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The digitization of healthcare records has revolutionized medical research

and patient care, with electronic health records (EHRs) containing a wealth

of structured and unstructured data. Extracting valuable information from

unstructured clinical text presents a significant challenge, necessitating

automated tools for e�cient data mining. Natural language processing (NLP)

methods have been pivotal in this endeavor, aiming to extract crucial

clinical concepts embedded within free-form text. Our research addresses

the imperative for robust biomedical entity extraction, focusing specifically

on inflammatory bowel disease (IBD). Leveraging novel domain-specific pre-

training and entity-aware masking strategies with contrastive learning, we

fine-tune and adapt a general language model to be better adapted to

IBD-related information extraction scenarios. Our named entity recognition

(NER) tool streamlines the retrieval process, supporting annotation, correction,

and visualization functionalities. In summary, we developed a comprehensive

pipeline for clinical Dutch NER encompassing an e�cient domain adaptation

strategy with domain-aware masking and model fine-tuning enhancements,

and an end-to-end entity extraction tool, significantly advancing medical record

curation and clinical workflows.

KEYWORDS

entity-aware pre-training, named entity recognition, clinical NER tool, contrastive

learning, inflammatory bowel disease, languagemodeling, natural language processing,

information extraction

1 Introduction

The widespread adoption of electronic health records (EHRs), encompassing both

structured, coded data and unstructured clinical text, has become integral to research

in various clinical applications. Clinical reports, predominantly comprised of free-

form unstructured text alongside structured patient data, pose a challenge in efficiently

extracting valuable information. Automated tools for mining and extracting insights from

this diverse data not only enhance communication among healthcare professionals but

also contribute to improved patient care and a more thorough evaluation of healthcare

outcomes, aligning with established standards of care. Beyond enhancing digital healthcare

experiences, mining EHRs holds significant applications in advancing medical research.
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A pivotal challenge in leveraging EHRs is the extraction of

patient information embedded in the unstructured clinical text.

Vital patient data, including family history, adverse drug effects,

and social, behavioral, and environmental determinants of health,

are often exclusively documented in this format. Consequently,

significant efforts have been directed toward developing natural

language processing (NLP) methods and tools to extract crucial

clinical concepts from unstructured clinical text. For accurate

medical decision-making, clinicians must review extensive medical

documents covering therapeutic procedures, drug regimens,

clinical trials, cohort selection, and interpretative assessments.

However, manual review of unstructured clinical text is time and

energy-intensive. Access to medical-related entities within the text

enhances document readability and improves the effectiveness

of clinical experts, providing them with essential information to

identify key segments in a medical record.

The digitization of patient documents into EHRs has been

a transformative trend in healthcare institutes, facilitating data

management, patient history tracking, and research endeavors.

These EHRs, comprised of rich information collected from

patients, have attracted investments from insurance companies

and pharmaceutical industries seeking to extract valuable medical

information. Named entity recognition (NER) is a widely adopted

approach for extracting medical information from unstructured

clinical documents, with applications in pharmacovigilance, drug

and disease NER, and other medical domains. Advanced NER

approaches aim to automatically detect and classify medical entities

into corresponding categories, thereby structuring medical text and

enhancing the quality of medical services. The primary objective

of our research is to empower medical practitioners, clinicians,

nurses, and doctors with a highly accurate and efficient tool

for swiftly retrieving relevant information from clinical reports.

Clinical registries are valuable assets for hospitals. They contain

important longitudinal medical information on clinical outcomes,

allowing clinicians to improve their decision making and enabling

clinical research. The aim of our research is to build a proof-

of-concept system for biomedical entity extraction from clinical

reports written in natural language. This system is specifically

tailored to automatically extract various entity types related to

inflammatory bowel disease (IBD). IBD refers to a group of

chronic inflammatory conditions affecting the gastrointestinal

tract, primarily including Crohn’s disease and ulcerative colitis.

These conditions are characterized by symptoms such as abdominal

pain, diarrhea, weight loss, and fatigue. IBD is a complex disease

with both genetic and environmental factors contributing to its

pathogenesis. The variability in clinical presentation and the need

for personalized treatment plans make it a challenging domain

for clinical data mining, where automated extraction of relevant

medical entities and information is crucial for improving clinical

decision-making and patient outcomes. The choice of the IBD

domain is motivated by the availability of patient reports that

were already partially manually annotated with relevant named

entities and because of the use of the extracted data in several

past and ongoing clinical research projects. To build the proof-of-

concept system we leverage domain and entity-aware pre-training

strategies and fine-tune a general language model (LM) to cater to

the nuances of the clinical domain. This adaptation ensures that

the model excels in extracting relevant information related to the

IBD domain.

Access to extracted medical entities within the text improves

document readability, subsequently increasing the effectiveness

of clinical experts. By providing essential information, our

approach aids medical professionals in identifying key segments

within a medical record efficiently. There is a growing interest

in crafting specialized language models like BioBERT (Lee et al.,

2020) or ClinicalBERT (Huang et al., 2019), tapping into the

extensive medical literature. Yet, pre-training is costly, and

conventional masked language models with random masking may

not sufficiently adapt to specific domains. By directing the model to

prioritize key domain-specific entities, we enhance its knowledge

for better task performance. Additionally, employing contrastive

learning helps create more distinct token representations during

pre-training, yielding more transferable representations for

improved performance during fine-tuning for the end task.

To operationalize our research, we have developed a NER tool

(see Figure 1). This tool not only predicts entities in unseen new

clinical notes but also offers options for annotating new notes or

correcting existing annotations. Additionally, the tool provides a

visualization of predictions alongside true annotations, displaying

clinical notes with highlighted entities to improve document

readability. Overall, our NER tool is designed to streamline the

information retrieval process for medical practitioners, fostering a

balance of accuracy and efficiency in clinical workflows.

In this paper, we make the following contributions:

1. Develop a comprehensive pipeline for clinical Dutch NER

in the inflammatory bowel disease (IBD) domain, covering

annotation, pre-training, fine-tuning, and the creation of an

end-to-end clinical Dutch NER tool.

2. Adapt a general Dutch language model to the IBD domain

through continued pre-training, introducing entity and domain-

aware masking strategies using contrastive learning during

continued pre-training to enhance task and domain adaptation.

3. Use iterative masking with pseudo-labels after an initial fine-

tuning to bring the pre-trained model closer to the end

task. Masking based on differences in vocabulary and context

provides robust representations for continued pre-training.

4. Improve model fine-tuning through additional information

fusion and consistency training, enhancing overall model

performance. We also experimented with a multitask setting to

simultaneously learn both sentence-level categories and NER

tags given an input sentence to deal with low-performing entity

classes.

5. An end-to-end entity extraction pipeline tool that enhances

medical record curation, merging annotation, and prediction

capabilities by integrating the NER model functionalities into

a single platform marks a significant step forward compared to

existing solutions.

2 Related work

Named entity recognition (NER), which involves extracting and

categorizing entities from text, is a fundamental task in natural
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FIGURE 1

A simplified output of the clinical entity extraction pipeline. A preprocessed clinical note is used as input for our in-domain model. The latter finds the

extracted entities, and those are highlighted in the NER tool, associating one color per entity. The practitioner is able to load, edit, and save the

annotations that later on can be reused as (pseudo-)labeled data.

language processing, pivotal across diverse domains like medical

coding, financial analysis (Francis et al., 2019), and legal document

parsing. Typically, addressing specific NER challenges for distinct

domain-specific entity types necessitates custom model creation.

Over the past 5 years, the conventional approach to building such

models has relied on utilizing transformer encoders pre-trained

via self-supervised learning to fulfill masked language modeling

(MLM) objectives, exemplified by models like those in the BERT

family (Devlin et al., 2019; Huang et al., 2019; Lee et al., 2020).

Subsequently, these foundational models undergo supervised fine-

tuning on human-annotated data, employing various techniques

for supervised NER tasks. These techniques can be classified based

on their formulation of the task, spanning sequence labeling (Chiu

and Nichols, 2015; Katiyar and Cardie, 2018), parsing (Yu

et al., 2020), span classification (Fu et al., 2021), sequence-to-

sequence approaches (Yan et al., 2021), and machine reading

comprehension (Xue et al., 2020). In our work, we focus on the

clinical entity extraction task tailored to the IBD domain andmodel

it as a sequence labeling problem. We additionally inject section

title information from the clinical note into the NER model to

additionally infuse structured information into the model thereby

demonstrating the importance of augmenting the context in which

certain entities occur.

Recent studies [BioBERT (Lee et al., 2020), TAPT (Gururangan

et al., 2020), and ClinicalBERT (Huang et al., 2019)] have

demonstrated the efficacy of further adapting a general pre-

trained model through continued pre-training on a more relevant

set of downstream tasks. Task adaptive pre-training (TAPT)

involves pre-training on the specific end-task and dataset itself,

leveraging unsupervised objectives. This method enhances model

performance for the target task while being computationally

efficient (Francis and Moens, 2022a,b; Gururangan et al., 2020).

Although pre-training learns representations for all words using

self-supervised tasks, not all tokens are equally important for

downstream fine-tuning tasks (Zhou et al., 2022b; Pergola et al.,

2021).Many pre-trained words remain unused in fine-tuning, while

crucial words for the task may lack proper representation due to

limited labeled data.

Masking plays a pivotal role in self-supervised learning (SSL),

where models strive to reconstruct hidden portions of data based
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on contextual cues. Its impact has been profound across various

domains, including language (Devlin et al., 2019), vision (Li et al.,

2021), and speech (Hsu et al., 2021), leading to breakthroughs

in performance on diverse tasks. These transformer-based models

typically pre-trained through self-supervised masked language

model [MLM (Devlin et al., 2019)] objectives, predict randomly

masked subsets of input tokens. Traditional approaches, such as

static masking in BERT, have been extended by dynamic and

adaptive masking strategies that tailor masking patterns based

on context or task-specific requirements. Recent studies have

explored entity-aware masking, where knowledge of semantic roles

or external ontologies guides the selection of masked entities (Zhou

et al., 2022b; Pergola et al., 2021), mask-guided BERT for few-

shot text classification (Liao et al., 2024) and masking network

parameters (Zheng et al., 2023). Other research directions include

adversarial masking techniques, which create challenging training

examples by masking tokens that maximize model uncertainty,

thereby improving downstream performance. While previous

studies have focused on the quantity of masked data and mostly

resort to random masking or span/phrase masking approaches,

the decision of what to mask to adapt a model to the specific

task domain integrating contrastive learning remains understudied

in SSL, although there have been works to integrate external

knowledge (Sun et al., 2020).

In clinical NLP tasks, which often revolve around entities such

as clinical named entity recognition, clinical negation extraction,

and clinical relation discovery, existing masking strategies during

pre-training have not adequately focused on clinical entities. Our

paper uses a methodology to produce a model specifically focused

on clinical entities. We continue pre-training a Dutch model on

an IBD clinical corpus, along with a novel entity-centric masking

strategy with contrastive learning to integrate domain knowledge

into the learning process. Contrastive learning has become a

cornerstone for representation learning across modalities, with

frameworks like SimCLR (Chen et al., 2020) and CLIP (Radford

et al., 2021) demonstrating the power of contrastive objectives in

pre-training. In NLP, contrastive methods have been adapted for

tasks such as sentence similarity, retrieval, and knowledge base

completion. Building on this foundation, our work introduces

a task-specific contrastive learning framework that incorporates

domain-specific entity masking to address domain imbalances by

dynamically adjusting the contrastive loss to emphasize even the

rare or under-represented entities. This approach demonstrates

superior generalization, especially in data-scarce scenarios. In this

paper, we argue that the key to obtaining more discriminative and

transferrable representations lies in learning contrastive token-level

representations using entity-specific masking during pre-training.

We evaluate our entity-centric masking strategy on the IBD entity

extraction task.

Techniques from NLP have shown significant promise in fields

like cancer research and genetic disease diagnosis. In oncology,

contrastive methods have been applied to histopathology image

analysis, aiding in tumor classification, and biomarker discovery

(Ciga et al., 2021). Similarly, in genomics, adaptive masking

has improved variant detection and gene-phenotype mapping

by leveraging domain-specific embeddings (Huang et al., 2019).

These cross-domain adaptations underscore the versatility of these

techniques in handling complex, high-dimensional data. Our

model’s adaptable design makes it well-suited to extend for such

applications, offering a framework that can seamlessly integrate

into domains requiring robust entity representation.

Clinical annotation tools are designed to organize and interpret

complex medical data, enhancing research and patient care

through efficient data categorization and insight extraction. Most

annotation tools focus only on manual annotation of existing

clinical records (for example, Klie et al., 2018, Islamaj et al., 2020,

and Han et al., 2021). Moreover, our primary focus relies not only

on the annotation phase but also on the prediction phase, as it may

enhance the annotation process if predictions are reliable. Tools

that provide machine learning support have different limitations,

such as compatibility with modern machine learning frameworks

(INCEpTION Klie et al., 2018) and being able to be used without

paying a costly license (Prodi.gy). Therefore, our tool is designed

so that the medical team can upload any pre-trained model for

the creation of pseudo-labels and, in the same pipeline, update

the entities being created so the expert can decide whether to use,

delete, or change them.

3 Methods

3.1 Entity extraction pipeline

The pipeline (see Figure 2) of the NER system for clinical

text is divided into six modules; among those, we have data

collection, processing, cleaning, note annotation, pre-training,

and training. Each step integrates tools and models to refine

the dataset and to improve the accuracy of NER tasks in a

healthcare context.

3.1.1 Data preprocessing
The original data store is in a FHIR (Fast Healthcare

Interoperability Resources) server located at UZ Leuven premises

(see Figure 2 block 1). FHIR is a standard for exchanging healthcare

information electronically.

The training data is annotated by domain experts in IBD

using the BRAT annotation tool (Stenetorp et al., 2012). The first

step consists of pre-processing the text to convert it from the

BRAT format to make it suitable for the transformer-based model.

Further, we cleaned and split the clinical text into sentences, and we

added special tokens at the beginning and end of the sentence. The

[CLS] token is used for indicating the beginning of the sentence,

[SEP] for indicating its end, and [PAD] tokens are added to make

the input length uniform. These special tokens vary according to

the models used. Our model employs the BIO tagging annotation

schema that identifies tokens in the text with specific tags: (i)

Beginning (B) of the entity, (ii) Inside (I) of the entity, and (iii)

Outside (O) entities. The “O” tag signifies text that is not relevant

to any entity category.

Since there is a substantial mismatch between the number of

records belonging to each entity category we use sampling strategies

like up-sampling.
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FIGURE 2

Overview of the clinical entity extraction pipeline. The workflow begins with Data Collection (1), where raw clinical notes and JSON-based HL7 FHIR

data are retrieved from a Google Healthcare API provided by UZ Leuven, followed by Data Processing (2) to prepare raw notes for downstream tasks.

Next, Data Cleaning (3) removes noise from clinical notes, enabling the Pre-training phase (4), where an in-domain model (5) is trained on unlabeled

data using contrastive learning with entity-aware masking. Annotated clinical notes are generated through a specialized Annotation Tool (6) to

produce labeled data. In the Training phase (7), labeled, pseudo-labeled, and fine-tuned data streams are integrated alongside pre-trained in-domain

models: 7a involves the usage of pseudo-labeled data, 7b incorporates the labeled data from the annotation tool, 7c involves the in-domain models,

and 7d focuses on information fusion. Finally, the pipeline finishes with the entity extraction model (8), where the fine-tuned model is deployed (9) to

extract entities from clinical text.

3.1.2 Domain-adaptive pre-training
Traditional open-domain language models (LM), like the

Transformer (Vaswani et al., 2017) and its variants (Devlin et al.,

2019; Lee et al., 2020; Liu et al., 2019), are further pre-trained

on in-domain corpora to extract domain knowledge and enhance

performance on domain-specific downstream applications.

To incorporate in-domain knowledge, we leverage masked-

language modeling (MLM) to continually pre-train the Dutch

LM (Delobelle et al., 2020). For an input sentence X = x1, x2, ...., xn,

we first tokenize the sentence using a pre-trained Dutch Roberta-

based tokenizer, generating n tokens. The MLM mask function

masks p% of the tokens, creating a mask vector to filter out

masked tokens. The value of p is usually set to 0.15 in a standard

MLM masking task (Devlin et al., 2019). The masked sequence

is fed into the model, denoted as a function F. We utilize

the cross-entropy (CE) loss function to compute the MLM loss

for sentence xi. Once the MLM loss curve converges, domain-

specific knowledge from unlabeled clinical notes and inflammatory

bowel disease (IBD) specific textbook data is encoded into the

model’s parameters. We save the model’s weights for downstream

applications, such as clinical NER on annotated datasets. Further,

we modify the simple MLM objective of the LM to include entity-

specific objective functions incorporating contrastive learning to

learn a better domain-adapted representation for downstream

clinical tasks. Entity-specific pre-training strategies are detailed in

Sections 3.2, 3.3.

3.1.3 Model fine-tuning
We fine-tune the above domain-adapted clinical Dutch LM

model to improve its ability to learn accurate representations of

target domain entities, particularly clinical entities. During fine-

tuning, we adjust the weights of the pre-trained model for the

initialization of the NER task. The embeddings generated by the

transformer-based model are used in a token-level classification

task, with a linear classification layer added atop the encoder stack

to generate a prediction matrix for the input sequence. This is

used to predict the NER tags based on clinical concepts present

in the training corpora of the target domain (annotated training

corpora of IBD clinical notes). Following the fine-tuning process,

we evaluate the effectiveness of the model in entity extraction by

assessing its performance on clinical entity extraction tasks. To

evaluate the NER capabilities of our fine-tuned model, we prepare

a separate dataset comprising annotated clinical notes unseen

during training. This evaluation dataset encompasses a diverse set

of examples, covering various clinical entities. Carefully curated,

this dataset enables a comprehensive assessment of the model’s

generalization across different scenarios.
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3.2 Entity MLM

To further enhance our initial pre-trained language model

configuration, we incorporate entity masking during task-specific

finetuning. This technique extends the pre-trained masked

language model (MLM) objective by refining it through additional

training on masked sentences (Zhou et al., 2022b). Here, only

entity/concept tokens are randomly masked as opposed to general

MLM masking. This involves inserting a label token both before

and after each entity token, treating these added labels as ordinary

context tokens during MLM. Consequently, predicting the masked

entity token becomes dependent not just on its surrounding context

but also on its designated label. Label tokens are inserted around the

masked concepts which act as a form of context labels to direct the

model prediction.

By injecting label information (see Figure 3) and fine-tuning the

label-enhanced data, the entity MLM (EMLM) leverages rich pre-

training knowledge to enhance entity diversity while significantly

reducing token-label misalignment during fine-tuning. This is

achieved by adding a label token before and after each entity token,

treating them as regular context tokens. The resulting modified

sequence is then used for further fine-tuning of the masked entity

model, ensuring that its prediction is influenced by the inserted

label tokens. Notably, the embeddings of label tokens are initialized

with those of tokens semantically related to the label names,

enhancing the semantic coherence of the modified input sequence

and reducing the difficulty of fine-tuning new sequences.

By injecting label information and finetuning the label-

enhanced data, the entity MLM (EMLM) leverages rich prior

pre-training knowledge into the model parameters. The resulting

modified sequence is then used for further finetuning of themasked

entity model, ensuring that its prediction is influenced by the

inserted label tokens. Notably, the embeddings of label tokens are

initialized with those of tokens semantically related to the label

names, enhancing the semantic coherence of the modified input

sequence and reducing the difficulty of finetuning new sequences.

In contrast to MLM, where any token can be randomly masked,

clinical entity masking specifically targets concept entity tokens

during finetuning. At the beginning of each finetuning epoch, entity

tokens within the input sentence with inserted labels, denoted as X,

are selectively masked at random according to a masking ratio η.

The entity maskingmodel is subsequently trained on this corrupted

sentence Xm to optimize the probabilities of masked entity tokens

and reconstruct the original input sequence X.

max
θ

logP(X | Xm; θ) ≈

n
∑

i=1

mi logP
(

xi | X
m; θ

)

(1)

where θ represents the parameters of EMLM, n is the number of

tokens in Xm, xi is the original token in X, mi = 1 if xi is masked

and otherwisemi = 0.

This results in the following negative log-likelihood loss.

LE-MLM = −

n
∑

i=1

log P(xi|X
m; θ) (2)

Here, the model learns to reconstruct the original sequence X

by predicting each masked entity token xi, given the surrounding

context Xm and label tokens. Through this fine-tuning process,

the model learns to effectively utilize both context and label

information for predicting masked entity tokens. In this phase,

rather than randomly choosing the tokens to be masked, we inform

the model of the relevant tokens to pay attention to and encourage

the model to refine its representations using the new surrounding

context which includes the label information as well.

The use of label tokens enriches the context surrounding

masked entities, making the predictions more robust and

contextually informed. Unlike generic MLM, which masks

random tokens, EMLM focuses on semantically meaningful tokens

(entities), helping the model to better capture domain-specific

relationships. By including labels, the model reduces ambiguity

and leverages prior semantic knowledge, improving fine-tuning

efficiency for downstream tasks.

3.3 Entity-aware contrastive learning

To further enhance and augment the representation learning

capability of entity masking models, contrastive learning is

employed to refine the representations of masked entity tokens by

aligning them with their unmasked counterparts while separating

them from representations of other tokens. We employ a dual-

model approach, consisting of a student model referred to as S and

a teacher model denoted as T, both initialized from the identical

pre-trained Dutch Roberta model architecture. During the training

process, we maintain the teacher model’s layers in a fixed state

and concentrate solely on refining the parameters of the student

model S.

Given an input sequence X = [x1, ..., xn], we incorporate

entity labels, masking the corresponding entities according to

the methodology outlined in the Section 3.2. Subsequently, this

masked sequence Xm, is fed into the student model, generating a

contextual representation hm = [hm1 , ..., h
m
n ]. Simultaneously, the

teacher model is fed the original sequence x as input, yielding a

representation h = [h1, ..., hn]. For each masked entity token xmi ,

its representation hmi (from the student) is encouraged to align

closely with the corresponding ground-truth token representation

hi (from the teacher). Themasked entity-aware contrastive learning

objective LCL is then defined as

LCL = −

n
∑

i=1

xmi log
exp

(

sim
(

hmi , hi
)

/τ
)

n
∑

j=1

exp
(

sim
(

hmi , hj
)

/τ
)

(3)

where xmi = 1 if xmi is a masked clinical entity token, otherwise

xmi = 0. τ is a temperature hyper-parameter that controls the

sensitivity of themodel to differences between positive and negative

pairs and is selected through hyperparameter tuning and sim(., .)

computes the cosine similarity. The contrastive loss promotes the

similarity between the representation of the reconstructed masked

token hmi and the representation of its ground truth token hi in the

latent representation space. Through the softmax normalization the

representation of the reconstructed masked token hmi will become

more distinct from the representations of other tokens hj.

The underlying concept is for the student to refine its

representation of a masked entity token to closely align with
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FIGURE 3

(A) Input modified by the pre-trained masked language model (MLM) where only the entity (Crohns) is masked. (B) Input modified for Entity-specific

Masking (EMLM) were <B-diag> labels referring to diagnosis are added before and after the entity token Crohns.

the “reference” representation provided by the teacher while

distancing itself from other tokens within the sequence. This

fosters the learning of token representations by the student that

are more discriminative and consequently, better suited to follow

an isotropic distribution (Su et al., 2022). In the context of

representation learning, having token representations that follow

an isotropic distribution implies that each token’s representation

is equally informative and contributes consistently to the overall

understanding of the input sequence (Ethayarajh, 2019). This

uniformity can facilitate more effective downstream tasks, as

the representations are well-distributed and capture the relevant

information in a balanced manner.

To drive this learning process, we employ EMLM and

contrastive learning (CL) objectives. EMLM ensures that the model

accurately predicts masked entities based on context and label

information. Contrastive Learning refines the token embeddings,

making them more robust, discriminative, and isotropically

distributed. Together, these objectives allow the model to leverage

entity-specific information effectively and produce representations

better suited for downstream tasks. The overall learning objective

Lpretrain for the student model during the continual pre-training

phase is expressed as:

Lpretrain = LCL + LE−MLM (4)

Upon completion of this learning phase, we proceed to fine-

tune the student model for downstream tasks.

3.4 Fine-tuning entity extraction model

During the fine-tuning step, we model entity extraction as a

sequence labeling task such that given an input sentence of n words

X = [x1, x2, ..., xn], the output is a sequence of named entity labels

Y = [y1, y2, ..., yn]. The named entity labels are in the form of

BIO labels assigned at the token level. For each xi, the goal is to

predict the corresponding label yi. The input sentence X is fed into

the encoder [pre-trained Dutch-based language model (Delobelle

et al., 2020)] to obtain the hidden representation. Further, this is

fed into a fully connected layer followed by a SoftMax layer. The

goal is to classify each token in X and assign it to a corresponding

label y ∈ C, where C is a predefined list of all label types in the IBD

domain (e.g., diagnosis, disease location, disease behavior, etc) in

BIO format. The loss function is the cross-entropy function with

yi as the true label for the i-th example and ŷi as the predicted

probability distribution over labels for the i-th example. For the

dataset withN examples, the overall objective function is computed

as the average of the losses over all examples.

LCE = −
1

N

N
∑

i=1

C
∑

j=1

yi,j log
(

ŷi,j
)

(5)

NER label predictions are dependent on predictions of

surrounding words. It has been shown that structured prediction

models can improve NER performance, such as conditional

random fields (CRF). A CRF is a type of probabilistic model

used for structured prediction tasks, such as sequence labeling or

segmentation. It models the conditional probability distribution

of label sequences given input observations. Here we simulate a

CRF in the neural network by an additional layer for modeling

NER label dependencies as weights. The following sections describe

how we enhance the fine-tuning performance of the entity

extraction model.

3.4.1 Pseudo label and Rdrop regularization
To further augment the training data used for training the

entity extraction model, we use semi-supervised learning (SSL)

and gather a portion of raw, unlabeled clinical reports and

construct them as text files denoted as T with N sentences. SSL

involves propagating label information from a small amount of

labeled data to a large number of unlabelled samples. We leverage

the continually pre-trained in-domain Dutch Roberta model

to generate predictions for the unlabelled clinical notes. These

generated predictions serve as pseudo-labels for the subsequent
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iteration of model training. Pseudo labels increase the training

dataset even though it can only be considered as silver standard data

without a human-in-the-loop setup.

In this approach, we also integrate Rdrop (Liang et al.,

2021) consistency training. By regulating multiple predictions

on varied views of the same data point, consistency training

reduces sensitivity to noisy labels. This enhances the model’s

robustness to dropout-induced perturbations, thereby mitigating

overfitting and promoting better generalization. Recent works

have applied consistency training on NER (Zhou et al., 2022a;

Francis and Moens, 2023b), including token-level and sequence-

level consistency methods. Dropout acts as a form of perturbation

φ at the representational level. By regularizing the model to be

invariant to different random dropouts, we encourage the model

to make predictions based on more diverse features rather than

overfitting certain spurious features.

Concretely, we pass the same sentence X through the encoder

twice. As a result of different stochastic dropouts in each

pass, we obtain two different sets of token representations for

X. Subsequently, the model outputs two different token-level

probability distributions P1(yi|xi) and P2(yi|xi) over the label

space Y . Subsequently, bidirectional KL divergence is employed

to compute the dropout-based consistency loss together with the

cross-entropy loss.

Lrdrop =
1

n

∑

xi∈X

1

2

[

KL
(

P1
(

yi | xi
)

‖P2
(

yi | xi
)

+KL
(

P2
(

yi | xi
)

‖P1
(

yi | xi
))]

(6)

These Rdrop based consistency loss is combined with the

supervised cross-entropy loss (LCE) to form the combined training

objective (Lfinetune) where α is the weight cofficient.

Lfinetune = LCE + αLrdrop (7)

3.4.2 Section information fusion
To enhance the contextual representation of the NER model,

we utilize the section labels obtained from the clinical note as

additional attributes to fuse into NER. Section headings can be seen

as structured data which are rich additional information to reduce

classification errors. We can inject these attribute representations

as additional information at multiple layers of the model (Francis

and Moens, 2023a). In each layer of the model, we see some form

of non-linear functions incorporated, using the general equation

g(f (x)) = g(Wx+b), where f (x) refers to a transformation function

of x, g is a non-linear activation function, W and b are weight

matrix and bias, respectively. We can represent the attributes as the

bias b to one of these locations by modifying them to accept section

title label information (s) as inputs, i.e., f (x, s).

Injecting attributes to the word embedding means that we

bias the probability of a word belonging to a particular class label

(based on the section label). We modify the Dutch model to add

extra attributes as input in addition to the tokens. Here we allow

the model to process additional information on the token level.

This is achieved by having an extra embedding layer for the extra

attribute. The full embedding vector representation of an input

token is then obtained by concatenating the embeddings of the

token and the additional attribute added. Injecting attributes to

the text means that we concat the section label information along

with input text as a piece of additional context information. By

injecting the additional attributes into the NER classifier, we bias

the probability distribution of the NER classifier based on the final

encoded hidden representation.When we represent the section title

labels as a bias in the NER classifier, this produces a biased logit

vector that classifies a token as a particular entity by shifting the

final probability distribution of the label class.

Incorporating section title (see Figure 4) information into the

NER model helps the model to bias the recognition of certain

entities based on the context of section title information. Certain

entities can fall under certain sections whereas other entities cannot

be present in a section. For example, the diagnosis entity in the

family history section of the clinical report is not a correct entity

recognition.

3.4.3 Multi-task setting to boost low performing
entity labels

With multi-task learning (MTL), a model is trained to perform

multiple similar tasks simultaneously such that learning from

multiple tasks can lead to improved generalization and overall

performance. The goal is to simultaneously learn to predict if an

input sentence has peri_anal disease mentioned (least performing

entity) and also detect NER tags within the sentence. By jointly

learning from related tasks, the model can leverage commonalities

and dependencies, leading to better performance compared to

training separate models for each task.

The overall framework consists of three components, namely

(1) training with supervised cross-entropy loss (NER labels), (2)

binary cross-entropy loss (sentence classification), and (3) dropout-

based consistency training (Rdrop).

To simultaneously learn both sentence-level categories and

NER tags given an input sentence x, the Dutch model can be easily

extended to a joint label classification and NER model. Depending

on the hidden state of the [CLS] token (special token placed

at the beginning), denoted h1, the sentence label is predicted as

yi = SoftMax(Wih1 + bi). For NER, we feed the final hidden

states of the other tokens h2, ..., hT into a SoftMax layer to classify

with the NER labels ys. The learning objective is to maximize the

conditional probability p(yi, ys|x). The model is finetuned end-to-

end by minimizing the cross-entropy loss. Here we simulate a

conditional random field (CRF) (Vaswani et al., 2017) for modeling

NER label dependencies, on top of the joint Dutch Roberta model.

Learning multiple tasks simultaneously can act as a form of

regularization. The model is encouraged to discover robust and

generalizable features that are useful across all tasks, which can help

prevent overfitting and enhance the model’s ability to generalize to

new, unseen data.

4 End-to-end prototype tool

An end-to-end entity extraction pipeline tool to enhance

medical record curation was developed (see Figure 5). Using pre-

trained models, it aims to improve usability and efficiency by
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FIGURE 4

This figure illustrates the frequency of di�erent clinical entities categorized under each section title. It provides a comparative analysis of the

occurrence count for each entity across common clinical sections found in clinical notes.

combining features from known annotation tools and a named-

entity recognition (NER) pipeline. The tool enables users to easily

manage annotations–adding, editing, visualizing, and predicting

them through a user-friendly interface. It allows for retrieving

clinical notes from a MongoDB (Inc., 2009) database and loads

from a MiniO instance the NER model to facilitate annotation

creation and efficient modification. Integrating annotation and

prediction capabilities functionalities into a single platform marks

a significant step forward in existing solutions.

This section outlines the development of a novel annotation

tool, leveraging the Python-based framework Streamlit for its

ease of use for creating web applications that enabled the

implementation of a tool that facilitates the annotation of textual

data, introduces functionalities critical for a secure and productive

annotation environment and more importantly leverages on our

NER models to increase the productivity of the medical team.

In summary, this tool facilitates the annotation of clinical notes

as most standard open-source options but enhances it using

machine learning.

4.1 User authentication

A foundational aspect of our tool is incorporating a robust

authentication system. Recognizing the sensitive nature of clinical

notes, we have integrated mechanisms to create distinct user roles,

ranging from administrators to annotators, ensuring that access is

appropriately managed. Among the functionalities, we have:

• A secure authentication system allows for the creation of

different user profiles and allows for controlled access based

on customizable user roles in the configuration phase.

• Passwords are securely stored using industry-standard

hashing techniques to ensure data privacy.

4.2 Data storage

MongoDB was chosen first for its flexibility and performance in

handling small to medium-sized volumes of unstructured data to

store clinical notes and second because of its compatibility with the

FHIR resources, which are returned in JSON format. This NoSQL

database allows for efficient retrieval and storage of clinical notes.

Among the functionalities, we have:

• Retrieval given an ID of the clinical notes.

• Retrieval given a portion of the content of the clinical notes by

using regular expressions.

• Storage of the clinical annotations distinguishing between

predictions and actual annotations made by the medical team.

• Storage of custom non-existent clinical notes that can be

uploaded either as a document or as text in a text-view.
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FIGURE 5

End-to-end prototype tool: (1) Unannotated clinical notes that the practitioners can add securely into a MongoDB collection; (2) The NER models

stored in a MiniO object storage; (3) The NER tool where practitioners load unannotated clinical notes and perform the prediction task to store the

entities; (4) The entities are being predicted and displayed; (5) The medical team can edit, transform, or add the predictions; and (6) store them in

another MongoDB collection.

4.3 Pretrained models for annotation

Central to our tool’s functionality is the capability to make

predictions using a pre-trained model in PyTorch while being

stored in a MiniO (MinIO, 2016) instance. We decided using

MiniO as it is a scalable and secure storage solution, making it ideal

for handling large PyTorch model files efficiently enabling smooth

upload, download, and version control in the case the tool is

migrated to a cloud-based solution. Its compatibility with AWS S3

ensures seamless integration with PyTorch workflows. Being open-

source and lightweight, MiniO offers a cost-effective and easy-

to-deploy option for both on-premises and cloud environments.

These choices not only capitalize on PyTorch’s powerful machine-

learning capabilities but also maintain the flexibility to incorporate

models from other frameworks if needed. Therefore, the tool

is framework-agnostic, allowing future integration with other

popular libraries like TensorFlow, Keras, or scikit-learn. The

pre-trained model automates the initial annotation process,

generating pseudo-labels that can significantly accelerate the

annotation workflow.

4.4 Interfaces

4.4.1 Annotation view
The annotation view (Figure 6A) is a core feature designed

for ease of use and efficiency. Users can edit, select, and

save annotations directly within the interface. These annotations

are then stored in MongoDB, allowing seamless integration

between the annotation process and the data storage. This

design facilitates a dynamic and flexible workflow, accommodating

various annotation needs. Among the functionalities, we have:

• Configuration of desired entities by adding names and colors

in a easy to understand configuration file.
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FIGURE 6

In (A), we see the annotation view where we can add, edit, and save entities in the clinical notes. In (B), we have the prediction view where we can

select clinical notes from the database or upload custom clinical notes; after the upload, we can predict using the Clinical NER model to highlight the

entities. Finally, the notes can be saved and uploaded to the database, where we can then edit the annotations on the annotation view. (A)

Annotation view of the NER tool. (B) Prediction view of the NER tool.

• Intuitive, self-explained interface leveraging Label Studio

annotation functionality without complex capabilities.

4.4.2 Prediction view
The prediction view (Figure 6B) is the core feature of our

tool, which uses the pre-trained model to predict pseudo-labels for

previously unannotated clinical notes. This predictive functionality

not only aids in streamlining the annotation process but also

ensures a more comprehensive and accurate dataset, ready for

further analysis and model training.

5 Data and experiments

The annotated dataset refers to the dataset of anonymized

clinical notes that were manually labeled by clinical experts. The

annotated training dataset comprises a total of 1, 711 clinical notes

provided by the inflammatory bowel disease (IBD) department of

UZ Leuven Hospital. The dataset was collected in 3 phases and

annotated by three domain experts. The first phase consisted of

intra-patient level notes while phases 2 and 3 consisted of inter-

patient level notes. To ensure that the model generalizes to new

patients, the test set is formed from phase 2 and phase 3 annotated

clinical data. Annotation guidelines and training were provided to

domain experts for the purpose of annotating relevant IBD clinical

entities. To fine-tune transformer-based models for clinical entity

extraction, we split annotated clinical notes into a training set

(1, 463 clinical notes), a validation set (290 clinical notes), and a test

set (250 clinical notes).

This research is motivated by the need for an efficient and

comprehensive Clinical NER model that can automatically extract

useful entity types of the IBD domain from free unstructured

clinical texts. For this work, we are interested in identifying the

important clinical entities related to Crohn’s disease (CD) and

ulcerative colitis (UC) cases like diagnosis, diagnosis date, body

weight, length [height], previous surgery, disease location, disease

behavior, disease extent, and peri anal disease. Refer to Figure 7 for

entity-specific data distributions. As can be seen from Figure 7, the

dataset is quite imbalanced with respect to the entity classes with

entities like peri-anal disease, disease behavior, disease location, and

previous surgery being the least commonly occurring entity in the

clinical notes. These are also complex entities to detect because it

span longer sequence lengths with multiple tokens and are often

co-occurring in similar contexts. Table 1 shows the clinical entities

of interest together with their descriptions in the IBD context.

5.1 Experiment setup

We use PyTorch and the HuggingFace library for the model

implementation. We run our experiments on GPU: 1× NVIDIA

TITAN RTX with 24.0 GB RAM to integrate the components of

our package. We use grid search to get the optimal values for

the hyperparameters and use early stopping to overcome possible

overfitting.

EMLM finetuning: We use the Dutch model (Delobelle et al.,

2020) with an LM head to initialize the model parameters. EMLM

is fine-tuned for 20 epochs using Adam optimizer (Kingma and Ba,

2015) with batch size set to 32 and learning rate set to 1e−5 (with

warm-up ratio of 10%).

EMLM-CL finetuning: After initializing the student and

teacher, we continually pre-train the student on the same IBD

clinical corpus for 150k steps. The training samples are truncated

with a maximum length of 256 and the batch size is set as 32. The

temperature parameter τ in Equation 3 is set as 0.01. We optimize
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FIGURE 7

Exploration of dataset characteristics: Word and entity label distributions: (A) distribution of word counts in each clinical note; (B) frequency of

unique entity labels [B-tags represent the start of an entity, while I-tags indicate the continuation of the same entity.]; (C) number of unique entity

labels in each clinical note; and (D) frequency of clinical notes containing unique entity labels.

the model with Adam optimizer with weighted decay and an initial

learning rate of 1e− 4 (with a warm-up ratio of 10%).

NER model: We use the Dutch model (Delobelle et al., 2020)

with classification head as the NER model for all our experiments.

We adopt Adamw optimizer (Loshchilov and Hutter, 2019) with a

learning rate set to 5e−5 and batch size set to 16. The NER model

is trained for 10 epochs and the best model is selected according

to dev set performance. The trained model is evaluated on test sets

and we report the averaged Micro-F1 scores over 3 runs.

Hyperparameter tuning: In the domain continual pre-training

schemes, we set the probability of masked language modeling to

0.15. The total epoch of the domain continual pre-training is 30.

The masking rate η in EMLM fine-tuning is 0.7. All of these

hyperparameters are tuned on the dev set with grid search. We

add an early stopping mechanism to select the best model during

the model training. The training will stop if the F1 score does not

improve in 10 rounds. The dropout rate for the Roberta model is

0.1. The ǫ parameter of the label smoothing technique is 0.1. The

model was trained on a single NVIDIA TITAN RTX GPU with 24

GB memory for 30 epochs, taking approximately 12 h. The model

required an average of 50 ms per sample for inference, with a batch

size of 16. The maximum GPU memory usage during training was

21 GB out of 24 GB, while inference required 4 GB.

5.2 Methods compared

To elaborate on the effectiveness of the proposed approaches

for pre-training and fine-tuning, we compare the following method

settings:

1. Finetune-only (FT): The NER model is trained on only the

original training set annotated with clinical entities related to

IBD.

2. Finetune-fuse-section (FT-FS): The NER model is trained on

the original training set together with the section information

fused into the model. Here clinical section information is

additionally injected as external knowledge to the model.

3. Finetune-fuse_section-pseudo_labels (FT-FS-PL): The NER

model is trained on the original training set together with the

section information fused into the model. We further augment

training data with the silver standard data obtained using

pseudo-labeling. We also include Rdrop-based consistency

training in the model training.

4. MLM-Finetune-fuse_section-pseudo_labels (MLM-FT-FS-

PL): We randomly mask entity tokens and directly utilize a

pretrained LM for MLM. Further, this model is fine-tuned on

the training set.
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TABLE 1 List of clinical entities relevant in the IBD domain together with

their descriptions.

Clinical entity Description

Diagnosis date The date of diagnosis of disease

Diagnosis The diagnosis which is either Crohn’s disease (CD) or

ulcerative colitis (UC) or variations of either CD or UC.

Disease location According to Montreal classification can be either L1,

L2, or L3:

• L1: inflammation limited to the ileum

• L2: inflammation limited to the colon segments

(caecum-ascendus- descendus-sigmoid-rectum)

• L3: inflammation of both ileum AND colon

Disease behavior According to Montreal classification can be either B1,

B2, or B3:

• B1: non-stricturing, non-penetrating

• B2: stricturing (leads to stenoses)

• B3: penetrating (leads to fistula’s and abscess)

Peri-anal disease History of peri-anal disease

Previous surgery Identify the type of surgery performed

Disease Extent According to Montreal classification can be either E1,

E2, or E3:

• E1: inflammation limited to the rectum

• E2: inflammation distal to the splenic flexure

• E3: inflammation proximal to the splenic flexure

Length Height of the person during consultation

Body weight Weight of the person during consultation

5. EMLM-Finetune-fuse_section-pseudo_labels (EMLM-FT-FS-

PL): We mask clinical entity tokens and insert the labels into

inputs and utilize a pretrained LM to predict masked clinical

entities using this context. Further, this model is fine-tuned on

the training set.

6. EMLM-Contrastive-Learning-Finetune-fuse_section-

pseudo_labels (EMLM-CL-FT-FS-PL): The representations

of masked entity tokens with labels inserted into input are

contrastively learned against a teacher representation to learn

more discriminative entity representation. Further, this model

is fine-tuned on the training set.

6 Results and discussion

6.1 Evaluation metric

We follow the same validation metrics as previous NER

approaches to evaluate the performance of our fine-tuned model

on the human-annotated dataset. The validation metrics are

precision (P), recall (R), and F1-score (F1) at the token level.

Precision: percentage of clinical entities found by the model that

is correct. Recall: percentage of clinical entities present in the

data found by the model. F1-score: harmonic mean of precision

and recall. Strict: A recognized entity is correct only if it is an

exact match of the corresponding entity in the data file. For

example: if the gold label of drug entity is warfarin and model

prediction is of warfarin. The Strict match evaluation metric gives

this an incorrect evaluation even if the type of entity (drug) is

correctly recognized. Entity_Type: A recognized entity is correct

if the entity type is correctly recognized but the exact surface

boundary is missed. This metric holds particular importance in our

case, as it gauges the model’s ability to recognize clinical entities

even when segmentation is not identical. This variability stems

from differences in annotation styles and documentation practices

among doctors.

6.2 Does continued pre-training help
improve clinical domain adaptation?

Our results confirm with the previous research (Gururangan

et al., 2020) that continued pretraining on domain-specific data

indeed helps adapt the model to the target task. In comparison

with the baseline model (FT) where we use a Dutch Roberta

model for fine-tuning, we see that MLM-FT-FS-PL achieves better

scores (72.84%F1 vs. 74.93%F1) which suggests that continued pre-

training increases the overlap between the original LM and the

target task domain. We further modified the MLM objective to

include two additional pre-training strategies both of which drive

the LM to focus on pivotal entities characterizing the domain at

hand and to learn entity-centric knowledge. As can be seen from the

results masking entity-specific knowledge together with inserting

entity tags enhances the domain and task-specific knowledge of

the LM. The goal of continued pre-training is to provide a better

initial representation tailored to the domain at hand when fine-

tuning a language model. As depicted in Figure 8, efficient pre-

training strategies that learn better token-level representations

provide a robust initial representation for finetuning, even with

limited epochs. This is evident between the values in the F1 scores,

with 73.75% F1 and 78.68% F1 scores observed between fine-

tuned models and those fine-tuned from entity-centric in-domain

pretrained models.

6.3 Which masking strategy provides a
better-adapted LM?

By comparing random masking (MLM-FT-FS-PL), entity-

specific masking (EMLM-FT-FS-PL), and entity-specific masking

with contrastive learning (EMLM-CL-FT-FS-PL), entity-masked

contrastive objective helps the model learn better entity

representations which make it the most suitably adapted LM

for entity extraction task or in general for tasks requiring

word-level information. Both entity masking strategies have

significantly amplified the model’s generalization capability, with

an increased adaptation to the clinical IBD domain which is

evident from the high precision (77.31%), recall (77.27%), and

F1-score (77.29%) achieved by the model. Upon examining the

F1 scores of individual entities depicted in Figure 9, it becomes

evident that domain-specific entities with fewer annotations

such as disease location, previous surgeries, and peri-anal disease

which are diverse and challenging to detect, show notable

enhancements in overall F1 scores with the implementation of

entity-specific masking strategies also incorporating contrastive

learning. For entities that have relatively more annotated

examples and require less domain-specific context like body
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FIGURE 8

Exploring the influence of e�cient pre-training on model fine-tuning: Demonstrating the advantage of pretraining in providing a strong initial

representation for finetuning, even with minimal epochs.

FIGURE 9

The F1-scores for various models examined across di�erent clinical entities extracted within the IBD domain.

weight, length [height], and diagnosis date the difference is

performance is minimal. We conducted an ANOVA (Girden,

1992) test to evaluate the statistical significance of the model

results, yielding a p-value of 0.020183. Since p < 0.05, this

confirms that there is a statistically significant difference in the

means across the models. To further explore these differences,

we performed a post hoc Tukey HSD (Honestly Significant

Difference) (Keselman and Rogan, 1977) test, which allows

for pairwise comparisons between all model groups. The

analysis revealed that model FT differs significantly from models
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TABLE 2 Methods and results: table reports the Precision (P), Recall (R),

and F1 score (F1 score) of the di�erent methods described.

Strict Entity_Type

Method P R F1 F1

FT (Delobelle et al.,

2020)

69.93 76.01 72.84±0.0011 83.79±0.0013

FT-FS 74.09 76.22 74.62±0.0020 85.01±0.0027

FT-FS-PL 76.25 76.93 76.71±0.00059 85.98±0.0015

MLM-FT-FS-

PL (Devlin et al.,

2019; Lee et al.,

2020)

72.51 77.51 74.93±0.0053 84.69±0.0027

EMLM-FT (Liao

et al., 2024; Pergola

et al., 2021)

75.32 76.51 76.01±0.0017 85.17±0.0013

EMLM-FT-FS-PL 76.75 77.17 76.86±0.0026 86.01±0.0010

EMLM-CL-FT-FS-

PL

77.31 77.27 77.29 ±0.0017 86.23 ±0.0007

FT refers to the regular finetuning with the Dutch RoBERTa model for NER. FS refers to

fusing section information into the NER model. PL denotes using pseudo labels and rdrop

regularization in model training. EMLM refers to including entity-specific masking in the

training and EMLM-CL refers to using entity-specific masking with contrastive learning. Bold

values represent the highest values in each column of the results.

EMLM-CL-FT-FS-PL (padj = 0.0325) and EMLM-FT-FS-PL

(padj = 0.0375).

6.4 Does section fusion information have
an impact on fine-tuning performance?

The judgment of clinical entities cannot be done solely at the

named entity level. For instance, “disease location” and “disease

behavior” have different types of clinical significance in sections

such as previous medical history and family medical history. The

frequent use of domain-specific acronyms and abbreviations within

different parts of a clinical note also increases the difficulty of entity

extraction models. For example, in our case, Crohn’s disease and

Ulcerative colitis have abbreviations CD and UC/CU respectively.

This acronym is also used in the laboratory section but indicates

different measurements. Section headings can be seen as structured

data once clinical documentation is complete which when injected

into the NER model enhances contextual information to the

NER model and helps reduce classification errors. This is evident

in Table 2 that when inserting section information there is a

significant improvement in the precision of the model compared

to the baseline model (69.93% P vs. 74.09% P). Table 3 provides a

few examples where the model predictions improve when injecting

additional section title information during model fine-tuning.

6.5 Does pseudo labels together with
Rdrop help in improved generalization and
performance?

Incorporating Rdrop and augmentations (pseudo-labeled

examples) into NER improves the performance of the NER

TABLE 3 Impact of incorporating section information attributes into the

model- this table illustrates example predictions that were inaccurately

made by the baseline model (FT), yet correctly disregarded by the model

enhanced with section information fusion (FT-FS).

Section
title

Text Predictions
(FT)

Predictions
(FT-FS)

Family History

(Familiaal)

Zus en nicht van

moeder :, ziekte

van Crohn.,

[translation:

Mother’s sister

and cousin:,

Crohn’s disease.]

ziekte van Crohn

(Diagnosis)

-

Family History

(Familiaal)

Broers met

Morbus crohn.

[translation:

Brothers with

Crohn’s disease.]

Morbus crohn

(Diagnosis)

-

model as can be seen in Table 2. Pseudo-labeled data diversify

and augment training data, boosting model robustness and

generalization. Noise from augmented data reduces overfitting risk

and the model’s reliance on specific patterns. Augmented examples

aid learning and capture linguistic nuances for better language

understanding. Adding an Rdrop further enhances performance,

akin to an ensemble of sub-models within a single model. These

sub-models encourage the model to capture various aspects

of the data and promote learning more generalized features.

The model performance is improved by incorporating pseudo-

labeled examples and Rdrop together with the structured section

information (72.84% F1 vs. 76.71% F1). The variance in doctors’

documentation methods highlights the disparity between the

Strict and Entity_type F1-scores, underscoring the challenges in

annotating entities. Greater consistency in annotation practices

could help narrow this divergence.

6.6 Strengths and limitations

Strengths: The proposed method shows robust performance

across a wide range of entity types, leveraging masked

token prediction and contrastive learning to enhance feature

representation. By masking entities and learning representations

contrastively, the model effectively learns entity-context

relationships, leading to improved accuracy in categories with

rich contextual dependencies. Additionally, data augmentation

helps balancing the representation of low-resource entities, and

external information fusion further enriches the context for

underperforming entity types. The approach is computationally

efficient and scales well for datasets with diverse entity types, which

is valuable in real-world applications with heterogeneous data.

Limitations: Accuracy differences between entity types suggest

that the method still struggles with low-resource or less distinctive

entities even though it largely improves from the baseline models.

For example, entities with ambiguous or overlapping contexts

may not be well-represented in the learned embeddings due to

the lack of adequate examples. The efficacy of entity masking

depends heavily on the choice of masking strategy, which might
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inadvertently bias the model toward overfitting certain entity types

if not carefully designed. Leveraging external knowledge graphs

or semantic embeddings can further optimize the context for

underperforming entity types. Another step would be to implement

masking strategies that adapt to the characteristics of specific entity

types, providing more tailored learning signals.

6.7 Practical impact of the model in clinical
applications

The model offers significant potential to enhance clinical

workflows by analyzing unstructured clinical text, such as doctor’s

notes and lab reports, to extract and categorize key information

relevant to Inflammatory Bowel Disease (IBD). This capability

enables semi-automation of clinical documentation, while enabling

the efficient extraction and organization of critical data. By

identifying patterns within clinical data, the model can group

patients based on disease severity, treatment response, or age. This

grouping allows for more personalized and timely care.

While the current focus on Inflammatory Bowel Disease (IBD)

clinical notes addresses a critical area, the underlying methods

have the potential to be extended across other domains and

languages. The methods could be adapted to analyze clinical notes

for other chronic conditions, such as diabetes, cardiovascular

disease, or rheumatoid arthritis. These conditions also generate

large volumes of unstructured text, where automated entity

extraction and categorization could streamline documentation

and decision-making. Oncology clinical workflows could benefit

from applying these techniques to extract tumor characteristics,

treatment responses, and prognostic markers from unstructured

text, aiding precision medicine. The methods can be tailored to

analyze psychiatric evaluations, therapy notes, or patient-reported

outcomes to detect patterns indicative of mental health disorders,

providing support for early diagnosis and intervention.

Extending the model to multilingual settings can further

transform IBD care by bridging language barriers and enabling

its use across diverse regions. Multilingual adaptation enhances

accessibility to advanced clinical NLP tools in IBD management.

While this endeavor presents challenges, such as limited availability

of data in under-represented languages, the initial steps can

involve augmenting training datasets through machine translation

or synthetic data generation. Collaborations with international

healthcare institutions can provide access to diverse datasets,

facilitating the development of robust multilingual clinical NLP

systems. These efforts would ensure that the model remains

adaptable and effective across linguistic and cultural contexts.

7 Error analysis

To understand why our model fails in some cases, we randomly

select 50 error cases and group them into the 5 most prevalent

error categories (see Table 4). Below, we elucidate the main error

types with accompanying examples and compare predictions from

different models (see Table 5).

TABLE 4 Error types: description of the main error types with examples

showing the model predictions and true label.

Model predictions True Label

◮ Segmentation error: Missing information in predictions

Disease location: rectum over 10

cm

Disease location: aantasting van

het rectum over 10 cm [translation:

involvement of the rectum over 10

cm]

◮ Segmentation error: Extra information in predictions

Disease location: rectitis

ulcerohemorrhagica voor 5 cm

[translation: rectitis

ulcerohemorrhagica for 5 cm]

Disease location: rectitis

Disease location: erosies en ulcera

verspreid over gans colon

[translation: erosions and ulcers

distributed throughout the colon]

Disease location: erosies en ulcera

[translation: erosions and ulcers]

◮ Segmentation error: Extraction of conjunctions

Disease location: terminaal ileum

en colitis tot 40 cm [translation:

terminal ileum and colitis up to 40

cm ]

Disease location: terminaal ileum,

Disease location: colitis tot 40 cm

[translation: colitis up to 40 cm ]

◮ Missing ground truth annotation

Previous surgery: colectomie met

tijdelijk ileostoma [translation:

colectomy with temporary

ileostomy]

-

◮ Di�erent entity prediction

Diagnosis: Crohn, Disease location:

colitis

Diagnosis: Crohn colitis

1. Segmentation error: missing information in predictions:

These instances occur when the model’s predictions lack certain

information. It is notable that often the overlooked text

portions are not the most significant. This observation has

been corroborated by domain experts. This often arises from

variability in text complexity, where less significant portions of

text are overlooked.We assume that refining the training data or

using attention mechanisms to emphasize these segments could

help mitigate such errors.

2. Segmentation error: extra information in predictions: The

models sometimes extract additional information beyond the

annotated text. This can stem from variability in patterns for

entities with longer spans in text. Model experts regard this

as a favorable feature of the model. While this reflects the

model’s ability to generalize, it is still a misalignment between

annotations and predictions. Regularizing span detection and

aligning annotation practices could improve this.

3. Segmentation error: extraction of conjunctions: Same entities

in close proximity joined using some conjunctions are often

extracted together. For instance, “terminaal ileum en colitis

tot 40 cm” is extracted as a single disease location entity

in model predictions, while annotations indicate “terminaal

ileum” and “colitis tot 40 cm” as separate entities under disease

location. This issue arises due to insufficient differentiation
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during training. Incorporating conjunction-based splitting rules

could enhance entity boundary detection.

4. Missing ground truth annotation: Annotation text may be

absent, yet the model correctly predicts it. This discrepancy can

be attributed to annotation errors. Improving the annotation

quality through iterative validation and human-in-the-loop

review processes can address this discrepancy.

5. Different entity predictions: The model may predict a different

entity type. This often occurs when there is a deviation from

the typical annotation pattern. For example, “Crohn colitis”

is annotated as a disease location entity whereas our model

predicts “Crohn” as diagnosis and “colitis” as disease location. It

should be noted that colitis is often regarded as a disease location

during annotations. Enhancing training with more examples of

these edge cases could reduce such errors.

From Tables 4, 5, we see the five types of errors that occur

when investigating the errors together with examples showing the

model predictions and true labels. The errors justify the difference

in the scores between Strict F1 and Entity-type F1 because the

majority of errors occur due to differences in segmentation. This

could be further improved with the help of our NER tool and a

human-in-the-loop approach.

8 Conclusion

In conclusion, this paper has made significant contributions

to the field of clinical Dutch named entity recognition (NER)

within the context of inflammatory bowel disease (IBD). Through

the development of a comprehensive pipeline encompassing

annotation, pre-training, fine-tuning, and the creation of an

end-to-end clinical Dutch NER tool, we have demonstrated the

effectiveness of adapting a general Dutch language model to the

specific domain of IBD.

Our work on developing a comprehensive pipeline for clinical

NER in the IBD domain holds significant implications for the

clinical setting in any domain or language or even a multilingual

setting. By addressing the challenge of efficiently extracting vital

patient information embedded in unstructured clinical text,

our research directly impacts the way healthcare professionals

interact with electronic health records (EHRs) and, consequently,

patient care. The automated extraction of clinical concepts

from unstructured text not only enhances communication

among healthcare professionals but also contributes to improved

patient care and a more thorough evaluation of healthcare

outcomes. Our approach empowers medical practitioners,

clinicians, nurses, and doctors with a highly accurate and

efficient tool for swiftly retrieving relevant information from

medical records. This not only saves time and energy previously

spent on manual review but also ensures that clinicians have

access to essential clinical information to make informed

medical decisions.

Moreover, by leveraging domain and entity-aware masking

and pre-training strategies, we ensure that our model excels

in extracting relevant information related to the IBD domain.

This adaptation enhances the model’s ability to prioritize key

domain-specific entities, ultimately improving its performance

in the clinical setting. Our approach, which also incorporates

iterative masking with pseudo-labels, and additional information

fusion, and Rdrop-based consistency training, has yielded

notable improvements in model performance. Furthermore,

the integration of a multitask setting to simultaneously learn

sentence-level categories and NER tags has shown promise

in addressing challenges associated with low-performing

entity classes.

The development of our NER tool further streamlines

the information retrieval process for medical practitioners

by providing options for annotating new notes, correcting

existing annotations, and offering visualizations of predictions

alongside true annotations. This tool enhances document

readability, subsequently increasing the effectiveness of clinical

experts in identifying key segments within medical records

efficiently. However, we recognize that there is still room for

improvement, particularly in leveraging structured patient

TABLE 5 Examples of predictions from di�erent models with associated error types.

Ground truth FT (A) EMLM-FT-FS-PL (B) EMLM-CL-FT-FS-PL (C) Error type

Terminaal ileum, colitis tot 40

cm [Translation: Terminal

ileum, colitis up to 40 cm]

Terminaal ileum Terminaal ileum en colitis tot

40 cm

Terminaal ileum en colitis tot 40 cm Under-prediction (A), merged

predictions (B, C)

Crohn (Diagnosis), colitis

(Disease location)

Crohn colitis (Disease

location)

Crohn (Diagnosis), colitis

(Disease location)

Crohn (Diagnosis), colitis (Disease

location)

Entity misclassification (A)

fistel en fisteltraject (disease

behavior)

rectum (peri-anal

disease)

rectum met fistel en

fisteltraject (disease behavior)

excavatie in rectum met fistel en

fisteltraject (disease behavior)

[Translation: excavation in rectum

with fistula and fistula tract]

Entity misclassification (A),

over-prediction (B,C)

None None None niet stenotische (Disease behavior)

[Translation: non stenotic]

Annotation error (C)

inflammatoire angulatie in

colon descendens op 30 cm

(disease location)

colon (disease location) colon descendens op 30 cm

(disease location)

inflammatoire angulatie in colon

descendens op 30 cm (disease

location) [Translation:

inflammatory angulation in

descending colon at 30 cm]

under-prediction (A,B)

FT refers to the regular finetuning with the Dutch RoBERTa model for NER. EMLM refers to including entity-specific masking in the training and EMLM-CL refers to using entity-specific

masking with contrastive learning.
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information and multi-modal information and further refining the

model’s performance.

Our experiments have underscored the importance of

entity-aware pre-training strategies, information fusion, and

the utilization of pseudo-labeled data for silver standard data

generation in enhancing entity extraction model performance.

We envision that a human-in-the-loop approach, coupled with

assistance from medical experts, particularly for entity classes

with limited annotated data, could further elevate the model’s

performance toward human-level accuracy. Overall, our research

not only contributes to advancing medical research through

improved data extraction from EHRs but also directly impacts

clinical workflows by providing clinicians with a valuable

tool for enhancing patient care and medical decision-making.

Our work shows that we can build a valuable information

extraction tool for retrieving information from clinical reports

even when only limited data that are manually annotated

are available. Consequently, our work can be replicated in

other clinical domains only requiring the limited effort of

defining valuable entity types and of annotating a small set of

clinical reports.

With an overall F1-score of 77.29% (strict) and 86.23%

(ent_type) achieved on the clinical entity extraction task, despite

the limited annotated data available formodel training, our findings

highlight the potential for continued advancements in this domain.

Future work could explore a hierarchy of named entity labels as

additional constraints that guide model training. It could even

explore whether we can build a model for the recognition of

general entity labels with the supervision of annotated data and

learn their fine-grain categories in a fully unsupervised way without

examples that were manually annotated as was done in Tian

et al. (2024). Furthermore, continual learning (Wang et al., 2024)

from human feedback and from the human corrections of entity

extractions without retraining the full model is a promising avenue

of future research where the model that continually learns should

not forget the knowledge it has acquired previously. Additionally,

we could leverage complementary information from multiple data

modalities, such as text, images, and structured metadata, to

enhance entity recognition in low-resource settings. Integrating

visual and textual cues can disambiguate entities where textual

data alone is insufficient, boosting accuracy. Techniques like

cross-modal attention (Ye et al., 2019) mechanisms and shared

embeddings enable efficient information fusion, allow models to

learn robust representations from limited data. This approach

could significantly improve performance in scenarios with scarce

labeled resources or ambiguous contexts (Li et al., 2024). Finally,

such a set-up could be combined with privacy-preserving federated

learning (Truong et al., 2021) over different hospitals and services.

Moving forward, we aim to refine our approach further, integrate

structured patient information more effectively, and to continue

collaborate with domain experts to push the boundaries of clinical

NER research.
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