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E�cient dataset extension using
generative networks for
assessing degree of coating
degradation around scribe

Dominik Stursa, Pavel Rozsival and Petr Dolezel*

Faculty of Electrical Engineering and Informatics, University of Pardubice, Pardubice, Czechia

A novel methodology for dataset augmentation in the semantic segmentation of

coil-coated surface degradation is presented in this study. Deep convolutional

generative adversarial networks (DCGAN) are employed to generate synthetic

input-target pairs, which closely resemble real-world data, with the goal of

expanding an existing dataset. These augmented datasets are used to train two

state-of-the-art models, U-net, and DeepLabV3, for the precise detection of

degradation areas around scribes. In a series of experiments, it was demonstrated

that the introduction of synthetic data improves the models’ performance in

detecting degradation, especially when the ratio of synthetic to real data is

carefully managed. Results indicate that optimal improvements in accuracy

and F1-score are achieved when the ratio of synthetic to original data is

between 0.2 and 0.5. Moreover, the advantages and limitations of di�erent GAN

architectures for dataset expansion are explored, with specific attention to their

ability to produce realistic and diverse samples. This work o�ers a scalable

solution to the challenges associated with creating large and diverse annotated

datasets for industrial applications of coil coating degradation assessment. The

proposed approach provides a significant contribution by improving model

generalization and segmentation accuracy while reducing the burden of manual

data annotation. These findings have important implications for industries relying

on coil coatings, as more e�cient and accurate degradation detection methods

are enabled.

KEYWORDS

coil coating, delamination, degradation, semantic segmentation, deep learning,

generative adversarial network

1 Introduction

An established method of coil coating plays a pivotal role in applying organic

coatings onto rolled metal strip substrates, as discussed in Jandel (2019) and The

National Coil Coating Association (2020). This process aims to achieve a uniform,

high-quality, and enduring finish on metal surfaces, catering to diverse applications

like building exteriors, metal roofs, wall panels, garage doors, office furniture, vending

machines, food service equipment, and more. Notably, coil coating extends its utility

to advanced applications, including cool metal roofing materials, smog-eating building

panels, antimicrobial products, anti-corrosive metal parts, and solar panels.

The significance of coil coating lies in providing a thin yet robust and flexible

protective layer that effectively shields materials against corrosion. Despite its efficacy,

this protective layer is susceptible to mechanical damage, such as scribes or scratches,
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leading to irreversible changes due to exposure to environmental

elements, see Bastos and Simões (2009). This damage can manifest

in various forms, ranging from chalking and blistering to flaking

or rusting of the coated material. Consequently, evaluating

the performance of coated surfaces under conditions accurately

simulating outdoor exposure becomes imperative.

The assessment of degradation resistance of coil-coated

materials adheres to the European Standard EN 13523-8, titled

“Coil coated metals. Test methods. Resistance to salt spray

(fog).” This standard involves subjecting a test specimen treated

with coil coating to salt fog at predefined temperature and

duration. Subsequently, the specimen undergoes testing following

the International Organization for Standardization (ISO) 4,628

standard, titled “Paints and varnishes. Evaluation of degradation

of coatings. Designation of the quantity and size of defects and

intensity of uniform changes to appearance.” In simpler terms, the

objective is to evaluate the extent of surface degradation on the

test specimen, as illustrated in Figure 1. The figure demonstrates

the process of degradation detection, where a test specimen is first

exposed to salt fog (Figure 1A), and the degraded area around the

scribe is subsequently identified and measured (Figure 1B). The

degree of degradation is determined by calculating the ratio of the

affected area to the total area of the specimen, following the ISO

4628-8 standard.

While the manual determination of the degraded area is a

common practice, as discussed in Bastos and Simões (2009) and

Hanus (2011), there is a scarcity of automatic image processing-

based methods. Existing methods include the use of office

scanners in combination with commercial software like Adobe

Photoshop, as presented in Blanchard et al. (2014). However,

these approaches are limited to specific material types, surfaces,

or colors. In contrast, industrial practices demand universally

applicable methods. Addressing this need, the authors Rozsivalova

et al. (2022) proposed a technique based on semantic segmentation

using fully-convolutional neural networks—see Figure 2 for an

illustration of the technique. The results presented in this work

demonstrate the effectiveness of U-shaped fully convolutional

networks in automatically detecting the degradation area of

surfaces treated with coil coating.

A significant limitation of data-driven methods, particularly

those based on semantic segmentation, is the requirement for a

large and comprehensive training set covering significant states

of the problem. The creation and correct annotation of such

a dataset pose substantial challenges. This study focuses on

exploring the potential of automatically extending a manually

created dataset using Generative Adversarial Networks (GAN).

GAN, an unsupervised learning framework, consists of two

networks, the generator and the discriminator, competing to

produce better results. The generator generates data similar to

the training data, while the discriminator differentiates between

generated and real data. The study aims to propose a GAN-

based technique for automated training set enhancement for

a semantic segmentation task. The overall pipeline of the

technique is depicted in Figure 3, according to Goodfellow et al.

(2014).

One of the primary goals of this research is to develop a

method for expanding datasets using GANs, which can create

synthetic data that mimics real-world conditions. This synthetic

data is then combined with real data to improve the performance

of neural networks in detecting surface degradation. Throughout

our study, we carefully tested different types of GAN models

to determine which architecture produced the most realistic and

useful data.

In addition, we focused on finding the right balance between

the amount of real and synthetic data to ensure that the neural

network models–specifically U-Net and DeepLabV3–performed

optimally. These models are used to accurately identify areas

of surface damage, and the generated data plays a key role in

improving their accuracy. Our experiments explore how different

proportions of real and synthetic data affect the models’ ability

to detect degradation, with the goal of finding the most effective

configuration for real-world applications.

The paper is organized as follows: In theMaterials andMethods

section, we begin by outlining the standard for degradation

measurement, ISO 4628-8, which guides the preparation and

annotation of the dataset. Following this, we introduce the original

dataset used in this study, consisting of coil-coated surfaces,

and describe the semantic segmentation models employed to

assess the effectiveness of our dataset augmentation approach. A

key part of the methodology is the introduction of the GAN-

based augmentation process, where both synthetic images and

corresponding degradation masks (target images) are generated.

This section also includes a description of the different variants

of extended datasets used for training and testing, as well as the

metrics employed for evaluating the models’ performance.

In the Results section, we present a comparative analysis of

the models trained on the original dataset vs. those trained on the

augmented datasets. The discussion includes the impact of different

ratios of synthetic-to-original data, revealing insights into how

these ratios affect model performance across various architectures.

This section further contextualizes these results by comparing them

with existing approaches in the literature, particularly in domains

like medical imaging, where GAN-based augmentation is widely

used. We also discuss how our method differs from similar GAN-

based approaches, such as those that generate original images

from masks, and highlight the advantages of our approach, which

simplifies the dataset preparation process.

Finally, in the Future Directions and Conclusions sections, we

summarize the key findings of this research and propose avenues

for future work, such as exploring conditional GANs for more

controlled data generation and investigating the applicability of this

method in other fields where semantic segmentation is critical.

The main contributions of this study include:

• Development of a GAN-based method for dataset

augmentation, specifically designed for the detection of

coating degradation around a scribe.

• Systematic analysis of the impact of different ratios of

synthetic-to-original data on the performance of state-of-the-

art semantic segmentation models.

• Introduction of a methodology that generates not only

synthetic images but also their corresponding segmentation

masks (target images), significantly reducing the time and

effort required for manual data annotation.
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FIGURE 1

Examples of degraded area determination. (A) Test specimen after removal from the salt fog chamber, displaying the visible signs of surface

degradation. (B) Example of degradation detection, where the degraded area around the scribe is highlighted. The degradation zone is calculated by

determining the ratio of the a�ected area to the total area of the specimen, following the guidelines of ISO 4628-8.

FIGURE 2

A pipeline of the autonomous method for the assessment of the degree of degradation around a scribe presented in Rozsivalova et al. (2022). First,

the test specimen is scanned by an image acquisition device and the image is normalized to a defined resolution. Then, a semantic segmentation

tool provides a mask of the image, which represents a degraded segment of the specimen. Finally, the specimen is evaluated using the ISO 4628-8

Standard.

• A comparison of our GAN-based approach with existing

methods, highlighting its applicability in industrial settings

where labeled data is scarce.

• Exploration of future directions for improving the control

over the types of generated data and applying this approach

to other domains.

A unique feature of our approach is that it generates

both the synthetic original images and their corresponding

degradation masks in a single step. This removes the need

for the time-consuming manual annotation process typically

required when augmenting datasets with synthetic data, providing

a more efficient and scalable solution for tasks requiring

semantic segmentation.

The presented work constitutes an extended version addressing

the intricacies originally discussed during the 9th International

Conference on Control, Decision, and Information Technologies

(Dolezel et al., 2023).
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FIGURE 3

Process of dataset augmentation using a Deep Convolutional Generative Adversarial Network. The original dataset, consisting of manually annotated

input images and corresponding target images (masks), is used to train a GAN model. The generator network creates synthetic input-target pairs,

simulating degradation patterns on coil-coated surfaces. These synthetic images are evaluated by a discriminator network, which distinguishes

between real and generated samples. The final output is an enhanced dataset that combines both real and synthetic data, providing a more diverse

and extensive training set for the neural network models tasked with detecting surface degradation. This augmentation method improves the

model’s ability to generalize and accurately detect degradation in various conditions.

2 Related work

The coil coating industry has been the subject of substantial

research and development, particularly in addressing challenges

related to degradation assessment and surface protection. This

section provides a brief review of the existing literature,

encompassing both traditional methods and recent advancements.

Early research on the degradation of coil-coated materials

primarily relied on manual methods for assessment. Studies

such as those by Bastos and Simões (2009) emphasized visual

inspection and direct measurement of degraded areas. These

manual techniques, while foundational in understanding coating

performance, had significant limitations, particularly in terms of

subjectivity and dependence on the expertise of the inspector.

These limitations have led to a growing interest in developing more

objective and automated approaches to degradation evaluation,

pushing the field toward more advanced methodologies.

Image processing techniques have since emerged as an

alternative to manual inspection. Researchers like Kapsalas et al.

(2007) and Cringasu et al. (2017) explored the use of automatic

image processing for assessing surface degradation. These methods

have demonstrated potential, offering more consistent and

repeatable results compared to traditional approaches. One notable

method was introduced by Blanchard et al. (2014), where office

scanners and commercial software, such as Adobe Photoshop,

were employed to detect degradation. However, the applicability of

such techniques has often been limited to specific material types,

surface characteristics, or color variations, which restricts their

generalizability in industrial settings.

The advent of deep learning has opened new opportunities

for automating the assessment of coil-coated surfaces. Semantic

segmentation, a technique that assigns a class label to each pixel in

an image, has been applied in recent research. Fully convolutional

networks (FCNs), particularly U-shaped architectures, have been

shown to be effective in detecting degraded areas on coated

surfaces. The work by Rozsivalova et al. (2022) demonstrated

the potential of U-shaped FCNs in this context, marking a

significant shift toward automated and objective methods for

surface degradation assessment. This transition highlights the

increasing relevance of deep learning in addressing the limitations

of manual and traditional image processing-based methods.

Despite progress in deep learning-based approaches, data-

driven methodologies pose several challenges. The primary

difficulty lies in the creation and annotation of large, diverse

datasets that are necessary for training robust models. As

highlighted by Bastos and Simões (2009), the process of generating

and accurately annotating datasets for degradation assessment

can be both time-consuming and resource-intensive. This issue

is particularly pronounced in industrial applications, where

large-scale, high-quality datasets are often not readily available.

Consequently, innovative approaches are required to overcome

these limitations and ensure the generalization of models to real-

world conditions.

To address the challenge of limited datasets, various dataset

augmentation techniques have been developed, offering effective

solutions for improving model performance in tasks such as

semantic segmentation. Among these, Generative Adversarial

Networks (GANs) have become a prominent method. Introduced

by Goodfellow et al. (2014), GANs are employed to generate

synthetic data that closely resembles real-world samples. These

networks consist of a generator, which creates new data, and

a discriminator, which evaluates whether the data is real or

synthetic. This adversarial process has proven to be successful

in many domains; however, in the specific case of evaluating

coating degradation, there are relatively few practical applications

of GANs. One notable example is the work by Tao et al. (2024),

which employs a GAN-based approach to generate synthetic

original images from provided degradation masks. In this method,
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a degradation mask is used as input, and the GAN generates

the corresponding original, undegraded images. This approach

significantly enhances the available dataset by reversing the

degradation process, offering a novel solution for improving

model training and segmentation performance in the context of

coating assessment.

In addition to GAN-based augmentation, several other

methods are widely used to enhance datasets. Geometric

transformations, such as flipping, rotation, and scaling, are

commonly employed to create variations of the original images,

helping models become invariant to shifts and rotations, as noted

by Islam et al. (2024). Color space transformations, which involve

adjusting brightness, contrast, and saturation, further enrich the

dataset by simulating different lighting conditions, as outlined in

the survey by Shorten and Khoshgoftaar (2019). Kernel filters, such

as Gaussian blurring or sharpening, are also used to improve the

robustness of the model against image noise and degradation, as

explored by Nanni et al. (2021).

More advanced techniques include image mixing, where two

or more images are blended to create new synthetic samples, and

random erasing, which involves randomly removing parts of an

image to force the model to focus on the remaining content, as

described by Xu et al. (2023). Another promising approach is

feature space augmentation, where transformations are applied in

the intermediate layers of the neural network rather than on the raw

input images. This method enables more complex augmentations,

such as interpolating between feature vectors, as demonstrated by

Niu et al. (2023).

Adversarial training has also emerged as a powerful

augmentation strategy. In this technique, adversarial examples are

generated to mislead the model, forcing it to learn more robust

decision boundaries, as discussed by Allen-Zhu and Li (2022).

Neural style transfer, where the style of one image is transferred to

another, creates visually diverse samples that improve the model’s

ability to handle real-world variability, as highlighted by Camargo

et al. (2024).

The current state of research reflects a clear transition

from traditional manual methods to more advanced automated

techniques, driven by the integration of deep learning and

GANs. This evolution underscores the industry’s commitment

to developing more accurate, efficient, and universally applicable

solutions for degradation detection. Future research efforts should

focus on addressing the remaining challenges, such as the creation

of diverse, high-quality datasets and the generalization of models

to real-world applications. Furthermore, the seamless integration

of these innovative technologies into industrial workflows will be

crucial for ensuring their practical utility. As the field advances,

continued exploration of GAN-based data augmentation and deep

learning architectures will play a pivotal role in enhancing the

reliability and performance of degradation detection systems.

3 Materials and methods

The primary objective of this research is to introduce a

methodology for extending the dataset utilizing GAN to evaluate

the degree of degradation around a scribe. The dataset originally

constructed for this purpose in Rozsivalova et al. (2022) serves

as the foundation for our experiments. Subsequently, GAN is

employed to enrich this dataset, with a specific focus on generating

inputs and targets corresponding to the images within the original

dataset (refer to Figure 1 for illustrative examples).

To demonstrate the impact of dataset extension, both the

original dataset and its augmented counterpart are utilized to

train a neural network specializing in semantic segmentation. In

this study, we consider U-net introduced in Ronneberger et al.

(2015) and DeepLabV3 proposed in Chen et al. (2017), since both

architectures are renowned for their exceptional performance in

diverse real-world applications.

The ensuing experiments are designed not only to discern the

effectiveness of GAN-based dataset extension but also to investigate

the nuanced interplay between original and synthetically generated

data in optimizing the performance of the semantic segmentation

neural network. Through a comparative analysis of the original and

extended datasets, coupled with the utilization of both U-net and

DeepLabV3 architectures, our aim was to elucidate the nuances

that contribute to achieving superior performance in detecting the

degree of degradation on surfaces treated with coil coating.

In order to implement the dataset for semantic segmentation

of coil-coated surface degradation, the following tools and methods

are presented in this section: First, the ISO 4628-8 standard, which

governs the measurement of degradation, is introduced to ensure

consistent evaluation across all samples (Section 3.1). Next, the

original dataset, consisting of annotated images of coil-coated

surfaces, is described as the foundation for further experiments

(Section 3.2).

Two semantic segmentation models, U-net and DeepLabV3,

are utilized to assess the impact of dataset augmentation on model

performance (Section 3.3). The core of the proposed method is

the use of a deep convolutional GAN to generate synthetic input-

target pairs, which are then combined with the original dataset.

Different ratios of synthetic-to-real data are explored to determine

the optimal configuration for model training (Section 3.4).

One of the key parts of the methodology is determining the

optimal ratio of synthetic-to-original data. In Section 3.5, various

ratios are explored to investigate how different proportions affect

the model’s performance. This analysis is critical in identifying

the best balance between real and synthetic data for improving

segmentation accuracy.

Finally, standard evaluation metrics, including accuracy,

precision, recall, and F1-score, are employed to compare

model performance on both original and augmented datasets.

This structured approach ensures that the effects of dataset

augmentation on segmentation accuracy and model generalization

are rigorously analyzed (Section 3.6).

3.1 Standard ISO 4628-8

Various examination methodologies for coil-coated metals

encompass, among others, the quantification of degradation

resistance to salt fog, as stipulated by the EN 13523-8 standard.

Within this context, a pivotal metric under consideration involves

the evaluation of the degree of degradation around a scribe, a

parameter meticulously defined by the ISO 4628-8 standard. The
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testing protocol entails horizontally scribing the test specimen with

a sharp edge, subjecting it to a corrosive salt fog environment.

Subsequent to a predefined exposure duration, the specimen

undergoes a cleansing with tap water, followed by the removal

of water residues through the application of compressed air. Any

loosely adhered coating is subsequently eliminated using a blade

held at a precise angle. Refer to Figure 1 for a visual representation

of specimens prepared following this procedural framework.

In accordance with the provisions delineated in the ISO 4628-

8 standard, two distinct variants for assessing the degree of

degradation around a scribe are defined.

3.1.1 First variant
The width of the area of degradation has to be measured at

a minimum of six points uniformly distributed along the scribe.

Subsequently, the arithmetic mean is determined and the resulting

value is designated as the mean overall width of the zone of

degradation, d1, in millimeters.

The degree of degradation d, in millimeters, can be calculated

using the equation

d = round

(

d1 − w

2

)

, (1)

where w is the width of the original scribe, in millimeters.

3.1.2 Second variant
In this methodology, the area of degradation is explicitly

quantified. The standard recommends placing a transparent

millimeter-grid paper onto the plate and enumerating the squares

aligned with the degradation region. Subsequently, the degree

of degradation (d), expressed in millimeters, can be computed

utilizing the following equation.

d = round

(

Ad − Al

2l

)

, (2)

where Ad is the area of degradation, including the area of the scribe

(in square millimeters), Al is the area of the scribe in the evaluated

area in square millimeters, and l is the length of the scribe in the

evaluated area (in millimeters).

3.2 Original dataset

In order to formulate a robust data-driven strategy for the

automated detection of coating degradation, it is paramount

to amass an extensive assortment of varied and meticulously

annotated samples that manifest differences in color, surface

roughness, and reflectivity. Moreover, these samples should

exhibit diverse degrees of degradation. In the initial investigation

conducted by Rozsivalova et al. (2022), a comprehensive set of 604

coated samples, each measuring 150 × 100 mm, was fastidiously

prepared. These samples encompassed coatings in a spectrum of

colors, ranging from black, white, green, and gray to orange, red,

brown, blue, dark blue, and yellow, encompassing both fine and

coarse (textured) variations.

To unveil the uncoated substrate, a small horizontal scratch,

measuring 0.5 mm in width, was intentionally made through

the coating of each sample using an iron nail. Subsequently, the

samples underwent controlled exposure durations in a salt fog

chamber, lasting for intervals of 120 h, 240 h, 480 h, 720 h, and

1,440 h. Following the designated exposure periods, meticulous

cleaning procedures were applied, and the samples were subjected

to scanning using an office-grade scanner. Finally, each individual

sample underwent a manual annotation process to derive the target

segmentation image essential for training the area degradation

detection model.

Eventually, a subset comprising 128 samples was extracted from

this dataset to form an independent test set, leaving a pool of 476

samples actively employed in the subsequent experiments detailed

in the following sections.

3.3 Semantic segmentation neural models

Semantic segmentation is a technique aimed at assigning each

pixel in an input image to a specific class or category, thereby

providing semantic context to visual data. This approach proves

instrumental for a detailed and interpretable analysis of visual

information, enabling discernment of specific objects, structures,

or contexts within images. In this study, semantic segmentation

process is expected to determine areas of coating degradation with

pixel-wise precision. Models designed for semantic segmentation

leverage sophisticated neural network architectures, such as U-net

or DeepLabV3, capable of effectively capturing and interpreting

high-level patterns in image data.

3.3.1 U-net
The U-net architecture, initially devised for biomedical

image segmentation, stands as a symmetrical and densely pixel-

wise prediction model. Comprising an encoder-decoder network

structure, it encompasses a contraction path and an expansion

path intricately linked through a succession of convolutional layers.

Noteworthy in its design is the incorporation of skip connections,

facilitating the concatenation of feature maps from both the

contraction and expansion paths. This feature enhances the model’s

ability to precisely localize features and capture intricate details

from the input image. U-net has found wide-ranging applications

across various imaging tasks, spanning from the segmentation of

brain tumors, see Allah et al. (2023), to cell tracking endeavors, as

shown in Yuan et al. (2023).

For the purposes of our study, U-net undergoes modification to

accommodate input in the form of a (288× 288× 3)px RGB image,

generating a (288×288×1)px black-and-white image at the output.

3.3.2 DeepLabV3
DeepLabV3 represents a state-of-the-art convolutional neural

network that excels at capturing intricate contextual information

and delivering precise segmentation results.

DeepLabV3’s core structure includes an atrous spatial pyramid

pooling module, designed to aggregate multi-scale contextual

information effectively, see Chen et al. (2017). Thismodule employs
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dilated convolutions at different rates, allowing the network

to capture diverse contextual information while maintaining

computational efficiency. The encoder-decoder architecture of

DeepLabV3 enables it to refine segmentation predictions with fine-

grained details, making it particularly well-suited for our task of

detecting coating degradation, as indicated in Kang et al. (2024).

Within the framework of DeepLabV3, a notable feature is its

adaptability to various backbone networks, allowing for flexibility

in accommodating diverse computational and performance

requirements. For the purposes of our study, we conducted

experiments with different backbone networks, namely Xception,

defined in Chollet (2017) and MobileNetV2, proposed in Sandler

et al. (2018), integrated into the DeepLabV3 architecture. The

selection of these backbone networks stems from their distinct

characteristics and computational efficiency. Xception, known for

its exceptional performance and capability to capture complex

hierarchical features, serves as a powerful backbone for high-

precision tasks. On the other hand, MobileNetV2, recognized for

its lightweight structure and computational efficiency, is well-suited

for scenarios where computational resources may be constrained

without compromising segmentation accuracy significantly.

In the context of our study, the DeepLabV3 architecture

undergoes an adaptation to accommodate input in the form of

(288 × 288 × 3)px RGB images, producing the corresponding

(288× 288× 1)px black-and-white segmentation outputs.

3.4 Generative adversarial network for
dataset extension

The objective of this study is to introduce a GAN-based

methodology tailored for the extension of the original dataset,

comprising input and target images featuring diverse annotations,

encompassing variations in color, asperity, and reflectivity. GANs

operate through a dual neural network framework, consisting of

a generator and a discriminator. The generator network takes

a random noise vector as input and endeavors to produce

synthetic images that are perceptually indistinguishable from

real ones. Conversely, the discriminator network assesses both

real and synthetic images, discerning between authentic and

synthetic counterparts.

In the current landscape of research, GANs have emerged as

pivotal tools for the automated augmentation of image datasets,

aimed at enhancing the performance of neural networks. Various

GAN architectures have been developed, each offering specific

advantages and applications in the realm of image synthesis.

One widely adopted GAN architecture is the deep

convolutional GAN (DCGAN), leveraging deep convolutional

layers to generate photorealistic images. This architecture has

been a breakthrough for synthesizing high-quality images and has

found successful applications in diverse domains, from generating

realistic faces to producing artistic works, as summarized in

Radford et al. (2016).

Another significant variant is the Conditional GAN, see Mirza

and Osindero (2014), allowing the specification of conditions for

image generation. This architecture has been applied in tasks

where generating data with respect to certain parameters or classes

is crucial.

For the purpose of expanding training datasets, researchers

have explored the CycleGAN architecture, defined in Zhu et al.

(2017). This innovative structure facilitates domain-to-domain

translations without the need for paired training data, proving

useful, especially in scenarios where obtaining precise pairs of input

and target images is challenging.

Advancements in GAN architectures continue, with

new variants, such as StyleGAN, discussed in Karras et al.

(2021), providing even greater flexibility and control over the

generative process.

Given the variety of GAN architectures available, it was

essential to carefully choose and customize the most appropriate

model for our specific task. In this study, we explored multiple

GAN variants, selecting those that could best generate synthetic

data resembling real-world degradation patterns. The selection

process was supported by a versatile toolset from the GitHub

repository (Linder-Norén, 2019), which includes a wide range

of GAN architectures and implementation tutorials. This toolset

enabled the seamless integration of GANs into our workflow and

ensured the correct implementation for generating synthetic data.

The evaluation of the generated data involved a detailed

analysis of both the accuracy and visual fidelity of the

synthetic images, comparing them to real data. We assessed

key characteristics such as color, texture, and the granularity

of surface degradation. This thorough evaluation allowed us to

understand the strengths and limitations of various GAN models.

After testing different architectures, we found that the DCGAN

model provided themost consistent and reliable results for our task.

Its performance was superior in generating realistic synthetic data

that effectively augmented the training set for our neural networks.

Figures 4, 5 illustrate the specific architectures of the discriminator

and generator used in this DCGANmodel.

Note that the proposed DCGANmodel was adapted to operate

with (288×288×4) data structures. These structures are formulated

through the concatenation of an RGB image, which signifies the

input image, and a monochromatic image denoting the target

image. In preparation for subsequent training of the detection

neural model, it is imperative to disaggregate this composite data

structure into its constituent components: an input RGB image

with three color layers and a corresponding target image featuring

a singular layer.

A selected set of examples of synthetic data provided by this

specific DCGANmodel is depicted in Figure 6.

3.5 Variants of extended dataset

The crucial objective of this study is to systematically investigate

and determine the optimal ratio between original and artificially

generated data within the training dataset for the subsequent

training of U-net and DeepLabV3 models, aiming to enhance the

performance of the neural network models for the specific task

of coating degradation detection. To achieve this, eight distinct

training datasets were meticulously curated, each characterized

by varying proportions of original and artificially generated data.
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FIGURE 4

Deep convolutional generative adversarial network for dataset extension.

FIGURE 5

Discriminator architecture for the generative adversarial network (upper image) and generator architecture for the generative adversarial network

(lower image).
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FIGURE 6

Examples of generated sythetic data. Each image in second row corresponds to image in first row. (A) Synthetic input images. (B) Synthetic target

(mask) images.

TABLE 1 Datasets with di�erent ratios of original and synthetic data for

detection model training.

Original
samples

Synthetic
samples

Ratio
Synthetic:Original

Label

476 0 0 Ratio0.0

476 95 0.2 Ratio0.2

476 238 0.5 Ratio0.5

476 476 1 Ratio1.0

476 952 2 Ratio2.0

476 1,428 3 Ratio3.0

476 2,380 5 Ratio5.0

476 4,760 10 Ratio10.0

These datasets will serve as the foundation for training the U-net

and DeepLabV3 models, allowing for a comprehensive exploration

of the impact of different ratios on themodels’ capacity to effectively

detect and delineate coating degradation. The information about

every variant of the training set is summarized in Table 1.

3.6 Evaluation metrics

To convincingly illustrate the advantages of automated

dataset extension, a comprehensive set of evaluation metrics

must be employed. A primary metric for assessing classification

performance involves the calculation of accuracy over an

independent test set. In the context of evaluating the degree of

degradation, the task essentially entails pixel-wise classification of

the image content.

For the classification of the degradation area, a true positive

pixel is one labeled as white in both the target and the output

images. Conversely, a false positive pixel is labeled as white in the

output but as black in the target image. Similarly, a true negative

pixel is one labeled as black in both the target and output images,

while a false negative pixel is labeled as black in the output image

but as white in the target image. The accuracy is then defined as

Accuracy =
|TP| + |TN|

|TP| + |FP| + |TN| + |FN|
, (3)

where TP, FN, FP, and TN represent the number of true positive,

false negative, false positive, and true negative pixels in the tested

sample, respectively.

To provide a comprehensive evaluation of the semantic

segmentation performance, additional metrics are considered:

Precision =
|TP|

|TP| + |FP|
, (4)

Recall =
|TP|

|TP| + |FN|
, (5)

F1-score =
2

Recall−1
+ Precision−1

. (6)

Apart from accuracy, the F1-score emerges as the most

informative metric among the evaluated performance measures.

The F1-score, calculated as the harmonic mean of precision and

recall, serves as a balanced indicator that considers both false

positives and false negatives in the classification task. This balance
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is particularly crucial in tasks such as the pixel-wise classification

of degradation areas, where achieving a harmonious equilibrium

between correctly identifying positive instances (true positives) and

minimizing the misclassification of negatives (false negatives) and

positives (false positives) is paramount.

In order to directly reflect the practical applicability of the

method, the ISO 4628-8 standard, described in Section 3.1, is also

used to calculate the average width of the degradation area around

the scribe for each sample, expressed in millimeters. Specifically, we

will observe the difference in the width of degradation provided by

developed model and by manual determination. This metric better

reflects the real-world performance of the method in detecting

degradation and provides a more tangible measure of the results.

4 Experiments and results

4.1 Setup of experiments

All experimental models were implemented using Python 3.9

with TensorFlow 2.0 and the Keras framework. Experiments were

performed using the following hardware specification: Intel Core

i9-14900K (3.2 GHz, BOOST 6 GB) processor, 64 GB DDR4

(2666 MHz) internal memory, NVIDIA GeForce RTX 4090

24 GB GDDR6X (16 384 CUDA cores) video card, SATA M.2

2,048 GB SSD.

4.2 Original dataset extension

To extend the original dataset, a GAN model was configured

following the procedural framework illustrated in Figure 4. The

training of the generator-discriminator followed the scenario

provided in Linder-Norén (2019), with the only modification being

a number of epochs, which now equals 500.

Subsequently, the trained GAN generator was leveraged to

enhance the original dataset. Specifically, 4,760 synthetic input-

target pairs with accordance to Table 1 were prepared using

randomly generated input signals. Four illustrative examples from

the generated dataset are presented in Figure 6.

4.3 Semantic segmentation model training

The training regimen for the detection of coating degradation

encompassed three distinct models: U-net, DeepLabV3 with

an Xception backbone, and DeepLabV3 with a MobileNetV2

backbone. Each of these models underwent training using eight

distinct datasets, as delineated in Table 1. Notably, the models were

trained utilizing the Adam optimizer, starting from scratch. The test

set retained its original composition, while the training sets were

extended with additional synthetic input-target pairs, resulting in

a combined set of 24 training experiments. In addition, 15% of the

training dataset values were allocated for use as a validation set. This

partitioning strategy facilitated ongoing model assessment during

training, allowing for the monitoring of performance on data not

explicitly used for training.

TABLE 2 Parameters of the training.

Input shape 288× 288× 3

Training algorithm Adam optimizer

Loss function Binary cross entropy

Number of training

experiments for each session

10

Number of samples 456

Validation split 0.15

Initialization Normal distrib. (mean= 0, std= 0.05)

Number of epochs 300

Batch size 16

Criterion for resultant model Loss function value over validation set

Learning rate α 0.001

Exponential decay rate 1 β1 0.9

Exponential decay rate 2 β2 0.999

Each training session was executed ten times in consideration of

the stochastic nature inherent in the training process. This repeated

training approach aimed to mitigate the effects of randomness

and variability, ensuring a robust exploration of the model’s

parameter space. The iterative nature of the training procedure

allowed for a comprehensive evaluation, enabling the models to

converge to stable configurations and yielding more reliable and

reproducible results.

The training hyperparameters adhered to the values specified

in Table 2 and were kept consistent across all models to allow

for a fair comparison between different dataset configurations.

A sophisticated hyperparameter tuning process was not applied

in this study. Instead, we chose standard and widely accepted

settings to provide a baseline for evaluating the impact of dataset

augmentation using synthetic data.

Hyperparameter tuning for each combination of dataset

and model would have introduced an additional element of

stochasticity, potentially distorting the results. Bymaintaining fixed

hyperparameters, we aimed to minimize this effect, ensuring that

any observed improvements or differences in model performance

were directly attributable to the dataset augmentation rather than

variability in hyperparameter selection.

The ensuing tables present the outcomes of the training process,

providing a comparative analysis of the models’ performance

when trained with various extended datasets. The process

encompasses all three models—U-net, DeepLabV3 with Xception,

and DeepLabV3 with MobileNetV2—providing insights into how

dataset extension influences their individual capacities for detecting

coating degradation. The results, including metric values, are

comprehensively summarized in Table 3.

For a more illustrative representation of the values, the two

most important metrics, namely accuracy, and F1-score, were

graphically depicted in Figure 7.

Furthermore, the ISO 4628-8 standard was evaluated on all

trained models across all samples from the test set. The table

presents the number of cases where the model provided the correct
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TABLE 3 Resulting values of the considered metrics over the test set.

Dataset Accuracy Precision Recall F1-score

U-net

Ratio0.0 0.9939 0.9360 0.9431 0.9395

Ratio0.2 0.9940 0.9427 0.9363 0.9395

Ratio0.5 0.9938 0.9291 0.9444 0.9367

Ratio1.0 0.9938 0.9257 0.9487 0.9371

Ratio2.0 0.9938 0.9219 0.9523 0.9369

Ratio3.0 0.9939 0.9282 0.9471 0.9376

Ratio5.0 0.9939 0.9352 0.9399 0.9375

Ratio10.0 0.9938 0.9237 0.9504 0.9369

DeepLabV3+Xception

Ratio0.0 0.9918 0.8808 0.9466 0.9125

Ratio0.2 0.9925 0.9093 0.9362 0.9225

Ratio0.5 0.9923 0.9204 0.9200 0.9202

Ratio1.0 0.9924 0.9219 0.9082 0.9150

Ratio2.0 0.9919 0.9081 0.9200 0.9140

Ratio3.0 0.9919 0.9212 0.9093 0.9152

Ratio5.0 0.9918 0.9046 0.9176 0.9110

Ratio10.0 0.9916 0.8924 0.9289 0.9103

DeepLabV3+MobileNetV2

Ratio0.0 0.9822 0.8901 0.9373 0.9131

Ratio0.2 0.9937 0.9363 0.9255 0.9309

Ratio0.5 0.9936 0.9411 0.9305 0.9358

Ratio1.0 0.9933 0.9284 0.9313 0.9298

Ratio2.0 0.9933 0.9540 0.9045 0.9286

Ratio3.0 0.9936 0.9464 0.9162 0.9310

Ratio5.0 0.9934 0.9310 0.9275 0.9292

Ratio10.0 0.9934 0.9512 0.9132 0.9318

The highest values for the most important metrics (Accuracy, F1-score) are highlighted.

degradation width, as well as instances where the error was within

±1 mm, within ±2 mm, and cases where the error exceeded ±2

mm. The resulting values are shown in Table 4.

4.4 Discussion

The experimental results show that the use of synthetic data

improves the performance of both U-net and DeepLabV3 models,

as measured by accuracy and F1-score metrics, as well as by the

final values provided by the assessment method provided within

the ISO 4628-8 standard. The results also reveal that different

models may have different preferences for the ratio of synthetic to

original data. However, the optimal ratio always tends to values

between 0.2 and 0.5. The higher synthetic data ratio especially

in U-net and DeepLabV3 architecture with Xception backbone

leads to a sharp drop in F1-score. These findings suggest that the

quantity of artificially generated data must not surpass the quantity

of original data; instead, the ratio should approach half of the

original dataset.

U-net, which has a symmetrical and densely connected

structure, may benefit from a lower ratio of synthetic data, as it

can effectively capture and localize the features of the original data.

DeepLabV3, which has an asymmetrical and sparsely connected

structure, may profit from a higher ratio of synthetic data, as it can

leverage the multi-scale and diverse information provided by the

synthetic data. Moreover, the choice of the backbone network may

also influence the preference for the ratio of synthetic to original

data. Xception, which has a deeper and more powerful structure,

may require more balanced and varied data to avoid overfitting

and underfitting. MobileNetV2, which has a shallower and more

efficient structure, may require more synthetic data to compensate

for the loss of information and expressiveness.

The use of GANs for dataset augmentation has been widely

explored in the domain of medical imaging, where the scarcity

of original labeled data presents a similar challenge to the one

encountered in our study. In medical imaging, GAN-generated

data has been shown to improve model performance significantly,

with accuracy increases ranging from a few percentage points,

as seen in Tekchandani et al. (2020), to as much as 14%

presented in Wang et al. (2019). These studies demonstrate

the effectiveness of GAN-based augmentation in addressing the

problem of limited data. However, direct comparison with our

method is difficult due to the highly specific nature of our dataset.

While medical images often involve uniform imaging conditions

and clearly defined anatomical structures, the surface textures

and degradation patterns in our coil-coated samples are much

more diverse. Thus, the gains seen in medical imaging may not

fully translate to the domain of surface degradation. However,

both domains indicate the positive benefit of using GANs for

dataset augmentation.

Considering dataset augmentation for coating degradation

detection, the approach described by Tao et al. (2024) relies on

the input of a predefined degradation mask and outputs only the

reconstructed original image. While this approach offers precise

control over the generation of synthetic original images based

on provided masks, our method is more general in that it does

not require prior knowledge of the degradation patterns. This

allows for the generation of entirely new synthetic samples in a

single automatic step. However, one limitation of our approach is

that it does not allow for direct control over the distribution of

different degradation levels within the synthetic dataset. In some

cases, this could lead to an imbalance in the representation of

various degradation stages. As a result, further processing of the

augmented dataset may be required to ensure an even distribution

of degradation levels across the dataset, thereby enhancing the

model’s ability to generalize across all degrees of degradation.

The study also provides insights into the strengths and

limitations of the DCGAN model for generating synthetic data.

The visual evaluation of the synthetic data shows that the

DCGAN model can produce realistic and diverse images of coil-

coated surfaces with different colors, textures, and reflectivity. The

synthetic data also exhibit various degrees of degradation around

the scribe, which are consistent with the original data. However,

the DCGAN model also has some drawbacks, such as producing

artifacts, blurring, and distortion in some images, which may affect

the quality and fidelity of the synthetic data.
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FIGURE 7

Courses of selected metrics.

4.5 Future directions

The study opens up several avenues for future research and

improvement. One important direction is to further refine the

architecture and training process of the GANmodel. As observed in

the experiments, the ratio of synthetic to original data significantly

affects the performance of the model, and controlling the type

of generated data in terms of degradation severity and material

properties could lead to better results. This could be achieved by

incorporating additional constraints or objectives into the GAN

training process, or by employing conditional GANs, which allow

for the generation of data based on specific input conditions or

labels. In particular, the use of conditional GANs could enable

more precise control over the distribution of degradation levels,

addressing the current limitation of our method, where varying

degrees of degradation are not explicitly regulated. Ensuring a

more even representation of different degradation stages could

further enhance the model’s ability to generalize across diverse

real-world conditions.

Another promising avenue for future research is to investigate

more advanced techniques for optimizing the GAN architecture,

such as reinforcement learning or meta-learning. These techniques

could be used to automatically adjust the parameters and

architectures of both the GAN and the segmentation models,

based on their performance metrics. This approach could lead

to a more efficient and dynamic process for generating synthetic

data that is tailored to specific application needs. Furthermore,

research into optimizing the balance between synthetic and real

data could provide insights into how to dynamically adjust this

ratio during training to maximize model performance without

overfitting or underfitting.

Additionally, the proposed methodology could be adapted

and applied to other domains where semantic segmentation is

critical. For example, the use of GANs for dataset augmentation

has been extensively studied in medical imaging, as mentioned

in the Discussion section, and applying our method to this field

could provide valuable insights. Other potential applications

include autonomous driving, where diverse data are needed

to handle various road conditions and object appearances,

and remote sensing, where generating synthetic satellite or

aerial imagery could enhance the performance of models

trained for land use classification or environmental monitoring.

Exploring the adaptability of our GAN-based approach in

these contexts could reveal its broader applicability and

help address challenges in other fields requiring robust data

augmentation solutions.
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TABLE 4 Resulting di�erences in values of the ISO 4628-8 standard over

the test set.

Dataset 0 mm ±1 mm ±2 mm >±2 mm

U-net

Ratio0.0 118 8 0 2

Ratio0.2 120 6 0 2

Ratio0.5 116 10 0 2

Ratio1.0 116 10 0 2

Ratio2.0 112 13 2 1

Ratio3.0 117 8 1 2

Ratio5.0 118 6 1 2

Ratio10.0 114 11 1 2

DeepLabV3+Xception

Ratio0.0 97 28 2 1

Ratio0.2 113 12 1 2

Ratio0.5 113 13 0 2

Ratio1.0 113 13 0 2

Ratio2.0 103 22 1 2

Ratio3.0 107 19 0 2

Ratio5.0 105 19 2 2

Ratio10.0 96 30 1 1

DeepLabV3+MobileNetV2

Ratio0.0 111 11 3 3

Ratio0.2 117 09 0 2

Ratio0.5 116 10 0 2

Ratio1.0 117 9 0 2

Ratio2.0 112 14 0 2

Ratio3.0 114 12 0 2

Ratio5.0 114 11 2 2

Ratio10.0 111 15 0 2

Bold values indicate the highest number of samples evaluated with zero error.

5 Conclusions

The main contribution of this study is the introduction

of a GAN-based methodology for extending the training

dataset for semantic segmentation tasks, specifically aimed at

detecting the degree of coating degradation around a scribe. By

employing a Deep Convolutional GAN, our approach effectively

generates synthetic input-target pairs, both original images and

corresponding degradation masks. This dual generation process

significantly simplifies the task of dataset augmentation, as it

eliminates the need for manual annotation of synthetic images,

which is typically required when using other augmentation

techniques. The generated synthetic data accurately mimics

the variability in real-world samples, including diverse colors,

textures, and surface reflectivity, which are characteristic of

coil-coated surfaces.

The results of this study demonstrate that augmenting the

original dataset with synthetic data improves the performance of

two state-of-the-art semantic segmentation models, U-net, and

DeepLabV3. The effectiveness of the GAN-augmented dataset is

evident across multiple evaluation metrics, including accuracy and

F1-score. Furthermore, the study reveals that the optimal ratio

of synthetic to original data falls between 0.2 and 0.5, depending

on the model architecture. In particular, U-net benefits from a

lower ratio of synthetic data, while DeepLabV3, especially with the

Xception backbone, can utilize a higher ratio, up to a point, before

performance begins to degrade.

This study highlights the potential of GAN-based dataset

augmentation to address the challenges posed by limited annotated

data, particularly in industrial applications where data collection

and labeling can be resource-intensive.

While our method shows promising results, there are areas

for further improvement, including the possibility of controlling

the degree of degradation in the generated data and ensuring

a balanced distribution of degradation levels across the dataset.

Despite these challenges, the approach outlined in this study offers

a scalable and effective solution for augmenting datasets, with the

potential for application in a wide range of semantic segmentation

tasks beyond surface degradation detection.
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