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Introduction: The integration of recent technologies in medical imaging has 
become a cornerstone of modern healthcare, facilitating detailed analysis of 
internal anatomy and pathology. Traditional methods, however, often grapple with 
data-sharing restrictions due to privacy concerns. Emerging techniques in artificial 
intelligence offer innovative solutions to overcome these constraints, with synthetic 
data generation enabling the creation of realistic medical imaging datasets, but the 
preservation of critical hidden medical biomarkers is an open question.

Methods: This study employs state-of-the-art Denoising Diffusion Probabilistic 
Models integrated with a Swin-transformer-based network to generate synthetic 
medical data. Three distinct areas of medical imaging - radiology, ophthalmology, 
and histopathology - are explored. The quality of synthetic images is evaluated 
through a classifier trained to identify the preservation of medical biomarkers.

Results: The diffusion model effectively preserves key medical features, such 
as lung markings and retinal abnormalities, producing synthetic images closely 
resembling real data. Classifier performance demonstrates the reliability of 
synthetic data for downstream tasks, with F1 and AUC reaching 0.8–0.99.

Discussion: This work provides valuable insights into the potential of diffusion-
based models for generating realistic, biomarker-preserving synthetic images 
across various medical imaging modalities. These findings highlight the potential 
of synthetic data to address challenges such as data scarcity and privacy 
concerns in clinical practice, research, and education.
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1 Introduction

Medical imaging serves as a cornerstone of modern medicine, offering indispensable 
insights into the human body’s internal structures and physiological processes (Jha et al., 2020; 
Mazurowski et al., 2023; Veta et al., 2014). Over the years, imaging biomarkers have emerged 
as crucial indicators for diagnosing diseases, monitoring treatment efficacy, and understanding 
disease progression (Yan et al., 2023; Liu et al., 2024; Moor et al., 2023; Ronneberger et al., 
2015). While traditional imaging techniques excel at capturing these biomarkers, they often 
present challenges such as high costs, limited accessibility, and concerns surrounding data 
security and patient privacy, which can hinder the sharing of medical imaging datasets 
(Mittelstadt and Floridi, 2016). Moreover, in cases where the incidence rate of a disease is low, 
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the process of accumulating a sufficiently sized dataset can span years. 
These limitations have spurred significant interest in AI-driven 
approaches, with a particular focus on synthetic image generation as 
a means to overcome these challenges. Recent studies have highlighted 
the potential of artificial intelligence (AI) methodologies to produce 
synthetic images that not only mimic the visual characteristics of real 
medical images but also preserve the subtle imaging biomarkers 
essential for accurate clinical interpretation and disease classification 
(Fan et al., 2024; Zhang et al., 2023; Thambawita et al., 2022; Thakur 
and Thakur, 2024; Pan et al., 2023).

The generation of synthetic medical images poses a unique set of 
challenges compared to other domains due to the intricate nature of 
biological structures and the subtle nuances of imaging biomarkers 
(Perez et al., 2024). While existing AI approaches have demonstrated 
remarkable capabilities in generating realistic images, preserving the 
underlying biomarkers remains a significant hurdle. Without faithful 
representation of these biomarkers, synthetic images risk being of 
limited utility in clinical settings, hindering their adoption for tasks 
such as training AI models, augmenting datasets, and validating 
imaging algorithms.

In this paper, we  explore an innovative AI methodology 
specifically tailored for generating synthetic medical images while 
preserving concealed imaging biomarkers. Our approach builds 
upon recent advancements in deep learning (DL), leveraging 
denoising diffusion probabilistic model (DDPM) (Ho et al., 2020) 
to produce high-fidelity images that not only resemble real 
medical scans but also retain the critical biomarkers necessary for 
accurate clinical interpretation. By integrating domain-specific 
knowledge and data-driven learning, our work aims to bridge the 
gap between synthetic and real-world medical images, offering a 
promising solution to the challenges associated with imaging 
biomarker preservation.

The aim of current research is to explore the feasibility of 
generative AI diffusion models for generating realistic, high-quality 
synthetic medical data while preserving medical biomarkers and 
statistical properties of the original data. This approach could 
facilitate data sharing without compromising patient confidentiality, 
thereby aiding in the training and testing of new AI systems for 
disease diagnosis and classification. Our key contributions: (1) the 
utilization of a state-of-the-art diffusion-based model for generating 
conditional images across diverse medical imaging modalities, 
including radiology, ophthalmology and histopathology; (2) 
empirical evidence showcasing that features extracted from the 
synthesized data closely resemble those derived from real data; (3) 
experimental validation showcasing that generated images effectively 
preserve important medical biomarkers, by solely using the 
synthesized data to train classifiers for disease diagnoses and testing 
it on unseen real datasets.

2 Methods

2.1 Dataset and preprocessing

In this work, three distinct datasets, from the fields of radiology, 
ophthalmology, and histopathology, were utilized. From radiology, 
we used a chest X-ray dataset (Kermany et al., 2018), designed for the 

detection of healthy X-ray images from those depicting Pneumonia 
disease. This dataset consists of 5,840 grayscale images, each with a 
resolution of 256 × 256 pixels. A fold constituting 10 percent of the 
dataset is allocated specifically for testing purposes.

The second dataset utilized is an ophthalmology OCT dataset 
(Kermany et al., 2018), designed for multiclass classification tasks 
aimed at detecting four distinct categories within OCT images. 
These classes comprise Choroidal Neovascularization (CNV), 
Diabetic Macular Edema (DME), drusen, and normal retina with 
the approximate size of 37,200, 11,300, 8,600, and 26,300 images, 
respectively. For testing, we  followed the dataset structure, 
allocating 242 images per class as unseen data, while the remaining 
dataset was used for training. To ensure uniformity in image 
dimensions for training purposes, a pre-processing step was 
implemented wherein images with variant slice shapes were padded 
by black background pixels, resulting in a standardized size of 
512 × 512 pixels.

The third dataset is a publicly available histopathology dataset 
(Janowczyk and Madabhushi, 2016; Cruz-Roa et al., 2014), aimed 
at classifying patches as either Invasive Ductal Carcinoma (IDC), 
the most common subtype of all breast cancers, or as healthy 
tissue. The original dataset comprises 162 whole mount slide 
images of Breast Cancer (BCa) specimens scanned at 40x 
magnification. From these images, 277,524 patches of size 50 × 50 
pixels were extracted, consisting of 198,738 IDC-negative patches 
and 78,786 IDC-positive patches. For training the diffusion 
models, only 22,000 patches were utilized, with the remaining 
patches allocated for testing purposes.

2.2 Denoising diffusions models

Denoising Diffusion Probabilistic Model (DDPM) (Ho et al., 2020), 
were employed to generate high-fidelity synthetic medical images. 
These models transform Gaussian noise into synthetic images through 
a diffusion process (Dhariwal and Nichol, 2021; Nichol and Dhariwal, 
2021). The process begins with the transformation of a two-dimensional 
Gaussian noise sample, ( )~ 0,1tX N , into a synthetic image, x, by 
means of a diffusion procedure. This diffusion method involves 
incrementally adding a small noise component, ε, onto the image x over 
t timesteps, gradually converting x into a pure Gaussian noise sample 
T; this transformation is typically referred to as the forward diffusion 
process. Subsequently, the Gaussian noise sample T is restored to its 
original, noise-free form, x, by systematically removing the added noise, 
ε, in a process known as reverse diffusion. In this work, we incorporated 
Swin-Vision transformers as the denoising function estimator proposed 
by Pan et al. (2023), ensuring high performance across modalities.

2.3 Image quality evaluation metrics

To evaluate the quality of synthetic images in comparison to real 
images, particularly in terms of structural fidelity, diversity, and 
distributional similarity, we employed three widely used metrics: the 
Inception Score (Salimans et al., 2016), Fréchet Inception Distance 
(FID) (Heusel et al., 2017), and nearest Structural Similarity Index 
Measure (SSIM).
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The Inception Score was utilized to quantitatively assess the 
diversity and visual quality of the synthetic images, as it reflects how 
closely the synthetic images resemble the distribution of real images 
in the feature space. A higher IS indicates greater quality and diversity 
of the generated images. FID score was employed as a measure of 
fidelity, capturing the similarity between the distributions of features 
extracted from real and synthetic images. A lower FID score indicates 
a closer match between the two distributions, signifying higher quality 
and realism in the synthetic images.

To assess structural similarity, each synthetic image was compared 
against all other synthetic images using the Structural Similarity Index 
Measure (SSIM). From these comparisons, the closest matching pair 
was identified for each image. The SSIM values of these closest pairs 
were aggregated and reported as the nearest SSIMs for the synthetic 
dataset. The rationale behind this approach is that the nearest SSIM 
values of real images tend to cluster within a characteristic range, and 
synthetic images are expected to exhibit a comparable distribution of 
nearest SSIM values, thereby demonstrating structural consistency 
across the datasets.

Additionally, to evaluate the similarity between synthetic and real 
images, we  utilized baseline pretrained models from MedMNIST 
(Yang et  al., 2023) for colon classification (used for Breast 
Histopathology), pneumonia classification, and OCT classification. 
These pretrained models were employed to extract feature embeddings 
from the images, which were subsequently visualized using 
t-SNE. Directly applying t-SNE to the raw image pixels was avoided 
due to the computational inefficiency associated with high-
dimensional data processing. By leveraging pretrained models, the 
images were compressed into lower-dimensional embeddings, 
reducing computational costs and providing a more meaningful 
representation of the data. Since the pretrained models were trained 
on real medical image classification tasks, they capture clinically 
relevant and semantically rich features. This approach facilitated a 
robust comparison between real and synthetic images, as the extracted 
embeddings encapsulate higher-level features rather than pixel-level 
similarities. Consequently, the use of pretrained models enabled us to 
assess the extent to which the generated synthetic images preserved 
critical characteristics of real images, offering deeper insights into 
their quality and fidelity.

2.4 Evaluation of medical imaging 
biomarker fidelity in synthetic images using 
classification tasks

To evaluate the preservation of diagnostic biomarkers, 
classifiers were trained separately on real and synthetic data. This 
step was critical to demonstrate that synthetic data could replace 
real data in sensitive applications without compromising privacy 
or diagnostic accuracy. For each imaging modality and dataset, 
two separate classifiers were trained: one using real images and 
the other exclusively using synthetic images. Both classifiers for 
each modality were subsequently tested on an identical, unseen 
test set comprising real images, see Figure 1. For each modality, 
we  utilized widely recognized classifier architectures in our 
evaluations (Simonyan and Zisserman, 2014). The performance 
of the classifiers trained on real and synthetic images, respectively, 

was then assessed using metrics including Area Under the Curve 
(AUC), precision, recall, and accuracy.

2.5 Statistical analysis

To test for differences between classification results, t-tests were 
used for normally distributed data, and Mann Whitney U was used to 
compare non-normal distributions (Shapiro–Wilk normality test was 
used). p < 0.05 were considered significant after controlling for error 
using false discovery rate (FDR).

3 Results

The performance of the DDPM model has been assessed in two 
key aspects: first, by visually analyzing the similarity of generated 
images to gauge their resemblance to real images. Second, by training 
a classifier on synthetic data to classify diseases and subsequently 
testing it on unseen data to determine whether synthetic medical 
images can capture medical imaging biomarkers.

3.1 Visual inspection of diffusion 
model-generated medical images

Figure 2 showcases examples of Chest X-ray, OCT, and breast 
cancer histopathology images generated by the diffusion model. 
In the Chest X-ray samples, discernible characteristics such as 
linear shadow reduced lung markings surrounding it, indicative 
of a collapsed lung, are prominently captured by the diffusion 
model and faithfully preserved in the generated image variations 
(Huan et  al., 2021). Regarding OCT image analysis, DME 
manifests as generalized retinal swelling, discernible in both 
synthetic and authentic datasets. Conversely, CNV lesions tend 
to exhibit larger dimensions, especially in width, as observed on 
OCT scans. Moreover, Drusen are recognized as distinct bumps 
or deposits situated beneath the retina, a characteristic apparent 
in both synthetic and real data (Cheung et al., 2017; Spaide and 
Curcio, 2010; Otani et al., 1999).

3.2 Quantitative evaluation of synthetic 
medical images

The Inception scores for the Chest X-ray, OCT, and breast 
cancer histopathology dataset are 2.45, 2.05, and 3.28, respectively. 
For the Chest X-ray dataset, FID scores are 46.76 for healthy images 
and 44.64 for unhealthy images (representing Pneumonia), 
indicating a close resemblance between real and synthetic images. 
In the OCT images, the average FID score across four classes is 
81.83, DME presenting the most challenging class with an FID of 
102.13. In contrast, Drusen emerges as the class closest to real 
images, boasting an FID score of 53.53. For the breast cancer 
histopathology dataset, FID scores are notably higher at 106.69 for 
healthy images and 109.97 for unhealthy images (representing 
IDC), suggesting a somewhat greater disparity between real and 
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synthetic distributions compared to the Chest X-ray dataset. 
Figure  3 provides a detailed and comprehensive analysis of the 
nearest SSIM values, broken down by each class within the synthetic 
dataset, offering further insights into the structural fidelity of the 
generated images. It is important to note that, due to the large size 
of the breast cancer histopathology and OCT datasets, 5,000 
random samples were selected for each class within these datasets 
to ensure a representative analysis.

3.3 Feature comparison and statistical 
analysis of synthetic and real medical 
images

In the context of feature comparison, Figure 4 illustrates the 
t-SNE visualization of feature distributions for synthetic images 
generated by DDPM. For the OCT dataset, all abnormal classes 
(CNV, DME, and Drusen) were combined into a single ‘unhealthy’ 
class, while the ‘normal’ class was designated as the ‘healthy’ class. 
T-SNE was subsequently applied to this grouped dataset. In 
Figure 5, box plots illustrating the mean pixel values of real and 
synthetic data for each class of each dataset separately are 
presented. There was no statistically significant difference 
between mean pixel values from the real and synthetic images 
across all datasets and suggesting consistent performance across 
all datasets, with p-values of 0.073, (0.91 after FDR correction), 
and 0.11 for Chest X-ray, OCT, and Breast Cancer Histopathology, 
respectively.

3.4 Performance comparison of classifiers 
trained on real vs. synthetic medical 
images

Two distinct classifiers were developed and trained: one 
exclusively utilizing synthetic data and the other employing authentic 
data. Subsequently, both classifiers underwent evaluation using real 
test data previously unseen by the models. The comparative accuracy 
of these classifiers is presented in Table 1. While the classifier trained 
on real data exhibited superior performance relative to its synthetic 
counterpart across all evaluated cases, the observed discrepancies 
were found to be  minimal and statistically non-significant. A 
comprehensive statistical analysis confirmed the similarity in 
performance metrics between the classifiers, suggesting a consistent 
performance trend across diverse datasets. The p-values for the chest 
X-ray, OCT, and breast cancer classification datasets, when comparing 
the F1 score, accuracy, and area under the curve (AUC), are 0.0705, 
0.1903, and 0.201, respectively (p > 0.05; after FDR correction). These 
findings underscore a robust and consistent performance of the 
classifiers, independent of the data source—synthetic or real—in 
their training.

4 Discussion

The scarcity of adequate medical data poses a significant challenge 
in training AI and DL algorithms. The utilization of synthetic images 
while preserving important biomarkers not only alleviates the 

FIGURE 1

Study architecture for evaluating synthetic data: classifiers were trained separately on real and synthetic medical images generated using DDPM. Both 
were tested on unseen real data to assess the preservation of diagnostic biomarkers and the privacy-preserving potential of synthetic images in 
healthcare applications.
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challenges of data collection and processing but also improves the 
scalability and accessibility of DL applications. In this work, 
we assessed and explored the effectiveness of state-of-the-art diffusion-
based generative algorithm in synthesizing privacy-preserving 
medical data that can capture essential imaging biomarkers across 
multiple modalities, and our findings shed light on the fidelity and 
utility of these synthetic images.

Our results demonstrate that the synthesized medical images 
closely resemble real images, both qualitatively and quantitatively. 
Visual inspection revealed that the diffusion model accurately 
captured key biomarkers indicative of various medical conditions 
across different modalities. The sensible IS, FID, and nearest-SSIM 
values underscore the efficacy of DDPM in generating high-fidelity 
synthetic images that faithfully represent real-world medical data.

FIGURE 2

Comparison of synthesized and real images from the Chest X-ray, OCT, and Breast Cancer Histopathology datasets. The first two rows depict healthy 
and Pneumonia chest X-ray images, respectively, each resized to 256 × 256 pixels. The following four rows represent various classes of OCT images. In 
the histopathological images, the last two rows illustrate healthy and unhealthy patches, respectively, with each breast cancer histopathology patch 
measuring 32 × 32 pixels.
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The ability of the diffusion model to faithfully preserve biomarkers 
such as lung markings in Chest X-ray images, retinal abnormalities in 
OCT images, and histopathological features in breast cancer images 
is particularly promising. This preservation of critical biomarkers is 
crucial for ensuring the clinical relevance and utility of synthetic 
images in various healthcare applications. Furthermore, by analyzing 
the distribution of mean pixel values of the histopathological images 
as in Figure 5, it is apparent that the synthetic dataset closely resembles 

the pattern observed in the real dataset. Regarding the OCT images, 
while the mean pixel values exhibit proximity, the synthetic dataset is 
characterized by a larger standard deviation specifically for Drusen 
and Normal class. Conversely, the real dataset displays smaller 
standard deviations across nearly all four classes in comparison to the 
synthetic dataset. However, there is no statistically significant 
difference in mean pixel values between the real and synthetic images 
across all datasets (p > 0.05 after FDR correction).

FIGURE 3

Illustration of the nearest SSIM values between each synthetic image and its closest matching pair, where lower values indicate better model 
performance. The nearest SSIM values are shown for real images and synthetic images across three datasets: chest X-rays (first two box plots), breast 
cancer histopathology (third and fourth box plots), and OCT images (last four box plots). Each box plot includes colored dots that depict the SSIM 
values for all sampled.

FIGURE 4

t-SNE feature space visualization of synthetic images generated by MT-DDPM for the Chest X-ray and Breast Cancer Histopathology datasets.
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FIGURE 5

Box plot illustrating the mean values of the synthetic dataset compared to the real dataset for each class. There is no statistically significant difference 
in mean pixel values between the real and synthetic images across all datasets (p > 0.05 after FDR correction).

TABLE 1 Quantitative assessment of classification performance.

Classifier Precision Recall F1 AUC Accuracy

Chest X-Ray 

Dataset

Synthetic 0.93 0.94 0.94 0.98 0.95

Real 0.94 0.95 0.94 0.99 0.96

Breast Cancer 

Dataset

Synthetic 0.82 0.82 0.82 0.82 0.82

Real 0.83 0.83 0.83 0.83 0.83

OCT Dataset Synthetic 0.96 0.96 0.96 0.99 0.96

Real 0.99 0.99 0.99 0.99 0.99

The table displays the outcomes of the classification model network trained on real data and DDPM-generated data for both the Chest X-ray dataset and Histopathology dataset (results are 
reported to two significant digits).
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In the classification assessment, the classifier trained with synthetic 
data exhibited slightly inferior performance compared to the model 
trained on real data, yet their performance was comparable (p > 0.05 after 
FDR correction). Our evaluation indicated that training classification 
networks with synthetic images yields promising results, with F1 score 
and AUC reaching levels of 0.8–0.99 compared to when trained with real 
images. Interestingly, despite the high FID score for histopathological 
images, the classifier successfully separated IDC/No-IDC with 
comparable performance to the model trained on real data.

In addition, the classifier successfully identified medical biomarkers 
within the synthetic OCT images despite utilizing a dataset size ten times 
smaller. It achieved performance comparable to that of the classifier 
trained on real data, which benefited from a total of 84,000 images, with 
nearly 8,000 images per class. These results suggest that synthetic images 
generated by DDPM can serve as effective substitutes for real data in 
classification tasks, offering a viable solution for addressing data scarcity 
and privacy concerns in medical imaging research. It is important to note 
that these issues must be handled with caution and thoroughly validated, 
especially in clinical contexts.

Although we only assessed synthetic data for classification tasks, 
we expect the applicability to other tasks such as segmentation and 
object detection. It is worth noting that our goal was not to determine 
the effectiveness of diffusion-based models merely for classification but 
rather to explore whether synthetic data can preserve essential imaging 
biomarkers. Although each dataset in our analysis comes from a single 
source, the developed methodology could be broadly applied to train 
classifiers using data from multiple sources. This approach could 
generate more diverse synthetic datasets for identifying diseases in 
images from different institutions. Despite our efforts to address this 
issue, the challenge remains in obtaining similar datasets with aligned 
purposes (similar disease patterns) from multiple institutions.

It should be noted that the primary objective of our work was not to 
identify or benchmark the best generative model for synthetic image 
generation but rather to explore the feasibility of fully synthetic datasets 
generated using DDPMs in preserving critical medical biomarkers for 
downstream tasks. Diffusion models, such as DDPMs, have recently 
demonstrated impressive results in generative tasks across various 
domains, motivating us to examine their potential within medical 
imaging modalities. Specifically, we  focused on whether DDPM-
generated synthetic datasets could maintain diagnostic relevance, 
particularly in preserving hidden biomarkers. Although a direct 
comparison with other GAN-based approaches could strengthen the 
evaluation, we chose to limit our investigation to DDPMs, given the 
focused scope of this study, enabling a detailed analysis of 
their capabilities.

In conclusion, our study demonstrates the feasibility and utility of 
generating synthetic medical images using DDPM while preserving 
important imaging biomarkers. These synthetic images hold promise 
for advancing various applications in healthcare, from AI algorithm 
development to data augmentation and privacy-preserving data 
sharing. By bridging the gap between synthetic and real-world medical 

imaging data, our approach paves the way for future innovations in 
medical imaging research and clinical practice.
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