. Machine learning approaches to improve 
the management of these conditions have been widely explored, with data-
driven insights demonstrating the potential to support earlier diagnosis, triage, 
and treatment selection. The translation of this research into tools used in live 
clinical practice has however been limited, with many projects lacking clinical 
involvement and planning beyond the initial model development stage. To support 
the move toward a more coordinated and collaborative working process from 
concept to investigative use in a live clinical environment, we present a multistage 
workflow framework for the co-development and operationalization of machine 
learning models which use routine clinical data derived from electronic health 
records. The approach outlined in this framework has been informed by our 
multidisciplinary team’s experience of co-developing and operationalizing risk 
prediction models for COPD within NHS Greater Glasgow & Clyde. In this paper, 
we provide a detailed overview of this framework, alongside a description of the 
development and operationalization of two of these risk-prediction models as 
case studies of this approach.
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1 Introduction

The NHS and other healthcare systems face various long-term challenges, many of which 
have been exacerbated by the impacts of the COVID-19 pandemic on existing financial strains 
and waiting list backlogs (Cutler, 2022; Khan, 2016). A key issue is the increasing number of 
individuals affected by long-term conditions (Atella et al., 2019; Holman, 2020). Long-term 
conditions (often referred to as chronic conditions) are defined as conditions which cannot 
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currently be cured and require continuous medical treatment, such as 
cardiovascular disease, chronic obstructive pulmonary disease 
(COPD), asthma, and diabetes mellitus (NHS, 2023). These conditions 
present a major mortality and morbidity burden, with cardiovascular 
disease and COPD alone accounting for 17.9 million and 3.32 million 
global deaths per year, respectively, (World Health Organization, 
2023). Within the UK, long-term conditions account for 70% of 
inpatient bed days and are the leading cause of premature mortality 
(Department of Health, 2012; NHS, 2019). Transformation of the 
models of care for these conditions to ensure proactive personalized 
preventative management is essential to improve the quality of life of 
patients, prevent avoidable and costly hospital admissions, and reduce 
premature mortality (NHS, 2019).

The use of machine learning (ML) has the potential to support 
care model transformation and alleviate pressures on healthcare 
systems. The proposed benefits of ML for use in the long-term 
condition context include time and resource savings from the 
automation of tasks outside of patient facing care, and the aggregation 
and analysis of cohort and population-level data to support early 
accurate diagnosis, triage, and treatment selection (Davenport and 
Kalakota, 2019; Javaid et al., 2022). There have been many prospective 
clinical use cases for ML investigated using various data sources 
including structured data such as medical history data stored in 
electronic health records (EHRs), semi-structured data such as time 
series data derived from wearable medical devices and unstructured 
data such as medical imaging data (Habehh and Gohel, 2021). The 
existing digital pathway for image acquisition, reconstruction, 
interpretation, and reporting has meant that a range of diagnostic ML 
models using imaging have been deployed in a live clinical 
environment as part of active screening, workflow assistance and 
decision support programs (Koh et  al., 2022). However, despite 
extensive reports of clinical ML models in the academic literature, 
there has otherwise been limited translation of these models into tools 
used in a live clinical context. Lack of clinical user co-design and 
oversight, and absence of planning for model operationalization are 
typical gaps in healthcare ML model development which have 
hampered the use of ML models in clinical care (Bastian et al., 2022).

Given the need to evolve working practice to a more collaborative, 
adoption-focused approach, we have defined a workflow framework 
for the co-development of ML models trained using routinely 
collected data derived from electronic health records (EHRs). This 
framework is based on the first-hand experience and learnings our 
team has acquired from developing and operationalizing models to 
support the management of patients with COPD. The framework 
describes a collaborative working process between clinical and 
technical teams, spanning from establishing a multidisciplinary team 
to the investigative use of models in a live clinical environment. This 
work aims to provide a blueprint for multidisciplinary teams to 
navigate the complex landscape of model development and 
operationalization, with the aim of increasing the number of ML tools 
available to clinical teams and facilitating the generation of real-world 
evidence on the feasibility, safety, utility, and acceptability of using ML 
models to improve long-term condition management. Strategies to 
address wider issues that have confounded the application of ML 
approaches within a live clinical setting, such as the lack of 
interpretability of many ML models (Gill et al., 2023; Pierce et al., 
2022) and the risk of models underperforming in subpopulations 
within the intended inferencing population (Fletcher et al., 2020) will 

be  explored. Additionally, this paper presents two case studies 
documenting the development and operationalization of a 12-month 
mortality risk-prediction model and a 90-day readmission risk-
prediction model by our multidisciplinary team. Details of the 
considerations made at each stage and the lessons learned throughout 
the process are included to demonstrate how the principles described 
in the framework can be applied in practice.

2 Workflow framework

This framework is informed by the direct experience of our 
multidisciplinary team in the operationalization of risk-prediction 
models for COPD as part of the “DYNAMIC-AI” clinical investigation 
(NCT05914220). The framework has been broken down into nine 
distinct stages to highlight the considerations and requirements at 
each point of this process. To maintain simplicity, this framework will 
assume that a supervised machine learning approach is used and that 
only the structured data contained within EHRs is used to create 
features. A visual summary of each stage of the workflow framework 
is shown in Figure 1.

Outside of the immediate model development and 
operationalization process, parallel workstreams will be required for 
the adoption of models into a live clinical environment. These 
workstreams include patient and public engagement and involvement 
activity, defining routine clinical user needs for inferencing and 
accessing model outputs, and planning around evaluation and real-
world evidence generation following model operationalization. The 
timing of different components of these workstreams relative to the 
stepwise model development and operationalization process will vary 
with different approaches. As a result, a separate section detailing 
considerations around these workstreams is included after the 
stepwise stages presented below.

2.1 Stage 1: establishing a multidisciplinary 
team, identification of a target variable, 
and model development dataset 
identification

The first step of model development should be  identifying a 
multidisciplinary team (MDT). This MDT should consist of a clinical 
and a technical team. The clinical team should include clinicians who 
are experts on the target long-term condition or conditions of interest, 
as well as expert and routine clinical users who should be involved in 
the implementation of the developed model(s) in a real-world clinical 
environment. The technical team should include members with data 
science, data-engineering, cloud-engineering, and potentially software 
development experience if a novel user interface is going to be required 
to share the model outputs. The clinical team will provide detailed 
knowledge of the disease indication, provide context on current 
treatment paradigms and outline the problem that developed model(s) 
and associated insights can potentially address, define where model(s) 
and insights would fit within current clinical workflows, provide 
feedback on the biological plausibility of model outputs, and assist 
with the transformation of workflows and clinical pathways. It is 
critical that there is clinical oversight throughout the process to ensure 
that any decisions made will lead to a model with maximal utility, that 
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FIGURE 1

Stages of a workflow framework for co-developing and operationalizing machine learning models from structured electronic health record data. 
Workstreams which sit outside of the stepwise framework but are key to the adoption of machine learning models in live clinical care are shown below 
the stepwise stages.
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could feasibly be integrated into clinical care. The technical team will 
train and validate models, set up the required data pipelines for data 
processing and model inferencing and create a mechanism for clinical 
users to routinely review model outputs. At this point a 
co-development strategy should be outlined so it is clear what the 
stages of the project are and what the forums are for MDT discussions 
throughout the project. To ensure the safe and efficient running of the 
project and to minimize delays, the co-development strategy should 
also outline the processes required to adhere to information 
governance standards and specify the points in the process where 
input and approval will be required from information governance 
responsible officers.

Once a co-development strategy has been established, the 
intended target variable should be identified. For example, this may 
be  the optimal therapy for an individual, the likelihood that an 
individual would benefit from a particular therapy, or the risk of an 
individual experiencing an adverse event such as hospitalization. To 
ensure maximal clinical utility, the clinical team should make this 
decision, incorporating the views of patients with the target 
condition(s) of interest on their care priorities. For risk-prediction 
model formulations, consideration should also be  made to the 
timeframes for prediction, as the time window from the point of 
inference and identification of high-risk patients, to the point where 
clinical action could be taken must be aligned to appropriate timelines 
for intervention. The point in current workflows where risk-prediction 
models are intended to be implemented and the intended use case for 
the models should be outlined, with an understanding that this may 
evolve within the process as insights from model development and 
refinement will potentially be combined with evolving transformation 
of care processes and clinical workflows. The differences in care 
models and workflows between healthcare systems, and how that may 
impact the utility and adoptability of developed models by other 
organizations should be considered at this stage.

Following this, a suitable model development dataset will need to 
be  identified by the clinical team, and the data scientists in the 
technical team will need to be provided with safe access to this data. 
The dataset should contain as many potentially informative fields as 
possible related to the medical histories of the individuals within the 
dataset. The provided data will need to be in a de-identified format, 
but robust data linkage strategies implemented by data controllers can 
allow for information from different data sources to be collated for 
individual patients. The approach to data linkage established at this 
point should also consider model inferencing in a live clinical 
environment at a future stage. The cohort within the dataset should 
be  sufficiently large for the purposes of training ML models and 
should be representative of the population the model is intended to 
run inferencing on in terms of key demographic factors and disease 
severity. Statistical tests and data drift tools can be applied when there 
is uncertainty around this. It is necessary to discuss any data redactions 
and censoring that has been applied to the model development dataset 
with the data controllers as certain data may have been removed such 
as data related to extremely rare or sensitive diagnoses or prescriptions. 
Any redactions and censoring can then be discussed between the 
clinical and technical teams to plan any required adaptations to feature 
engineering and selection. Providing the data scientists with access to 
the dataset will likely require significant governance work including 
completing detailed applications to bodies such as local privacy 
advisory committees within the NHS, justifying the need for data 

access and defining the scope of the planned activities. Additionally, 
virtual environments for the data science team to train the models 
within will likely need to be created, depending on data controller 
requirements. This may result in delays which should be accounted for 
in any project time scales.

Once the data scientists in the technical team have access to the 
training data, exploratory work should be conducted to determine: the 
available data fields for model training, the distribution of the target 
variable, the breakdown of the cohort overall in terms of disease 
severity and demographic factors, the extent of missing data across the 
dataset and the relatability of the dataset to other organizations. The 
insights gained from this exploratory analysis should be shared with 
the clinical team and discussions based on this exploratory work 
should take place. The clinical team should also share insights around 
clinical workload, capacity levels and resource levels with the technical 
team at this point as this will provide insight into the anticipated use 
of the model(s) within a live clinical environment. These discussions 
will inform the next steps taken in model development and the desired 
characteristics of any developed models.

2.2 Stage 2: train-test splitting, data 
preprocessing, and feature engineering

The individuals included in the model development dataset 
should be split into a training cohort and a cohort to be used for initial 
evaluation of the model on unseen data. If multiple index dates per 
individual patient are used in model development, it should 
be ensured that train-test splitting is conducted at a per-individual 
rather than at a per-row level. This avoids the potential for individuals 
to appear in both the training and validation datasets. It should also 
be ensured that the training and validation datasets have a similar 
distribution of the target variable (particularly if there is significant 
class imbalance) and that the validation dataset is broadly 
representative of the overall dataset with respect to key demographic 
factors. The same pre-processing and feature engineering steps 
described below should be conducted on both the training and the 
initial validation datasets.

One significant drawback to EHR data as a data source for 
training ML models is the frequency of data quality issues such as 
missing timestamps, values outside of biologically plausible ranges 
and duplicated data (Sauer et al., 2022). However, many of the data 
quality issues can be  addressed by pre-processing of the data. 
Therefore, it is vital that this process is as rigorous as possible, as the 
quality of the input data will directly impact the reliability of the 
model outputs. As part of this process, the clinical team should discuss 
the minimal and maximal biologically plausible values for different 
fields with the data scientists in the technical team so that values 
contained in the fields significantly outside of these given ranges can 
be identified as mis-entered data and removed. Additionally, duplicate 
recordings should be removed, adhering to specified criteria from the 
clinical team in what would constitute a duplicate for different fields 
within the dataset. It should also be ensured that all measurements for 
each field have been recorded in consistent units prior to 
deriving features.

Another consideration with the application of ML to EHR data is 
the high levels of missingness in fields of interest for some individuals 
in the dataset. This is a result of different individuals having different 
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historical healthcare contacts and different information being 
collected during different healthcare contact types. For example, 
certain blood tests would only be  taken in specific contexts and 
therefore not all individuals in the dataset would have recorded data 
for the field related to that test. Multiple considerations must 
be considered when determining how to address missing data. Firstly, 
some ML algorithm implementations are unable to handle missing 
data entirely and so using an imputation method to derive values for 
the missing fields or removing fields with excessive missingness may 
be required depending on the selection of algorithms that are being 
considered at this stage. Another consideration to make is the context 
for which the data is missing, which may not be clear to the data 
scientists processing the data. To use the blood test example again, it 
may be  the case that differences in testing frequency exist across 
different geographies due to local testing protocols, which could pose 
challenges if the dataset encompasses data from a wide geographic 
area. If missing data is not imputed it is therefore possible that the 
model learns the context of data being missing (i.e., treatment in a 
particular geography) and starts to associate this with the target 
variable rather than the value of the measurement (Sauer et al., 2022). 
As a result, discussions between the clinical team and the data 
scientists in the technical team on the context for which certain data 
fields would be taken and the optimal way to deal with missing data 
for different fields are required. The possible biases introduced with 
different approaches to handling missing data, and a cutoff for 
missingness before fields are removed should be considered. Other 
general data pre-processing for structured data such as normalization 
and categorical encoding may be required depending on the fields 
available within the EHR dataset and the algorithm types 
under consideration.

Once the initial preprocessing has been completed features can 
be  derived from the training dataset. Feature types may include 
aggregate counts of events, procedures, or therapies over a set time 
window, and features specific to the most recent occurrence of an 
event, test, or procedure. Target encoding—a process which takes the 
average value of the target variable for each category- can be used for 
binary classification formulations where there is a vast range of 
possible categorical values for a particular field which is common in 
EHR data. If target encoding is conducted, the average values for each 
category should be  determined in the training dataset and the 
resulting encodings applied to both the training and validation 
datasets to avoid data leakage. The clinical team should help inform 
the scope of the features that are created by sharing domain knowledge 
on typical patient trajectories and treatment paradigms for the 
target condition.

2.3 Stage 3: initial feature selection and 
exploration of algorithm types

After a full feature set has been derived from the dataset the 
clinical team should highlight markers associated with the target 
variable using domain knowledge on the target condition. In the case 
of a risk-prediction model the clinical team may also want to highlight 
specifically actionable features from the full feature set, to ensure that 
these features are included, so that modifiable risk factors are 
presented at the point of inference. The initial feature set can then 
be determined by combining these features, with features associated 

with the target variable identified by the data scientists in the technical 
team through exploratory analysis. At this stage, the performance of 
different algorithm types should be explored to inform which to take 
forward. The data scientists in the technical team may wish to apply 
upsampling and downsampling techniques prior to model training 
where notable class imbalance is observed. Outside of the initial 
model performance in the training dataset, several attributes of 
prospective algorithms such as sensitivity to noise and outliers, ability 
to tune model hyperparameters, interpretability, and ability to handle 
missing data should be considered when deciding which algorithms 
to take forward. This decision necessitates input from various 
members of the technical team, as different algorithms may have 
different resource requirements for deployment.

2.4 Stage 4: initial evaluation of model 
performance on an initial validation dataset

At this stage, the data scientists in the technical team should 
evaluate the performance of the prospective algorithms on an unseen 
initial validation dataset to identify if the models have been overfit to 
the training dataset. If the model has significantly poorer performance 
in the validation set than the training dataset, overfitting has occurred. 
In this instance the initial steps that can be taken are reducing the 
complexity of the prospective algorithms and reducing the number of 
features in the model. If these steps are unsuccessful, alternative 
features can be selected from the full feature set or derived from the 
training dataset.

A range of means of evaluating model performance can 
be employed. Common evaluations for classification problems include 
assessing the area under receiver operating characteristic and 
precision-recall curves, confusion matrices, and accuracy and F1 score 
metrics. Common evaluations for regression problems include 
variants of the mean squared error and R-Squared metrics. In the case 
of classification problems, the evaluation metrics focused on should 
consider the class balance of the problem. This is particularly relevant 
for model formulations to predict rare adverse events such as 
mortality. For context, if the negative class was the true class in 95% 
of instances, a model could achieve an accuracy of 95% by predicting 
the negative class in every instance. In this case, the accuracy metric 
makes the model appear very performant, but the model would offer 
no insight or clinical value. Therefore, metrics that assess the ability of 
the models to identify the minority class should be focused on where 
class imbalance is presented. The performance metrics of the 
prospective algorithms and the context of how these metrics can 
be interpreted should be shared with the clinical team. The impact of 
altering the decision threshold on performance metrics and the 
manageability of actioning the model decision at different thresholds 
should also be discussed at this point to identify a range of clinically 
useful thresholds.

2.5 Stage 5: obtaining global and local level 
explainability

After performant models have been identified, it is critical for 
both the data scientists and the clinical team to gain a better insight 
into the inner workings of the candidate models. Specifically, how the 

https://doi.org/10.3389/frai.2024.1458508
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Burns et al. 10.3389/frai.2024.1458508

Frontiers in Artificial Intelligence 06 frontiersin.org

inputs to the model are used to generate the output at both a global 
(cohort level) and individual level (patient level) must be understood 
to bolster clinical, and public support of the use of ML models in a 
clinical environment (Musbahi et  al., 2021; Young et  al., 2021). 
Additionally, including individual explainability views for risk-
prediction models can allow for potential intervenable risk factors to 
be identified at the point of model inferencing, significantly increasing 
the utility of the model outputs and the efficiency at which 
management can be optimized. Sessions should take place between 
the clinical team and the data scientists in the technical team, where 
global and illustrative local level explainability views for the candidate 
models are shown. In these sessions it should be determined if the 
model outputs are biologically plausible and if there are any 
undiscovered biases affecting the prospective models. These biases can 
be identified by discussing if any of the features are interacting with 
the target variable in an unexpected way. If biases are identified within 
any of the features, the clinical team should consider the data 
collection process for the biased feature to understand what the source 
of the observed bias may be. Through these sessions it can 
be determined if the feature can be reformulated, or if the feature 
should be  removed altogether. If biases are observed that cannot 
be rectified by altering or removing a small number of features, this 
may reflect a bias in the model formulation or in the model 
development cohort inclusion criteria requiring more 
substantial changes.

For some algorithm types, the influence of each of the features on 
predictions can be  easily interpreted. For example, with logistic 
regression this can be ascertained by the model coefficients. However, 
the internal workings of other algorithms such as neural networks are 
less transparent due to their complexity, making it very difficult to 
interpret the relationship between the input features and the model 
output (Fung et al., 2021). Unfortunately, it is often the case that more 
complex, and less inherently explainable algorithms are more 
performant than simpler more interpretable algorithm options. If 
there is a significant difference in performance between the 
prospective algorithms with differing levels of inherent explainability, 
model agnostic frameworks such as SHAP present an alternative 
means to obtain a measure of the impact of each of the model features 
on the model output for individual predictions and at a global level 
(Lundberg and Lee, 2017). Regardless of the means used to obtain 
explainability, the data scientists in the technical team should ensure 
that time is allocated to talk through how any explainability metrics 
can be  interpreted as it is likely that these will be  unfamiliar to 
clinical teams.

2.6 Stage 6: assessing model performance 
across different demographic groups

A major concern with the introduction of ML models into a live 
clinical setting is the potential to exacerbate existing healthcare 
inequalities related to factors such as socioeconomic status (SES), 
sex, ethnicity, and age. Poorer model performance amongst specific 
subpopulations is often a result of the model development dataset 
not being representative of the population for which the model is 
intended to run inference on (Sunarti et al., 2021). Although EHR 
datasets capture data for all individuals interacting with healthcare 
systems, variable performance of some ML models trained on EHR 

data by socioeconomic status (SES) and ethnicity have been 
reported (Gianfrancesco et al., 2018; Juhn et al., 2022). It has been 
suggested that this is a result of reduced representation of people 
with lower SES and people from minority ethnic groups within 
EHR data due to factors such as individuals in these groups being 
less likely to attend a consistent place of care and being more likely 
to rely on safety net care such as emergency department care 
(Cardet et al., 2018; Flores et al., 2009; Juhn et al., 2022). Separately, 
upon investigation, some published ML models have poorer 
performance in females compared to males. For example, a study 
investigating the relative performance of various diagnostic 
classifiers for liver disease trained on an extensively used model 
development dataset, found that false negative rates were higher in 
females across all classifiers and that some of the laboratory test 
features key to model decision making had a reduced predictive 
power in females (Straw and Wu, 2022). It is therefore critical to 
look at the performance of candidate models across a variety of 
demographic groups to investigate if the model performance is 
significantly different between demographic groups. The exact 
demographic groups that are looked at will depend on the data 
available and the demographic breakdown of the population that 
the model is intended to run inference on. Data fields showing 
information related to these demographic groups should 
be included amongst the model features to avoid omitted variable 
biases and so that the impact of these features can be  explored 
through explainability views.

A session should be scheduled for the clinical team and the data 
scientists in the technical team to discuss the performance of the 
prospective models across the different demographic groups of 
interest. These may include factors such as age, sex, SES, and 
ethnicity. Through discussions with the clinical team, it can 
be identified if bias exists (i.e., if the model has improved performance 
in one subgroup compared to another when looking at a particular 
demographic factor) and if the bias would be considered unfair or 
unethical. To be able to properly compare fairness between different 
algorithm types, we recommend evaluating a selection of relevant 
performance metrics across the different demographic groups of 
interest. It should be  noted that bias within an algorithm is a 
mathematical reflection of a difference in performance between two 
subgroups in any direction and is independent of ethics. Determining 
if this bias is ethical or fair requires assessing the impact of the bias 
against a set of ethical or legal principles (Fletcher et al., 2020). It may 
be determined that although bias exists, it does not contravene these 
principles and so does not affect the clinical acceptability of a 
prospective model.

It is also worth noting that the threshold for decision making will 
impact the performance metrics and therefore the bias and fairness of 
prospective models. Performance metrics could be  similar across 
demographic groups at one threshold but vastly different at another. 
Therefore, model fairness should be  considered when selecting a 
decision threshold from the range of clinically useful thresholds. If 
there are unacceptable differences in model performance between 
different demographic groups at all clinically useful thresholds, the 
earlier stages of the framework should be revisited, and new features 
and algorithm types should be explored. Another option is to retrain 
the model using a fairness-aware loss function, although this can lead 
to a drop in performance across all demographic groups and therefore 
may not be a suitable option in all cases.
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2.7 Stage 7: model selection and initial 
model approval

At this stage, the remaining candidate algorithms should 
be compared to identify and select an optimal model to bring forward. 
This decision should consider model performance overall and across 
demographic subgroups in the initial validation set following light 
hyperparameter tuning and a further round of feature selection to 
increase model performance across the different candidate algorithms. 
The selected model should then undergo more rigorous 
hyperparameter tuning to maximize model performance. 
Subsequently, the optimized model should be subjected to a formal 
documented model approval process to determine the clinical 
acceptability of the model, requiring the preparation of a model 
approval report by the data scientists in the technical team. The report 
should contain details of the problem formulation and the training 
and validation process, a description of the model development 
dataset (describing the cohort included, date ranges covered and the 
fields in the dataset used to derive the input features), a summary of 
the feature engineering process, a list of the features included in the 
selected model, high-level information on the algorithm type used and 
key term definitions, details of the performance metrics of the selected 
model both overall and across different demographic groups, and 
global and local explainability views for the selected model. The model 
approval report should be  shared with the clinical team, with a 
structured review session arranged between the clinical team and the 
data scientists in the technical team to determine if the requirements 
for the model to be adopted into a live clinical environment have been 
met. If the model passes the approval process, operationalization work 
can begin, otherwise the earlier stages in the framework should 
be revisited to create a new model variant with the required changes 
indicated by the clinical team. This new variant would then undergo 
the same documented model approval process.

2.8 Stage 8: model operationalization

Operationalizing a model into a live clinical environment will 
require significant governance work and sufficient time should 
be allocated within the project time scale for this. The exact steps will 
vary according to local processes in the target deployment site. Data 
processing agreements between the institution providing data and the 
institution accessing the data will likely be required and there may 
be additional checks and assessments conducted given the sensitivity 
of healthcare data. It should be ensured that any redactions applied to 
the training dataset are also applied to the live data, to match the 
model training context. The methods by which data is exchanged will 
likely necessitate the deployment of or updates to IT infrastructure, 
requiring the approval of the relevant change control board. When the 
relevant governance work has been completed, the latest data for the 
patient population will then need to be transformed from the format 
it is stored in into the final feature set decided on during model 
development. To achieve this, data processing pipelines will need to 
be created by the technical team to conduct the preprocessing and 
feature engineering steps in a secure environment. Following this, the 
technical team will need to establish a pathway for running inferencing 
on the processed data and outputting model scores and explainability 
views in the agreed upon format. If deployment is being undertaken 

as part of a clinical trial, which is very likely in the current regulatory 
landscape, an approved clinical investigation plan, associated ethics 
approval and a notice of no objection from the relevant regulatory 
body or equivalent are pre-requisites.

2.9 Stage 9: post-operationalization 
monitoring and scale-up considerations

After the point where the first model iteration has been 
operationalized, regular discussions should take place between the 
clinical users and the technical team to ensure that the model 
continues to be performant and that the model explainability views 
continue to be biologically plausible. Model performance may change 
over time due to factors such as changing EHR recording practices, 
new interventions being developed, and changes to disease 
management approaches (triggered by or independent of model 
insights), necessitating the development of new model iterations. The 
data scientists in the technical team can develop subsequent model 
iterations to respond to this and to enact feedback from the clinical 
users. These updated model iterations would then be subjected to the 
same model approval process that was described in stage 7 (with 
explicit reference made in the model approval report to any changes 
made since the previous model iteration) and could be operationalized 
by altering the data processing pipelines created in Stage 8. In a clinical 
trial context, the protocol should prespecify whether models will 
be used unchanged, adapted on a schedule, or adapted flexibly within 
the investigation period. The implications of each approach on trial 
analyses should be considered during protocol development, requiring 
trial methodologist and statistician input.

In addition to this supervision and improvement activity, this is 
the stage at which external reporting of implementation and 
effectiveness evaluations should be planned and knowledge exchange 
with other organizations who wish to adopt the model as part of the 
scale-up of use should be incorporated. Scale-up of the model will 
either require demonstration of transportability through external 
validation in another dataset reflective of the intended target 
population for scale-up, or demonstration of performance in the 
target population itself (la Roi-Teeuw et al., 2024). The model may 
need to be updated based on the requirements of the clinical teams 
working in the scale-up sites, the available data for inferencing in these 
new sites, and the governance and regulation in the scale-up sites. The 
ease of scaling the model to a new site will depend on the similarity of 
clinical workflows, available data, and population characteristics 
between the new site and the original operationalization site. Input 
from scale-up sites as well as outputs from the implementation and 
effectiveness evaluations would be  expected to inform model 
improvements and refinements.

2.10 Parallel workstreams: defining routine 
clinical user needs for inferencing and 
accessing model outputs, patient and 
public involvement and engagement 
activity, and evaluation planning

Sessions should take place to decide on the details of the model 
inferencing process and how the outputs of the model can be viewed 
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by the clinical team responsible for actioning the model. The criteria 
for an individual to be included in model inferencing will need to 
be determined and the frequency at which new inferencing runs are 
required will need to be considered. Critically an appropriate way of 
sharing model scores and explainability insights with the members of 
the clinical team responsible for actioning the models will need to 
be  agreed, factoring in the technical and computational resource 
requirements for different options. In some cases, development work 
will be  required to create a novel co-designed user interface, or 
alternatively a much simpler approach could be taken depending on 
the organizational needs of different clinical teams.

Patient and public involvement and engagement is vital to ensure 
alignment between patients and clinical teams on care priorities and 
what the potential role of models in clinical pathways should be and 
the acceptability of the model development and operationalization 
process. Input from patients and the public requires consideration 
across model development, operationalization and improvement 
stages particularly around how models are used to inform clinical care, 
fairness considerations, and exploring any unintended consequences 
of adopting ML models in clinical care. Reflective structured patient 
and public engagement across the model development processes 
should be planned and resourced. This will often include direct user 
research (semi-structured individual or group interviews, surveys), 
review of and reference to published materials, focused co-design 
sessions with patients, and incorporation of patient-focused endpoints 
within the model operationalisation evaluation plan.

For an ML application to be used in clinical care in the long-term 
and scaled, real-world evidence of the feasibility, acceptability, safety, 
utility, value and sustainability of using the model as part of clinical 
care must be obtained. An evaluation plan should be established in 
parallel with model development and operationalization. The 
feasibility of generating model insights from patient data in live 
inference runs, the acceptability of using patient’s data to inform their 
care, and the safety of this approach should first be  determined. 
Further analyses exploring the utility, clinical effectiveness and 
potential cost effectiveness of ML model use on care pathway 
transformation will then be required. This may partly be acquired at 
the initial operationalization stage, and then augmented as further 
real-world experience grows at the post-operationalization scale up 
stage. It is essential to ensure that all required data for evaluation and 
supervision such as clinical user experience, clinical actions taken 
based on model insights, and prospective model performance will 
be  captured and accessible for analysis. Advice from a health 
technology assessment body and/or associated academic partners is 
advised to ensure appropriate implementation and evaluation 
planning at this point. In the UK, the Health Research Authority 
(HRA) and the Medicines and Healthcare products Regulatory 
Agency (MHRA) have recently published guidance on these 
considerations (Health Research Authority, 2024; Medicines and 
Healthcare products Regulatory Agency, 2024).

3 Case studies

3.1 Background

COPD is a common, treatable respiratory disease with acute 
exacerbations being responsible for a substantial proportion of disease 

burden, adverse outcomes, and healthcare expenditure. In the UK, 
COPD is responsible for 30,000 deaths per year (Snell et al., 2016) and 
is the second largest cause of emergency admissions (National 
Institute for Health and Care Excellence, 2019). Assistive technologies 
such as predictive artificial intelligence (AI)-driven insights could 
provide individualized, accurate and, where possible, actionable areas 
for clinical intervention in COPD, reducing disease and healthcare 
burden, and driving a shift from reactive to proactive medical care. 
Given this context, using funding support from an Accelerated Access 
Collaborative/NIHR Artificial Intelligence in Health and Care award, 
our multidisciplinary team consisting of clinicians from the 
respiratory innovation team in the NHS Greater Glasgow and Clyde 
(NHS GG&C) health board in Scotland and a technical team from 
Lenus Health worked collaboratively to develop and operationalize 
mortality, readmission and exacerbation risk stratification models to 
support clinical decision making. In this section we  present the 
development and operationalization of our 12-month mortality 
prediction model and our 90-day respiratory related readmission 
prediction model as case studies.

For both models, scores are reviewed following an inference run 
by members of the COPD multidisciplinary care team in NHS 
GG&C. Model scores at or above the predetermined thresholds 
prompt review of an individual’s healthcare records alongside 
explainability insights. COPD management optimization 
considerations are then discussed for highlighted participants and 
actioned if appropriate. Extensive patient and public engagement work 
was undertaken as part of the model development and preparation for 
the clinical trial. We noted published patient priorities for COPD 
research (Alqahtani et al., 2021) when selecting model features and 
target variables. Our approach to problem formulation, model 
development, model operationalization and use within a clinical 
multi-disciplinary team were endorsed by the University of Glasgow 
public and patient involvement and engagement group. We undertook 
one-to-one interviews with patients with COPD. It was noted that 
patients were comfortable with model scores and insights being 
provided to clinicians on their care team, but that they did not expect 
or wish to see risk scores themselves. Our study participant 
information sheets were supplemented with additional written and 
video content hosted at our support website https://support.nhscopd.
scot/dynamic-ai. Acceptability to patients (consent to trial 
recruitment) was selected as a co-primary objective along with 
technical feasibility of providing live AI model risk scores and safety 
of using these ML models for risk stratification and management 
optimization within COPD multi-disciplinary care team meetings as 
the primary objectives for the “DYNAMIC-AI” clinical investigation 
(NCT05914220). Prospective model performance and utility including 
the role of explainability and actionable insights are key 
secondary objectives.

3.2 Case study a: developing a 12-month 
mortality prediction model for patients 
with COPD using a large de-identified 
routine clinical dataset

3.2.1 Problem formulation
For the first of these models a target variable of mortality was 

selected to get an overall view of the most high-risk patients in the 
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cohort. A 12-month prediction window was selected to allow for a 
more long-term approach to risk reduction and anticipatory care 
planning to be considered at the point of inferencing. A windowing 
approach was used to allow for multiple observations per patient 
during model training. For example, if a patient had available data 
from 2015 to 2020, data from 2015 to 2019 would be used to predict 
mortality in 2020, and data from 2015 to 2018 would be  used to 
predict mortality in 2019 and so on.

3.2.2 The model development dataset
Following Local Privacy and Advisory Committee ethics review 

and approval, the West of Scotland Safe Haven (a collaboration 
between NHS GG&C and the Robertson Centre for biostatistics at the 
University of Glasgow) provided the data scientists in the technical 
team with a large deidentified dataset, in a cloud-based secure data 
environment. This dataset included healthcare data on hospital 
admissions, demographics, laboratory tests, prescriptions, and 
mortality for ~57,500 patients with COPD within NHS GG&C. The 
admissions data included admission events from 1997 up to 2022, the 
laboratory tests and prescriptions datasets included laboratory tests 
and prescriptions from 2008 up to 2022, and the mortality data 
included dates of death from 2010 up to 2022. This meant that a large 
dataset containing relevant healthcare data for the same population 
that the model was intended to run inference on was available for 
model development. Following discussions with Safe Haven it was 
determined that there no redactions of sensitive information from this 
dataset. At the relevant points in the model development process, 
approvals were obtained to share and discuss model and data artefacts 
within the MDT to ensure compliance with information 
governance standards.

3.2.3 Data processing and feature engineering
The dataset was then split into a training cohort and an initial 

validation cohort, with patient data for 15% of the individuals in the 
dataset held back for the initial validation dataset. The first prediction 
year was set to 2013 to ensure data recency and to mitigate against 
data drift due to changes in hospital practices. Duplicate values and 
values outside of biologically plausible ranges were removed following 
guidance from the clinical team. As expected, the coverage for the 
laboratory tests included in the data varied significantly for different 
test types. Tests with <40% coverage at a population level were 
removed from the dataset to reduce the risk of introducing bias. For 
the remaining fields, both imputation of missing values using a 
harmonic mean and sparsity aware approaches were considered. 
Feature engineering was conducted to identify a full feature set using 
techniques such as categorical encoding and target encoding to deal 
with categorical and high cardinality features.

3.2.4 Feature and algorithm selection
Clinically relevant features identified by the clinical team such as 

features related to recorded neutrophil: lymphocyte ratios, specified 
clinically relevant comorbidities, and inhaler medication history were 
combined with features identified during exploratory analysis by the 
data scientists in the technical team to create the full feature set. 
Logistic regression (Cox, 1958), support vector machine (Cortes and 
Vapnik, 1995), random forest (Breiman, 2001), and XGBoost (Chen 
and Guestrin, 2016) algorithm approaches were explored using 
implementations of these algorithms available through the scikit-learn 

Python package (Pedregosa et al., 2011). Deep learning methods were 
not explored as it was clear from collaborative discussions that 
approaches where the broad architecture of models could be easily 
understood were preferred. The XGBoost and random forest 
algorithms were further investigated based on the performance of 
these algorithms in the training data, the number of tunable 
hyperparameters available for these algorithms, and the established 
high performance of these algorithms with tabular datasets. The 
prospective models were then calibrated using Platt scaling and 
isotonic regression calibration approaches available via the scikit-learn 
Python package to try to increase the accuracy of the probability 
estimates provided by the models. The isotonic regression calibration 
approach was selected as it provided the best calibration between the 
distribution of the models predicted probabilities and the observed 
event occurrence rates. Ensuring model calibration was important so 
that the risk of mortality probabilities would be more meaningful and 
interpretable and so that as much as possible the individuals with a 
model score above the selected decision threshold would be  the 
individuals at highest risk of mortality.

The prospective calibrated models were then evaluated on the 
initial validation dataset by the data scientists in the technical team 
and the results of this evaluation were shared with the clinical team. 
As this was a highly imbalanced problem, with mortality occurring 
within 12-months in around 8.3% of cases at the point of prediction, 
the area under the precision-recall curve was the primary metric used 
in performance evaluation. Confusion matrices were also created so 
that the utility and clinical feasibility of actioning the model at 
different decision thresholds could be discussed. Selecting a suitable 
decision threshold range was vital so that prospective models would 
identify a high proportion of those at the highest risk of mortality that 
it would also be feasible for the clinical team to review given that 
clinical capacity is limited. Despite the class imbalance, we did not use 
upsampling or downsampling techniques prior to model training as 
this reduced model calibration. Light hyperparameter tuning using 
the BayesSearchCV method from the scikit-optimize Python package 
(Head et  al., 2020) was used to get a better indication of the 
performance of the XGBoost and random forest algorithms at this 
stage. A Bayesian optimization hyperparameter tuning approach was 
selected as this approach uses information on performant 
hyperparameter combinations identified during previous trials to 
inform the hyperparameter ranges explored in future searchers to get 
to a performant model in fewer runs (Snoek et al., 2012). Following 
this, a decision was made to focus entirely on XGBoost due to the 
higher performance of the XGBoost algorithms compared to the 
random forest algorithms, and the reduced risk of XGBoost algorithms 
overfitting to the data due to their regularization capabilities.

3.2.5 Model explainability
As XGBoost is not an inherently interpretable algorithm, 

frameworks for model agnostic explainability such as SHapley 
Additive exPlanations (SHAP) and local interpretable model-agnostic 
explanations (LIME) techniques were investigated (Lundberg and Lee, 
2017; Ribeiro et  al., 2016). SHAP, which uses a game-theoretic 
approach to quantify the impact each feature has on an individual 
prediction to get local level explainability, was selected as the preferred 
framework due to the tabular structure of the input data and the 
ability of the SHAP framework to produce a reliable global level view 
of explainability by combining the local level explainability estimates 
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FIGURE 2

Global explainability view showing the SHAP values for the 20 most globally important features for a prospective 12-month mortality model; 
generalized feature names are used with numbered features representing features derived from the same data type. The SHAP values for each 
prediction are aggregated to get a global view of feature importance, with each dot representing an individual SHAP value. Positive SHAP values are 
attributed to features associated with mortality within 12-months and negative SHAP values are attributed to features associated with survival. The 
color of the dot represents the numerical value of the feature influencing the decision in the direction indicated by the SHAP value, with red dots 
representing high numerical values and blue dots representing low numerical values.

for each prediction. Global and local level SHAP plots were created 
using the “TreeExplainer” method from the SHAP Python package 
(Lundberg et al., 2020) and custom visualization techniques. Sessions 
were arranged between the clinical team and the data scientists in the 
technical team where these plots were discussed. In these sessions, it 
was determined that the workings of the model appeared to 
be biologically plausible and that there were not any obvious biases 
present. A global level SHAP plot in the style shared with the clinical 
team is shown in Figure 2.

3.2.6 Model fairness
To consider the performance of the prospective models across 

different socioeconomic status (SES) groups, model performance was 
compared for individuals resident in postcodes in different deciles of 

the Scottish Index of Multiple deprivation (SIMD). The SIMD is the 
Scottish Government’s tool for measuring deprivation across all 
postcodes in Scotland which considers factors such as income, 
employment, health, housing, education, geographic access, and crime 
statistics (Scottish Government, 2023). To consider the performance 
of the model across different age groups and between sexes, the 
performances of the models were also compared between males and 
females, and people under and over the age of 65 years. The age, sex, 
and SIMD decile fields in the model development dataset all contained 
very low missing data levels. Across the different prediction windows 
in the training dataset, 55.34% of the training dataset were resident in 
postcode areas in the two most deprived deciles of the SIMD (1 and 
2), 57.4% of the cohort were female, and 61.1% of the cohort were over 
the age of 65. These distributions are typical considering the burden 
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of COPD at a population level in Scotland (Public Health Scotland, 
2022). It was not possible to investigate performance by ethnicity 
using the available model development dataset, as there was no 
ethnicity data recorded for 16.3% of the cohort, and 82.3% of the 
cohort were recorded as white.

Fairness was investigated at various probability thresholds to fully 
understand how the model behaved across the different demographic 
groups. Analysis of model performance across the two age subgroups 
showed that the selection rate was substantially higher in those over 
the age of 65, across all investigated thresholds. Fewer selections in the 
younger group had the effect of a lower false positive rate at the 
trade-off of a lower recall (true positive rate) (Figure 3). A collaborative 
decision was made that it was acceptable to proceed with this 
difference at this stage, given that mortality risk increases significantly 
with age and therefore the model will logically select proportionally 
fewer younger people. Performance metrics were comparable between 
males and females at all investigated thresholds. When looking at 
performance metrics across SIMD deciles, it was determined that the 
models had a higher selection rate (and therefore increased recall but 
also a higher false positive rate) for individuals resident in the more 
affluent deciles. The disparity in recall was marginal at the low end of 
the trialed decision thresholds but increased at higher thresholds 
(Figure 4).

To mitigate any difference in performance metrics between 
subgroups, fairness aware loss functions were investigated. This 
involved using the Fairlearn wrapper for XGBoost (Weerts et  al., 
2023), which defines a custom loss function that looks to balance 
model performance across demographic groups of interest. However, 
this led to a global drop in performance meaning more opportunities 
for intervention would be missed across the cohort. Considering the 
improved fairness at lower decision thresholds for SIMD, the best 
option was determined to be focusing on the lower range of trialed 
thresholds for decision threshold selection, where marginal differences 
in recall between SIMD deciles were observed.

3.2.7 Model selection and the model approval 
process

Following further hyperparameter tuning using k-fold cross 
validation Bayesian optimization, an XGBoost model was selected to 
bring forward for model approval. A K-fold cross validation approach 
was chosen to better understand how model performance would 
generalize to new data under different hyperparameter settings. A 
collaborative decision was made to allow missing laboratory test data 
due to the improved performance metrics of the algorithm without 
imputation and the ability of XGBoost to handle missing data well by 
grouping missing values at a decision node so that the loss function is 

FIGURE 3

Recall, selection rate, and false positive rates for a prospective 12-month mortality model for people under and over 65  years of age in the validation 
dataset. These metrics are compared at various decision thresholds: 0.25, 0.4, and 0.5. The percentage of the cohort under and over the age of 
65  years at the point of model prediction is also shown for context of the age group split within the cohort. FPR, false positive rate.
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FIGURE 4

Recall, selection rate, and false positive rates for a prospective 12-month mortality model for people resident in postcodes in different deciles of the 
Scottish Index of Multiple Deprivation (SIMD) in the validation dataset. These metrics are compared at various decision thresholds: 0.25, 0.4, and 0.5. 
The percentage of the cohort resident in different deciles of the SIMD is also shown for context of the SIMD distribution within the cohort. The data 
shown for SIMD decile 1 represents predictions for individuals resident in the most deprived decile of the SIMD, the data shown for SIMD decile 10 
represents predictions for individuals resident in the least deprived decile of the SIMD. FPR, false positive rate.

minimized. Additionally, data explorations found that there were no 
systematic characteristic differences between patients with and 
without missing data other than a correlation between patients with 
more recent hospital attendances and data completeness for laboratory 
tests, but this was deemed acceptable as it did not introduce any 
undesirable biases into the model.

A model approval mechanism was created to ensure the clinical 
acceptability of any models approved for use in live clinical 
environment. The model approval process took place in two stages. 
The first stage of the process was a session involving the technical 
team, which was used to determine if all the low-level technical 
requirements for model operationalization were in place. In the 
second stage of the process, a model approval session took place 
involving the data scientist team and the clinical team, where the 
acceptability of the model for use in clinical care was assessed. The 
session was structured around a model approval document, which was 
created by the data scientists in the team and shared with the clinical 
team before the session. This document contained details of the 
training and validation process, a description of the model 
development dataset, a summary of the feature engineering process, a 

final feature set list, details of the algorithm used, a summary of the 
performance metrics of the selected model overall and across age, sex, 
and SIMD subgroups, and showed local and global model 
explainability views. Screenshots showing some of the core elements 
of the model reports used by our team are shown in 
Supplementary Figures 1, 2. The prospective model was accepted for 
approval without any changes required. Taking the stated fairness and 
clinical capacity factors into consideration, a decision threshold of 
0.25 was selected as the number of patients brought forward at this 
threshold would be manageable for the COPD multidisciplinary care 
team to review and as the difference in model performance across 
SIMD groups was more marginal at this threshold.

A precision-recall curve and a receiver operating characteristic 
curve illustrating the performance of the selected model within the 
validation dataset are presented in Figure  5. The workload 
manageability of the model at the selected threshold of 0.25 is 
illustrated in Figure 6. A confusion matrix at the selected threshold 
and infographics showing the number of individuals out of 100 that 
would be  correctly and incorrectly selected by the model at the 
selected threshold and at a higher threshold of 0.4 are shown based on 
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the performance of the model in the validation dataset. A summary 
of the behavior of the final model across different age, sex, and SIMD 
subgroups at the selected threshold is shown in Figure 7.

3.2.8 Defining routine clinical user needs and 
model operationalization

Preparation for operationalization occurred in parallel to 
model development. Codesign sessions were arranged to 
collaboratively define the best way to visualize model outputs. 
These sessions started prior to model selection and approval and 
involved the clinical and technical teams. The discussions centered 
around a dashboard capable of facilitating COPD multidisciplinary 
care team sessions, where high-risk patients would be reviewed. It 
was important that the dashboard could be viewed from any device, 
to reflect the diverse locations of these sessions. A website built 
using responsive design was chosen as the appropriate solution as 
it ensured portability and compatibility across different screen 
sizes. During codesign sessions, clinical participants highlighted 
the importance of providing an overview of the entire patient 

cohort and providing robust filtering and sorting capabilities to 
allow clinicians to easily identify high-risk patients. A significant 
focus was placed on displaying local explainability in a way that 
would enable clinicians to easily understand the factors driving risk 
for different individuals. Particular considerations were made to 
align the software with NHS workflows, including compliance with 
data privacy regulations and integration into existing clinical 
workflows. As part of the codesign we  managed the risk of 
implementing the software into the NHS via a dedicated clinical 
risk log. All updates to the scope of model and data artefacts 
displayed in the live dashboard were approved by information 
governance. The resulting clinical dashboard is displayed in the 
screenshots below (Figure 8).

For the purpose of evaluation within a regulated clinical trial, 
individual participant consent for inference was required. Consent for 
participation was requested electronically for individual patient users 
of the Lenus COPD support service within NHS GG&C. Separate 
consent was sought from trial participants for the insights gained from 
the ML models to be used to inform their care. The data for consented 
individuals was processed into a format where it could be analyzed by 
the approved model via a data processing pipeline. Following this a 
machine learning pipeline was created using Azure ML studio to run 
the selected model on the processed data and return the results to the 
codesigned clinical dashboard. This allowed for model inferencing to 
be conducted for consented patients on an ad-hoc basis following 
requests from clinical users. Considering utility and clinical team 
availability to undertake multi-disciplinary review of outputs, model 
inferencing is currently conducted at approximately monthly intervals.

3.3 Case study B: developing a 90-day 
readmission prediction model for patients 
with COPD using a large de-identified 
routine clinical dataset

3.3.1 Problem formulation
A target variable of readmission following discharge from a 

respiratory related hospital admission was selected to provide an 
alternative view of risk and to facilitate the clinical team undertaking 
data-driven triage of patients for additional inputs to try and reduce 
readmission rates specifically. A 90-day prediction window was 
selected so that more immediately at-risk patients could be identified. 
Given that this model was a readmission risk prediction model, the 
number of times each patient appeared in the processed training or 
validation data was dependent on the number of respiratory related 
hospital admissions they had had over the training window.

3.3.2 The model development dataset
The dataset provided by the NHS GG&C Safe Haven for the 

12-month mortality model was also used to develop the 90-day 
readmission model.

3.3.3 Data processing and feature engineering
The subset of the full cohort in the model development dataset 

who had at least one respiratory related hospital admission were 
split into a training cohort and an initial validation cohort. To 

FIGURE 5

Precision-recall (A) and receiver operating characteristic curves 
(B) summarizing the performance of the selected 12-month 
mortality model in the validation dataset. In the precision-recall 
curve plot, the precision and recall of the selected model at different 
decision thresholds are shown (A). In the receiver operating 
characteristic curve plot, the true positive rate and the false positive 
rate at different decision thresholds are shown (B). AUC, area under 
curve.
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FIGURE 6

Confusion matrix (A) and illustrative infographic visuals (B) showing the workload manageability of the selected 12-month mortality model. The 
confusion matrix shows the number of true negatives, false positives, false negatives, and true positives when the selected model was run on the 
validation dataset at the selected decision threshold of 0.25. The illustrative infographic visuals are derived by normalizing the performance of the 
selected model in the validation set to 100 patients. The number of individuals that would be selected by the 12-month mortality model is shown at 
the selected decision threshold of 0.25 (left visual–blue box) and at a higher decision threshold of 0.4 (right visual–red box).

prevent data leakage individuals with multiple index dates could 
only appear in the training or validation dataset. 15% of patients 
with at least one respiratory related admission were included in the 
initial validation dataset. The same steps were taken to clean 
erroneous data and deal with missing values as were used with the 

12-month mortality model formulation. Respiratory related 
admissions were identified using a series of ICD-10 codes provided 
by the clinical team. Index dates where mortality occurred within 
90-days were not included in the training and validation datasets. 
Some of the features from the 12-month mortality model were 
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FIGURE 7

Performance metrics for the selected 12-month mortality model at the chosen decision threshold of 0.25 for individuals under and over the age of 
65  years (A), for males and females (B), and for individuals resident in postcodes in different deciles of the SIMD (C). Accuracy, selection rate, false-
positive rate, precision, recall, and F1 score metrics are shown. FPR, false positive rate.
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FIGURE 8

Screen capture views of the co-designed clinical dashboard. A cohort level view showing risk scores across the cohort (A) and an individual patient’s 
risk score and accompanying local explainability insights (B) are shown; generalized feature names are used with numbered features representing 
features derived from the same data type. The data shown is synthetic.
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retained in the full feature set for the 90-day readmission model, 
however in most cases feature formulations were adapted for the 
new model formulation. Additionally, no target encoded 
prescription features (which were used in the 12-month mortality 
model) could be  created for the 90-day readmission prediction 
model formulation, as the current therapy prescription windows 
were on the same scale as the shorter prediction window making 
accurate target encoding not possible.

3.3.4 Feature and algorithm selection
As before, features identified by the clinical team as likely having 

predictive and/or actionable utility were combined with features 
identified by the data scientists in the technical team during 
exploratory analysis to select an initial feature set. Logistic regression 
(Cox, 1958), support vector machine (Cortes and Vapnik, 1995), 
random forest (Breiman, 2001), and XGBoost (Chen and Guestrin, 
2016) algorithm approaches were explored at first, using 
implementations of these algorithms available through the scikit-learn 
Python package (Pedregosa et al., 2011). XGBoost and random forest 
algorithms were further investigated based on the performance of 
these algorithms and the number of tunable hyperparameters available 
for these algorithms. These candidate algorithms were calibrated using 
an isotonic regression approach available through the scikit-learn 
Python package. The prospective calibrated models were then 
evaluated on the initial validation dataset. In the training dataset, 36% 
of admissions were followed by a subsequent admission within the 
following 90-days. Given this class balance, a combination of the area 
under precision-recall and receiver-operating characteristic curves 
were primarily used to evaluate model performance. Following light 
hyperparameter tuning a decision was made to focus entirely on 
XGBoost algorithms due to the higher performance of the XGBoost 
algorithms compared to the random forest algorithms in the validation 
dataset. Again, confusion matrices were created and shared with the 
clinical team to identify a range of clinically useful decision thresholds 
that would lead to a manageable workload for the team responsible for 
actioning the model outputs.

3.3.5 Model explainability
The SHAP framework (Lundberg and Lee, 2017) was applied to 

prospective models using the “TreeExplainer” method from the SHAP 
Python package (Lundberg et al., 2020) and SHAP plots were discussed 
with the clinical team during dedicated sessions to identify any biases 
and ensure the biological plausibility of the workings of the model. 
During a model explainability session for an exploratory formulation 
of this model, it was observed that an increase in the maximum length 
of time an individual had spent in hospital during respiratory related 
admissions over the previous 12-months was associated with a lower 
risk of readmission within 90-days. This was deemed to be unexpected 
by the clinical team, and so the data science team investigated if any 
potential biases could be causing this effect. It transpired that this was 
a result of an oversight in this formulation whereby the 90-day 
prediction window began at the admission date as opposed to the 
discharge date for the index admission event. This resulted in the 
model learning that people who were still in hospital after a hospital 
admission of 90-days or longer would not readmit. The formulation 
was then adjusted to resolve this issue. However, this incident 

exemplifies the importance of this process. If explainability views were 
not available, this bias in model formulation may not have been 
identified and the model could fail to identify a subgroup of patients 
likely to be at high-risk of readmission. A global SHAP plot for a model 
from this point in model development which highlights the feature 
described above is shown in Figure 9. An illustrative custom local level 
SHAP plot in the style used by our team to look at key risk factors for 
individual patients at this point in model development is also presented 
in Figure 10.

3.3.6 Model fairness
Again, fairness was assessed across age, SIMD, and sex 

demographic subgroups. Across the different prediction windows 
in the training dataset, 57.22% of the cohort were resident in 
postcode areas in the most deprived two deciles of the SIMD, 59% 
of the cohort were female, and 61.1% of the cohort were over the 
age of 65 years. Analysis of model performance at different decision 
thresholds showed that at lower thresholds, recall was equivalent 
between those under and over the age of 65, whilst the selection rate 
and false-positive rate were higher in those over the age of 65. 
However, as the selected decision threshold increased, recall, and 
subsequently selection rate became comparatively higher in those 
under 65 (Figure 11). A similar effect was observed when looking 
at performance across the different SIMD decile subgroups, with a 
growing gap seen in model performance and selection rate for 
individuals resident in postcode areas in the more deprived deciles 
(higher selection rate and recall) and the more affluent deciles 
(lower selection rate and recall) as the decision threshold increased 
(Figure 12). Performance metrics were comparable between males 
and females at all investigated thresholds.

3.3.7 Model selection and the model approval 
process

Following hyperparameter tuning to increase the performance 
of the candidate models using k-fold cross validation Bayesian 
optimization with the BayesSearchCV method from the scikit-
optimize Python package (Head et al., 2020), an XGBoost model 
was selected for model approval. Again, a sparsity aware approach 
was chosen due to the increased performance of the model when 
missing data was included. This prospective model underwent the 
two-stage model approval process and was approved for use. A 
decision threshold of 0.4 was selected based on discussions around 
the clinically useful threshold range and as more marginal 
differences in recall between age and SIMD subgroups were 
observed at this threshold. The precision-recall and receiver 
operating characteristic curves illustrating the performance of the 
selected model within the validation set are presented in Figure 13. 
The workload manageability of the model at the selected threshold 
of 0.4 is illustrated in Figure 14. A confusion matrix at the selected 
threshold and infographics showing the number of individuals out 
of 100 that would be correctly and incorrectly selected by the model 
at the selected threshold and at a higher threshold of 0.5 are shown, 
based on the performance of the model in the validation dataset. A 
summary of the behavior of the final model across different age, sex, 
and SIMD subgroups at the selected threshold is shown in 
Figure 15.
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3.3.8 Defining routine clinical user needs, model 
operationalization

It was determined through collaborative discussions between 
the technical team and the clinical team that the model risk scores 
and accompanying explainability views should be  added to the 
existing clinical dashboard to provide clinical users with multiple 
views of risk for the patient population in one place. This update 
required approval from information governance. Consent for the 
insights gained from model inferencing to be used to inform the 
care of the trial participants was covered by the same process as the 

12-month mortality model. A data processing pipeline was created 
to transform the EHR data for the relevant consented patients 
(those with a discharge date for a respiratory related admission 
within the previous 90-days) into the required format for 
inferencing. An Azure ML studio pipeline was created to run the 
model on the processed data and return the risk scores and 
explainability views for each of these patients to the clinical 
dashboard. Model inferencing for the 90-day readmission model is 
currently conducted on an ad-hoc basis as requested by the 
clinical team.

FIGURE 9

Global explainability view showing the SHAP values for the 20 most globally important features for a biased 90-day readmission model; generalized 
feature names are used with numbered features representing features derived from the same data type. The SHAP values for each prediction are 
aggregated to get a global view of feature importance, with each dot representing an individual SHAP value. Positive SHAP values are attributed to 
features associated with readmission occurring within 90-days of the index admission start date and negative SHAP values are attributed to features 
associated with no readmission occurring within 90-days of the index admission start date. The color of the dot represents the numerical value of the 
feature influencing the decision in the direction indicated by the SHAP value, with red dots representing high numerical values and blue dots 
representing low numerical values. The label for the biased feature that incorrectly showed that a higher maximum length of hospital stay in the 
previous 12-months was associated with lower readmission risk is shown in red.
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4 Discussion

A lack of resources and means of oversight of the growing 
number of individuals affected by long-term conditions means the 
current care model for these conditions is often disjointed and 
reactive, resulting in poorer patient outcomes and avoidable 
hospital admissions. Electronic health record (EHR) data provides 
a rich source of information related to patient’s medical histories 
that does not require additional data collection or tests. However, 
this data is typically presented in an unaggregated row level format 
and is accessed across different locations, making it difficult to 
harness this data to assist in the management of patient cohorts 
given the time pressures on clinical teams. In recent years, there has 
been significant interest in training machine learning models from 
this data to gain insights to inform the management of patient 
cohorts (Habehh and Gohel, 2021; Sauer et al., 2022). However, 
most of the investigation into this has been exploratory work 
without clinical involvement and there has been limited translation 
of this work into tools used in clinical practice (Bastian et al., 2022). 
The objectives of this paper were to outline a detailed collaborative 
workflow based on the experience of our multidisciplinary team 
that can be followed to promote the use of ML tools in live clinical 
environments. The development and operationalization of two of 
the models developed by our team for clinical decision support for 

FIGURE 10

Local explainability view for a biased 90-day readmission model 
showing the seven features with the greatest SHAP values for an 
illustrative prediction for an individual patient; generalized feature 
names are used with numbered features representing features 
derived from the same data type. Positive SHAP values are attributed 
to features associated with readmission occurring within 90-days of 
the index admission start date and negative SHAP values are 
attributed to features associated with no readmission occurring 
within 90-days of the index admission start date. The color of the bar 
represents the numerical value of the feature influencing the 
decision in the direction indicated by the SHAP value, with red bars 
representing high numerical values and blue bars representing low 
numerical values.

FIGURE 11

Recall, selection rate, and false-positive rate for a prospective 90-day readmission model for people under and over 65  years of age in the validation 
dataset. These metrics are compared at a range of decision thresholds: 0.25, 0.4, and 0.5. The percentage of the cohort under and over the age of 65 
at the point of prediction is also shown for context of the age group split within the cohort. FPR, false positive rate.
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FIGURE 12

Recall, selection rate, and false-positive rate for a prospective 90-day readmission model for individuals resident in postcodes in different deciles of the 
SIMD in the validation dataset. These metrics are compared at a range of decision thresholds: 0.25, 0.4, and 0.5. The percentage of the cohort resident 
in different deciles of the SIMD is also shown for context of the SIMD distribution within the cohort. The data shown for SIMD decile 1 represents 
predictions for individuals resident in the most deprived decile of the SIMD, the data shown for SIMD decile 10 represents predictions for individuals 
resident in the least deprived decile of the SIMD. FPR  =  false positive rate.

COPD in NHS GG&C which informed this framework are also 
described in two case studies to give real-world context to the 
considerations that have to be made at each stage of this process and 
highlight the lessons that were learned through this work. Based on 
the interim analysis of the primary outputs of the trial which 
demonstrate the safety, feasibility and acceptability of the use of ML 
models in live clinical practice (Taylor, 2024), we expect that the 
clinical team in NHS GG&C will continue to use the models in 
routine clinical practice following the completion of the DYNAMIC 
AI trial in January 2025.

There are several key points to take away from this framework 
and the included case studies. Firstly, it is crucial to have 
involvement from a clinical team with extensive knowledge of the 
target condition and experience of the current care pathway for 
that condition at every stage of the process. Clinical involvement 
will ensure that project outputs have maximal clinical utility, 

provide context to the nuances of the EHR data, and provide a 
clinical perspective to tackle wider issues related to the use of ML 
in healthcare such as model interpretability and fairness. Secondly, 
decisions made at even the earliest stages can drastically impact 
the feasibility and ease of operationalizing and adopting models 
within existing care pathways and so it is crucial to consider the 
implication of any decisions made on this end goal. Thirdly, in our 
view determining an appropriate method for displaying model 
insights and accompanying explainability views should 
be  considered as important as identifying performant models. 
Clinical teams are under significant time pressures and providing 
a way of sharing insights that is intuitive and accessible, whilst 
providing maximum information is key. Fourthly, there should 
be a documented and traceable process for approving any models 
that may be  used in live clinical practice. This process should 
record detailed information about the performance, fairness, and 
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explainability of any models put forward for approval, as well as a 
description of the algorithm used, and an overview of the training 
process. Based on this information, the clinical team should assess 
the model’s acceptability for use in a live clinical environment, 
with any subsequent iterations undergoing this same process. 
Lastly, although the required work is achievable, there can 
be significant delays at various stages of this process (particularly 
around governance) and significant time and resources should 
be allocated to these projects.

The workflow described in this paper draws heavily from the 
work processes carried out by our multidisciplinary team in NHS 
GG&C as described in the two case studies. However, following 
the learnings from this project we have adjusted our own working 
processes and would recommend a distinct approach to that 
carried out in the presented case studies in a few key areas. For 
example, fairness analysis was only conducted for XGBoost 
algorithms for both models in NHS GG&C as investigation into 
other algorithms was stopped earlier in the process. However, 
we would recommend exploring fairness across multiple different 

algorithms by tracking model performance metrics of interest 
across different demographic groups of interest at different 
thresholds to ensure model fairness considerations are 
incorporated into algorithm selection. Additionally, we did not 
include SIMD decile as a model feature due to concerns that the 
model would capture confounding societal effects. Conversely, 
more recent approaches have started to use deprivation indexes as 
model features and suggest that it is fairer to do this as this avoids 
introducing an omitted variable bias (Li et al., 2022). As a result, 
we recommend including all investigated fairness parameters as 
model features.

There were also a few constraints that impacted the work carried 
out during this project. For example, we would have liked to have 
presented data drift and model performance monitoring tools in the 
first implementation of the clinician dashboard. However, this wasn’t 
possible as the methods for acquiring these measures within the 
inferencing infrastructure rely on training data being stored in the 
same environment as the inference data, which was not possible with 
our project due to governance restrictions. This is something that 
we would like to explore in another project. As another example, 
fairness by ethnic group could not be looked at robustly for either of 
the models due to the lack of recorded representation of people from 
non-white ethnic groups within the model development dataset. 
However, we strongly recommend looking at fairness by ethnic group 
if this is possible using the training dataset available given that bias in 
performance by ethnic group has been observed in models developed 
from EHR data (Gianfrancesco et  al., 2018). Further work will 
be required to explore fairness by ethnic group in another dataset 
if these models are to be  scaled or used in other locations/
populations.

This workflow framework focused on models deriving 
features from the structured data contained within EHRs and 
supervised machine learning approaches to avoid 
overcomplicating the outlined workflow stages. Models deriving 
features from unstructured data (such as clinical notes within 
EHRs) would require an entirely different approach to dataset 
exploration, data processing, feature generation, and deriving and 
presenting model explainability. Separately, with an unsupervised 
approach (such as developing clustering algorithms using EHR 
data) the methods for assessing model performance, deriving 
model explainability, and exploring model fairness would be very 
different to the approaches described in the case studies. 
However, the need to involve clinical and technical teams from 
the start of the project to ensure the explainability, fairness, 
actionability, and clinical utility of models, as well as the need for 
a traceable model approval process would equally apply to 
these projects.

The case studies presented in this paper look at two models 
used to inform COPD care in a secondary care setting. Whilst the 
core framework steps are applicable across all chronic disease 
indications and care settings, the exact approach applied will 
be influenced by the long-term condition that is the focus of the 
project and the priorities of patients with that condition and the 
intended care setting in which the model will be used. For example, 
individuals with COPD experience particularly high readmission 
rates and report that exacerbations are the most disruptive aspect 

FIGURE 13

Precision-recall (A) and receiver operating characteristic curves 
(B) summarizing the performance of the selected 90-day 
readmission model in the validation dataset. In the precision-recall 
curve plot, the precision and recall of the selected model are shown 
at different decision thresholds (A). In the receiver operating 
characteristic curve plot, the true positive rate and the false positive 
rate at different decision thresholds are shown (B). AUC, area under 
curve.
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FIGURE 14

Confusion matrix (A) and illustrative infographic visuals (B) showing the workload manageability of the selected 90-day readmission model. The 
confusion matrix shows the number of true negatives, false positives, false negatives, and true positives when the selected model was run on the 
validation dataset at the selected decision threshold of 0.4. The illustrative infographic visuals are based on normalizing the performance of the 
selected model in the validation set to 100 patients. The number of individuals that would be brought forward by the 90-day readmission model is 
shown at the selected decision threshold of 0.4 (left visual–blue box) and at a higher decision threshold of 0.5 (right visual–red box).

of their condition (Alqahtani et al., 2021). Avoiding these events is 
therefore a key care priority and so our MDT developed a 
respiratory related readmission risk model to be run at the point of 
discharge from a respiratory related hospital admission. Separately, 
the use case of the models to support specialist clinical MDT care 
meetings meant that a high level of detail was included in model 
explainability outputs. Projects focusing on implementing models 
in other care settings should tailor the ways of presenting model 
derived insights and accompanying explainability to suit the needs 
of clinical care teams in these settings where those interacting with 
models may not be specialists on the disease indication the model 
has been developed for.

5 Conclusion

The adoption of machine learning models in clinical care could 
provide a more predictive, proactive, and personalized approach to the 
management of long-term conditions. However, there are only a 
limited number of these tools being used in clinical practice and there 
is a need to generate real-world evidence of the impact of these 
models. In this paper, we have defined a workflow framework for the 
development and operationalization of machine learning models from 
EHR data to assist with the management of long-term conditions and 
presented two case studies to provide context to how this approach 
was informed. Following this framework can push forward 
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FIGURE 15

Performance metrics for the selected 90-day readmission model at the chosen decision threshold of 0.4 for individuals under and over the age of 
65  years (A), for males and females (B), and for individuals resident in postcodes in different deciles of the SIMD (C). Accuracy, selection rate, false-
positive rate, precision, recall, and F1 score metrics are shown. FPR, false positive rate.
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progression in this space, leading to a larger number of EHR derived 
machine learning models being operationalized, adopted, and 
evaluated for clinical and cost-effectiveness.
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