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Early detection of Alzheimer’s disease (AD) is vital for e�ective treatment, as

interventions are most successful in the disease’s early stages. Combining

Magnetic Resonance Imaging (MRI) with artificial intelligence (AI) o�ers

significant potential for enhancing AD diagnosis. However, traditional AI

models often lack transparency in their decision-making processes. Explainable

Artificial Intelligence (XAI) is an evolving field that aims to make AI decisions

understandable to humans, providing transparency and insight into AI systems.

This research introduces the Squeeze-and-Excitation Convolutional Neural

Network with Random Forest (SECNN-RF) framework for early AD detection

using MRI scans. The SECNN-RF integrates Squeeze-and-Excitation (SE) blocks

into a Convolutional Neural Network (CNN) to focus on crucial features and uses

Dropout layers to prevent overfitting. It then employs a Random Forest classifier

to accurately categorize the extracted features. The SECNN-RF demonstrates

high accuracy (99.89%) and o�ers an explainable analysis, enhancing the

model’s interpretability. Further exploration of the SECNN framework involved

substituting the Random Forest classifier with other machine learning algorithms

like Decision Tree, XGBoost, Support Vector Machine, and Gradient Boosting.

While all these classifiers improvedmodel performance, RandomForest achieved

the highest accuracy, followed closely by XGBoost, Gradient Boosting, Support

Vector Machine, and Decision Tree which achieved lower accuracy.

KEYWORDS

Explainable Artificial Intelligence (XAI), Squeeze-and-Excitation (SE block), Squeeze-

and-Excitation Convolutional Neural Network with Random Forest (SECNN-RF),

explainability analysis, saliency map

1 Introduction

Early and accurate diagnosis of Alzheimer’s Disease (AD), the most prevalent form of

dementia demanding significant medical support, is crucial for initiating clinical progress

and ensuring effective patient treatment (Liu et al., 2014). This chronic neurodegenerative

disorder progressively damages brain cells, leading to memory and thinking impairments,

ultimately impeding even basic activities (Przedborski et al., 2003). In its early stages,

neuroimaging and computer-aided tools aid clinicians in accurately classifying AD

(Giorgio et al., 2020).

Artificial Intelligence (AI) is a subdivision of computer science that has transformed

how individuals carry out their daily activities through the use of machines
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that require minimal human involvement, thereby enabling

automated and intelligent actions. AI is considered an

incredible prospect for resolving neurology disease issues,

generating additional perspectives, and enhancing the quality

of decision support. AI and Machine Learning (ML) are

already revolutionizing several medical systems, with further

advancements expected in the future (Bai et al., 2021). The

majority of AI algorithms have been referred to as “black boxes”

by researchers due to their intricate and virtual nature, making

them challenging to explain and justify to individuals. A black box

concept is one where the inputs and outputs are known, but you

are unable to determine how the outputs are produced from the

inputs. Developers are also unable to explain why the model has

reached a particular conclusion or which factors were taken into

consideration when making a decision. This is due to the models’

intricate internal structure, and the poor offer of interpretability.

The consideration of complicated models’ ambiguous nature

has limited their potential use in making key decisions, such

as those involving medical procedures that could endanger

people’s lives and health. Users can accept or reject forecasts and

recommendations based on the justification behind the predictions

made by interpretable ML systems (Ahmad et al., 2018). The

existence of this particular obscurity has led to a demand for

algorithms in the field of Explainable Artificial Intelligence (XAI)

(Wachter et al., 2017).

XAI has been designed to explain its purpose, perception, and

process decision in terms that the common person can understand.

The concept behind XAI is that AI algorithms and systems

shouldn’t be “mysterious models” that are incomprehensible

to humanity (Pawar et al., 2020; Giuste et al., 2022). The

patient’s AD prognoses are based on his current lifestyle and

family medical history indicators, which are time-varying, multi-

connected, and non-linear. Early AD detection is frequently

essential to patients’ recovery or to stop the disease from

progressing to more severe stages. The situation is critical since

it impacts patient health and relies on current prediction outputs

for better decisions. Transparency and trust among doctors

and other medical professionals are necessary for neurology

diseases AI applications to be accepted and integrated into

practical implementation. Motivated by the need for accurate

and interpretable diagnosis in neurodegenerative diseases like

Alzheimer’s, this paper presents a novel hybrid framework that

leverages the strengths of both deep learning and traditional

machine learning.

Our approach methodically analyzes AD image data

(specifically MRI images of size 128× 128×3). This study achieves

exceptional classification accuracy by combining the feature

extraction capabilities of a Squeeze-and-Excitation Convolutional

Neural Network (SECNN) with the decision-making power of a

Random Forest classifier (SECNN-RF). Furthermore, this study

incorporates the SECNN model to refine extracted features and

facilitate explainability through insightful attention weights.

This unique collaboration not only surpasses state-of-the-art

performance in accuracy but also provides valuable insights into

the reasoning behind model predictions. This comprehensive

and interpretable approach represents a significant step toward

enhancing diagnosis and potential treatment development for AD.

This paper presents a novel SECNN-RF framework that

significantly enhances Alzheimer’s Disease (AD) detection from

MRI scans by integrating adaptive attention mechanisms and

leveraging ensemble learning techniques. Key innovations include:

• The framework integrates SE blocks within each convolutional

layer of the CNN to apply an adaptive attention mechanism.

This recalibrates channel-wise feature responses, allowing

the network to dynamically prioritize the most informative

features for Alzheimer’s Disease (AD) detection from MRI

scans. This framework reduces trainable parameters, making

the model suitable for medical applications with limited

computational resources.

• Unlike traditional CNN architectures that use a SoftMax

layer for classification, the SECNN-RF framework employs

a Random Forest classifier. This replacement leverages

the robust, ensemble learning capabilities of Random

Forests, improving the model’s classification accuracy

for AD diagnosis. The isolation between the feature

extraction and classification decisions makes our model more

computationally efficient.

• To promote trust in the decisions made by our model, the

proposed method integrates saliency maps to generate visual

explanations of classification decisions made by the model

enhancing the transparency of the model and making it easy

for clinicians to interpret and verify the results.

The remainder of this work is arranged subsequently. Section

2 presents a literature review. Section 3 delves into the proposed

model. The experimental results are discussed in Section 4. Section

5 presents a discussion and explanation of the results. Finally, this

study concludes in Section 6.

2 Literature review

This section provides a summary of the various techniques

utilized for AD using medical imaging. This paper categorizes

these methods into two groups: the first category delves into

deep learning approaches, while the second category focuses on

Interpretable deep learning for AD. XAI is a new field of research

in ML that examines how AI systems react to black-box decisions

(Saraswat et al., 2022). Transparency in ML and DL algorithms

involves explaining their outcomes and decisions, which can

be achieved by developing interpretable models, methods, and

interfaces to provide human-understandable explanations for their

behavior (Abujabal et al., 2017). Interpretable ML systems provide

users with explanations for accepting or rejecting predictions

and recommendations, thereby enabling them to understand the

reasoning behind these outcomes (Adadi and Berrada, 2018).

2.1 Deep learning methods

Different deep-learning techniques have been used in

multiple studies to categorize neurological diseases. For the

following reasons, convolutional neural networks (CNNs) are
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widely employed in image-based neurological disease diagnosis:

(1) They can process a great deal of contextual data, and

abnormal information. (2) The input image connections are

used hierarchically, with the processing taking the use of spatial

relationships throughout. (3) Because they use unique pooling,

parameter sharing, and convolution processes, they are also

computationally efficient. CNNs succeed at producing better

outcomes than pre-trained models, making them ideal for

generating customized models.

AbdulAzeem et al. (2021) created a modified CNN with

five layers for AD categorization. This work processed the

images using data augmentation and adaptive thresholding. For

AD classification, Katabathula et al. introduced a dense CNN

architecture that combines hippocampal segmentation and global

shape representations (Katabathula et al., 2021). Raju et al.

(2020) classified AD using an SVM with an RBF kernel after

extracting visual characteristics using a particular 3D CNN

architecture. Single-modality data can only identify a handful of

the degenerative changes associated with AD, thereby limiting

the classifier’s accuracy. Extensive research has been conducted to

develop multimodal classification algorithms. Huang et al. (2019)

developed a VGG-like network for multimodal AD classification.

For imaging data, 3D-CNNs are used, and stacks of denoise auto-

encoders are used for clinical and genetic data. Based on the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, the

authors show that deep models outperform shallow models such

as decision trees, Support Vector Machines (SVM), K-neighbors,

and random forests (Venugopalan et al., 2021). The paper presents

the results and analyses of the detection of dementia using a

variety of ML models as well as the use of shallow learning

models to identify and forecast AD. The SVM was the approach

that performed the best in this case, with an accuracy of roughly

92.0% (Bari Antor et al., 2021). 3D brain Magnetic Resonance

Imaging (MRI) can be used to diagnose AD. By utilizing the

Gaussian Mixture Model (GMM) as an additional input to CNN,

XGBoost, and SVM for AD classification. The dataset accuracy

reached 88% and 80% (Tuan et al., 2020). Savaş (2022) introduced

a study that involved evaluating various pre-trained networks,

including EfficientNetB0, ResNet-50, DenseNet, Xception, etc., for

Alzheimer’s disease (AD) classification. The findings indicated that

EfficientNetB0 exhibited a slightly superior performance compared

to the other architectures.

Muruganm et al. (2021), proposed DEMNET, a deep-learning

model for diagnosing AD from MRI images. They employed

preprocessing, oversampling, and data splitting before feeding the

data to DEMNET for feature extraction and classification. This

yielded a 95.23% accuracy in multi-class classification. Loddo et al.

(2022), proposed a fully automated ensemble model using pre-

trained deep models (AlexNet, ResNet-101, InceptionResNetV2)

for AD diagnosis from MRI images. Notably, they achieved

high accuracies (96.57% binary, 97.7% multi-class) without image

preprocessing. Employing a first-stage preprocessing followed

by parallel processing through pre-trained DenseNet201 and

DenseNet121 models, Sharma et al. (2022), developed “HTLML”

for multi-class AD detection from MRI images. Each pre-trained

model utilized separate classifiers, with their outputs combined via

voting for a final decision. While achieving an impressive 91.75%

accuracy, the study did not leverage data augmentation and relied

on relatively small datasets, limiting potential generalizability.

Mohammed et al. (2021), proposed a hybrid model featuring image

preprocessing, a CNN for feature extraction, and an SVM for

final classification, achieving 94.80% accuracy in multi-class AD

diagnosis from MRI. Balasundaram et al. (2023), achieved 94.1%

accuracy in multi-class AD diagnosis using a pre-trained ResNet50

model on MRI images, but relied solely on basic preprocessing and

a single model, potentially limiting further performance gains.

Bangyal et al. (2022), demonstrated the superiority of deep

learning for AD detection in MRI images compared to traditional

methods, achieving 94.63% multi-class accuracy. To accurately

classify early Alzheimer’s stages and reduce computational costs,

a novel model named DAD-Net was developed by Ahmed et al.

(2022). Addressing the class imbalance in the Kaggle dataset

through synthetic oversampling, DAD-Net achieves outstanding

performance score, precision, and recall compared to DEMENET

and CNN models. Ahmed et al. proposed a lightweight deep

learning architecture that combines feature extraction and

classification into a single stage, eliminating the need for deeper

layers and traditional methods. This efficient approach resulted

in a seven-layer model (imagine a compact, yet powerful AI)

that achieved an impressive accuracy of 99.22% for binary

classification and 95.93% for multi-classification (El-Latif et al.,

2023). Abbas et al. (2023), developed a new CAD-ALZ approach

using ConvMixer layers with a blockwise fine-tuning strategy on

a small dataset. Data augmentation increases the dataset size,

and robust features are detected through the ConvMixer model,

followed by classification with a random forest. The CAD-ALZ

model shows excellent performance across six evaluation metrics,

achieving 99.69% sensitivity and a 99.61% F1-score. In AlSaeed

and Omar (2022), the authors proposed ResNet50, a pre-trained

CNN deep learning model, as an automatic feature extraction

method for identifying Alzheimer’s disease from MRI scans. The

performance of a CNN using standard Softmax, SVM, and RF

was then tested using several metric metrics, including accuracy.

The results demonstrated that our model beat other cutting-edge

models by achieving better accuracy, with an accuracy range of

85.7, 92, and 99% for softmax, SVM, and random forest models,

respectively, using the MRI ADNI dataset.

2.2 Interpretable deep learning methods

The most recent XAI systems that are related to the neurology

diseases field are presented in this section. According to the authors

in Zhang et al. (2022), various XAI-enabled methods for medical

diseases and XAI applications were described, along with recent

and present trends in medical diagnosis and application using

XAI based on findings from various research platforms. Finally,

the research directions and challenges achieved were discussed.

In Amann et al. (2020), authors discussed XAI in healthcare in

a multidisciplinary way to examine its importance from a legal,

patient, medical, and technological perspective. The importance

of XAI in the clinical system from an ethical and personal

perspective is concluded by the authors after deducing a set of

results for the applicability of views. In Yang et al. (2022), the
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authors introduced an overview of current XAI developments

and recent advancements in healthcare applications. Through

the use of two descriptive clinical-level case studies, the authors

demonstrate how XAI makes use of multi-modal and multi-

center data fusion. According to Tjoa and Guan (2020), ML

algorithms are interpretable and explainable, but the authors

identify open challenges and opportunities in the medical context

by analyzing their interpretability and explainability into two

categories: perceptive interpretation and mathematical structural

interpretation. The study in Moradi and Samwald (2022) discusses

already-developed AI methods, such as ML/DL, and expands

the survey to discuss the implications of XAI in biomedical

and future medical applications. In Böhle et al. (2019), authors

proved that to better explain AD classification by applying Layer-

wise Relevance Propagation (LRP) for showing CNN decisions,

researchers turned to the ADNI MRI dataset. LRP was proven to

apply to the diagnosis of comparable diseases using MRI data, and

it was shown to be useful for the explainability of classification

predictions in AD. In Kim et al. (2021), Graph Neural Networks

(GNNs) were used to classify AD and Mild Cognitive Impairment

(MCI). GNNExplainer demonstrates nodes of relevance with a

high region of interest, signifying a significant improvement

in categorization. The authors discovered that GNNExplainer

produces interpretable outputs. Furthermore, the explainer can

record the predictor’s neuro-anatomical contribution, providing

additional biological explanations to well-understand AD change.

The authors believe that the GNNExplainer is useful because

it surpasses other competing models in terms of prediction

accuracy (e.g., DNN, SVM). A cognitive signature based on

DL was developed for Parkinson’s and Alzheimer’s disease brain

Positron Emission Tomography (PET) scans. The CNN model

generated 128 features for each sample, which were compared

using t-stochastic Neighbor Embedding (t-SNE). Using imaging

biomarkers enables an objective valuation of cognitive decline, as

demonstrated (Choi et al., 2020). Multiple sclerosis was classified

using 3D CNN on an MRI dataset, and LRP was utilized to validate

the model’s decisions. The results of the research indicated that

the utilization of the framework and LRP resulted in enhanced

comprehensibility of the model’s decision-making process (Eitel

et al., 2019).

In conclusion, existing techniques encounter key

limitations including:

• Many deep learning models, particularly those utilizing

3D-CNNs, require significant computational resources for

training and inference. This includes high memory usage and

processing power, which may not be feasible for deployment

in resource-constrained medical settings or smaller clinics.

• Due to the high complexity and number of parameters in deep

learning models, there is a risk of overfitting, particularly with

small datasets.

• While some studies have incorporated explainable AI

(XAI) techniques, many deep learning models still

function as “black boxes.” This lack of interpretability

FIGURE 1

The proposed model visualization for early detection and explanation of AD.
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can be a significant drawback in clinical settings where

understanding the model’s decision-making process

is crucial.

Toward this end, this study proposes a novel SECNN-RF

framework to address key limitations in the existing literature

on Alzheimer’s Disease (AD) diagnosis using medical imaging.

The SECNN-RF framework is designed to minimize trainable

parameters while maintaining high performance, making it

efficient for medical imaging applications. The model employs

a CNN with multiple convolutional layers enhanced with SE

attention blocks. This mechanism allows the model to focus

on the most informative features, enhancing its ability to

distinguish between subtle differences in medical images. In

addition, Regularization is achieved through Dropout layers

after each SE-enhanced convolutional layer to prevent overfitting

and ensure that the model maintains high accuracy without

being overly sensitive to the training data. In the final stage,

high-dimensional feature vectors are extracted and flattened,

then classified using a Random Forest (RF) classifier. The RF

classifier aggregates predictions from multiple decision trees,

enhancing interpretability and robustness. This combination

ensures that the SECNN-RF framework not only achieves high

accuracy but also provides transparency and reliability, crucial

for clinical decision-making. By leveraging the SECNN to extract

important features from MRI scans and employing a Random

Forest classifier for the classification step, the proposed model

offers an efficient, interpretable, and robust solution. This study

demonstrates that SECNN-RF not only achieves high accuracy

but also addresses issues such as computational efficiency, class

imbalance, and the need for interpretability in clinical decision-

making

3 Proposed model

The proposed framework termed the Squeeze-and-Excitation

Convolutional Neural Network with Random Forest (SECNN-

RF), is shown in Figure 1. SECNN-RF is designed to minimize

trainable parameters while maintaining high performance, making

it efficient for medical imaging applications. The model undergoes

preprocessing steps such as resizing and normalization to

standardize MRI inputs. During classification, the CNN extracts

deep features enhanced by SE blocks and regularized by Dropout.

These features are then classified by the Random Forest, providing

transparent and explainable results, which are crucial for medical

applications where understanding the rationale behind model

predictions aids clinicians in decision-making. A distinctive aspect

of the proposed framework is its use of the Squeeze-and-

Excitation Convolutional Neural Network (SECNN) to extract

important features from MRI scans. Instead of a traditional

SoftMax final layer, the model employs a Random Forest

classifier for the classification step. The detailed architecture

of the proposed model is presented in Supplementary Table 1.

This table includes the layer type, the output data shapes after

each layer, the number of parameters for each layer, and the

connections between layers. Algorithm 1 formalizes the SECNN-

RF proposed model.

Input: AD MRI Dataset (Break down in ratio

8:2) with size 128×128×3

1 Initialize SE Block (Ratio=16)

2 Initialize SE-CNN Model

3 Initialize Random Forest

Classifier (n-estimator=100)

//Hyper Parameters For SECNN model

4 NumEpochs: 35

5 Optimizer: Adam

6 Loss: categorical_crossentropy

7 Kernel Size: (3,3)

8 Initial learning rate: 0.001

9 Activation Function: ReLU

10 Dropout Rate = 0.2

11 Batch Size: 32

//Training and validation of SECNN

12 For each epoch in range (NumEpochs) do:

13 Shuffle and split the data into

batches of batch_size

14 For each batch do:

15 Extract batches of SE-CNN input

data.

16 Train the SECNN model using the fit

function.

17 Update model weights.

18 Extract important features from SECNN

//Random Forest classifier

19 Pass extract_features to Random forest

Classifier(random_state=42)

20 Train the RF classifier using the fit

function

21 predict the RF Classifier on the

validation set

22 Evaluate the SECNN-RF model on the

test set

Algorithm 1. The proposed model (SECNN-RF).

3.1 Preprocessing and dataset preparation

3.1.1 Image preprocessing
The input MRI images are standardized through resizing

and normalization to ensure consistency and stability in the

model’s performance.

• Resizing: Each input image is resized to 128 × 128 × 3.

Although grayscale images with the dimension (128 × 128

× 1) reduce the computation complexity, in most cases,

the CNN model achieves higher performance in multi-class

classification using RGB images with the dimension (128

× 128 × 3) compared to grayscale images (Kim et al.,

2020). Our goal was to achieve good performance with low

computational complexity, so we used RGB images to achieve

high performance.

• Rescaling: The input was changed from [0, 255] to [0, 1] by

setting the scale to 1/255.
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• Augmentation: Various image augmentation techniques are

applied, including zooming within the range of 0.99–

1.01, brightness adjustment between 0.8 and 1.2, and

horizontal flipping.

• Class imbalance: To address the issue of class imbalance,

we applied the Synthetic Minority Oversampling Technique

(SMOTE) method to generate synthetic samples, resulting in

a balanced training dataset is 8,192 images including 2,048

images for each class.

3.2 Feature extraction and attention
mechanism

3.2.1 Convolutional neural network
The CNN forms the backbone of our feature extraction process,

designed to automatically and adaptively learn spatial hierarchies of

features from the input data.

• Convolutional layers: each convolutional layer applies a set of

filters to the input image or feature map to extract various

features. Mathematically, the convolution operation at layer L

for an input x with a filter f is given by:

Y(i,j,c,k) =

C
∑

c=1

M
∑

m=1

N
∑

n=1

X(i+m−1,j+n−1,c) × F(m,n,c,k) (1)

where Y(i,j,c,k) denote output feature map in spot ( i, j
)

in the k− th

output channel. X(i+m−1,j+n−1,c) denote input feature map in spot

(i+m-1, j + n − 1 ) in the c-th input channel. F(m,n,c,k) represent

filter (kernel) value at position (m, n) for the c-th input channel and

the k-th output channel. Symbols M and N represent the height

and width of the convolution filter (kernel), with C representing

the total number of input channels. The symbols i, j denote starting

indices for the current position in the input feature map, while k

denotes the output channel index.

3.2.2 Adaptive attention with
Squeeze-and-Excitation blocks

The SE blocks enhance the CNN’s ability to focus on critical

features by reweighting the channel-wise feature responses. The

SE blocks introduce an adaptive mechanism that recalibrates

channel-wise feature responses, enhancing the network’s ability

to emphasize the most informative features while suppressing

less relevant ones. Unlike traditional pooling and activation

layers, which treat channels independently and lack this adaptive

capability, SE blocks dynamically adjust feature weights based

on their importance, leading to improved representational power

and model performance. This adaptive recalibration helps capture

subtle patterns in the data, making SE blocks particularly effective

for tasks such as Alzheimer’s Disease detection from MRI scans,

where accurate and detailed feature representation is crucial. As

illustrated in Figure 2, the SE block comprises a global average

pooling layer followed by two fully connected layers. The first fully

connected layer employs a ReLU activation function, while the

second layer uses a sigmoid activation function, enabling the block

to effectively recalibrate channel-wise feature responses (Hu et al.,

2018).

• Squeeze operation: global average pooling is applied to the

input feature map X to generate channel-wise statistics:

Zc =
1

H ×W

H
∑

i=1

W
∑

j=1

Xi,j,c (2)

where Zc is the c-th element of the squeezed feature vector, and H

andW are the spatial dimensions of the input.

• Excitation operation: The squeezed vector is passed through

two fully connected (FC) layers with ReLU and sigmoid

activations to produce the reweighting coefficients s:

s = σ (W2 · ReLU (W1 · Z) ) (3)

where W1 and W2 are the weights of the FC layers, and σ

denotes the sigmoid function.

• Reweighting: The original feature map X is scaled by the

coefficients s to produce the recalibrated feature map X̂:

X̂i,j,c = Xi,j,c × sc (4)

3.2.3 Regularization with dropout layers
To prevent overfitting and improve the model’s generalization,

Dropout layers are included after each SE-enhanced

convolutional layer.

• Dropout operation: during training, each neuron is randomly

set to zero with a probability p. This process can be

mathematically represented as:

y = x ·mask where mask ∼ Bernoulli
(

p
)

(5)

where y is the output after dropout, x is the input, and mask is a

binary mask sampled from a Bernoulli distribution.

3.3 Feature extraction from SECNN

The processes of extracting important features from the

SECNNmodel are discussed in the following steps:

3.3.1 Convolutional feature extraction
• SECNN model: the SECNN model comprises several

convolutional layers, SE blocks, and pooling layers that learn

and recalibrate features from the input MRI images. These

layers are designed to capture hierarchical patterns and

important spatial features relevant to Alzheimer’s diagnosis.

• Intermediate feature maps: during the forward pass of the

SECNN, feature maps are generated at various intermediate

layers. These feature maps contain valuable information about

the input data at different levels of abstraction.
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FIGURE 2

The architecture of Squeeze and Excitation SE-block.

3.3.2 Global average pooling
• Pooling layer: to create a fixed-size feature vector from the

variable-size intermediate feature maps, we apply a Global

Average Pooling (GAP) layer. This layer averages each feature

map across its spatial dimensions, producing a single value for

each feature map.

• Resulting feature vector: the output of the GAP layer

is a 1-dimensional feature vector that represents the

most salient features learned by the SECNN model. This

vector encapsulates the high-level information necessary for

classification tasks.

3.3.3 Feature extraction for random forest
classifier
• Extraction process: the 1-dimensional feature vector obtained

from the GAP layer is extracted from the SECNN model and

used as input for the RF classifier.

3.4 Replacing SoftMax with random forest
classifier

Instead of using a dense layer with a SoftMax activation for

classification, the SECNN-RF framework employs a RandomForest

(RF) classifier for the final decision-making step.

• Feature extraction: the SECNN, up to the

GlobalAveragePooling2D and Flatten layers, is used to extract

a high-dimensional feature vector from the input image.

• Random forest classifier: the feature vectors serve as input to

the RF classifier. The RF model, composed of an ensemble

of decision trees, aggregates the predictions from each tree to

make a robust final classification.

RF (x) =
1

N

N
∑

i=1

Ti(x) (6)

where Ti denotes the i-th decision tree, and N is the total number of

trees in the forest that is equal to 100 trees in our proposed model.

3.5 Explainable model design

The saliency map technique involves calculating gradients

of the loss function concerning all network weights and

backpropagating these gradients to the input data layer. This

process highlights the regions of the input image that contribute

the most to the assigned class, providing valuable insights into the

model’s decision-making process. If input features are denoted as

x and the score for predicting class c as Sc, then the map of the

contribution score is constructed as follows:

LcSaliency map =
∂Sc

∂x
(7)

4 Results and discussions

4.1 Dataset description

Several datasets are available online for Alzheimer’s Disease

(AD) classification, including those from ADNI and OASIS, which

are 5 and 1.5 GB, respectively. In contrast, the Kaggle dataset

we used to be only 36MB, making it much more manageable.

This simplicity facilitated a more efficient workflow and quicker

experimentation process. The Kaggle dataset is easily accessible,

free, and well-organized with different classes. Its reasonable size

and preprocessed nature make it ideal for our research. Based

on these factors, we chose to use the Kaggle dataset. The Kaggle

dataset already comprises pre-selected 2D slices, which simplifies

Frontiers in Artificial Intelligence 07 frontiersin.org

https://doi.org/10.3389/frai.2024.1456069
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


AbdelAziz et al. 10.3389/frai.2024.1456069

TABLE 1 MRI image description for each class of AD dataset.

Very mild demented Moderate demented Mild demented Non-demented

Training 1,792 52 717 2,560

Testing 448 12 179 640

TABLE 2 Description of AD dataset before and after SMOTE method.

Before SMOTE After SMOTE Testing

Training Training

Training Validation Total

Mild demented 717 1,638 410 2,048 179

Moderate demented 52 1,637 411 2,048 12

Non-demented 2,560 1,639 409 2,048 640

Very mild demented 1,792 1,639 409 2,048 448

Total 5,121 6,553 1,639 8,192 1,279

the preprocessing pipeline and focuses the analysis on clinically

relevant sections of the brain. Also, using 2D slices reduces

the computational complexity compared to 3D volumetric data,

enabling faster training and inference while still providing sufficient

information for Alzheimer’s diagnosis. To rigorously assess the

efficacy of our proposedmodel, we curated a comprehensive dataset

of AD-MRI images. This collection was meticulously sourced

from the Kaggle platform, specifically the “Alzheimer’s Dataset:

4 Class of Images” (https://www.kaggle.com/datasets/tourist55/

alzheimers-dataset-4-class-of-images). The dataset encompasses

a diverse spectrum of AD severity, encompassing four distinct

classes: very mild demented, moderate demented, mild demented,

and no demented. This comprehensive representation of disease

progression is paramount for robust model development. The

dataset has an image size of 176 ×208. The images are resized into

128 ×128. From the original 6,400 MRI images, we judiciously

selected 5,121 images for training purposes, while the remaining

images were reserved for rigorous testing. The precise distribution

of images across each class within the training and testing sets

is meticulously detailed in Table 1, ensuring transparency and

reproducibility in our experimental setup.

4.2 Preprocessing step

The AD dataset was rescaled from (0, 255) to (0, 1) by

setting the scale to 1/255. Various image augmentation techniques

were applied to the training dataset, including zooming within

the range of 0.99–1.01, brightness adjustment between 0.8 and

1.2, and horizontal flipping. To address the class imbalance, the

SMOTE method was used to generate synthetic samples, resulting

in a balanced training dataset of 8,192 images, with 2,048 images

for each class. The data was systematically divided into training

(0.8) and validation (0.2) sets to evaluate the model’s performance

effectively as shown in Table 2. The data is resized to the following

dimensions 128× 128.

4.3 Implementation setup

This study runs experiments using TensorFlow 2.15.0 in a

Python 3.11 virtual environment for building DL models. All

experiments are conducted on a Dell workstation with 16 GB RAM

and Intel R© Xe R©(R) CPU E5-2670 @ 2.60 GHz. NVIDIA Quadro

P2000 8GB GPUs accelerated models training.

4.4 Evaluation metrics

Popular multi-class classification metrics as given in

Equations 8–11 developed as a function of true positive (TP),

false positive (FP), false negative (FN), and true negative (TN) were

used to evaluate the detection performance of competing methods.

Accuracy (ACC) =
TP + TN

TP + FP + TN + FN
(8)

Precision (P) =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F1− Score =
2TP

2TP + FP + FN
(11)

4.5 Experiments

The following experiments were conducted with an initial

learning rate of 0.001 over 35 epochs, using the hyperparameters

detailed in Table 3. The Kaggle dataset was split into training and

testing sets with proportions of 80 and 20%, respectively.
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4.5.1 Experiment 1: CNN model
As shown in Supplementary Figure 1, the CNN model used

for baseline feature extraction and classification consisted of an

input layer of 128 × 128 × 3. It included four convolutional

layers with filter sizes of 8, 16, 32, and 128, each followed by

TABLE 3 Hyperparameters for experiment models.

Hyper parameters Description

Num of epochs 35

Initial learning rate 0.001

Kernel size (3.3)

Optimizer Adam

Loss Categorical_crossentropy

Activation function ReLU

Batch size 32

ReLU activation and max-pooling layers with a pool size of 2 × 2

and a stride of 2. The fully connected layers and ReLU activation

were followed by an output layer with softmax activation for

multi-class classification. The CNN model architecture achieved

remarkable accuracy, reaching 93.35% accuracy on the validation

dataset. The observed performance of accuracy and loss of the CNN

model during training and validation is visualized in Figure 3. The

confusion matrix is used to measure the CNN model performance

across individual classes within the validation dataset as shown in

Figure 4.

4.5.2 Experiment 2: SECNN model
As shown in Supplementary Figure 2, The SECNN model

enhanced the CNN architecture by integrating Squeeze-and-

Excitation (SE) blocks after each convolutional layer. Each SE block

performed a squeeze operation using global average pooling to

create a channel-wise feature vector, followed by an excitation

operation with two fully connected layers using ReLU and sigmoid

FIGURE 3

Analysis of the performance of the CNN model during training and validation.

FIGURE 4

Confusion matrix of CNN model.
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FIGURE 5

Analysis of the performance of the SECNN model during training and validation.

FIGURE 6

Confusion matrix of SECNN model.

activations to generate reweighting coefficients. These coefficients

were used to scale the feature maps. The architecture included

four convolutional layers with SE blocks, using filter sizes of 8, 16,

32, and 128, followed by max-pooling layers, dense layers, and a

softmax output layer. Themodel exhibited consistent improvement

over the training epochs, converging to a final accuracy of 95.72%

on the validation dataset. The observed performance of accuracy

and loss of the SECNN model during training and validation is

visualized in Figure 5. Also, Figure 6 displays the confusion matrix

on the validation set of the SECNNmodel.

4.5.3 Experiments 3: SECNN-RF
As shown in Supplementary Figure 3, the SECNN-RF

(proposed model) integrated the SECNN feature extractor with a

Random Forest classifier. The SECNN, up to the final pooling layer,

used four convolutional layers with filter sizes of 8, 16, 32, and

128, each followed by an SE block for enhanced feature extraction.

Extracted features were then flattened and fed into the Random

Forest classifier. The SECNN-RF model demonstrated exceptional

accuracy, achieving 99.93% accuracy on the validation dataset.

The observed performance of accuracy and loss of the proposed

model during training and validation is visualized in Figure 7.

The confusion matrix on the validation set of the proposed model

(SECNN-RF) is presented in Figure 8.

4.5.4 Experiment 4: varying SE-block ratios on
SECNN-RF

As shown in Figure 9, the influence of varying the SE block

ratio on the SECNN model was explored. Different SE block

ratios (4, 8, 16, 32) were tested to observe their impact on

model performance. The SE Block (Ratio = 4) with SECNN-RF

model architecture achieved remarkable accuracy, reaching 99.18%

accuracy on the test dataset. The SE Block (Ratio= 8) with SECNN-

RF model architecture achieved remarkable accuracy, reaching

99.15% accuracy on the test dataset. The SE Block (Ratio = 16)

with SECNN-RFmodel architecture achieved remarkable accuracy,

reaching 99.89% accuracy on the test dataset. The SE Block (Ratio

= 32) with SECNN-RF model architecture achieved remarkable
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FIGURE 7

Analysis of performance of the proposed model during training and validation.

FIGURE 8

Confusion matrix of SECNN-RF proposed model.

FIGURE 9

The analysis of varying SE block ratios.

accuracy, reaching 99.14% accuracy on the test dataset. The SE

block with Ratio = 16 in the SECNN-RF model achieved the

highest accuracy which equals 99.89 on the test set. The enhanced

performance can be attributed to several factors, including the

adaptive recalibration of channel-wise feature responses by SE

blocks, which model the interdependencies between channels to

emphasize informative features and suppress less useful ones,

thereby enhancing feature representation. Additionally, the use

of a reduction ratio of 1:16 strikes an optimal balance between

model complexity and performance by effectively reducing the
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number of parameters added by the SE blocks. This balance allows

the model to concentrate on critical features without overfitting,

thus improving overall accuracy and robustness. Our SECNN-RF

model contributes to minimizing trainable parameters. As shown

in Table 4, there are variations in accuracy that depend on the

variations in the number of trainable parameters, arising from

the impact of different SE block ratios on the model’s feature

recalibration. SE blocks adjust the emphasis on feature maps,

and different ratios affect how effectively important features are

highlighted. The SE block ratio of 16 provided the optimal balance,

achieving the highest accuracy of 99.89%, demonstrating that the

choice of ratio significantly influences model performance.

4.5.5 Experiment 5: varying ML algorithms on the
SECNN model

To further understand the impact of the choice of the classifier

on the overall performance of the SECNN framework, we extended

our ablation study by replacing the Random Forest classifier

with other popular machine learning algorithms as shown in

Figure 10. This evaluation aimed to compare the performance

of different classifiers in leveraging the features extracted by the

SECNN model for Alzheimer’s Disease (AD) detection. We tested

the following classifiers: Decision Tree (DT), Random Forest,

Support Vector Machine (SVM), XGBoost, and Gradient Boosting.

The accuracy of SECNN-RF, SECNN-XGBoost, SECNN-Gradient

Boosting, SECNN-SVM, and SECNN-DT are 99.89, 99.75, 99.64,

99.27, and 98.42% respectively.

TABLE 4 Trainable parameters and accuracy of SE block ratios.

SE block ratio Num. of trainable
parameters

Accuracy

4 744,058 99.18%

8 739,603 99.15%

16 737,367 99.89%

32 736,241 99.14%

The bold values indicate the best performance among the listed results.

4.6 Ablation study

To accurately evaluate the efficacy of our proposed network

architectures, this paper conducted a series of ablation

experiments. This systematic approach enabled us to isolate

the contributions of specific components and uncover their impact

on task performance.

4.6.1 Analysis of SECNN-RF (proposed model)
This subsection analyzes the performance of the SECNN-RF

model. The SECNN-RF model demonstrated exceptional accuracy,

achieving 99.93% accuracy on the validation set. This result

indicates the effectiveness of the combined features in capturing

discriminative information. Table 5 shows the proposed model

(SECNN-RF) performance result based on the value of precision,

recall, F1-score, and accuracy.

4.6.2 Analysis of SECNN: remove random forest
classifier

The Random Forest classifier was removed from the SECNN-

RF framework. Instead of using the Random Forest for final

classification, we reverted to the traditional approach of employing

a dense layer with a SoftMax activation function to directly

classify the features extracted by the CNN into the target

categories. The CNN, equipped with SE blocks and Dropout

layers, remains unchanged. The final fully connected layers are

modified to culminate in a SoftMax layer, producing a probability

distribution over the classes. The SECNN model architecture

achieved remarkable accuracy, reaching 95.72% accuracy on the

validation dataset. Table 6 displays the SECNN performance result

based on the value of precision, recall, F1-score, and accuracy.

4.6.3 Analysis of CNN: remove SE-blocks and
random forest classifier

Also, to investigate the contribution of the SE blocks to

the model’s performance, an ablation study was conducted by

removing the SE blocks from the CNN architecture and removing

the random forest classifier. The CNNmodel architecture achieved

FIGURE 10

Analysis of varying ML algorithms on SECNN.
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TABLE 5 The performance of the SECNN-RF model.

Precision Recall F1-score Support

Very mild

demented

100.00% 100.00% 100.00% 411

Moderate

demented

100.00% 100.00% 100.00% 409

Mild

demented

99.90% 100.00% 99.89% 409

Non-

demented

100.00% 100.00% 99.90% 410

Accuracy 99.93% 1,639

Macro avg 100.00% 100.00% 99.93% 1,639

Weight avg 99.90% 100.00% 99.93% 1,639

TABLE 6 The performance of the SECNNmodel.

Precision Recall F1-score Support

Very mild

demented

100.00% 100.00% 100.00% 411

Moderate

demented

92.24% 91.59% 91.28% 409

Mild demented 93.88% 92.51% 93.88% 409

Non-demented 96.66% 98.78% 97.71% 410

Accuracy 95.72% 1,639

Macro avg 95.70% 95.71% 95.70% 1,639

Weight avg 95.71% 95.72% 95.71% 1,639

TABLE 7 The performance of the CNNmodel.

Precision Recall F1-score Support

Very mild

demented

100.00% 100.00% 100.00% 411

Moderate

demented

87.89% 88.75% 88.32% 409

Mild

demented

90.77% 86.55% 88.91% 409

Non-

demented

94.59% 98.08% 96.29% 410

Accuracy 93.35% 1,639

Macro avg 93.31% 93.34% 93.30% 1,639

Weight avg 93.32% 93.35% 93.31% 1,639

remarkable accuracy, reaching 93.35% accuracy on the validation

dataset. Table 7 shows the CNN model performance result based

on the value of precision, recall, F1-score, and accuracy.

Finally, the summary of the performance comparison is

presented in Supplementary Table 2 which shows the evaluation

metrics for three models: SECNN-RF, SECNN, and CNN on

the validation dataset. Notably, the SECNN-RF model achieves

the highest accuracy of 99.93%, showcasing its effectiveness in

integrating Squeeze-and-Excitation (SE) blocks with a Random

Forest classifier. This model benefits from adaptive feature

FIGURE 11

Confusion matrix of test dataset (A) CNN; (B) SECNN; (C) SECNN-RF

models.

recalibration and ensemble learning, demonstrating superior

performance. The SECNN model follows with an accuracy of

95.72%, leveraging SE blocks to enhance feature representation,

outperforming the baseline CNN model, which achieves an
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TABLE 8 The comparison of performance for experiment models on test dataset.

Model Class Precision Recall F1-score Support Test accuracy

SECNN-RF (proposed model) Very mild demented 100.00% 100.00% 100.00% 448 99.89%

Moderate demented 100.00% 100.00% 100.00% 12

Mild demented 99.80% 100.00% 99.80% 179

Non-demented 99.90% 99.80% 99.80% 640

SECNN Very mild demented 91.47% 93.30% 92.38% 448 92.65%

Moderate demented 100.00% 91.67% 95.65% 12

Mild demented 93.30% 93.30% 93.30% 179

Non-demented 93.20% 92.03% 92.61% 640

CNN Very mild demented 89.18% 91.96% 90.55% 448 92.02%

Moderate demented 100.00% 91.67% 95.65% 12

Mild demented 77.46% 92.18% 84.18% 179

Non-demented 99.33% 92.03% 95.54% 640

The bold values indicate the best performance among the listed results.

TABLE 9 Comparison between the proposed model with state-of-the-art models.

Method Tranable params Accuracy (%) Precision (%) Recall (%) AUC (%) F1_Score (%)

VGG16 15,763,908 92.71 86.14 84.45 97.73 85.27

VGG19 21,073,604 93.54 87.96 85.94 98.09 86.91

CNN 1,264,340 92.02 85.19 84.11 96.95 85.08

RESNET101 46,853,124 85.47 78.40 57.58 91.90 66.20

RESNET50 27,782,660 85.21 77.43 57.77 91.62 65.96

XCEPTION 25,056,428 91.89 84.68 82.50 96.94 83.57

MOBILENET 5,326,660 95.29 91.02 90.66 98.40 90.84

MOBILENETV2 4,880,068 92.99 86.03 85.90 96.34 85.96

INCEPTIONV3 23,036,644 90.50 84.32 76.02 96.41 79.85

DENSENET121 9,135,300 91.90 84.55 82.73 97.03 83.61

DENSENET169 16,051,396 93.50 87.31 86.52 97.78 86.92

Proposed Model (SECNN-RF) 737,367 99.89 99.70 99.85 99.89 99.75

accuracy of 93.35%. These results underscore the significant

enhancements in classification accuracy and robustness enabled by

SE blocks and ensemble learning approaches.

4.7 Performance and confusion matrix
analysis of experiment models on the test
dataset

The confusion matrix serves as a fundamental tool for assessing

and quantifying the performance of classification models. It

provides a comprehensive breakdown of the model’s predictions,

offering insights into its effectiveness during the testing phase.

we extensively analyzed the confusion matrix, represented in

Figure 11, to measure the suggested model’s performance across

individual classes within the test dataset. Figure 11A shows the

confusion matrix of the CNN model to detect demented cases on

the test set. Figure 11B displays the confusion matrix on the test

set of the SECNN model. Finally, Figure 11C shows the confusion

matrix on the test set of the proposed model (SECNN-RF). Table 8

shows the evaluation metrics for experiment models. The SECNN-

RF model achieves the highest accuracy of 99.89%, whereas the

SECNN model follows with an accuracy of 92.65%, and finally, the

baseline CNN model achieves an accuracy of 92.02%.

4.8 Performance comparison with
state-of-the-art models

Table 9 presents a performance comparison of our SECNN-RF

against state-of-the-art models on the AD test dataset. All models

were implemented under the same configurations with the same

splitting dataset 80:20 between training and testing sets and also

the same hyper-parameters such as dataset was trained using the

Adam optimizer with a learning rate of 0.001, categorical cross-

entropy loss, a batch size of 32, and for 35 epochs. Our proposed
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TABLE 10 Comparison between the proposed model with other existing works models.

References Model Tranable params Accuracy (%) Explainability

Muruganm et al. (2021) DEMentia NETwork 4,532,628 95.23 Yes

Loddo et al. (2022) Ensemble Deep approach – 97.71 No

Sharma et al. (2022) Pretrained deep models – 91.75 No

Mohammed et al. (2021) Pretrained deep model+ SVM 23,9 milions 94.80 No

Balasundaram et al. (2023) Pretrained deep models 6,075 per image 94.10 No

Bangyal et al. (2022) CNN – 94.63 No

Ahmed et al. (2022) DAD-Net 1,149,524 99.20 Yes

El-Latif et al. (2023) Lightweight deep model 6,582,098 95.93 No

Our proposed model (Abdelaziz et al.,

2024)

SECNN-RF 737,367 99.89 Yes

model achieved the highest accuracy by a significant margin.

It is interesting to note that MOBILENET achieved the highest

accuracy after our model of 95.29%, while RESNET50, a popular

architecture in other domains, underperformed with an accuracy

of 85.21% on the AD dataset. The proposed model achieved

the highest performance compared with state-of-the-art models

with an accuracy of 99.89% on the AD dataset. This implies that

particular design decisions for the architecture could be essential

to achieve the best performance on the classification tasks. These

results show that SECNN-RF achieves the highest accuracy on the

Alzheimer’s MRI dataset while using fewer trainable parameters

than or comparable to other models.

4.9 Performance comparison with the
existing research works

This section dives deep into a comparative analysis of

our proposed model for AD detection, pitting it against both

established models and a promising deep-learning approach from

existing research as shown in Table 10. The authors in references

(Muruganm et al., 2021; Ahmed et al., 2022; Bangyal et al.,

2022; Loddo et al., 2022) divided the Kaggle dataset into training,

validation, and testing sets with an 80:10:10 split. Conversely, the

authors in references (Mohammed et al., 2021; Sharma et al., 2022;

Balasundaram et al., 2023; El-Latif et al., 2023) utilized an 80:20 split

between training and testing datasets.

This paper leveraged the same dataset with the same splitting

configuration between training, validation, and testing sets for

a fair and insightful evaluation. A direct comparison across the

various approaches presented in the previous table reveals the

robust performance of our proposed model. While other methods

have shown promise in their own right, our approach surpasses

them in achieving the highest classification accuracy. Ahmed et al.

(2022), while their work achieved a notable accuracy of 99.20,

our model (SECNN-RF) surpasses their performance by 0.69%

improvement in accuracy. Sharma et al. (2022), unfortunately, the

approach yielded a significantly lower accuracy compared to both

ours and other compared models that achieved an accuracy of

91.75%. These results highlight the effectiveness of our proposed

model in tackling the classification task with superior accuracy. Our

experiments demonstrate that SECNN-RF achieves high accuracy

on the Alzheimer’s MRI dataset while keeping the number of

trainable parameters lower than or comparable to other models.

4.10 Explainability analysis

Explainability analysis is vital to comprehend how to accurately

predict outputs and explain a conceptual approach. Currently, XAI

is gaining popularity because of its interpretable mechanisms and

ease of understanding. After classification performance accuracy

and reliability had been assessed, explainability analyses were

carried out by the saliency map explanation method. The Saliency

Map is a well-known XAI technique used for evaluating prediction

models. This study utilized the saliencymap to explain the SECNN-

RF model prediction outputs. This kind of map provides an

accurate precise pixel-level interpretation of MRI scans, making

them chiefly advantageous when high-resolution visions are

essential for detailed image analysis. Apart from Grad-CAM,

the saliency map generates coarse heatmaps according to the

activation of a particular convolution layer, these maps make use

of the gradient information to designate the most powerful pixels

contributing to the model’s prediction. This pixel-level granularity

is critical for medical images, such as Alzheimer’s Disease detection,

where delicate patterns might be more revealing of the severity of

the disease.

4.10.1 Mild demented class
The saliency map for mild dementia highlights certain regions

in the brain with varying intensities of color, indicating the

areas that contributed most to the model’s decision. As shown

in Figure 12, the regions with higher intensity (red and yellow

areas) are primarily located in the hippocampus and surrounding

cortical areas. Mild dementia is often associated with atrophy in the

hippocampus, a region crucial for memory and cognitive function.

The model likely focuses on this area as it shows early signs of

degeneration, and the highlighted cortical regions may indicate the

model’s attention to early cortical thinning, another characteristic

of mild dementia.

Frontiers in Artificial Intelligence 15 frontiersin.org

https://doi.org/10.3389/frai.2024.1456069
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


AbdelAziz et al. 10.3389/frai.2024.1456069

FIGURE 12

Saliency map estimated by SECNN-RF model for mild dementia class.

FIGURE 13

Saliency map estimated by SECNN-RF model for moderate dementia class.

4.10.2 Moderate demented class
The saliency map for moderate dementia shows more extensive

and intense highlighted areas compared to mild dementia,

particularly in the hippocampus and larger cortical regions as

shown in Figure 13. The increased intensity and spread of

the highlighted areas suggest more widespread brain changes

associated with moderate dementia. Moderate dementia involves

more severe atrophy of the hippocampus compared to mild

dementia, which is reflected in the increased intensity in the

saliency map. The model also focuses on larger areas of cortical
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FIGURE 14

Saliency map estimated by SECNN-RF model for non-dementia class.

FIGURE 15

Saliency map estimated by SECNN-RF model for very mild dementia class.

degeneration, indicating that the disease has progressed beyond the

initial stages and affects broader regions of the brain.

4.10.3 Non-demented class
The saliency map for non-demented individuals shows

minimal highlighted regions, indicating that the model found no

significant abnormalities or changes associated with dementia. As

shown in Figure 14, the intensity of the highlighted areas is low

and uniformly distributed, reflecting a lack of focal points that

the model associates with dementia. This absence of atrophy or

cortical thinning aligns with the normal, healthy condition of

a non-demented brain. The saliency map serves as a baseline,

showing what a normal, non-demented brain looks like according
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to the model, which helps in contrasting with the saliency maps of

demented cases.

4.10.4 Very mild demented class
The saliency map for very mild dementia shows subtle

highlights, mainly in regions associated with early cognitive

changes, such as the hippocampus and some cortical areas as

shown in Figure 15. Compared to mild andmoderate dementia, the

highlighted regions are less intense, indicating early-stage changes

that are less pronounced. These subtle changes are crucial for early

diagnosis, as very mild dementia is characterized by initial signs

of hippocampal atrophy and early cortical thinning. The model’s

ability to pick up on these subtle indicators helps in identifying the

very early stages of dementia.

5 Strengths of the study

• The study’s framework innovatively integrates SE blocks

within each convolutional layer, applying an adaptive

attention mechanism. This recalibrates channel-wise feature

responses, allowing the network to dynamically prioritize

the most informative features for Alzheimer’s Disease (AD)

detection from MRI scans. The use of SE blocks enhances the

model’s ability to capture critical patterns associated with AD.

• Unlike traditional CNN architectures that use a SoftMax

layer for classification, the SECNN-RF framework employs a

Random Forest classifier. This leverages the robust, ensemble

learning capabilities of Random Forests, improving the

model’s classification accuracy and interpretability for AD

diagnosis. The combination of SE blocks and Random Forests

contributes significantly to the explainability of the model,

providing insights into the importance of different features

and straightforward interpretation of classification decisions.

• By utilizing a GlobalAveragePooling layer followed by

feature flattening, the framework effectively condenses high-

dimensional data into a manageable form. This ensures that

the feature extraction phase is both computationally efficient

and capable of capturing the essential characteristics of the

input images.

• The SECNN-RF framework reduces trainable parameters

without compromising performance, making it suitable for

medical applications with limited computational resources.

This balance between efficiency and accuracy is crucial for

practical deployment in clinical settings.

6 Limitations of the study

• The dataset from Kaggle, while useful, may not be as

comprehensive as others like the Alzheimer’s Disease

Neuroimaging Initiative (ADNI). Future studies could benefit

from using more extensive and varied datasets.

• The study focuses on Alzheimer’s Disease. Testing the

framework on other medical conditions and imaging

modalities would demonstrate broader applicability

and robustness.

• The study only employs saliency maps to provide visual

explanations of the model’s decisions. Other advanced

methods such as Grad-CAM, LIME, or SHAP were not

utilized, which could provide more comprehensive and

diverse insights into the model’s decision-making process.

7 Conclusions

Our hybrid framework is termed a Squeeze-and-Excitation

Convolutional Neural Network with Random Forest (SECNN-

RF) represented for accurate image classification tasks and

enhancing the interpretability of Alzheimer’s disease (AD)

images. SECNN-RF Achieves a remarkable 99.89% classification

accuracy on the AD test dataset, surpassing state-of-the-art

and existing work models. Leverages the SECNN-RF inherent

attention mechanism to provide valuable insights into the model’s

decision-making process, fostering trust and transparency. The

conducted ablation studies underscore the importance of each

component, revealing that the integration of SE blocks and

the choice of a robust classifier are pivotal in enhancing the

model’s performance. While achieving remarkable accuracy and

interpretability, this work also opens doors for further research

in explainable AI techniques for deeper disease understanding

and personalized medicine. The authors encourage further

exploration and development of such methodologies to pave the

way for a future where AI empowers accurate diagnosis and

individualized treatment plans, bringing hope to those impacted by

neurodegenerative diseases.
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