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Inpainting of damaged temple 
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Mural paintings are vital cultural expressions, enriching our lives by beautifying 
spaces, conveying messages, telling stories, and evoking emotions. Ancient 
temple murals degrade over time due to natural aging, physical damage, etc. 
Preserving these cultural treasures is challenging. Image inpainting is often used 
for digital restoration, but existing methods typically overlook naturally degraded 
areas, using randomly generated binary masks or small, narrow regions for repair. 
This study proposes a novel architecture to reconstruct large areas of naturally 
degraded murals, maintaining intrinsic details, avoiding color bias, and preserving 
artistic excellence. The architecture integrates generative adversarial networks 
(GANs) and the diffusion model, including a whole structure formation network 
(WSFN), a semantic color network (SCN), and a diffusion mixture distribution 
(DIMD) discriminator. The WSFN uses the original image, a line drawing, and an 
edge map to capture mural details, which are then texturally inpainted in the SCN 
using gated convolution for enhanced results. Special attention is given to globally 
extending the receptive field for large-area inpainting. The model is evaluated using 
custom-degraded mural images collected from Tamil Nadu temples. Quantitative 
analysis showed superior results than state-of-the-art methods, with SSIM, MSE, 
PSNR, and LPIPS values of 0.8853, 0.0021, 29.8826, and 0.0426, respectively.
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1 Introduction

Murals seen in South Indian temples represent the customs and cultures of many different 
religions, making them a cultural asset for India. These murals serve as priceless portals for 
the past, offering profound insights into the beliefs, customs, and daily life of ancient 
civilizations. These captivating artworks often found adorning the walls of temples, depict a 
wide array of subjects ranging from mythological narratives to historical events and religious 
rituals. Through their intricate details and vibrant colors, ancient murals enable us to 
understand the cultural, social, and artistic contexts of the time. Moreover, murals serve as 
primary sources for interpreting and preserving intangible aspects of culture, such as 
traditions, folklore, and spiritual practices, which may otherwise be lost to the passage of time. 
Beyond their historical significance, ancient murals also hold aesthetic value, showcasing the 
artistic achievements and creative expressions of past civilizations.

However, degradation and damage afflict these murals, threatening to erase their historical 
and cultural significance forever. Factors such as environmental conditions, natural disasters, 
vandalism, and improper conservation efforts contribute to the deterioration of these artworks. 
From fading pigments to structural instability, the integrity of these murals is often 
compromised, necessitating urgent measures for preservation. Preservation efforts for ancient 
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murals are crucial to safeguarding cultural heritage of humanity. 
Traditional methods such as human repair, environmental controls, 
and chemical treatments have been employed to halt deterioration and 
prolong the lifespan of these artworks. While these methods have 
yielded some success, they often come with limitations. For instance, 
human repair would be time-consuming, while chemical treatments 
pose risks to both the artwork and conservators.

In recent years, advances in computer vision and deep learning 
have opened new possibilities for cultural heritage preservation. By 
harnessing the power of algorithms and deep learning models, 
researchers can digitally restore and reconstruct damaged artworks 
with remarkable precision and visual quality. This interdisciplinary 
approach combines the expertise of art historians, conservationists, 
and technologists to address the complex challenges of heritage 
conservation in the digital age.

Digital preservation techniques, such as image inpainting, offer 
promising solutions to mitigate damages and restore the integrity of 
deteriorated murals. Image inpainting involves digitally reconstructing 
missing or damaged portions of an image based on surrounding visual 
information. The application of image inpainting in the preservation 
of ancient murals presents several advantages over traditional 
methods. It allows for non-invasive restoration, preserving the 
integrity of the original artwork while effectively repairing damages. 
Additionally, digital preservation offers scalability, enabling 
conservation efforts to extend beyond physical constraints. By 
digitizing ancient murals, scholars, and enthusiasts worldwide can 
access and study these cultural treasures, fostering greater appreciation 
and understanding of our shared heritage.

As different deep convolutional neural networks (DCNN) (Yi 
et al., 2020; Liu et al., 2019), generative networks have demonstrated 
improved results in inpainting the natural images found in open 
datasets such as CelebA (Liu et al., 2015), Places2 (Zhou et al., 2017), 
and ParisStreetView (Doersch et al., 2015), it is imperative to use deep 
learning algorithms for the reconstruction of the damaged murals. 
However, the techniques that have yielded impressive results in 
natural image inpainting face some difficulties when used on murals. 
The following are some of the causes of this difficulty:

 • Very smooth brushstrokes are used in the mural images, and the 
textures are largely monotonous.

 • The technique of recovery is made difficult by the large and 
intricate missing areas of the paintings.

 • The original, non-damaged image is not available, so the 
damaged mural image itself serves as the input for reconstruction; 
hence, the painted image may or may not be remarkably similar 
to the original.

 • Color bias problem. Figure 1 illustrates the color bias problem 
caused by the mixing of pigments while inpainting murals.

Color bias in image inpainting occurs when the colors in the 
inpainted region do not blend seamlessly with the surrounding 
context. This can happen due to improper feature learning or a lack of 
semantic understanding in the model. This can make the inpainted 
regions stand out unnaturally, affecting the overall quality and realism 
of the image. Thus, it is crucial to address this challenge.

Due to the inherent structure and recurring patterns of murals, 
most of the current algorithms using CNN and GAN are unable to 
perform inpainting as effectively as they do for natural images, 

though the inspirations come from these factors (Wu et al., 2023). As 
elaborate designs of murals are delineated by edge lines, as these lines 
deteriorate, so do the paintings. If the reconstruction is based on 
textures alone, as shown in Figure 2, these deteriorating lines do not 
appear correctly in the reconstruction. Thus, according to the theory 
put forward in Nazeri et al. (2019), the image inpainting process can 
be thought of as a two-phase process, with the first phase dealing with 
structural reconstruction and the second phase dealing with the 
textural reconstruction of the damaged mural. Due to the complex 
structures present in mural paintings, focusing just on edge maps is 
not the best option. Thus, for a better structural definition of the 
mural, in addition to edge maps, the line drawings (Wang et al., 2019; 
Li et al., 2022) of the murals are also considered for an artistic-level 
structure definition. As a result, the proposed approach of inpainting 
the murals is carried out stage-by-stage as pretreatment and 
occlusion-aware reconstruction, taking into account the structure 
and texture.

Section 2 discusses the aim and major contribution of this 
research work. Section 3 deals with related works. Section 4 explains 
the materials and methods used in this work. It clearly examines the 
dataset used and the proposed work in detail. Section 4 presents the 
experimentation followed by the quantitative and qualitative 
evaluation of the work. Section 6 discusses the advantages and 
limitations of the proposed work. The conclusion and future work are 
illustrated in Section 7.

2 Research aim

The existing research studies on the restoration of damaged murals 
do not consider naturally damaged regions for reconstruction. Instead, 
damages are recreated digitally through mask-generation algorithms 
(Ciortan et al., 2021). In some cases, if natural damages are considered, 
the region of damage is very small (Sun et al., 2022). However, the 
proposed research work restores damaged murals by considering 
naturally damaged images. To address the issue of structural blur and 
large-area filling, the damaged image is rebuilt with the aid of edge and 
line drawings, guided by the differentiable histogram loss that can 
substantially improve the damaged mural. Thus, the proposed work 
aims to reconstruct the damaged portions of ancient murals as a 
two-step process, by developing a two-stage GAN model that consists 
of two generators. The first generator network restores the structural 
portions of the damaged murals with the help of an edge map and line 
drawings. The second generator network restores the textural portions 
of the damaged murals and addresses the color bias issue by using the 
coherence histogram loss function.

2.1 Major contribution

This study recommends a mural inpainting approach that is 
driven by the edge and line link after examining contemporary 
techniques and understanding the common concerns with mural 
inpainting. The major contributions of this study are as follows:

 • To address the issue of structural blur and big area filling, the 
damaged image is rebuilt with the aid of an edge map and line 
drawing for structural reconstruction.
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 • Color bias issue is addressed through an enhanced coherence 
histogram loss.

 • A novel diffusion-induced mixture distribution (DIMD) 
discriminator is used to enhance the performance of the 
generator by incorporating a diffusion process that introduces 
noise, improving data heterogeneity, and ensuring more accurate 
structural and color inpainting.

 • A custom dataset consisting of damaged ancient temple murals 
is collected exclusively for this study by visiting many temples 
across various places in Tamil Nadu, India.

3 Related works

3.1 Image inpainting

Great strides have been made in image inpainting, and at this 
point, realistic visuals are being produced that are as close to reality as 
possible. The standard procedure for inpainting consists of two steps: 
step 1 seeks to locate the afflicted areas, and step 2 seeks to fill those 
voids with matching patches. Thus, the effectiveness of inpainting 
hinges on the ability to precisely mark the areas of the defect and 

FIGURE 1

Demonstration of the color bias problem in mural image painting (a) corrupted full mural image; (b) enlarged image showing the area to be inpainted; 
(c) reconstructed full image; (d) enlarged reconstructed image showcasing the color bias problem in image inpainting.

FIGURE 2

A demonstration highlighting the need of taking lines into account when inpainting a mural: (a) the original image; (b) the inpainting cannot be as 
accurate as the original without clearly defined boundaries and lines; and (c) the mural inpainting can be more realistic with a line drawing.
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obtain a patch with an identical image. Although this is a 
straightforward copy-and-paste procedure, it takes some time to look 
for similar picture patches. As a result, both manual and automated 
methods can be used to identify related patches.

3.1.1 Traditional methods
Geometrical and patch-based approaches are used to solve 

inpainting challenges. Differential equations are the foundation 
mathematics of geometrical approaches. The exterior contents of the 
hole are transmitted inside it using differentiation. The patch match 
approach involves using statistical calculations to match the optimum 
texture for the hole based on the data from the surrounding pixels. 
Patch match is faster than both options, but the outcome of the 
inpainting is dependent on the nearby texture (Barnes et al., 2009). As 
traditional inpainting methods lack knowledge of the image, they 
cannot produce inpainting that is as close to reality as alternative 
methods. The solid shape mask can be filled well using patches and 
geometric shapes, but larger, irregularly shaped holes are more difficult 
to handle.

3.1.2 Learning-based methods
More recently, data-driven deep learning-based inpainting 

techniques have improved accuracy as they can inpaint with the 
image clarity because these networks have a strong understanding of 
both the local fine textures and the overall image. CNN and GAN are 
the most used neural network architecture for inpainting. The first 
GAN for the inpainting job is proposed in Pathak et al. (2016), and 
because the network is completely connected channel-wise, the 
network fully comprehends the context of the image. The current 
layer was able to understand the feature information from the 
previous layer as the connections were fully connected, which helped 
improve understanding of the overall image. The quality of the filled 
image is improved in Yang et al. (2017) by enhancing the contextual 
encoder from Pathak et al. (2016). With the style transfer approach, 
which transfers a pixel that resembles the hole to the generator, the 
local texture details are improved, and the holes have a 
pleasing appearance.

The cost associated with fully connected layers is addressed in 
Iizuka et al. (2017), where the concept of deep inpainting evolved. 
Here, the network using the dilated connection was able to detect 
the global context of the image as well as the local context using two 
discriminators. One variation of Iizuka et  al. (2017) is given in 
Demir and Unal (2018) where the method of Iizuka et al. (2017) is 
boosted using residual learning (He et al., 2016) and patch GAN 
(Isola et al., 2017). The dilated convolution in Iizuka et al. (2017) was 
used as an inpainting strategy in various subsequent research. 
Combining dilated convolution and residual connection results in 
the creation of a unique dilated residual block. The exactness of the 
local region is perceived using the matrix labels and the PatchGAN 
discriminator. As inpainting closely resembles traditional copying 
and pasting, this study (Yan et al., 2018) attempts to combine the 
advantages of data and copying, which is achieved using the shift 
connection layer. This layer attempts to consider the global meaning 
of the image as well as the local meaning by borrowing information 
from the nearest neighbors, and the best neighbor is used for filling 
the hole.

A contextual attention layer is included in DeepFill (Yu et al., 
2018), an improved version of Shift-Net (Yan et al., 2018), and it can 

comprehend the relationship between the features that are missing in 
the hole and the features that are outside of the hole. It is simple to 
identify the features of the hole by executing a joining operation on 
all the characteristics outside the hole. The contribution of each 
feature in the hole may be determined as each feature is distinguished 
by its weight. The implicit diversified Markov random field loss 
functions in generative multi-column convolutional neural networks 
(GMCNN) (Wang et al., 2018) can improve the local texture details. 
The improvement occurs as a result of the guiding principle of the 
created patches, which is to find their closest neighbors from the hole 
to effectively extract local texture data. Partial convulsions are used 
in Liu et al. (2018) for handling the uneven holes in multiple regions. 
As the masks are irregular and at varied spots, the results of the 
convolution concentrate only on the valid pixels, making the process 
of filling faster with a controlled setting in the network. Edge map 
prediction (Nazeri et al., 2019) serving as an inspiration to this work 
aims to perform the process of inpainting based on the predicted 
edges of the damaged portions. DeepfillV2 (Yu et  al., 2019) is a 
combined approach of (Wang et al., 2018; Liu et al., 2018; Nazeri 
et al., 2019) where the concept of gated convolution is introduced that 
makes the convolution learnable.

Enhanced dynamic memory algorithm is applied in Chen et al. 
(2023) to capture the local and global features when the missing 
region is large, which is further followed by a two-step, rough and 
fine inpainting. To concentrate on inpainting of semantic features 
(Chen et al., 2024) employed a multiscale feature module to combine 
features extracted at various scales. It also integrates an attention 
mechanism to concentrate on the most relevant parts of the image, 
enhancing the restoration of important features while ignoring less 
critical areas. A dual-feature encoder is applied in Lian et al. (2024) 
that integrates structure and texture features to enhance the 
coherence of contextual semantics and image information. Here, 
along with the dual encoder, the use of a multiscale receptive field 
and long–short-term attention provides logical semantic context and 
removes blurry textures. A residual feature attention network is 
deployed in Chen et  al. (2023) with the aim to improve texture 
details and reduce artifacts in images with complex and large 
missing regions. It tries to generate high-quality images by 
enhancing dense and multiscale feature extraction and optimizing 
the loss functions.

3.2 Mural inpainting

The use of the deep convolutional neural network (DCNN) to 
determine the age of an artwork is one of the earliest applications of 
the technology proposed in Zou et al. (2014) and Li et al. (2018). A 
methodical strategy for identifying scratches and poor coloration has 
been developed with a focus on the improvement of the color fading 
and scratches seen in Thailand frescoes (Jaidilert and Farooque, 2018) 
murals. Here, they have decided on a fundamentally grouped, seed-
based technique of region-growing. By combining all the pixels with 
comparable features, the nearby pixels that are identical to the 
initialized seeds continue to expand. Once the pixel and seed do not 
match, the growth stops.

To handle the larger missing regions, an auto-encoder-based 
methodology is proposed in Song et al. (2020), where the dilated 
convolutions are utilized for the reconstruction. Inpainting 
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concentrating on the structural aspects is proposed in Ciortan et al. 
(2021), where the inpainting is done considering the artistic method 
of coloring. The entire process is carried out step by step in the same 
way an artist does a painting. Here, the learning is for the edge and 
colors upon which the inpainting is carried out. Line drawing-
guided inpainting is carried out in Wang et al. (2019), in which the 
inpainting patches are constructed by the combination of multiple 
patches, and the selection of multiple patches happens using the 
sparse model construction.

A stroke-like mask generation strategy is proposed in Wang et al. 
(2020) from which a simulated image is constructed, which then 
inputted to the partial convolution network was able to generate 
different types of irregular images and the guiding principle for 
restoring the original image was two phases. Only the relevant pixels 
are considered for inpainting, due to the joint predictive filtering and 
generative network (JPGNet), which combines the filtering and 
generative approaches. As the resolution and greater hole regions of 
the original paintings make them unsuitable for training, a data 
augmentation strategy is suggested in Guo et al. (2021) to improve 
the quality of the training samples with higher resolution 
photographs. Chen et al. (2019) and Wang et al. (2021) suggest the 
use of the partial convolution technique to inpaint Dunhuang and 
Thanka murals, respectively. In spite of the promising results of gated 
convolution in inpainting Thanka murals, to overcome the issues like 
blurring and limited perceptual fields (Jia et al., 2023) used an edge-
assisted feature component that impacts the edge details to enhance 
the texture portions and a self-attention-based local refine module 
that obtains the long-range relationships to improve the perceptual 
field. However, the method struggles with larger damaged portions 
due to the complexity of the Thanka structures. In addition, the 
model does not consider naturally degraded images. Original images 
are artificially damaged.

To restore Dunhuang murals (Xu et  al., 2023) includes a 
combination of deformable convolution and CycleGAN to improve 
mural image inpainting. This combination improves feature 
extraction and color accuracy, making the restored images look 
very much like the original murals. However, the method relies 
heavily on artificially damaged copies leading to randomness. A 
parallel dual convolutional feature extraction generator along with 
a ternary heterogeneous joint discriminator is deployed in Ren et al. 
(2024) to extract detailed features at various scales, ensuring that 
fine-grained details are accurate. Here, damages are induced into 
the original images by using a publicly available mask dataset. The 
model suffers to restore larger damaged areas due to limited 
semantic information and computational constraints. To reduce 
information loss and capture semantic details, a dual encoder 
model that leverages gated encoding is utilized in Sun et al. (2024). 
A contextual feature aggregation module ensures consistency in the 
restored image, while a color loss function maintains color harmony 
with the surrounding areas. The model also struggles to accurately 
restore details in real damaged murals.

Based on this survey, some issues are quite visible in image 
inpainting, both at the mural level and in general inpainting. The 
common issue that is present with regard to filling the larger holes 
semantically and filling the structure appropriately based on the lines 
present in the murals. With an understanding of these, a lot of 
improvement is still required in inpainting, leading to a higher scope 
of research on this topic.

4 Materials and methods

4.1 Dataset

The proposed work is evaluated using a unique dataset that is 
exclusively collected for this work. The dataset consists of images of 
damaged custom murals. These mural images are gathered by traveling 
to the various ancient temples such as Ramaswamy Temple in 
Kumbakonam, Brihadeeshwarar temple in Tanjore, Kapardeeswarar 
temple in Thiruvalanchuzhi, Thiyagaraja Swamy temple in Thiruvarur, 
Sarabeswarar Temple in Thirubuvanam, and Kailasanathar Temple in 
Kanchipuram, in Tamil Nadu, India. These images are taken using a 
Canon EOS 200D camera. In addition, certain images of degraded 
murals are downloaded from https://www.tagavalaatruppadai.in/, 
which is an official website of the Tamil Nadu Archeology Department. 
These images consist of the degraded mural paintings from 
Azhagarkovil, Konerirajapuram, Patteeswaram, and 
Ramanathapuram. A total of 638 mural images were gathered. As the 
gathered images are very small in number, these images are 
preprocessed and augmented as mentioned in Section 4.2. As a result 
of augmentation, the dataset size is increased to 2,300 degraded 
images. Furthermore, the dataset is extended to include images of the 
line drawings and edge maps. DexiNed (Poma et al., 2020) and Canny 
Edge Detector (Nazeri et al., 2019) were used for the generation of the 
line drawings and edge maps. Figure 3 presents some of the edge maps 
and line drawings of the images from the dataset.

4.2 Data preprocessing

The gathered mural images are in different sizes. Hence, they are 
resized to a common size of 512 × 512. As the images are digitally 
captured, they might contain noise. Hence, the images are denoised 
using a bilateral filter as it smooths out the noise without blurring the 
edges, making it ideal for the reconstruction task, thereby maintaining 
the integrity of the structural details of the mural. After denoising, the 
images are passed through the Sobel–Feldman filter for sharpening 
the edges. This filter enhances the edges by emphasizing areas of high 
contrast, thus making it easier for the network to learn and reconstruct 
the structural elements accurately. Then, the images are normalized 
using the mean subtraction and standardization methods. 
Standardization stabilizes the learning process by centering data 
around zero and managing the scale of inputs, which helps the model 
better learn features from damaged areas and improve in detailed 
reconstruction. As the gathered mural samples are fewer in number, 
augmentation techniques such as rotation, flipping, scaling, and 
translation are performed. As a result, the total number of murals 
increased to 2,300. The dataset was split as 80% for training, 10% for 
testing, and 10% for validation.

4.3 Methods

This proposed method comprises two generative networks, 
namely the whole structure formation network (WSFN) and the 
semantic color network (SCN) as shown in Figure 4. WSFN aims to 
reconstruct the missed structural parts of the mural and SCN takes 
care of the semantic inpainting, which, in turn, solves the color biasing 
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problem. The reason they are not combined into a single network is 
due to the fundamentally different tasks they perform—structural 
reconstruction and texture or color reconstruction. Structural 
restoration requires precise attention to the geometry and form of the 
mural, where only the spatial relationships such as the boundaries and 
contours are relevant. Combining this with texture or color restoration 
would dilute the focus of the network on the shape and could 
introduce ambiguities in the structural details. Textural reconstruction 
demands a different focus—handling variations in pigments, colors, 
and surface texture. A combined architecture with WSFN would not 
be  able to distinguish the spatial and textural features, leading to 
confusion in what information to prioritize at different stages of the 
reconstruction process. Both generators are connected to a single 
discriminator, as the overall training process lies in reconstructing an 
image that may be close to the ground truth. Algorithm 1 explains the 
overall procedure involved in the reconstruction.

4.3.1 Whole structure formation network
The primary goal of this network is to reconstruct the entire 

structure of the murals, irrespective of the damages. To synthesize 
such an image, the input to this network is the edge map and line 
drawing images of the damaged image. Generators perform the 
process of upsampling and downsampling using the encoder–decoder 
architecture (Badrinarayanan et al., 2017; Nazeri et al., 2019). The 
downsampling happens twice so that the image is shrunk to 
one-fourth of its initial size. This is followed by the eight residual 
blocks that perform dilated convolutions with a factor of 2, and finally, 
the decoders up sample the images to their original size. Skip layers 
are incorporated into the network to gain an understanding of the 
low-level, multiscale details. This detail is in the form of color 
information that gets evolved through the skip layers, and hence, the 
color difference can be easily grasped by the network. The global 
generation is taken care of by this network as they are directly involved 

in the calculation of loss values. The WSFN-created synthesized image 
makes an effort to produce every pixel backward.

For the given original input image, their edge and line drawing 
combined map is generated by the generator as OutputWSFN . To 
generate the OutputWSFN  the required inputs are the damaged image 
in RGB format, RGBImage , the corresponding line drawing, 

LineImage and edge map, EdgeImage . Let M be the binary mask which 
is a precondition that mentions 1 for missing regions and 0 for known 
regions. To focus on the region to be restored, M is applied to the 
inputs as mentioned in Equations 1–3:

 ( )1MaskedRGB RGBImage Image M M= Θ − +  (1)

 ( )E 1dgemask EdgeImage Image M M= Θ − +  (2)

 ( )1Linemask LineImage Image M M= Θ − +  (3)

Thus, WSFN predicts the line and edge combined image as shown 
in Equation 4

 

,1(
, , )

Output MaskedRGB

Edgemask Linemask

WSFN generator Image
Image Image M

=

 (4)

For the identification of OutputWSFN  to be  real or fake, 
LinepredImage  and EdgepredImage  are given as input to the 

discriminator. Thus, the network training includes the feature 
matching loss that is very much similar to the perceptual loss and that 
is defined under section 4.3.4 as this perceptual loss is modified to 
include the feature matching as well as the style loss.

FIGURE 3

Mural paintings and their corresponding line drawing and edge map in the dataset.
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4.3.2 Semantic color network
The focus here is on adjusting the pixel values in the missing 

region by the knowledge gained about the entire image to determine 
what type of pixel needs to be  filled in to make the picture look 
realistic. This sole goal of the network is not to modify the input 
image. The residual network that calculates the WSFN’s residual values 
is essentially this one.

This residual block aims to construct the image painting task 
with user guidance. It is mentioned as user guidance because the 
edge map and line drawing have been fed inside the mask as 
conditional channels. This information from WSFN is expected to 
traverse across the network, irrespective of how deep the neural 
network goes. Different channel information should not 

be combined into a single layer as the network progresses. To address 
this, a combined approach of gated convolution and residual 
structure is taken in this study. Gated convolution can learn the 
features separately for each channel and for every spatial location 
without them getting combined into a single mask image as the 
network progresses. By doing this, it is ensured that the features are 
chosen in accordance with the semantic data of each channel. This 
makes sure that feature learning is not limited to background 
and mask.

Therefore, SCN incorporates this gated convolution (Nazeri et al., 
2019). In traditional convolution, the entire image is treated uniformly, 
which can lead to a blending of features that might not be relevant or 
appropriate for the specific context. Gated convolution, however, 

FIGURE 4

Proposed system architecture.
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introduces learnable soft masks that adaptively control the influence 
of different regions of the image. These soft masks are learned during 
training and are applied dynamically, which means the network can 
learn to suppress or enhance certain features based on their relevance 
to the inpainting task. This ensures that the colors and textures used 
to fill in missing areas are more consistent with the surrounding 
context. Gated convolution performs a form of feature selection at 
each spatial location. By applying a gate, it can decide which features 
to pass through and which to suppress. This is crucial for inpainting, 
where the target is to reconstruct the missing part in a way that is 
coherent with the remaining parts of the image. For instance, if a 
particular color is dominant in the surrounding area, the gate can 
allow features related to that color to pass through, while suppressing 
features that introduce conflicting colors.

In standard convolutional networks, deeper layers may combine 
features in a way that results in the loss of specific information, such 
as color, resulting in mismatched colors in the inpainted area. Gated 
convolution prevents this by processing features from different 
channels and spatial locations independently before selective 
combination, preserving accurate color information.

Context-aware inpainting is also incorporated by gated 
convolution. It enhances the ability of the network to understand and 
incorporate context. This is important because the correct color for a 
missing region often depends on the surrounding content. Gated 
convolution allows focusing on the relevant context when deciding 
what color to use in the inpainted area. By dynamically adjusting the 
contribution of different features based on the context, gated 
convolution reduces the likelihood of introducing colors that clash 
with the existing image, thereby reducing color bias.

Hence, a gated convolution network is used in SCN, as mentioned 
in Equations 5–7.

 , 1.x ysoftgate conv Image= ΣΣ  (5)

 , 2.x yfeature conv Image= ΣΣ  (6)

 ( ) ( ), , ,x y x y x ygatedconv feature softgateφ σ= Θ  (7)

In Equation 5, ,x ysoftgate  represents the soft gating mechanism, 
where a gating function is learned at every pixel (x, y). Here, the image 
is passed through the first convolution layer, 1conv which generates a 
mask that acts like a gate. The sum of all pixels is computed to produce 
the soft gate values. This soft gate controls how much information at 
each pixel should pass through. Equation 6 computes the features at 
each pixel (x, y) by applying another convolution operation, 2conv  to 
the image. These features represent the details the network learns 
about the texture or color at each pixel in the image. Equation 7 is the 
final gated convolution equation, where ϕ is the activation function 
applied to the extracted features, and σ is the sigmoid activation 
applied to the soft gate. Θ denotes element-wise multiplication. The 
multiplication of the soft gate and the features allows the network to 
decide which features should be used at each pixel based on the gating 
mechanism. This ensures that the reconstruction of texture is guided 
by the knowledge gained about the entire image while respecting the 
semantic boundaries defined by the structural information.

Thus, to achieve the task of semantic color filling, SCN takes the 
concatenation of the WSFN output image along with the masked 
input. SCN is currently completely aware of the structural pattern of 
the mural, as this has been well restored using the WSFN network. 
So, in SCN, it is expected to just modify the missing regions without 
altering the entire image. This modification can be done with the 
assistance of the neighboring pixel by performing processing at the 
space and time domain level. However, when the missing area is 
large, only the local pixel computation cannot yield a better color, and 
hence, the computation is required at the non-local region 
considering the external connection to the hole. Hence special 
attention is needed in terms of time and space. Thus, this SCN 
network includes an attention mechanism that can operate in a 
non-local way by extending the receptive field to the global, as 
mentioned in Equation 8.

 ( ) ( ) ( ),
1

j

i i j jmissing f x x g x
Norm x ∇

= ∑
 

(8)

where imissing  represents the output value for the missing region at 
position i. This value is computed by aggregating information from 
other positions j in the image. ( )Norm x  is a normalization factor that 
assures the attention weights sum to 1, making the process stable and 
preventing the output from being skewed by the magnitude of the 
attention scores. jΣ∇  is the summation over all possible positions j 
in the image. Essentially, it means that the network considers the 
entire image when determining the value for the missing pixel at 
position i. The function, ( ),i jf x x calculates the similarity between 
the pixels at position i and j. The similarity score helps determine how 
much influence the pixel at position j should have on the missing pixel 
at i. The function, ( )jg x  represents the pixel value at position j. It is 
weighted by the similarity score ( ),i jf x x , and then these weighted 
values are summed to produce the output for the missing region. The 
similarity function f is Gaussian defined, as shown in Equation 9.
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x
i jf x x e∂ ∅
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(9)

where T
ix is the transpose of the feature vector at position i and 

jx∅ is 
the transformation of the feature vector at position j.

4.3.3 Diffusion-induced mixture distribution 
discriminator

The procedure to acquire the structural reconstruction and fitting 
with appropriate colors is taken into account with the help of the 
WSFN and SCN. However, the quantity of training samples is yet 
another problem with this data. Noise is introduced as input to the 
discriminator to increase the data accuracy and heterogeneity of the 
generator network. Here, the diffusion process that blends the noise is 
applied to both the original image set and the images produced by the 
WSFN. The performance of generator can be improved by using the 
transmitted gradients from the discriminator to update the ability of 
diffusion process to compute the derivative of the output with respect 
to the input.

The initial step in GAN training aims to execute structural rebuilding, 
while the second stage focuses on the suitability of the hues. As the final 
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goal is to simply fill up the holes accurately, regardless of their shape, size, 
or color, the same discriminator is used in common for both generators. 
Spectral normalization, convolution, and leaky ReLU are all components 
of the objective function of patchGAN (Ciortan et al., 2021), which also 
includes the assignment of high probabilities for the real data and low 
probability for produced data. Therefore, even with the diffusion-infused 
PatchGAN, the core goal of discriminator of distinguishing between 
actual and fraudulent images remains the same.

ALGORITHM 1 . Algorithm for proposed inpainting 
process

Input: Original Input Image(Imagetruth), Masked Image( )ImagemaskedgRGB , 

ImageEdge, Imageline
Output: Reconstructed Image

Step 1: for all images in the training set

Step 2: Apply Canny Edge Detector and DexiNed to obtain ImageEdge, Imageline
Step 3: Compute Imagelinepred  and ImageEdgepred

( ) ( )1Image Image M MmaskedRGB RGB Θ − +=
( )1Image Image M MEdgepred Edge= Θ − +

( )1Image Image M Mlineepred line= Θ − +

Step 4: Obtain the structural image from  WSFNOutput image
Step 5: Combine manual mask image and  WSFNOutput image  and feed it into 

SCN

Step 6: Compute gated mask

., 1softgate conv Imagex y ΣΣ=

., 2feature conv Imagex y ΣΣ=

( )(, , ) ,gatedconv softgate featurex y x y x yφ σΘ=
Step 7: Compute loss and converge

4.3.4 Loss functions
Every GAN network, as is well known, employs two different 

kinds of losses: one for the generator and the other for the 
discriminator. The performance of the discriminator in judging the 
image may be  determined using the discriminator loss, and the 
generator loss can be used to determine how closely the generated 
image resembles the truth image.

In the proposed network, the generator loss generatorloss  includes 
the pixelwise L1 construction loss and differential histogram loss 
(Risser et al., 2017). The perceptual loss is not included because the 
PatchGAN already gives the patch-level information. Thus, the 
generator loss is obtained using the equation mentioned in Equation 10.

 1generator l patch histoloss loss loss loss= + +  (10)

L1 loss expressed as 1lloss  is the difference obtained between the 
original image and the predicted image. This loss function determines 
how far is the inpainted result from the ground truth. Hence, the lower 
this loss value the distance between the ground and the prediction is 
less, and hence, the predicted value is closer to the original one. This is 
computed as mean absolute error (MAE) as formulated in Equation 11.

 
( )21

1

n
p

l i i
i

loss y y
=

= −∑
 

(11)

The patch loss produced by the PatchGAN performs a good job 
of describing the style and substance of the image under 

consideration, but it does have some instability (Gatys et al., 2016); 
thus, a new coherent-based histogram loss is added to deal with the 
issue of color bias. The results in terms of texture mapping were just 
average with the patchGAN loss. The normalization coloring issue 
can be solved by combining the L1 loss with the patchGAN loss. The 
network, however, is unable to fill this as it is unsure of the color that 
each pixel should represent. This L1 loss and patchGAN loss are not 
combined because the issue of color biasing is the one that is to 
be addressed. So, a brand-new loss based on the coherence histogram 
is presented.

Histogram loss addresses this issue by focusing on the distribution 
of colors in the image rather than just the pixelwise differences. A 
histogram shows pixel intensity distribution for each color channel. 
Comparing histograms of generated and non-damaged regions 
ensures similar color distribution, reducing discrepancies and 
maintaining color consistency in reconstructed areas. Unlike pixelwise 
loss functions that only consider local pixel differences, histogram loss 
takes into account the global distribution of colors. This helps in 
capturing long-range dependencies and ensures that color consistency 
is maintained across the entire image.

In this method, it is assumed that the missing region of the input 
image will share the properties with other parts of the image. So that 
the missing region can be filled with some other parts of the image 
that closely resembles the damaged region. Let I be the image and 

missI  be the missing region. Some new data are to be supplied to missI  
so that the output, I



 is obtained. This I


 will currently have much global 
information, and it tries to optimize the color distribution range. 
Hence, a solution that maximizes the objective function formulated 
in Equation 12 is required.
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(12)

For each pixel p in the region to be filled say, filldata, the method 
looks for the optimal patch q from the undamaged parts of the image, 

\missI data that can be  used to fill the missing region. The inner 
summation calculates the weighted histogram loss for each layer l 
between the histograms of I



 and qI . The weights lw  reflect the 
similarity between patches. They ensure that patches with more 
similar color distributions are given more importance during the 
optimization process.

As a result, the histogram is utilized as the basis for the coherence 
optimization, which uses the expectation and maximization 
algorithm. At each iteration, the optimal patch for the complete 
histogram is updated for each output image and its accompanying 
histogram, to maximize color similarity, making the model capable 
of replicating various pigments and handling the diversity in mural 
coloring. Here, the weights only reflect how similar one patch is to 
the others. These losses that were indicated are not applied to every 
training period. The histogram loss is not applicable to the WSFN 
network because it attempts to maximize color similitude. The 
patchGAN loss, L1 loss, and coherence histogram loss are only 
applied during SCN training. SCN seeks to compute loss in the 
omitted region.
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5 Experiments and results

5.1 Training setup

The output of the SCN is affected by the input of the WSFN 
because the SCN output is dependent on the output of the 
WSFN. Inputting an image that is far from the original image to 
SCN will yield severely inaccurate inpainting, so it is important to 
feed in the right image of WSFN to SCN. Considering this point, 
the SCN is not required to start the training when the WSFN starts. 
Hence, here we adopt a two-stage training: at the first stage, the 
WSFN starts training, and after 40 epochs of training, the WSFN 
and DIMD come to converge, and the WSFN generates a good 
structural image with the integration of line and edge maps. At this 
stage, the SCN also takes part in the training process, and the 
discriminator can perform its task easily; hence, the convergence of 
the SCN happens quickly.

This proposed method is implemented using PyTorch and 
CUDA 10.1, and the network is trained with 512*512 images with 
a batch size of 8. The optimization is done using the Adam 
optimizer with β1 = 0.9 and β2 = 0.999 for a total of 60 epochs on 
four NVIDIA GTX 2080 GPUs. WSFN and SCN are trained 
separately with a different learning rate until the losses plateau. 
Then, the training rate is reduced, and the discriminator is set to 
0.00001 and trained until convergence. The epoch and batch size 
were set to 40.8 in the first training stage and 20.8 in the second 
training stage.

To mitigate the risk of overfitting, several measures were taken 
during the training process:

 • Data augmentation: As mentioned, the dataset is expanded 
through augmentation, which helped introduce more variability 
and prevent the model from memorizing specific patterns in the 
limited dataset.

 • Regularization techniques: Dropout layers are employed in the 
network, thereby reducing over-reliance on specific neurons and 
improving the model’s ability to generalize.

 • Validation split: Train–validation–test split of 80:10:10 is 
done to carefully monitor the performance of the model on 
unseen validation data during training. This allows keeping 
track of how well the model was generalizing beyond the 
training set.

 • Reduced complexity: To avoid overfitting on a smaller dataset, a 
balance between model complexity and training data size was 
maintained. This helped ensure that the model could learn 
without becoming too complex to generalize effectively.

5.2 State-of-the-art comparison

Here, four cutting-edge methods (Nazeri et al., 2019; Yu et al., 
2019; Li et al., 2020; Li et al., 2022)—are compared qualitatively and 
quantitatively with some of the best-performing image inpainting 
techniques. Qualitative analysis helps us comprehend the benefits 
and drawbacks of each strategy by providing a visual representation 
of the inpainting results of various approaches. A rough 
understanding of the outcomes about the metrics is provided by 
quantitative analysis. A study on ablation is also conducted to 
determine how well the suggested strategy works. The integrated 
mural dataset is used throughout the entire experiment.

Training DeepFillv2 (Yu et al., 2019), Edge Connect (Nazeri 
et al., 2019), RFR (Li et al., 2020), and MuralNet (Li et al., 2022) 
allows for comparison with the four cutting-edge techniques. The 
Mural-built data to train MuralNet, DeepFillv2, and Edge Connect 
to conduct a fair comparison. Despite having various approaches, 
these techniques share many characteristics with the suggested 
methodology in terms of architecture, structural guidance, and 
attention mechanism. The comparison based on dimensions is 
shown in Table 1.

5.3 Qualitative comparison

The qualitative analysis is done using three images of the dataset, 
and the results are shown in Figures  5–7. The masks are done 
manually, and the structure obtained using the WSFN is used for 
performing the inpainting. As seen in these figures, the structural 
properties are well restored in the proposed approach, especially the 
reconstruction of eyes in Figures 6, 7. This is the major variation 
observed between the proposed approach and the other approaches. 
Compared with the state-of-the-art, poor performance is observed 
with the RFR method. This may be due to the absence of line guidance 
and attention mechanisms.

As far as DeepfillV2 is concerned, the images generated suffered 
from less color bias as compared to Edge Connect. The performance 
of Edge Connect in terms of structural reconstruction is comparably 
good; however, it suffers from a color bias problem. In Figures 6, 7, 
MuralNet, EdgeConnect, and the proposed method were able to 
reconstruct the eyes almost identically; however, the color bias in 
EdgeConnect was higher. MuralNet coloring was comparable to 
that of DeepFill and EdgeConnect. RFA-Net shows good 
performance in texture reconstruction but struggles in 
reconstructing the structures. Again, this may be due to the lack of 
edge and line guided mechanisms. The proposed method 

TABLE 1 Comparison of inpainting approaches with various dimensions such as multistage, line guided, edge guided, and attention mechanism.

Method Multi-stage Line guided Attention mechanism Edge guided

DeepFillv2 (Yu et al., 2019) Yes Yes Yes No

Edge Connect (Nazeri et al., 2019) No Yes No Yes

RFR (Li et al., 2020) No No Yes No

RFA-Net (Chen et al., 2023) Yes No Yes No

MuralNet (Li et al., 2022) Yes Yes Yes No

Proposed Yes Yes Yes Yes
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outperformed, as the coloring shows the texture associated as well. 
Thus, in comparison with the state of the art, the proposed method 
achieves good structure, texture, and color. Training DeepFillv2 (Yu 
et al., 2019), RFR (Li et  al., 2020), Edge Connect (Nazeri et  al., 
2019), RFA-Net (Chen et al., 2023), and MuralNet (Li et al., 2022) 
allows for comparison with the five cutting-edge techniques. The 
mural-built data are used to train MuralNet, DeepFillv2, and Edge 
Connect to conduct a fair comparison. Despite having various 
approaches, these techniques share many characteristics with the 
suggested methodology in terms of architecture, structural 
guidance, and attention mechanism.

To visually evaluate the performance of the model, a real-world 
testing was conducted. The test involved 30 volunteers as 
participants. Ten inpainted mural images are chosen for evaluation. 
The participants were instructed to evaluate the mural outputs 
from the proposed and existing methods, assigning a score out of 
five for each factor, such as structural consistency, color accuracy, 
texture coherence, and visual realism. Figure  8 shows the 
comparison of the average scores of the proposed and existing 
methods obtained from the real-world visual test. It is observed 

that the proposed method performs better by achieving the highest 
score than other methods.

5.4 Quantitative comparison

To comprehend the pixel difference, structural similarity, image 
quality, and image inpainting that is more similar to human 
restoration, a quantitative evaluation is carried out. The evaluation 
metrics MSE (Allen, 1971), SSIM (Wang et al., 2004), PSNR (Hore and 
Ziou, 2010), and LPIPS (Zhang et al., 2018) can be used to represent 
them. For the evaluation of these measures, 63 images from the 
dataset are taken into account.

As shown in Table 2, the performance of the proposed system is 
better in terms of SSIM, MSE, PSNR, and LPIPS. The inpainting effect 
was fairly good for different masks as well. Irrespective of the type of 
mask ratio, the PSNR and SSIM values were better. For the PSNR 
values, the MuralNet and EdgeConnect were very close, and for the 
SSIM values, DeepfillV2 and RFA-Net were close to each other. 
Compared with different mask ratios, both at the PSNR and SSIM, the 

FIGURE 5

Qualitative analysis of the image from the captured mural of Sarabeswarar temple, Thirubuvanam, which is marked with a free-form larger hole, and 
the inpainting aims in reconstructing the dhoti to its exact form. (1) Yu et al. (2019), (2) Jia et al. (2023), (3) Nazeri et al. (2019), (4) Nazeri et al. (2019), (5) 
Li et al. (2022).
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FIGURE 6

Qualitative analysis of the image from the captured mural of Kapardeeswarar temple in Thiruvalanchuzhi, which is marked with a free form larger and 
multiple holes. The inpainting aims in reconstructing the eyes and legs. The reconstruction of the eyes of the proposed is better than any other 
reconstruction of the method. (1) Yu et al. (2019), (2) Jia et al. (2023), (3) Nazeri et al. (2019), (4) Nazeri et al. (2019), (5) Li et al. (2022).

FIGURE 7

Qualitative analysis of the mural taken from Kanchipuram Kailasanathar temple, marked with a free-form larger hole with inpainting results for both 
proposed and existing approaches. The inpainted regions are marked in red and are zoomed out for a detailed view (1) Yu et al. (2019), (2) Jia et al. 
(2023), (3) Nazeri et al. (2019), (4) Nazeri et al. (2019), (5) Li et al. (2022).
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RFR network behaves poorly due to a lack of structural knowledge. In 
addition, the accuracy comparison of the proposed model with the 
existing models is shown in Figure 9.

6 Discussion

In this study, we have proposed an architecture that considers the 
problem of color biasing and structure reconstruction for the murals. 
Given a damaged mural, we  formulated the problem of the 
reconstruction as structure reconstruction and semantic color 
correction and used GAN-based models to minimize the histogram 
estimation. Experimental analysis in terms of qualitative and 
quantitative results shows that our approach can generate very good 
inpainting results, even for the intricate details of the image. 
Specifically, the use of combined line and edge drawings has enhanced 
the structural details of the input image, resulting in a better 

reconstruction. The comparative analysis also shows the superiority 
of our approach to the mural damages and, hence, a competitive 
inpainting performance with state-of-the-art models.

Though the experimentations yield impressive results, it suffers 
from a few limitations. The damaged area is manually masked and 
given as input. Automatic damage detection is not done here. To do 
so, it involves the classification and identification of various types of 
damages, such as cracks, flakes, scratches, and discoloration. This 
requires a separate network to detect and classify the damages. 
Integrating this network will elevate the computational complexity of 
the proposed model. Then, the model struggles to inpaint multiple 
damages simultaneously as shown in Figure 6, where trying to inpaint 
the eyes, hand, and foot portions simultaneously does not provide 
good restoration results. Only the eye portion is restored, whereas the 
others are not perfect. This may be due to the following reasons. In 
WSFN, the skip connections help preserve low-level details, but 
combining information from multiple damaged regions can become 
challenging, especially if regions overlap or are close together. In SCN, 
the contextual information provided by gated convolution is 
insufficient to address the global context when multiple regions are 
involved. The attention mechanism aims to aggregate information 
globally, but if multiple damaged areas require different types of 
contextual information, the attention mechanism might struggle to 
balance these needs effectively. To address this issue, the skip 
connections in WSFN can be  enhanced with multi-level skip 
connections or contextual skip connections and context-aware 
techniques such as feature pyramid networks can be used in SCN, thus 
providing scope for further research.

6.1 Ablation study

As several methodologies are used, the presented results are 
comparatively strong when compared to the state of the art. The 
importance of coherent histogram loss, WSFN with edge map and 
line drawing and SCN, the attention matrix, and diffusion inside the 
PatchGAN modules are analyzed by removing them one at a time. 
This is done to assess their inclusion and their inpainting effect to 
demonstrate the effectiveness of the suggested methodology. As 
clearly shown in Figure 10 (i), the inclusion of histogram loss has 
significantly improved the color biasing that is observed about the 
reconstruction without the histogram loss, and a similar observation 
is made with the inclusion of the attention layer. The attention layer 
in the SCN network thus ensured the semantic color reconstruction 
as viewed in Figure 10 (ii) the definitive structure defined with the 
inclusion of WSFN ensures that structural variations are made 
about the damaged image. The importance of combining the edge 

FIGURE 8

Comparison of evaluation scores of visual test.

TABLE 2 Quantitative results for the mural inpainting.

Method SSIM MSE PSNR LPIPS

DeepFillV2 (Yu et al., 2019) 0.7662 0.0063 22.6394 0.1529

EdgeConnect (Nazeri et al., 2019) 0.8258 0.0048 25.1153 0.1274

RFR (Jia et al., 2023) 0.6724 0.0179 21.7935 0.2738

RFA-Net (Chen et al., 2023) 0.7851 0.0057 23.4522 0.1462

MuralNet (Li et al., 2022) 0.8349 0.0043 25.6361 0.1085

Proposed 0.8853 0.0021 29.8826 0.0426

FIGURE 9

Accuracy comparison of proposed work.
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map and line drawing along with the input image is visually clear 
from Figure 10. From Figure 10 (iii) it is evident that the original 
image provides a global context for the missing region, the line 
drawing captures fine structural details, ensuring that intricate lines 
or shapes within the mural are reconstructed and the edge map 
helps preserve sharp transitions and edges, particularly around 
damaged areas, ensuring smoother boundary recovery. Without 
these components, a generator relying solely on convolutional layers 
would lack the explicit structural and edge information necessary 
to reconstruct large missing regions accurately, leading to less 
precise results, especially in complex mural images with high 
variability in style, texture, and color. In essence, the approach 
developed aimed to address the problems with color biasing and 
plug the gaps with structural knowledge. This indicates 
unequivocally how the addition of these modules to the system has 
facilitated structural inpainting.

7 Conclusion

This work proposed a structure-guided inpainting method for 
handling larger missing regions in the murals. A novel pipeline is built 
as a multistage network where specific needs are satisfied with the 
inclusion of various modules. The main part of the generator aims to 

reconstruct the exact structure of the damaged image, which, when 
painted semantically, can yield good results. The combination of the 
line drawing and edge map by the WSFN network reconstructed the 
structure by repairing the missing regions in the line drawing and 
edge map. The SCN network, guided by the coherency histogram loss, 
can resolve the issues with color bias. The diffusion inside the 
PatchGAN and coherency histogram loss were used for the first time 
in the image inpainting of murals. Moreover, mural images from 
several temples in India were collected, and a database was built. A 
quantitative and qualitative assessment of the proposed approach 
shows the superiority of this approach over state-of-the-art methods. 
The efficacy of each of the concepts in the proposed system has been 
well-studied using ablation experimentation. Though the results are 
impressive compared to the state of the art, the inpainting results can 
be further improved. To enhance the inpainting results in multiple 
larger regions, stable diffusion and relative approaches need to 
be fine-tuned.

The presented work uses manual selection of damaged regions 
for inpainting. The future work will focus on the automatic 
detection of damaged regions to inpaint. In addition, it is planned 
to widely extend the dataset with murals from various regions and 
historical periods to increase the generalizability of the model. It is 
devised to investigate how prompt-based techniques can 
be adapted to this mural restoration task in the near future. This 

FIGURE 10

Ablation study of (i) concurrency histogram loss; (ii) special attention mechanism; (iii) edge map and line drawing.

https://doi.org/10.3389/frai.2024.1453847
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Sumathi and Uma Devi 10.3389/frai.2024.1453847

Frontiers in Artificial Intelligence 15 frontiersin.org

could involve incorporating textual descriptions or historical 
information about the murals to guide the inpainting process, 
thereby improving the accuracy and fidelity of the restorations. 
Recent advancements in this technique will be explored to assess 
its applicability for enhancing the overall restoration quality of 
the research.

This research can be  enhanced further by integrating stable 
diffusion techniques into the generator networks and improvising the 
loss functions. The coherence-based histogram loss can be extended 
by incorporating content awareness by computing histograms not 
only based on color distribution but also on the content features 
extracted from deeper layers of a pre-trained network. This leads to 
better handling of variations in pigments and mural styles. 
Furthermore, the patchGAN loss can be  modified to attention-
enhanced PatchGAN Loss, conditioning the discriminator to give 
higher priority to areas where fine details, such as edges or key design 
elements, are more important. A stable diffusion process can 
be integrated with the SCN to iteratively refine the texture and color 
consistency by denoising the generated image toward more realistic, 
contextually accurate outputs.
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