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One of the foremost causes of global healthcare burden is cancer of the gastrointestinal 
tract. The medical records, lab results, radiographs, endoscopic images, tissue 
samples, and medical histories of patients with gastrointestinal malignancies provide 
an enormous amount of medical data. There are encouraging signs that the advent 
of artificial intelligence could enhance the treatment of gastrointestinal issues with 
this data. Deep learning algorithms can swiftly and effectively analyze unstructured, 
high-dimensional data, including texts, images, and waveforms, while advanced 
machine learning approaches could reveal new insights into disease risk factors 
and phenotypes. In summary, artificial intelligence has the potential to revolutionize 
various features of gastrointestinal cancer care, such as early detection, diagnosis, 
therapy, and prognosis. This paper highlights some of the many potential applications 
of artificial intelligence in this domain. Additionally, we discuss the present state of 
the discipline and its potential future developments.
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1 Introduction

Gastrointestinal (GI) cancers, as a group of malignancies that affect the digestive system, 
include the esophagus, stomach, liver, pancreas, and colorectum. These malignancies are 
prevalent and highly lethal on a global scale. With the presence of several sites prone to 
malignant transformation and continuous exposure to carcinogens, GI cancers constitute 26% 
of the total global cancer cases and contribute to 35% of the worldwide mortality from cancer 
(Wong et  al., 2022). The incidence of esophageal, gastric, and liver cancers had higher 
prevalence rates in Asia, but colorectal and pancreatic cancers were shown to be  more 
prevalent in Europe and North America (Arnold et al., 2020). The prevalence and mortality 
rates of age-adjusted non-cardia gastric cancer (NCGC) have demonstrated a downward trend, 
but the occurrence of esophageal adenocarcinoma, as well as malignancies affecting the cardia 
gastric, colorectal, liver, and pancreas, have exhibited an upward trajectory among those under 
the age of 50 over the past 25 years (Laszkowska et al., 2020). Various diagnostic procedures 
are developed for the identification of distinct forms of GI malignancies. Several commonly 
used techniques for diagnosing medical conditions include endoscopy, biopsy, imaging 
modalities (such as ultrasound), computed tomography (CT) scan, magnetic resonance 
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imaging (MRI) scan, blood tests (such as tumor markers), stool testing 
(such as fecal occult blood test), and genetic tests (such as gene 
mutations or microsatellite instability) (Xie et  al., 2022). Early 
detection, precise diagnosis, efficient therapy, and accurate treatment 
monitoring can improve the prognosis and survival rates of patients 
with GI malignancies. Screening programs (e.g., regular screenings of 
colon cancer) have significantly contributed to the timely detection of 
individuals at risk for certain malignancies (Lin et  al., 2021). 
Nevertheless, several GI malignancies lack efficient screening methods 
and deal with significant challenges in early detection (Del Chiaro 
et al., 2014). In addition, the diagnosis of GI cancers typically involves 
invasive procedures, such as biopsy and subsequent pathological 
investigation after surgical resection. Many GI malignancies lack 
reliable biomarkers, even after diagnosis, that could serve as definitive 
tools for staging and prognosis to support clinical decision-making 
(Wesdorp et al., 2021).

As medical imaging technology evolves, so has picture 
interpretation, particularly computer-assisted analyses. Philippe 
Lambin invented radiomics in 2012, which uses high-throughput data 
to analyze medical pictures (Lambin et al., 2012). The program helps 
diagnose, classify, and categorize malignancies, as well as predict 
outcomes using several endpoints (Lambin et al., 2012). Oncology is 
increasingly using AI to detect, diagnose, predict therapeutic response, 
and predict GI cancer survival (Huang C.-M. et al., 2020; Qiu et al., 
2022; Wang Z. et  al., 2023). Artificial Intelligence (AI) is the 
application of technology to construct robots and computers that can 
mimic human cognitive capabilities, including decision-making, data 
analysis, and language translation. AI covers several associated but 
different cancer subfields, including machine learning (ML) and deep 
learning (DL) (Adlung et al., 2021; Sánchez-Martínez et al., 2019; Dias 
and Torkamani, 2019). Complex systems like ML and DL models 
make predictions without explaining their logic or decision-making 
process. These models may damage professional and patient 
confidence and cause ethical and legal issues. We must make ML and 
DL models more understandable and interpretable (Papadimitroulas 
et al., 2021; Rasheed et al., 2022). Although these technologies have 
revolutionized oncology by providing more accurate diagnoses, 
treatment predictions, and survival estimates, they are still in 
development and require validation through more research and 
clinical trials (Xiao et al., 2022).

In this study, we conducted an in-depth review of the current 
implementations of AI subfields, namely ML and DL, in the context 
of GI cancer research. Specifically, we focused on the use of these 
techniques for early detection, diagnosis, prediction of therapy 
response, and survival analysis by using different input data in various 
studies, regarding the present obstacles and constraints encountered 
in the field of GI cancers.

2 The difference between AI in 
research and clinical applications

AI has touched many sectors, including medicine. AI has many 
uses in research and therapy, but the path from AI research to clinical 
AI should be clarified (Yin et al., 2021; Shaheen, 2021).

Researchers mostly use AI to analyze massive datasets, spot 
patterns, and generate hypotheses. Academics use AI to analyze 
complex datasets. AI systems analyze vast datasets to discover 

problem-solving solutions quicker than conventional approaches. The 
AI model may identify patterns and links that could assist human 
researchers in identifying any open gaps. AI is growing in the study 
because it automates monotonous jobs and yields rapid results 
(Shaheen, 2021; Shao et al., 2022).

In therapeutic applications, life and death are at stake, with crucial 
moments. Healthcare AI algorithms must meet various requirements 
and verify their dependability, safety, and effectiveness. AI in health 
care is like a close buddy who helps detect issues. AI is used in clinical 
settings to identify illnesses by analyzing medical pictures, test findings, 
and patient history. AI may create a tailored treatment plan for a 
patient with particular traits and a medical history. Patient surveillance: 
AI may monitor patients and notify clinicians of noteworthy changes 
(Yin et al., 2021; Haleem et al., 2019; Iqbal et al., 2021).

Translating research into clinical practice requires several steps:

 1 Validation and testing: AI systems must undergo rigorous 
validation and testing processes to function in 
healthcare contexts.

 2 US regulators, like the FDA, approve AI systems first. This 
process explains AI system safety and effectiveness.

 3 Clinical studies: Establish AI’s operational efficiency in a 
clinical environment and its benefits and hazards.

 4 Clinical workflow integration: AI technology should help 
healthcare staff rather than replace them.

 5 Training and education: Medical practitioners should be taught 
about AI technology and its constraints.

 6 Continuous monitoring and enhancement: To ensure optimal 
operation and address emerging concerns before and after 
system upgrades, AI systems must undergo regular reviews.

In conclusion, AI may revolutionize healthcare, but we should not 
forget that research and clinical situations are different. A series of 
thorough validations can ensure the safe adoption of AI technology in 
labs and hospitals (Yin et al., 2021; Shaheen, 2021; Shao et al., 2022; 
Haleem et al., 2019; Iqbal et al., 2021; Rakha et al., 2021).

3 AI’s role in GI cancers

We provide an in-depth examination of how artificial AI is 
changing the field of GI cancer. Gastrointestinal malignancies pose 
distinct difficulties, requiring accurate diagnostic instruments and 
tailored therapeutic approaches. Utilizing AI, namely ML and DL 
algorithms, has shown significant promise in transforming early 
detection, diagnosis, treatment planning, and prognosis of GI cancers 
(Figure 1). Several recent studies highlight the ability of AI to uncover 
complex patterns in large volumes of data, resulting in valuable 
insights that improve the accuracy of early diagnoses, the effectiveness 
of treatments, and the accuracy of estimating the survival rate of GI 
cancer patients (Mukherjee et al., 2024; Pooja, 2024; Ahn and Shah, 
2024; Wong et al., 2022; Tabari et al., 2022). We highlight the profound 
influence of AI in the field of GI cancer, signaling a fundamental shift 
towards more accurate and focused cancer treatment. The result 
highlights the need for continuous research endeavors and cooperative 
endeavors among AI researchers, healthcare practitioners, and 
policymakers. By promoting multidisciplinary cooperation, we can 
effectively navigate the ever-changing field of GI cancer treatment. 
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This will allow us to fully use the potential of AI to enhance patient 
outcomes and contribute to a more efficient and individualized 
approach to managing GI cancers (Table 1).

3.1 Esophageal cancer

Esophageal cancer (EC) is known as the second most lethal GI 
cancer and the sixth most frequent cause of cancer-related mortality 

worldwide (Allemani et al., 2018). Two primary histological subtypes 
of EC with distinctive clinicopathological features include esophageal 
adenocarcinoma (EAC) and esophageal squamous cell carcinoma 
(ESCC) (Li et  al., 2022a). The diagnosis of EC entails several 
techniques, including histopathology, CT scan, MRI scan, positron 
emission tomography (PET) scan, endoscopy, and biopsy (Lowe et al., 
2005; Van Rossum et al., 2016). In spite of advanced technologies in 
diagnostic and therapeutic strategies, the survival rate of EC patients 
is low (Huang and Yu, 2018; Choi et  al., 2022; Tsuji et  al., 2023). 

FIGURE 1

Application of artificial intelligence in various GI cancers.
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TABLE 1 Previous studies assessing AI’s role in gastrointestinal cancers.

Authors Topic Cancer types Training data Techniques Reported outcomes

Hashimoto et al. (2020) Artificial intelligence using convolutional neural networks 

for real-time detection of early esophageal neoplasia in 

Barrett’s esophagus (with video)

Esophageal cancer Endoscopic images CNN Per-image accuracy: 95.4%; Per-image Sn/Sp: 

96.4%/94.2%; 98.6%/88.8% (WLI); 92.4%/99.2% 

(NBI)

Struyvenberg et al. (2020) Improved Barrett’s neoplasia detection using computer-

assisted multiframe analysis of volumetric laser 

endomicroscopy.

Esophageal cancer Endoscopic images PCA-CAD AUC of Multi-frame: 0.91; AUC of Single-frame: 

0.83

van der Putten et al. (2020) Deep principal dimension encoding for the classification of 

early neoplasia in Barrett’s Esophagus with volumetric laser 

endomicroscopy

Esophageal cancer Endoscopic images Multi-step PDE-CNN on 

an A-line basis

AUC: 0.93; F1 score: 87.4%

Ohmori et al. (2020) Endoscopic detection and differentiation of esophageal 

lesions using a deep neural network. Gastrointestinal 

endoscopy

Esophageal cancer Endoscopic images CNN Ac/Sn/Sp: 77%/100%/63% (Non-ME+NBI/BLI); 

81%/90%76% (Non-ME +WLI); 77%/98%/56% 

(ME)

Guo et al. (2020) Real-time automated diagnosis of precancerous lesions and 

early esophageal squamous cell carcinoma using a deep 

learning model (with videos)

Esophageal cancer Endoscopic images CNN-SegNet Per-image Sn/Sp: 98.04%/95.03%; Per-frame Sn/Sp: 

91.5%/99.9%

Kloeckner et al. (2020) Multi-categorical classification using deep learning applied 

to the diagnosis of gastric cancer

Gastric cancer Gastric cancer images CNN ROC curves above 0.9

Shibata et al. (2020) Automated detection and segmentation of early gastric 

cancer from endoscopic images using mask R-CNN

Gastric cancer Endoscopic images RNN Dice index = 71%

Sn = 96%

Leon et al. (2019) Automated detection and segmentation of early gastric 

cancer from endoscopic images using mask R-CNN

Gastric cancer Histopathological Samples Deep-CNN Detection accuracy = 89.72%

Sakai et al. (2018) Automatic detection of early gastric cancer in endoscopic 

images using a transferring convolutional neural network

Gastric cancer Endoscopic images CNN Detection accuracy = 82.8%

Thapa et al. (2019) Using machine learning to predict progression in the gastric 

precancerous process in a population from a developing 

country who underwent a gastroscopy for dyspeptic 

symptoms

Gastric cancer Gastroscopy samples Random Forest Sn = 86%

Sp = 79%

Kang et al. (2020) Automatic three-dimensional cephalometric annotation 

system using three-dimensional convolutional neural 

networks: a developmental trial

Hepatocellular carcinoma CT images Neural Network

Fuzzy Neural Network

Ac = 79.19%

Das et al. (2019) Deep learning based liver cancer detection using watershed 

transform and Gaussian mixture model techniques

Hepatocellular carcinoma CT images DNN Ac = 99.38%

Kumar et al. (2022) A systematic review of artificial intelligence techniques in 

cancer prediction and diagnosis. Archives of Computational 

Methods in Engineering

Hepatocellular carcinoma CT images SVM Ac = 98%

(Continued)
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TABLE 1 (Continued)

Authors Topic Cancer types Training data Techniques Reported outcomes

Gruber et al. (2019) A joint deep learning approach for automated liver and 

tumor segmentation. 2019 13th International conference on 

Sampling Theory and Applications (SampTA)

Hepatocellular carcinoma CT Liver images DNN Ac = 99.9%

Chlebus et al. (2018) Automatic liver tumor segmentation in CT with fully 

convolutional neural networks and object-based 

postprocessing

Hepatocellular carcinoma CT images Deep-CNN Detection rate = 77%

Hoerter et al. (2020) Current treatment options in gastroenterology Colorectal cancer ImageNet database CNN Per-polyp sensitivity = 71%

Shin et al. (2018) Automatic colon polyp detection using region based deep 

CNN and post learning approaches. IEEE Access

Colorectal cancer Polyp images and videos Deep-CNN Detection processing time = 0.39 s

Godkhindi and Gowda (2017) Automated detection of polyps in CT colonography images 

using deep learning algorithms in colon cancer diagnosis

Colorectal cancer CT images CNN Polyp detection accuracy = 88%

Zhang et al. (2016) Automatic detection and classification of colorectal polyps 

by transferring low-level CNN features from nonmedical 

domain

Colorectal cancer Endoscopic images CNN Ac = 85.9%

Precision = 87.3%

Recall = 87.6%

Yamada et al. (2019) Development of a real-time endoscopic image diagnosis 

support system using deep learning technology in 

colonoscopy

Colorectal cancer Polyp images and videos Deep learning Sp = 97.3%

Sinkala et al. (2020) Machine Learning and Network Analyses Reveal Disease 

Subtypes of Pancreatic Cancer and their Molecular 

Characteristics

Pancreatic cancer ANN AI in differentiation of two PDAC subtypes: overall 

classification Ac 100% for the mRNA-based model, 

99% for the DNA methylation model; model 

provides predictions of clinical response to 

chemotherapy

Muhammad et al. (2019) Pancreatic Cancer Prediction Through an Artificial Neural 

Network.

Pancreatic cancer ANN AI Sn and Sp in testing cohort: 80.7, 80.7%; 

AUROC curve 0.85

Corral et al. (2019) Deep Learning to Classify Intraductal Papillary Mucinous 

Neoplasms Using Magnetic Resonance Imaging.

Pancreatic cancer ANN AI in detect dysplasia Sn and Sp: 92, 52%. 

Identification of high-grade dysplasia/cancer: Sn 

and Sp 75 and 78%

AI AUROC curves 0.78 (p = 0.90) vs. AUROC base 

on AGA criteria 0.76, AUROC based on Fukuoka 

criteria 0.77

Săftoiu et al. (2015) Differential diagnosis of PDAC and CP using CHEUS and 

TIC analysis

Pancreatic cancer Endoscopic ultrasound 

images

ANN AI Sn Sp PPV and NPV using TIC analysis on 

CH-EUS: 94.64, 94.44, 97.24, 89.47%

Zhang et al. (2010) Differential diagnosis of PDAC from normal tissue (based 

on 29 pattern features)

Pancreatic cancer Endoscopic ultrasound 

images

SVM AI Ac, Sn, Sp, PPV and NPV for the diagnosis of 

pancreatic cancer: 97.98, 94.32, 99.45, 98.65, 

97.77%

EUS, endoscopic ultrasound; AI, artificial intelligence; PDAC, pancreatic adenocarcinoma; CP, chronic pancreatitis; F1-score, FNA fine needle aspiration; ANN, artificial neural network; CNN, convolutional neural network; Ac, accuracy; Sp, specificity; Sn, sensitivity; 
PPV, positive predictive value; NPV, negative predictive value; TIC, time-intensity curve; AUROC, area under the receiver operating characteristic; AUC, area under the curve; AUC, Area under ROC curve; RNN, Regional-based NN; SVM, Support vector machine; 
VLE, Volumetric laser endomicroscopy; WLI, White light imaging.
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Chemotherapy, chemoradiotherapy, immunotherapy, and targeted 
therapy served as possible treatment options for patients declared 
inoperable (Valkema et al., 2023; Li J. J. et al., 2023; He et al., 2022). 
The treatment options for this cancer include Carboplatin/Paclitaxel, 
Cisplatin/5-Fluorouracil (5-FU), Epirubicin/Cisplatin/5-FU (ECF), 
and Docetaxel/ Cisplatin/5-FU (DCF) (Abraham et al., 2021).

In the context of early detection of EC, ML and DL techniques 
have been established to be supportive in analyzing various kinds of 
data, including genomic, transcriptomic, methylation, and 
histopathologic data. These approaches are aimed at discovering 
biomarkers and risk factors associated with EC (Li J. et al., 2023). In a 
recent study conducted by Allegra et al. (2022), the authors elucidated 
the use of DL techniques in the analysis of omics data and the 
calculation of genomic changes from histopathology pictures. ML and 
DL have also shown encouraging potential in the field of medical 
image processing, namely in computer vision. These advancements 
have proven valuable in aiding healthcare professionals in making 
diagnostic decisions that are both more precise and faster (Islam et al., 
2022). The mean accuracy of these techniques in the analysis of 
endoscopic and CT images of the esophagus exceeded 89%, suggesting 
a significant influence on the timely identification of esophageal 
cancer (Hosseini et  al., 2023a). In a previous study conducted by 
Zhang P. et al. (2022). DL has been created for the purpose of analyzing 
barium esophagrams, which are cost-effective diagnostic tests used for 
the detection of EC. DL model demonstrated a detection accuracy of 
90.3%, a sensitivity of 92.5%, and a specificity of 88.7% for the 
detection of esophageal cancer. Convolutional neural networks 
(CNNs), in contrast to other ML techniques, have shown superior 
accuracy and sensitivity in the early diagnosis of EC, according to 
recent thorough research (Hosseini et  al., 2023a). Recently, some 
studies have looked at how well ML algorithms can be used to find EC 
early on using non-invasive methods like measuring blood, saliva, and 
breath (Liu Q. et al., 2023; Valkema et al., 2021).

Traditional techniques like biopsy, histopathology, and endoscopy 
are invasive, subjective, and take a long time (Xie et al., 2021). As a 
result, more precise, effective, and non-invasive techniques for EC 
diagnosis are required. ML and DL techniques have the potential to 
aid in the diagnosis of EC by effectively classifying the tumor’s type, 
stage, and grade using endoscopic images, CT images, and 
histopathological images. These strategies have the potential to 
enhance the precision and effectiveness of EC diagnosis, while also 
minimizing inter-observer variability and reducing human mistakes 
(Karahan Şen et al., 2021; Tomita et al., 2019; Hosseini et al., 2023b). 
Previous studies surveyed the recent applications of ML and DL 
models for the diagnosis of EC based on genomic, transcriptomic, and 
proteomic data (Li M.-X. et  al., 2021; Chen Z. et  al., 2021). Li 
M.-X. et al. (2021) work introduced stratifin as an ideal prognostic 
biomarker for ESCC via the use of ML methods. Stratifin, encoded by 
SFN, was discovered as the most effective prognostic biomarker in 
three separate groups of patients with ESCC. It can distinguish 
between ESCC patients with varying clinical outcomes. Their 
investigation revealed that the shared frequencies across various 
feature selection methods indicate the level of significance, with the 
highest-ranked one being the key molecule with clinical relevance. A 
recent investigation not only showed the metabolites that can be used 
for diagnosis and prognosis but also identified potential targets for 
treating ESCC. Their approach used a combination of metabolomics 
data and ML algorithms to develop a new strategy for diagnostic tool 

creation. The results demonstrated that ML models based on 
metabolites had accurate and consistent predictive performance, 
which encourages the future use of ML in analyzing metabolomics 
data. Additionally, the study found that disturbed amino acid 
metabolism, including the accumulation of essential amino acids and 
increased expression of amino acid transporters, is a significant 
characteristic of ESCC. Their study also identified SLC1A5, a specific 
amino acid transporter, as a potential target for anti-ESCC treatment 
(Chen Z. et al., 2021). Kumagai et al. (2019) used DL to examine 
endocytoscopic pictures of the esophagus to ascertain whether AI may 
assist endoscopists in substituting biopsy-based histology. A DL 
model using CNN architecture, namely GoogLeNet, was developed. 
The model was trained using a dataset consisting of 4,715 photos of 
the esophagus, with 1,141 images classified as malignant and 3,574 
images classified as non-malignant. To assess the diagnostic precision 
of the AI, a separate group of 1,520 endocytoscopic pictures, obtained 
from 55 consecutive patients (27 with ESCCs and 28 with benign 
esophageal lesions), were analyzed. Based on the examination of the 
receiver-operating characteristic curve (ROC curve), the area under 
the receiver operating characteristics curve (AUC) for the total 
images, higher magnification pictures, and lower magnification 
pictures were 0.85, 0.90, and 0.72, respectively. The AI accurately 
identified 25 out of the 27 instances of ESCC, resulting in an overall 
sensitivity rate of 92.6%. Out of the 28 non-cancerous lesions, 25 were 
correctly identified as non-malignant. The specificity of this diagnosis 
was 89.3% and the total accuracy was 90.9%. The AI misinterpreted 
two examples of malignant lesions as non-malignant, while the 
endoscopist accurately classified them as malignant. Out of the three 
instances, where non-cancerous abnormalities were incorrectly 
identified as carcinogenic by the AI system, two cases were diagnosed 
as radiation-related esophagitis and one case was diagnosed as 
gastroesophageal reflux disease. The researchers reported that AI has 
the potential to assist endoscopists in detecting ESCC using 
endocytoscopic pictures, without relying on biopsy-based 
histological reference.

As mentioned, ML and DL techniques have the potential to 
contribute to the prediction of therapy response in EC. This may 
be achieved by integrating diverse data types, including radiomic, 
imaging, genomic, and clinical data. By doing so, a more thorough 
and holistic understanding of EC can be obtained (Xie et al., 2021; 
Wang J. et  al., 2022; Lukomski et  al., 2023). Sheng et  al. (2023) 
developed a novel prediction model named HybridNet, which used 
a DL network and integrated clinical variables with dose information 
to achieve precise prediction of radiation pneumonitis (RP) after 
irradiation. The HybridNet model demonstrated superior 
performance compared to ML-based and dosiomics-based models, 
as well as the ResNet model while using simple dosage matrices as 
input. It successfully enhanced the ability to forecast the occurrence 
of RP, indicating its potential as an appreciated tool for making 
therapeutic decisions. Recent studies have also elucidated the 
potential use of ML and DL techniques in predicting the efficacy of 
neo-adjuvant chemoradiotherapy (nCRT) based on CT and 
endoscopic images of patients with EC (Hu et al., 2021; Kawahara 
et  al., 2022). As an example, Hu et  al. (2021) accompanied a 
retrospective study in which they included patients with ESCC from 
April 2007 to December 2018. The patients were selected from two 
different institutions. The researchers obtained DL characteristics 
from six pre-trained CNNs by analyzing pretreatment CT scans in 
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the training cohort, which consisted of 161 cases. The classifier used 
was the support vector machine (SVM). Validation was conducted 
using a separate testing group consisting of 70 individuals. The 
researchers evaluated the performance by using AUC and identified 
an ideal model. This model was then compared to a radiomics model 
that was generated using the training cohort. A clinical model, 
comprised only of clinical characteristics, was also constructed for 
baseline comparison. They further performed a radiogenomics 
investigation using gene expression patterns to uncover the 
underlying biology linked to radiological prediction. The ResNet50-
based model produced an AUC and accuracy of 0.805 (95% CI, 
0.696–0.913) and 77.1% (65.6–86.3%) respectively in the testing 
cohort. In comparison, the radiomics model achieved an AUC and 
accuracy of 0.725 (0.605–0.846) and 67.1% (54.9–77.9%) respectively. 
The radiological models exhibited superior prediction accuracy 
compared to the clinical model. The researchers determined that the 
unique and noninvasive deep learning method might provide a 
precise and efficient prediction of treatment response to nCRT in 
ESCC. They suggest that the innovative and noninvasive DL 
technique might accurately predict ESCC treatment response to 
nCRT and aid clinical decision making.

Recently, scientists revealed how ML and DL may predict the 
survival of EC patients. They discovered that ML and DL may give 
prognostic information and risk classification for EC patients, as well 
as identify variables that impact the survival outcome (Wang J. et al., 
2022; Lukomski et  al., 2023). Nunez et  al. (2023) conducted a 
prognostic research aims to construct and assess neural natural 
language processing models for the purpose of predicting the survival 
outcomes of patients diagnosed with general cancer. This prediction 
was based on the analysis of their first oncology consultation 
document. The models use several language representations, including 
CNNs, bag-of-words, long short-term memory networks, and 
bidirectional encoder representations from transformers. The research 
demonstrates that the models are capable of achieving a notable level 
of accuracy, surpassing conventional ML techniques. Recently, 
researchers also presented a multimodal DL design that uses CT scans 
and clinical data to predict the survival of EC patients. They showed 
that their approach outperformed the usual techniques that employ 
just one type of data. A DL survival network demonstrated more 
promising findings in predicting EC-specific survival than the tumor-
node-metastasis (TNM) staging system (Huang et al., 2022). A novel 
staging method, known as DeepSurv, was designed by Zhang et al. 
(2023) using a DL technique and the SEER database. The purpose of 
this system was to improve the precision of overall survival prediction 
specifically for patients diagnosed with ESCC. A noninvasive 
prediction model was also developed for EC by Wang J. et al. (2022) 
that uses a combination of noninvasive techniques, including 
DL-based radiomics (DLR) features, handcrafted features, and clinical 
characteristics which aims to predict survival rates within a three-year 
timeframe from the time of diagnosis. The DLR nomogram 
outperformed the standard radiomics model in terms of Harrel’s 
concordance index and the AUC. The calibration curves demonstrated 
the excellent predictive capability of the nomogram. The Kaplan–
Meier survival (KMS) curves predicted by the nomogram showed a 
significant difference compared to the nonsurvival groups, as shown 
by the log-rank test (p-value <0.05). The suggested approach provided 
physicians with a foundation to enhance treatment options and tailor 
diagnoses to individual patients.

The use of ML and DL techniques shows potential for enhancing 
the practical application of evidence-based medicine of EC. These 
approaches provide the potential to improve clinical decision-making, 
aid in the early detection, diagnostic process, advice for therapy 
selection and facilitate the prediction of patient outcomes (Huang 
S. et al., 2020; Xie et al., 2021). Hence, it is essential to encourage more 
cooperation and communication among researchers, medical 
professionals, patients, and policymakers in order to promote the 
integration of ML and DL methodologies into clinical practice, while 
simultaneously ensuring their safety and effectiveness.

3.2 Gastric cancer

Gastric cancer (GC) is an oncological condition characterized by 
malignant growth originating from the inner mucosal layer of the 
stomach. The majority of instances of stomach malignancies are 
classified as gastric carcinomas, which may be further categorized into 
several subtypes, such as gastric adenocarcinomas (WCRF 
International, 2022). It ranks as the fifth most prevalent kind of cancer 
on a global scale (WCRF International, 2022). According to global 
estimates, the total number of mortality attributed to GC in the year 
2020 was around 768,793 individuals (American Society of Clinical 
Oncology (ASCO), 2023). On a global scale, it is recognized as the 
fourth most prominent contributor to mortality in cancer cases. The 
prevalence of stomach cancer is at its highest in the eastern Asian 
region, particularly in China, Cabo Verde, Bhutan, and Tajikistan 
(International Agency for Research on Canver (IARC), 2022). The 
standard treatment approach for GC often includes a combination of 
many therapeutic modalities, such as surgical intervention, 
chemotherapy, and radiation therapy (Li G. Z. et al., 2022). The choice 
of treatment is dependent upon the patient’s general health, severity, 
and stage of the condition. The main therapy for resectable GC is 
radical surgery, or gastrectomy. Before or after surgery, some patients 
may get radiation treatment and/or chemotherapy. The standard 
treatment for metastatic GC is systemic chemotherapy. The intricate 
biology of GC has led to the ineffectiveness of specific treatments, save 
for trastuzumab, which targets HER2, and ramucirumab, which 
targets VEGFR2. Immunotherapy and biomarker-directed treatments 
have also shown significant advancements (Wang Y. et al., 2022; Xu 
et  al., 2023). Recently, AI, including ML and DL techniques, has 
shown encouraging outcomes in the timely detection, diagnosis, 
prognostication of treatment efficacy, and overall survival rates 
pertaining to GC (Jamil et al., 2022; Zhao et al., 2022).

AI has shown its potential in the screening of GC by effectively 
identifying precancerous conditions and aiding in the early detection 
of cancer via the use of endoscopic examination and confirmation 
through pathological analysis (Cao et al., 2022). ML and DL have the 
potential to assist in the diagnosis of gastric cancer by providing 
assistance for tumor-node-metastasis (TNM) staging and subtype 
classification (Cao et al., 2022). Recently, researchers designed a cost-
effective, non-intrusive, efficient, and accurate diagnostic model using 
six ML algorithms. The purpose was to categorize patients into high 
or low-risk categories for the development of GC based on the analysis 
of individual lifestyle factors. The research identified eleven significant 
characteristics that impact the incidence of GC, including Helicobacter 
pylori infection, excessive salt consumption, chronic atrophic gastritis, 
and other factors (Afrash et al., 2023). Hirasawa et al. (2018) devised 
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a CNN capable of autonomously identifying GC in endoscopic 
images. The CNN-based detecting system was built using the Single 
Shot MultiBox Detector architecture. It was trained on a dataset of 
13,584 endoscopic images specifically focused on GC. The generated 
CNN was tested using an independent set of 2,296 stomach photos 
obtained from 69 consecutive individuals with 77 GC lesions to assess 
its diagnosis accuracy. The CNN took 47 s to examine a total of 2,296 
test pictures. The CNN accurately identified 71 out of 77 GC lesions, 
yielding an overall sensitivity rate of 92.2%. Additionally, 161 
non-cancerous lesions were mistakenly classified as GC, resulting in 
a positive predictive value of 30.6%. A total of 98.6% of the 71 lesions 
with a diameter of 6 mm or larger, as well as all invasive malignancies, 
were accurately identified. All the lesions that were not detected were 
shallowly depressed and were intramucosal tumors of the 
differentiated type. These cancers were challenging to differentiate 
from gastritis, even for experienced endoscopists. Approximately 50% 
of the false-positive lesions were identified as gastritis, characterized 
by alterations in color tone or an irregular mucosal surface. The 
developed CNN system for GC detection can efficiently analyze a large 
number of stored endoscopic images within a short timeframe while 
maintaining clinically significant diagnostic accuracy. Implementing 
this approach in daily clinical practice can effectively alleviate the 
workload of endoscopists. Another investigation was also carried out 
to do a thorough evaluation, including scholarly articles that used 
AI-based learning algorithms for the purpose of detecting. A total of 
110 studies have identified that using both conventional ML and 
DL-based classification methodologies is important for GC detection 
(Bhardwaj et  al., 2022). Overall, these approaches possess the 
capability to initiate the preliminary screening of GC and identify 
patients at a heightened risk, hence necessitating more invasive 
examinations (Afrash et al., 2023). These novel techniques have the 
potential to significantly reduce the incidence of instances requiring 
endoscopic monitoring. Nevertheless, it is crucial to acknowledge that 
while these methodologies exhibit potential, more research is 
necessary to confirm the effectiveness of the models in a broader and 
multicenter cohort (Afrash et al., 2023).

ML and DL approaches are becoming more prevalent in the field 
of GC diagnosis, with promising outcomes in terms of accuracy and 
efficacy. Especially, the field of medical image analysis has seen a 
significant surge of interest in DL techniques, mostly owing to their 
ability to provide results that are on par with, and in many instances, 
even superior to those achieved by professionals (Gonçalves et al., 
2020). This has contributed to the growing prominence of DL in the 
medical domain. Recent papers offer the considerable potential and 
limitations seen in DL research projects pertaining to GC, ulcers, 
gastritis, and non-malignant diseases (Gonçalves et al., 2020). Recent 
retrospective multicenter study that conducted by Huang et al. (2021), 
introduced an accurate diagnosis and prognosis prediction model for 
GC using DL on digital pathological images, known as GastroMIL. This 
model demonstrated a discriminatory capacity with an accuracy of 
0.920  in the external validation set, greater to that of the junior 
pathologist and comparable to that of expert pathologists. Zhu et al. 
(2022) also introduced a novel framework that was developed by 
integrating statistical approaches and DL techniques to investigate the 
associations between GC and tongue traits. This framework also plays 
a significant role in facilitating the efficient early detection of 
individuals diagnosed with GC. A recent retrospective research aimed 
to create an inexpensive, quick, non-invasive, and high-precision GC 

diagnosis model utilizing personal behavioral lifestyles and 
non-invasive features by integrating 3,630 individuals. The created 
models (extreme gradient boosting, random forest, decision tree, and 
logistic regression) were tested by cross-validation and the 
generalization ability in their test set. They discovered that the model 
constructed utilizing fingerprints based on the extreme gradient 
boosting (XGBoost) technique gave superior outcomes compared 
with the other models. The total accuracy of the test set was 85.7%, 
AUC was 89.6%, sensitivity 78.7%, specificity 76.9%, and positive 
predictive values 73.8%, demonstrating that the proposed model has 
high medical value and strong practical prospects (Jiang et al., 2022).

Additionally, numerous studies have used ML and DL techniques 
to predict the treatment response among individuals diagnosed with 
GC. The main focus of an investigation by Wang et al. (2018) was to 
examine the use of DL techniques in the analysis of several omics data 
types, including genomic, methylation, and transcriptomic data. 
Additionally, the research explores the application of DL in 
histopathology-based genomic interpretation. The article additionally 
discusses the integration of various data types in the development of 
decision-support tools for cancer diagnosis, prognosis, and treatment 
management. The latest comprehensive study presents encouraging 
findings in the use of deep learning techniques for predicting the 
efficacy of drug treatments in cancer patients such as GC. This study 
explores various data formats, neural network topologies, learning 
procedures, and assessment systems. Additionally, this study conducts 
a comparative analysis of deep learning models and traditional 
machine learning models, revealing that deep learning models exhibit 
superior performance and provide more favorable outcomes (Partin 
et al., 2023). Chen Y. et al. (2021) created and verified a predictive 
model for determining the primary pathological response to 
neoadjuvant chemotherapy (NAC) in patients with advanced GC 
(AGC) using a ML algorithm. ML techniques were used to pick 
radiomic characteristics from venous-phase CT images in order to 
construct a radscore. In conjunction with other clinical factors 
identified via univariate analysis, the radscores were included in 
binary logistic regression analysis in order to develop a comprehensive 
prediction model. The data acquired for the validation cohort were 
used to assess the prediction precision of the model. The researchers 
constructed and tested a prediction model that included 
adenocarcinoma differentiation and radscores. The model facilitates 
the stratification of individuals based on their susceptibility to NAC 
and has the potential to function as a tool for personalized therapy 
decision-making in patients with AGC. Jiang et al. (2023) provide a 
novel methodology for noninvasively predicting the tumor 
microenvironment (TME) status using radiological imaging. Their 
strategy involves the integration of radiomics and DL analyses by 
using cohorts consisting of 2,686 individuals diagnosed with GC. Their 
study demonstrates that the radiological model effectively predicts the 
state of TME and serves as an independent prognostic factor, 
surpassing the predictive capabilities of clinicopathologic factors. The 
model also predicts the potential advantages of adjuvant treatment for 
individuals diagnosed with localized GC. The prediction accuracy of 
clinical response in patients undergoing checkpoint blockade 
immunotherapy is enhanced by the integration of the model with 
validated biomarkers. The methodology used in this study allows for 
the noninvasive evaluation of TME, hence facilitating the possibility 
of longitudinal observation and assessment of the effectiveness of 
GC treatment.
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Numerous studies have been established to investigate the use of 
ML and DL techniques in the prediction of survival outcomes among 
individuals diagnosed with GC. Recently, Zeng et  al. (2023) 
constructed models using DL survival neural networks in order to 
predict the survival outcomes of patients diagnosed with gastric 
adenocarcinoma. Additionally, the study sought to evaluate the 
predictive capabilities of these models by comparing them to other 
established survival models often used in clinical settings. The study 
contained a cohort of 14,177 patients diagnosed with gastric 
adenocarcinoma, obtained from the Surveillance, Epidemiology, and 
End Results (SEER) database. These patients were randomly assigned 
to either the training or testing group, with a ratio of 7:3. The 
prediction models were constructed using two selected methods, 
namely random survival forest (RSF) and a DL-based survival 
prediction algorithm called DeepSurv. The patients with GC were 
divided randomly into two groups: a training group consisting of 
9,923 patients and a testing group consisting of 4,254 patients. 
DeepSurv exhibited higher performance compared to the traditional 
CoxPH model and the RSF with a 3-year survival prediction model. 
DeepSurv achieved a c-index of 0.772 and an IBS of 0.1421, while the 
CoxPH model achieved a c-index of 0.755 and an IBS of 0.1506, and 
the RSF model achieved a c-index of 0.766 and an IBS of 0.1502. The 
DeepSurv model demonstrated exceptional accuracy and precise 
survival estimates for predicting survival rates at 1, 3, 5, and 10 years, 
with an AUC ranging from 0.825 to 0.871. The DeepSurv model 
exhibits superiority over the CoxPH and RSF models, demonstrating 
excellent discriminative performance and calibration. Another 
research was conducted by Jung et al. (2023) with the objective of 
establishing a cost-effective, not disruptive, efficient, and accurate 
diagnostic model. This model used six ML algorithms to classify 
patients into high or low-risk categories for the development of 
GC. The classification was based on the analysis of various lifestyle 
characteristics of individual patients. A different study used clinical 
characteristics, radiomics features, and DL features discovered by 
CNNs in order to forecast the overall and progression-free survival 
rates of individuals diagnosed with GC using multi-modal data from 
1,061 patients, 743 for model learning and 318 independent patients 
for evaluation. Clinical factors and CT imaging characteristics 
extracted by radiomics and DL were used to develop a Cox 
proportional-hazard model for overall and progression-free survival 
prediction. Clinical, radiomics, and DL features were further 
examined for prediction. The concordance index (c-index) was the 
model performance indicator, while pre-and post-operative hazard 
ratios (HRs) assessed multi-modal feature prediction effects. Cox’s 
multi-modal hazard predicts survival for 318 independent testing 
group patients. For overall and progression-free survival prediction, 
the greatest c-index was 0.783 (95% CI, 0.782–0.783) and 0.770 (95%, 
0.769–0.771). The post-operative variables are significantly (p < 0.001) 
more predictive than the pre-operative variables. Significant survival 
predictors include tumor stage, lymph node stage, carcinoembryonic 
antigen (CEA), chemotherapy treatment, radiomics signature, and DL 
signature (HR = 1.336/1.768, p < 0.005). The study found that CT 
radiomics and DL imaging characteristics are strong pre-operative 
predictors, supplementing pathological staging indicators. Lower CEA 
levels and chemotherapy improve survival. They suggested that these 
findings improve GC prognosis and therapy planning (Hao et al., 
2022). Various studies have shown the considerable potential of ML 
and DL techniques in enhancing the accuracy of early detection, 

diagnosis, treatment response, and survival prediction for patients 
diagnosed with GC (Jamil et al., 2022; Jin et al., 2020; Jiang et al., 
2021). This advancement has significant promise in facilitating 
informed clinical decision-making processes.

3.3 Hepatocellular carcinoma

Hepatocellular carcinoma (HCC) is the prevailing liver cancer 
(Mitra, 2011). In terms of mortality ranking, HCC has the position of 
being the fourth most prominent cause of cancer-related mortality on 
a global scale (Dasgupta et  al., 2020; Chen et  al., 2022). HCC 
frequently manifest in individuals with chronic liver diseases such as 
chronic infection with specific hepatitis viruses, DNA mutation in 
liver cells, and risk factors including cirrhosis, certain inherited liver 
diseases, diabetes, hepatic steatosis, and excessive alcohol consumption 
(Mitra, 2011; Dasgupta et al., 2020). The conventional therapeutic 
modalities for HCC include hepatectomy, liver transplantation, 
ablation techniques, radiation therapy, immunotherapy, and targeted 
pharmacotherapy (Mitra, 2011). The majority of HCC patients will 
undergo various types of chemotherapy with the aim of extending 
their lifespan. Sorafenib is the initial molecular inhibitor authorized 
by the FDA for the management of advanced HCC. Before sorafenib 
became available, doxorubicin was commonly administered as a 
monotherapy for advanced HCC. However, it has demonstrated 
ineffectiveness, with a response rate of approximately 15–20%. 
Additional chemotherapeutic drugs, including epirubicin, cisplatin, 
5-fluorouracil, etoposide, and their combinations, exhibit even less 
effectiveness (Cao et al., 2012). The survival rates for HCC have seen 
improvement throughout the years, perhaps because of advancements 
in early detection methods and therapy strategies (Ding and Wen, 
2021). As an example, individuals diagnosed with early-stage liver 
malignancies who undergo liver transplantation have a 5-year survival 
rate ranging from 60 to 70% (Ghishan and Kiela, 2011).

The use of ML and DL techniques has shown encouraging 
outcomes in the timely identification of hepatocellular carcinoma 
(HCC). A recent research which conducted by Zhang et al. (2020), 
used a computational methodology using ML techniques to analyze a 
collection of microarray data derived from 1,091 HCC samples and 
242 samples obtained from individuals without HCC. This research 
used the within-sample relative expression orderings (REOs) 
technique to derive quantitative descriptors from datasets including 
gene expression profiles. By using the maximum redundancy 
minimum relevance (mRMR) technique with incremental feature 
selection, the researchers successfully eliminated irrelevant 
information. This process led to the identification of an “11-gene-pair” 
that exhibited exceptional performance. This developed computer 
model demonstrates the ability to differentiate between HCC and 
adjacent non-cancerous tissues, even when dealing with limited 
biopsy specimens or specimens that have been improperly collected. 
This model has promise for assisting in the early detection of HCC at 
an individual level (Zhang et  al., 2020). A further investigation 
introduced a novel technique known as No End-repair Enzymatic 
Methyl-seq (NEEM-seq) (Deng et al., 2023), which effectively detects 
methylation with high accuracy while minimizing DNA damage. The 
researchers made further advancements in their study by introducing 
a read-level neural detection model known as DeepTrace. This model 
exhibits improved capabilities in accurately identifying sequencing 

https://doi.org/10.3389/frai.2024.1446693
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Akbari et al. 10.3389/frai.2024.1446693

Frontiers in Artificial Intelligence 10 frontiersin.org

reads originating from HCC by using a pre-trained and fine-tuned 
neural network. This model demonstrated a high level of accuracy 
(96.2%), sensitivity (93.6%), and specificity (98.5%) in the validation 
cohort, which included 62 patients with HCC, 48 patients with liver 
disease, and 20 healthy persons. These results were obtained using the 
whole-genome NEEM-seq data of cell-free DNA. During the first 
phase of HCC, the DeepTrace method exhibited a sensitivity of 89.6 
and 89.5%, exceeding the sensitivity of Alpha Fetoprotein (AFP) 
which showed much worse performance (Deng et al., 2023). These 
results underscore the promise of AI techniques in enhancing the 
timely detection of HCC.

ML and DL also have shown considerable promise in the 
diagnosis of HCC. In a recent study, Shen et al. (2023) conducted a 
comprehensive analysis of previous and ongoing studies on the use of 
conventional models and techniques in AI applications related to 
serology, imaging, histology, proteomics, and genetic diagnosis of 
HCC. Menegotto et  al. (2021) developed an algorithm using 
multimodal DL methods to help in the computerized diagnosis of 
HCC. This system integrates preprocessed CT images with structured 
data extracted from patients’ Electronic Health Records (EHRs). 
Recent findings indicate that DL recurrent neural network (RNN) 
models exhibited superior performance compared to traditional 
logistic regression (LR) models, implying the potential use of RNN 
models in accurately identifying individuals with hepatitis C virus 
(HCV)-related cirrhosis who are at a heightened risk of developing 
HCC. The researchers utilized raw longitudinal data directly retrieved 
from EHRs, with conventional regression models in predicting the 
likelihood of getting HCC. This study examined the prognosis of 
48,151 patients diagnosed with cirrhosis caused by HCV in the 
national Veterans Health Administration. The patients were followed 
up for at least 3 years after the diagnosis of cirrhosis. Patients were 
selected based on their positive HCV RNA test results. They were 
then monitored from the time of cirrhosis diagnosis, to observe any 
new cases of HCC. Three models were created and tested to predict 
HCC over a 3-year period. These models include: (1) LR with cross-
sectional inputs (cross-sectional LR); (2) LR with longitudinal inputs 
(longitudinal LR); and (3) RNN with longitudinal inputs. The findings 
of this study indicate that DL-RNN models were more effective than 
traditional LR models in identifying patients with HCV-related 
cirrhosis who are at a high risk of developing HCC. This suggests that 
RNN models could be utilized for risk-based HCC outreach and 
surveillance methods (Ioannou et  al., 2020). The process of 
diagnosing primary liver cancers, specifically HCC and 
cholangiocarcinoma (CC), is difficult and requires a significant 
amount of time and effort, even for professionals. The presence of 
secondary liver cancers adds more complexity to the diagnosis. AI 
provides effective answers to these diagnostic problems by enabling 
the histological categorization of cancers utilizing digital whole slide 
images (WSIs). The objective of a recent study was to create a 
sophisticated DL algorithm capable of accurately differentiating 
between HCC, CC, and metastatic colorectal cancer (mCRC) based 
on histological images. Additionally, the study aims to explore the 
potential clinical consequences of this model. The WSIs obtained 
from HCC, CC, and mCRC were utilized for training the classifiers. 
The AUCs for HCC, CC, and mCRC were 0.989, 0.988, and 0.991, 
respectively, in the classification of normal and malignant cases. The 
HCC/other cancer type classifier was trained using appropriate tumor 
samples to accurately differentiate between HCC and CC and 

mCRC. The combined AUC value of the classifier was 0.998, 
indicating high effectiveness. Afterwards, the CC/mCRC classifier 
accurately distinguished between CC and mCRC with a combined 
AUC of 0.995. Nevertheless, evaluation on an independent dataset 
demonstrated that the HCC/other cancer type classifier exhibited 
suboptimal performance, with an AUC of 0.745. By merging the 
initial training datasets with additional external datasets and 
undergoing retraining, the classification was significantly enhanced, 
resulting in all reaching perfect AUCs of 1.000 (Jang et al., 2023). A 
comprehensive study was also conducted to analyze several ML and 
DL techniques for the detection of chronic liver disease and 
HCC. This research offers a full overview of the ML pipeline, 
including pre-processing, feature extraction, and learning algorithms 
(Singh et al., 2023). These studies emphasize the potential of ML and 
DL techniques in enhancing the diagnosis and treatment of HCC.

Numerous researches have been conducted to investigate the 
function of ML and DL in the prediction of treatment response in 
HCC. Zou et  al. (2021) conducted a comprehensive study that 
demonstrated the valuable contribution of ML algorithms in 
predicting the therapeutic success of patients with HCC after different 
treatment modalities. They emphasized the efficacy of ML algorithms 
in forecasting treatment results and discussed the difficulties 
associated with ML algorithm selection during the construction of a 
model. Retrospective cohort research had a sample size of 605 
individuals diagnosed with intermediate-stage HCC who underwent 
transcatheter arterial chemoembolization (TACE) as their primary 
treatment modality. The digital subtraction angiography (DSA)-Net 
framework comprises two models: Model 1, which called U-net model 
used for the automated segmentation of tumors, and Model 2, which 
named ResNet model applied for predicting the treatment response to 
the first TACE. The two models underwent training on a dataset 
consisting of 360 patients. Subsequently, an internal validation was 
performed on a separate group of 124 patients, while an external 
validation was conducted on an additional 121 cases. The performance 
of Models 1 and 2 was assessed using the Dice coefficient and receiver 
operating characteristic curves, respectively (Zhang L. et al., 2022). A 
proof-of-concept investigation assessed the application of ML to 
forecast the likelihood of recurrence based on laboratory, clinical, and 
MRI data collected before therapy in patients with early-stage HCC 
who were initially suitable for liver transplant. This retrospective study 
comprised a cohort of 120 patients diagnosed with early-stage HCC 
who initially qualified for liver transplantation and received therapy 
by transplantation, resection, or thermal ablation. Patients underwent 
pre-treatment MRI and post-treatment imaging surveillance. The 
study used pretreatment clinical variables (including laboratory data) 
and extracted imaging features to construct three ML models (clinical 
model, imaging model, combined model) to predict recurrence within 
6 years following therapy. During the follow-up period, a tumor 
reoccurred in 44 out of 120 patients (recurrence rate of 36.7%). Briefly, 
the results indicated that ML algorithms could forecast the likelihood 
of recurrence in patients with early-stage HCC who are primarily 
suitable for liver transplantation, even before treatment is assigned. 
Incorporating MRI data into the model input significantly enhanced 
the predicted accuracy compared to relying just on clinical criteria. 
The combined model did not exceed the performance of the imaging 
model (Iseke et al., 2023). This kind of results illustrates the potential 
of AI approaches in offering important tools for personalized 
therapy approaches.
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Recently, scientists revealed how ML and DL may predict the 
survival of HCC patients. As previously noted, in a recent research, 
researchers conducted a study whereby they devised a DL model to 
predict the likelihood of HCC recurrence subsequent to resection or 
liver transplantation. A recent study offered a prognostic classifier, 
based on DL models, on histological slides obtained from patients 
with HCC. This classifier aids in enhancing the prognostic prediction 
of HCC patients and identifies individuals who have derived benefits 
from more intensive therapy strategies. The model was constructed 
using a sample size of 1,118 patients derived from four distinct cohorts 
that were independent of each other. The model underwent extensive 
evaluation across diverse patient populations undergoing various 
treatment modalities, constantly demonstrating exceptional 
performance in assessing classical clinical, biochemical, and 
pathological characteristics. The suggested technique, which utilizes 
CNNs, has the potential to enhance the assessment of patient 
prognosis and provide valuable guidance to physicians when 
considering the implementation of adjuvant treatment for their 
patients (Liu Z. et al., 2022). An additional research endeavor was 
undertaken to construct a prediction model for microvascular 
invasion (MVI) utilizing DL techniques. The objective was to provide 
visual explanations for the model’s predictions, thereby facilitating its 
implementation in clinical settings. The performance of the attention-
guided multi-phase fusion network in predicting preoperative MVI 
was outstanding. The most prominent sites that contribute to the 
prediction of MVI are the tumor margins in the four stages and the 
peritumoral areas in the arterial and hepatobiliary phases. Among the 
four stages, the Human Brain Project (HBP) made the most significant 
contribution to the prediction of MVI. The visualization of attention 
weights in the training network enhances the comprehensibility of the 
underlying causal connection between deep features and MVI. This, 
in turn, augments the interpretability of DL models in clinical settings, 
potentially streamlining the adoption of DL techniques in clinical 
practice. The precise preoperative estimation of microvascular 
invasion (MVI) may aid in the identification of patients with HCC 
who are susceptible to MVI. This can assist healthcare professionals in 
making informed decisions on the most appropriate treatment 
strategies, ultimately leading to improved patient survival outcomes 
(You et al., 2023).

3.4 Colorectal cancer

Colorectal cancer (CRC), often referred to as bowel or colon 
cancer, frequently originates as a polyp inside the colon or rectum. 
Over the course of time, some polyps have the potential to undergo 
malignant transformation, leading to the development of cancer 
(Centers for Disease Control and Prevention, 2023a). CRC ranks as 
the fourth most prevalent cause of mortality caused by cancer. The 
overall five-year survival rate for colon cancer is reported to be 64.6%. 
However, it is important to note that survival rates might vary 
depending on the stage of the disease. Specifically, the five-year 
survival rate for stage 1 colon cancer can reach as high as 92%, while 
for colorectal cancer at any other stage, the survival rate can be as low 
as 34.9% (Centers for Disease Control and Prevention, 2023b; 
Mangone et  al., 2022). Hence, timely detection of CRC via 
comprehensive screenings, through conventional methods and novel 
pertinent molecular biomarkers, is crucial for the successful 

implementation of treatment strategies and the enhancement of 
overall patient prognosis (Kanth and Inadomi, 2021; Eshkiki et al., 
2022). The standard treatment modality for CRC often entails surgical 
intervention aimed at the excision of the malignant tumor. Additional 
therapeutic interventions, such as radiation therapy and 
chemotherapy, may be advised based on the cancer’s location and 
stage of the malignancy (Mayo Clinic, 2023a). CRC treatment options 
include targeted medicines, chemotherapy, and immunotherapy. The 
selection of treatment modalities is mostly determined by the cancer’s 
stage (American Cancer Society, 2023). The standard therapy for 
advanced CRC involves the administration of a combination of 5-FU 
and leucovorin together with either oxaliplatin or irinotecan. The 
introduction of monoclonal antibodies like Bevacizumab and 
Cetuximab has significantly advanced the medical therapy of 
CRC. Although response rates have improved with the use of other 
modulation techniques, such as combined treatment using 
monoclonal antibodies and conventional chemotherapy, around 50% 
of patients with metastatic CRC still show resistance to chemotherapies 
based on 5-FU (Van der Jeught et al., 2018).

In the past few years, AI methodologies have shown significant 
potential in the timely detection of CRC. The objective of a recent 
study was to use DL techniques in order to develop models for the 
detection, localization, and classification of colorectal lesions using 
white light endoscopic images. The researchers gathered and 
organized the endoscopic images captured in white light from a cohort 
of individuals who had colonoscopies. The use of CNNs model is 
employed for the purpose of identifying the presence of lesions in an 
image, specifically those pertaining to CRC, colorectal adenoma 
(CRA), and colorectal polyps. The model’s performance is assessed 
using measures such as accuracy, sensitivity, and specificity rates. 
Subsequently, the instance segmentation model is used to accurately 
identify and categorize the lesions present in the images including 
such abnormalities. The model’s performance is then assessed using 
metrics such as mean average precision (mAP), AP50, and AP75. 
These metrics serve as evaluative measures for the effectiveness of the 
instance segmentation model. The researchers devised and conducted 
a comparative analysis of five DL models in order to identify lesions 
in white light endoscopic pictures. According to the findings, the 
ResNet50 network design demonstrated the most favorable 
performance. Additionally, the Mask R-CNNs model illustrated the 
capability to accurately identify and categorize lesions within images 
that include such anomalies (Gao et al., 2020). Recently, a different 
study discovered that an ANN model had superior performance as the 
most effective algorithm in predicting CRC and non-CRC 
characteristics. The researchers reached the conclusion that a fusion 
of unsupervised and supervised ML methodologies may be used to 
investigate the fundamental dietary characteristics for the purpose of 
predicting CRC. In order to enhance feasibility and practicality, it was 
determined that the ANN algorithm exhibited optimum performance, 
achieving a misclassification rate of 1% for CRC cases and a 
misclassification rate of 3% for non-CRC cases. This finding suggests 
that using the ANN algorithm may significantly improve the efficacy 
of cancer screening techniques. Additionally, they noted that the use 
of dietary information as a non-invasive approach for screening 
purposes has the potential to be implemented on a wide scale among 
large populations. The findings also indicate that the use of optimum 
algorithms in conjunction with a high level of adherence to cancer 
screening protocols will have a substantial impact on enhancing the 
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effectiveness of CRC prevention (Abdul Rahman et al., 2023). Some 
recent comprehensive studies also discussed how CRC, is classified 
according to DL and ML techniques. These findings underscore the 
promise of ML and DL techniques in enhancing the timely detection 
and diagnosis of CRC (Yin et al., 2023; Tharwat et al., 2022).

When using metagenomic data for the diagnosis of CRC, it is 
often observed that DL methods generally exhibit worse performance 
in comparison to standard ML approaches for the prediction and 
diagnosis of this cancer especially when utilizing metagenomic data 
to identify this cancer. However, Thanh-Hai et  al. introduced a 
methodology that employs manifold learning techniques such as 
t-distributed stochastic neighbor embedding (t-SNE) and spectral 
embedding to convert numerical data into visual representations. This 
approach also incorporates DL algorithms to enhance the accuracy 
and effectiveness of predicting CRC diseases. The study also presented 
significant opportunities for enhancing the quality and efficiency of 
visualizations in predictive tasks involving dense data. The findings of 
the analysis conducted on samples obtained from five distinct areas, 
namely America, China, Austria, Germany, and France, demonstrate 
the potential of integrating visualization techniques with DL 
algorithms to improve the accuracy and effectiveness of diagnosing 
CRC (Thanh-Hai and Thai-Nghe, 2020). In a separate investigation, 
scholars developed a categorization framework with the aim of 
distinguishing between five distinct categories of lung and colon 
tissues. These categories included two benign kinds and three 
malignant types, and the differentiation was achieved via the analysis 
of histological images. The findings obtained demonstrated that the 
suggested framework has the capability to accurately detect cancer 
tissues with a maximum accuracy of 96.33%. It is believed that the use 
of this model will assist healthcare practitioners in the creation of an 
automated and dependable system with the ability to accurately detect 
different forms of lung and colon cancers (Masud et al., 2021). Sakr 
et al. (2022) proposed a lightweight CNN-based DL technique for 
effective colon cancer diagnosis. The effectiveness of the suggested 
method was examined using histopathology images and compared to 
current techniques in the area. Results indicated the suggested 
technique for colon cancer diagnosis was more susceptible and 
efficient than the previous deep models. Their model achieved the 
highest accuracy, precision, recall, and F1-score (99.50, 99, 100, and 
99.49%). In circumstances when pathologists require to be insured to 
check colon images, their approach may aid in accurate diagnosis. 
Zhou et  al. (2020) devised a DL framework named CRCNet to 
facilitate the optical detection of CRC. The model was trained using a 
dataset consisting of 464,105 colonoscopic imaging data obtained 
from 12,179 patients. To evaluate its efficacy, the performance of 
CRCNet was assessed on a separate cohort of 2,263 patients, drawn 
from three distinct datasets. The findings of the study indicate that 
CRCNet has a notable capability to effectively distinguish CRC from 
benign conditions, including adenomas and polyps, with a 
commendable level of accuracy. The CRCNet model demonstrated 
consistent and strong performance in accurately identifying patients 
with CRC across three separate test sets. The performance of the 
subject in question exhibited similarity to that of a cohort consisting 
of five proficient endoscopists. However, a variety of comprehensive 
studies acknowledged that while AI technologies show promise, there 
is still much to learn about their use in clinical settings, therefore more 
research is required to fully actualize these technologies’ potential 
(Tharwat et al., 2022; Tamang and Kim, 2021).

Recently, scientists revealed how ML and DL may predict the 
treatment response of CRC patients. A recent comprehensive 
investigation conducted an examination of research findings 
pertaining to the four most frequent and often occurring malignancies 
globally, namely lung, breast, prostate, and CRC. Subsequently, a novel 
approach for the detection of CRC using SBERT and SimCSE sentence 
representations was introduced. The only input for this technique 
consisted of raw DNA sequences obtained from matched tumor/
normal pairs of CRC. The acquired representations were then used as 
input for ML classifiers in order to perform classification. Based on 
the evaluation of the ML classifiers, it was determined that XGBoost 
had the highest performance among all classifiers. Additionally, the 
use of SimCSE representations resulted in very minimal enhancements 
in the classification efficacy of the ML models. In their study, Kong 
et al. emphasized the significance of using predictive biomarkers to 
classify CRC patients, since this approach is crucial for enhancing the 
efficacy of anti-cancer medication treatments and ultimately 
improving therapeutic results. The researchers used a ML framework 
in their study, which aimed to uncover reliable pharmacological 
biomarkers. This framework utilized network-based analyses and 
relied on pharmacogenomic data obtained from three-dimensional 
organoid culture models. The scientists have successfully found 
biomarkers using their methodology, which have shown a high level 
of accuracy in predicting the treatment responses of a cohort 
consisting of 114 patients with colorectal cancer who were treated 
with 5-fluorouracil, as well as 77 patients with bladder cancer who 
were treated with cisplatin. The study introduced a novel methodology 
for predicting the response of cancer patients to drugs. This approach 
utilizes pharmacogenomic data obtained from organoid models and 
combines the use of gene modules with network-based methods 
(Mokoatle et al., 2023). The availability of analytical and bioinformatics 
approaches has facilitated the use of high-dimensional data, allowing 
for the emergence of high-throughput phenotyping. Additionally, the 
existence of dynamic models has enabled the connection of 
phenomena across various levels, ranging from genes to cells, cells to 
organs, and ultimately, throughout the entire organism. In this 
context, D’Orazio et al. (2022) introduced a novel, entirely automated 
system capable of extracting meaningful data on the dynamic nature 
of cellular morphological phenotypes. This system successfully 
establishes a strong link between gene expression and cellular 
phenotype. The researchers used phenomics, including image analysis, 
DL, and ML techniques, to develop a comprehensive methodology 
known as ML-Phenomics (MLP). The efficacy of the proposed MLP 
platform has been evaluated in terms of its capability to discern 
phenotypic traits of cells associated with the downregulation of the 
LOX-1 receptor (gene expression pathway) or the administration of 
drugs in a dose-dependent manner (drug effects pathway) in CRC 
Cells. The findings indicate that the suggested platform exhibited 
superior performance compared to other benchmark approaches, 
regardless of the specific neural network used. Patients diagnosed with 
locally advanced rectal cancer (LARC) stand to benefit significantly 
from the attainment of a pathological complete response (pCR) 
subsequent to nCRT, as it offers them the most favorable prognosis. 
The effectiveness of an ANN model in predicting pathological 
complete response (pCR) in patients with locally advanced rectal 
cancer (LARC) was assessed by Huang C.-M. et al. (2020). The study 
included a comparison of the predictive performance of several 
models, including ANN, k-nearest neighbor (KNN), SVM, naïve 
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Bayes classifier (NBC), and multiple logistic regressions (MLR). The 
performance of the forecasting models was compared using data 
obtained from a sample of 270 individuals with LARC. The findings 
of their study demonstrated that the post-chemoradiotherapy 
carcinoembryonic antigen (CEA) level is the primary predictor of 
pCR, with subsequent predictors including the duration between 
chemoradiotherapy and surgery, the kind of chemotherapy regimen, 
the clinical nodal stage, and the clinical tumor stage. The ANN model 
demonstrated superior accuracy in predicting pCR compared to other 
traditional prediction models. Zhu et al. (2021) developed a DL model 
using magnetic resonance imaging (MRI) to predict the response of 
tumors in patients diagnosed with CRC liver metastasis (CRLM). This 
particular model demonstrated a high level of efficacy in predicting 
the pathological tumor response to preoperative chemotherapy and 
long-term survival following hepatectomy. Furthermore, the 
researchers assert that this model exhibited greater accuracy compared 
to the RECIST criteria, which currently serve as the predominant 
criteria for evaluating the clinical response of solid tumors to 
chemotherapy. The identification of microsatellite instability (MSI) in 
CRC is of utmost importance in clinical decision-making, as it enables 
the identification of individuals who exhibit varying therapy responses 
and prognoses. In a recent study, Yamashita et al. (2021) conducted an 
investigation into the feasibility of using a DL-based system to 
automate the prediction of MSI directly from whole-slide images 
(WSIs) stained with Hematoxylin and Eosin (H&E). The DL model, 
known as MSINet, was constructed utilizing a dataset consisting of 
100 WSIs stained with H&E. These WSIs were obtained from patients 
who underwent primary CRC resection, with a total of 343 patients 
in the pool. The selection of WSIs was performed in a class-balanced 
manner, with 50 WSIs exhibiting microsatellite stability (MSS) and the 
other 50 WSIs exhibiting MSI. The WSIs were scanned at a 
magnification of 40×. The DL model demonstrated superior 
performance compared to experienced GI pathologists in predicting 
MSI on H&E-stained WSIs. They reported such a model has the 
potential to serve as an automated screening tool for triaging 
individuals for confirmatory testing. This might lead to a reduction in 
the number of patients who need to be tested, resulting in significant 
savings in terms of labor and costs associated with testing. Numerous 
recent comprehensive studies have also shown the potential and 
positive outcomes of ML and DL in enhancing the prediction of 
treatment response in CRC (Qiu et al., 2022; Partin et al., 2023; Tran 
et al., 2021).

In recent years, there has been widespread use of ML and DL 
models for the purpose of predicting the survival outcomes of 
patients diagnosed with CRC. DL algorithms have shown effective 
use in the analysis of H&E stained WSIs for the purpose of predicting 
patient outcomes, including overall survival, progression-free 
survival, time to metastasis, and tumor recurrence. Li et al. (2022b) 
proposed a unique method called DeepDisMISL, which is based on 
distribution and designed for multiple-instance survival learning. 
The purpose of their study was to investigate the hypothesis that the 
inclusion of comprehensive patch information in WSIs might 
enhance the accuracy of predicting CRC survival. Rather than only 
using patches with the highest and lowest scores, the researchers 
opted to use patches that were evaluated according to their placement 
within the percentile distributions. The researchers provided evidence 
that this particular methodology has the potential to significantly 
enhance the accuracy of prognostic predictions for patients with 

CRC, hence improving their survival outcomes. Incorporating several 
examples of neighboring areas around each chosen distribution 
point, such as percentiles, has the potential to enhance the accuracy 
of predictions. DeepDisMISL exhibited superior predictive 
performance and more precise risk stratification for overall survival 
in comparison to the six state-of-the-art baseline methods, as shown 
in both the MCO CRC and TCGA COAD-READ datasets. The 
DeepDisMISL model demonstrated a high level of interpretability, 
allowing for the identification of connections and interdependencies 
between morphological features and the risk of cancer prognosis in 
patients. According to the study conducted by Buk Cardoso et al. 
(2023) AI models have shown their effectiveness in accurately 
predicting the survival rates of patients diagnosed with CRC. This 
prediction was based on data obtained from hospital-based cancer 
registries in low and middle-income countries, with a particular 
focus on the XGBoost algorithm. This research conducted five 
distinct classes, taking into account the survival of patients. The ML 
models yielded predictions and identified the key aspects of each 
method utilized in the conducted research. The predictive models 
yielded an accuracy rate of around 77%, with an AUC value 
approaching 0.86. Notably, the clinical staging variable consistently 
emerged as the most influential factor across all models. The study 
conducted by Kather et al. (2019) aimed at evaluating the capability 
of deep CNNs in identifying prognostic indicators directly from 
HE-stained tissue slides, which are commonly accessible images of 
CRC patients. The findings of this retrospective research 
demonstrated that CNN has the capability to evaluate the human 
tumor microenvironment and make prognostic predictions based 
only on histological pictures. The research emphasizes the potential 
of ML and DL techniques in enhancing the accuracy of survival rate 
predictions for individuals diagnosed with CRC. This advancement 
has the potential to significantly enhance treatment options and 
eventually improve patient outcomes.

3.5 Pancreatic cancer

Pancreatic cancer (PC) is regarded as one of the most lethal forms 
of cancer, with a very low percentage of survival. Ranked as the fifth 
leading cause of cancer-related mortality, this particular malignancy 
has a five-year survival rate that falls below 7% (Pancreatic Cancer 
UK, 2023). The decision about the course of therapy for pancreatic 
cancer is contingent upon the specific stage of the cancer’s progression 
and the general health condition of the patient. The conventional 
treatment options for this condition are surgical intervention, 
chemotherapy administration, and radiation therapy (Mayo Clinic, 
2023b; Shokati Eshkiki et al., 2022). Surgical procedures may include 
the partial or complete excision of the pancreas, perhaps necessitating 
the removal of adjacent organ structures. Additional therapeutic 
interventions for symptom management may include the use of 
endoscopy. Chemotherapy relies on various medications, such as 
5-Fluorouracil, Capecitabine, Irinotecan, and Oxaliplatin. This 
treatment modality may be used to manage symptoms in cases where 
surgical intervention is not feasible, to prevent cancer recurrence 
following surgical procedures, to reduce tumor size prior to surgery, 
or to address early-stage cancer. Radiotherapy may be used for the 
management of incipient neoplastic conditions or in cases where 
surgical intervention is recommended due to the patient’s severe 
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debilitation or the cancer cannot be removed by surgery (Mayo Clinic, 
2023b; NHS, 2023).

Within the field of medicine, AI methodologies have made 
significant contributions to advancements in the study and prediction 
of a diverse range of cancers. The use of these models in the early 
detection of PC is seeing a growing trend. These methodologies have 
the potential to identify people with an increased susceptibility to PC, 
hence potentially leading to a better rate of survival among patients 
afflicted with this condition (Gupta et al., 2022). Scientists at Harvard 
Medical School and the University of Copenhagen devised an AI tool 
that accurately detected individuals with the greatest susceptibility to 
PC, even up to three years before diagnosis, by only analyzing the 
patient’s medical data. The researchers used AI techniques to analyze 
clinical data from a cohort of 6 million patients, including 24,000 
individuals diagnosed with PC. The researchers used ML models to 
train on the sequence of disease codes seen in clinical histories. They 
then examined the capacity of these models to predict the presence of 
cancer within certain time windows (CancerRiskNet). This research 
was conducted with the intention of explicitly including the 
chronological order of disease occurrences and evaluating the capacity 
to predict the risk of cancer over progressively longer time intervals 
between the endpoint of the disease trajectory used for risk prediction 
and the onset of cancer. The findings suggest that using the 
chronological order of disease histories as input to the model, as 
opposed to only considering disease incidence at any given time, 
enhances the predictive capability of AI techniques in estimating the 
onset of PC, particularly for those in the highest-risk group (Placido 
et al., 2023). Malhotra et al. (2021) conducted a research by using EHR 
from the UK to study a cohort of over 1,000 individuals ranging in age 
from 15 to 99 years who had a diagnosis of PC. The researchers 
devised an algorithm that acquired the ability to differentiate between 
individuals who subsequently got PC and those who did not. By using 
this methodology, it was shown that 41% of patients who were below 
the age of 60 were classified as being at a high risk level, as much as 
20 months previous to their diagnosis. The researchers have 
successfully shown their findings have the potential to enhance early 
detection by using a multi-stage screening framework that 
incorporates newly discovered biomarkers, specifically targeting those 
deemed to be at a heightened risk based on this methodology. In a 
separate investigation done by Dinesh et al. (2023), the objective was 
to anticipate the occurrence of PC at an early stage via the evaluation 
of medical imaging data, specifically CT scans. The researchers used 
CNN and YOLO model-based CNN (YCNN) models to detect crucial 
characteristics and cancerous growths inside the pancreas. This 
research introduces an automated YCNN model as a tool to assist 
pathologists in the classification of PC grades using pathological 
pictures. Additionally, the YOLO model was included in the system to 
provide predictions based on the available data. The images were 
resized and segmented into patches of 224 × 224 pixels before being 
simultaneously inputted into the YCNN. Subsequently, CNN was used 
to classify the patches according to their corresponding grades. Then, 
the patches were reassembled to provide a unified picture, which is 
then sent to the pathologist as the ultimate outcome. The reported 
f1-scores on the datasets are 0.99 and 1.00, indicating very favorable 
results. They reported the study results have the potential to aid 
pathologists in establishing a uniform diagnosis for the grading of 
PC. Liu Y. et al. (2023) introduced an innovative ANN model that has 
considerable potential in the realm of clinical practice, namely in the 

timely identification of PC. The ANN model has shown remarkable 
proficiency in reliably discriminating PC samples from normal 
samples and proficiently forecasting the attributes of previously 
unseen samples. By using a comprehensive bioinformatics analysis, 
the researchers conducted a thorough investigation into the expression 
patterns of pancreatic cancer-specific miRNAs (PCSMs). Furthermore, 
they successfully clarified the relationships between these PCSMs and 
other clinical features. The study revealed notable associations 
between PCSMs and age, thereby emphasizing their potential 
significance in the fields of pharmaceutical testing, individualized 
therapeutic strategies, and immunotherapy for PC. Park et al. (2022) 
have created a DL system to incorporate longitudinal clinical data 
from EHR in order to estimate the risk for PC. The researchers 
highlighted that their approach to masking yielded significant 
improvements in distant time periods leading up to the diagnosis. 
Additionally, their “grouped” neural network (GrpNN), displayed 
improved generalizability by mitigating the issue of overfitting 
compared to the feedforward baseline model. The findings exhibited 
consistency across self-reported racial categories. In the field of 
healthcare, ML and DL algorithms have shown their effectiveness as 
a feasible means of classifying or detecting the risk of PC, thereby 
leading to enhanced rates of survival (Gupta et al., 2022).

The latest developments underscore the potential of AI techniques 
to enhance the diagnosis and treatment of PC (Katta et al., 2023). ML 
algorithms may be used to identify people with an elevated risk of 
getting PC at an earlier stage, leading to a better rate of survival among 
patients (Malhotra et al., 2021). The use of ML and DL in the domain 
of pancreatic disease imaging is seeing tremendous growth. These 
techniques may be used for the identification of pancreatic ductal 
adenocarcinoma (PDAC) and other types of PC, as well as for the 
characterization of pancreatic lesions (Barat et al., 2021). Karar et al. 
(2023) devised a novel and effective model, one dimensional-
convolutional neural networks-long short-term memory (1D CNNs-
LSTM), specifically tailored for the multi-classification of patients 
with PC. This model utilizes urine biomarkers that have been carefully 
selected for their distinctive characteristics. The categorization 
findings classify the status of the pancreas into three categories: 
healthy pancreas, benign instances, and PDAC cases. The generated 
model attained the utmost values of assessment criteria, notably a 97% 
accuracy, surpassing existing ML and CNN-based models. 
Implemented CNN models, both with and without the LSTM layer, 
successfully accomplished precise identification of the tested PDAC 
samples. This study combined created 1D CNN-LSTM with a real 
urine microfluidics device to perform real-time clinical trials on urine 
samples from patients with PC. They mentioned the Internet of 
Medical Things (IoMT) technology may be  used in this area of 
research to provide a mobile-based automated diagnosis of patient 
samples via medical cloud services. Tong et al. (2022) did research 
with the goal of creating a DL radiomics (DLR) model using contrast-
enhanced ultrasound (CEUS) images. The objective was to help 
radiologists accurately distinguish between PDAC and chronic 
pancreatitis (CP). A cohort of 558 patients with pancreatic lesions was 
included in the study and divided into four groups: the training 
cohort, the internal validation cohort, and two external validation 
cohorts. The DLR model exhibited greater sensitivity and specificity 
compared to the diagnoses made by the five radiologists in the three 
validation cohorts. The use of the DLR model resulted in enhanced 
diagnostic sensitivity across all radiologists in the three validation 
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cohorts, with a little or negligible reduction in specificity. Al-Fatlawi 
et al. (2021) have shown that the combination of deep sequencing and 
ML may greatly enhance the accuracy of PC detection using blood 
samples. The researchers demonstrated that by combining the well-
established biomarker CA19-9 with novel, reliable RNA-based 
variations, they were able to accurately distinguish between PC and 
pancreatitis, achieving an impressive AUC of 96%. The genes 
B4GALT5 and GSDMD, which include three very important 
variations, are strongly associated with the advancement of cancer and 
the increase in CA19-9 levels. In addition, they discovered six 
variations that were shown to have a statistically significant 
association, with one of them being established as a breast cancer risk 
factor in many publications. Their findings demonstrated that the 
combination of deep sequencing and ML has the potential to provide 
timely and precise diagnosis, as well as individualized treatment 
alternatives. This combined technique also established a set of 16 
important variations that may accurately predict survival in resectable 
PDAC. These variants were able to distinguish between resected PC 
and chronic pancreatitis with an AUC of 96%.

Several researches have investigated the function of AI in 
predicting the treatment response in cases of PC. Recent studies have 
shown that ML-based methods have potential applications in 
pancreatic surgery. These techniques can be  used to accurately 
diagnose pancreatic conditions before surgery, evaluate prognosis and 
predict complications after surgery (Skawran et al., 2021; Palumbo 
et al., 2021; Li X. et al., 2021; Lee et al., 2021). Multiple comprehensive 
research studies have shown promising outcomes in treatment 
selection, with an emphasis on combining omics and histopathology 
data. These studies also emphasize the integration of various kinds of 
data and the use of DL approaches to predict cancer response to 
medication therapies (Partin et al., 2023; Tran et al., 2021; Preuss et al., 
2022). Radiomics (Parr et al., 2020; Cozzi et al., 2019) and DL (Watson 
et al., 2021) are two quantitative imaging technologies that use data 
science and current medical imaging. Recently, these methods have 
shown growing potential in enhancing the precision management of 
PC via personalized therapy and optimization. Parr et  al. (2020) 
utilized radiomic models using pretreatment CT scans to predict the 
overall survival and local recurrence of PC after stereotactic body 
radiation therapy. The radiomic model and the model that combines 
radiomic and clinical parameters performed better than the pure 
clinical model in making these predictions. The average concordance 
index for survival was 0.66 and 0.68 for the radiomic models, 
compared to 0.54 for the pure clinical model. Similarly, the average 
AUC for recurrence was 0.78 and 0.77 for the radiomic models, 
compared to 0.66 for the pure clinical model. Cozzi et  al. (2019) 
successfully used a hybrid clinical-radiomics model to accurately 
distinguish between patients at high and low risk in terms of overall 
survival after treatment with stereotactic body radiation therapy. In 
order to assess the predictive capability of a radiomics signature in 
determining the clinical outcome of patients with PC who underwent 
stereotactic body radiation therapy (SBRT), they conducted a 
retrospective analysis on a group of 100 patients. Radiomics texture 
features were extracted from CT images of the clinical target volume. 
The patient cohort was randomly divided into two groups for training 
(60 patients) and validation (40 patients) purposes. Cox regression 
models were constructed to forecast overall survival and local control. 
A CT-based radiomic signature was identified, which exhibited a 
correlation with both overall survival and local control after SBRT. This 

signature enabled the identification of low and high-risk patient 
groups. The model achieved an impressive AUC value of 0.81. 
Neoadjuvant chemotherapy (NAC) has the potential to enhance the 
survival rate of patients diagnosed with pancreatic adenocarcinoma. 
Nevertheless, accurately assessing the effectiveness of this therapy is 
challenging. Watson et  al. (2021) used DL-CNN to predict the 
pathological tumor response to NAC in PC. Patients undergoing NAC 
before pancreatoduodenectomy were found in cases of PC. The 
institution is known as the College of American Pathologists. The 
classification of tumor regression grades 0–2 corresponds to a 
pathologic response (PR), whereas grade 3 indicates no response 
(NR). Preoperative CT scans were used to generate axial images to 
construct a 5-layer convolutional neural network and LeNet-DL 
model, to predict PRs. The hybrid model resulted in a 10% reduction 
in carbohydrate antigen 19–9 (CA19-9). Their model achieved an 
AUC of 0.738 in predicting the response to chemotherapy and an 
accuracy of 78.3% in predicting the response to resectability. They 
noted the model’s performance is enhanced by including reductions 
in serum CA19-9 levels as a factor and this neural network can 
accurately forecast the pathological tumor response to NAC in 
patients diagnosed with pancreatic adenocarcinoma.

Recent evidence emphasizes the capacity of ML and DL to 
enhance the accuracy of predicting survival rates in PC. This 
advancement has the potential to result in improved treatment choices 
and more effective planning of care requirements (Barat et al., 2021; 
Preuss et  al., 2022). A researcher conducted an assessment of the 
efficacy of ML in predicting survival outcomes, comparing it to the 
TNM approach and published nomograms. PC patients were 
discovered using the Surveillance, Epidemiology, and End Results 
database (SEER). The clinical data of the patients was retrieved and 
then separated into two sets: a training set, including 80% of the 
records, and a validation set, comprising the remaining 20%. ML 
techniques were evaluated for predicting the likelihood of survival at 
6, 12, and 24 months, in addition to the TNM staging system and two 
nomograms. The model achieved an AUC of 86.6% at 6 months, 
83.4% at 12 months, and 82.2% at 24 months. The TNM staging 
method obtained an AUC of 66.6% at 6 months, 65.5% at 12 months, 
and 57% at 24 months, in comparison. The nomograms demonstrated 
an AUC of 71.1 and 55.2% in accurately predicting 1-year survival. 
ML outperformed both the TNM staging method and prognostic 
nomograms (Osman, 2019). Lee et al. (2022) created a DL model 
called the PC-survival model. This model applies a general 
adenocarcinoma feature extractor (GAFE) to estimate the probability 
of mortality based on the histomorphological aspects of 
adenocarcinoma lesions. Their model for predicting survival in PC 
was trained using WSIs stained with H&E. In addition, to assess the 
ability to apply knowledge to new situations, they use the PC survival 
model to make predictions about the mortality risk associated with 
rectum adenocarcinoma and breast adenocarcinoma. All of the data 
studied in this research was obtained exclusively from The Cancer 
Genome Atlas (TCGA). A self-supervised contrastive learning 
approach was used to train GAFE using a set of 328, randomly 
selected, adenocarcinoma H&E stained WSIs. To assess the survival 
model for PC, they used 5-fold cross validation. The C-index mean for 
the TCGA-PAAD test datasets was 0.7258; the maximum and 
minimum values were 0.7784 and 0.6598, respectively. They assessed 
mortality risk using the model with median performance (C-index: 
0.7216) and classified patients into 50% high-risk and 50% low-risk 
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groups. From this, the log-rank test’s p-value was 0.01986. They 
combined the top five models to examine the generalization’s 
performance. They used both TCGA-READ and TCGA-BRCA to 
evaluate their combined model. Whereas the C-index for TCGA-
BRCA was 0.5711, it was 0.6941 for TCGA-Read. It was discovered 
that the histomorphological characteristics of adenocarcinoma were 
somewhat related to the prognosis of survival in PC.

4 AI obstacles in GI cancers

The clinical use of AI (ML and DL) in GI cancers has several 
concerns and obstacles. These include issues related to the quality and 
quantity of data since ML and DL models need substantial volumes of 
high-quality data for effective training. Another significant difficulty 
pertains to their interpretability. ML models, particularly those using 
DL techniques, are often regarded as ambiguous entities because of 
the inherent challenge of comprehending their predictive mechanisms. 
The absence of transparency might impede the acceptability of these 
entities by physicians (Montavon et al., 2018). These models often 
exhibit a characteristic known as “black box” behavior, which poses 
challenges for physicians in comprehending the underlying 
mechanisms behind these models’ predictive capabilities. These 
models should be capable of offering straightforward and intelligible 
reasons for their predictions (Papadimitroulas et al., 2021; Rasheed 
et al., 2022). Furthermore, variations in the interpretation of medical 
images by different physicians may have an impact on the accuracy of 
AI techniques (Niu et  al., 2020). The efficacy of ML models may 
be  impeded by the restricted expertise and absence of objective 
standards in the interpretation of medical images (Cao et al., 2022). 
To address the issue of limited data availability and enhance the 
precision of ML models, it is essential to establish a framework for 
standardized data collection and uniform processing protocols (Wang 
S. et  al., 2023). Additionally, the absence of established legal and 
ethical frameworks, together with the absence of user-friendly and 
interactive interfaces, should also be  taken into consideration. 
Numerous researchers encounter challenges related to class imbalance 
and biases, emphasizing the need to validate detection algorithms 
across organizations in longitudinal investigations (Hosseini et al., 
2023a). There are several obstacles and possible solutions to consider 
including data curation and privacy. The bottleneck is in the curating 
of extensive, top-notch, annotated datasets that are accessible to the 
public. The curation of imaging data is a costly and laborious 
procedure that requires specialized knowledge in imaging anatomy 
and pathology. Furthermore, there are logistical and ethical 
considerations around the ownership of data and the safeguarding of 
patient privacy that might impede the creation and dissemination of 
public imaging datasets (Larson et al., 2020; Prevedello et al., 2019). 
The consideration of generalizability is also crucial since it presents a 
significant challenge, given that models trained on data from a specific 
population or healthcare system may exhibit worse performance when 
applied to other populations or systems. ML algorithms that have been 
trained on datasets consisting of older individuals and limited sample 
sizes may exhibit worse performance when applied to larger 
populations in real-world scenarios (Larson et al., 2020; Prevedello 
et al., 2019). Initial endeavors in using a CNN for the identification of 
PC showed significant potential; however, more external validation 
using datasets from multiple institutions is required (Larson et al., 

2020; Prevedello et al., 2019; Park et al., 2020). Overall, integrating ML 
and DL methods into the current healthcare workflow may provide 
some obstacles (Abdul Rahman et  al., 2023; Tharwat et  al., 2022; 
Alboaneen et al., 2023; Bychkov et al., 2018).

5 AI future advancement/perspective 
in GI cancers

Notwithstanding the obstacles, the outlook for AI’s future 
application in the context of GI cancers seems to be encouraging. 
ML and DL models have the potential to enhance the precision and 
effectiveness of GI cancer screening and detection. The use of these 
models has the potential to facilitate the creation of individualized 
treatment strategies that are tailored to the specific attributes of 
each patient. These models have the potential to enhance the 
accuracy of predicting patient outcomes and survival rates. 
ML-based prediction models, such as the dietary-based prediction 
model, provide a solid foundation for the development of efficient 
clinical decision support systems. These systems aid medical 
professionals in non-invasive screening linked to dietary factors, 
hence facilitating their use in extensive research projects. The use 
of these approaches offers substantial assistance in the detection of 
the first phases of cancer, hence facilitating prompt intervention 
and resulting in a reduced death rate in contrast to the rate seen 
after the manifestation of symptoms (Abdul Rahman et al., 2023; 
Tharwat et al., 2022; Alboaneen et al., 2023). Initial endeavors in 
using a CNN for the identification of PC showed significant 
potential; however, more external validation using datasets from 
multiple institutions is required (Li X. et al., 2021; Lee et al., 2021; 
Preuss et al., 2022). For optimal results, all patients included in the 
external data should come from the same institution. This ensures 
that any technological variations between the two institutions do 
not impact the categorization process (Chu et al., 2019a; Chu et al., 
2019b). There is a need for AI models that can be easily understood 
and interpreted. It is crucial to get confidence from physicians and 
comprehend the fundamental patterns that the models are acquiring 
(Tran et al., 2021). Further investigation is required to address these 
obstacles and fully realize the capabilities of AI in the domain of GI 
cancers. This includes enhancing the precision of detection and 
classification models, devising models capable of managing 
substantial amounts of data, and investigating novel treatment 
approaches derived from the prognostications of those models 
(Ahn et al., 2021).

6 Conclusion

This study highlights the capacity of AI techniques, namely ML 
and DL, in early detection, diagnosing, predicting treatment 
response, and analyzing survival rates of GI tumors. The growing 
need and increasing complexity of diagnosing GI cancer have led 
to the integration of digital pathology into the diagnostic process. 
Digital pathology enables the acquisition, management, and 
interpretation of pathology data in a digital setting, hence creating 
possibilities for computational analysis with AI. Several ML 
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techniques demonstrate encouraging sensitivity and specificity in 
the diagnosis of GC. The SVM technique, in particular, shows 
exceptional resilience and capacity for generalization. DL, using 
intricate algorithms to mimic the human brain network, is a potent 
tool in digital pathology. We have provided a concise overview of 
the performance attributes and constraints of fully supervised and 
weakly supervised methods concerning the tasks of classifying, 
segmenting, detecting, and predicting the progression of GI 
cancers. We provided clinical perspectives on how AI might aid in 
the timely identification of lesions, categorization of tumors, and 
extensive cancer screening. To fully harness the benefits of AI, it is 
crucial to address the significant obstacles associated with algorithm 
creation. These problems include dealing with the diverse nature of 
histological image data, managing the heterogeneity in 
interpretations among physicians, and ensuring model transparency 
and interpretability in clinical situations. This predicament remains 
unresolved. Ensuring acceptable standards of AI requires rigorous 
external validation and quality controls, supported by an enormous 
dataset, from a clinical viewpoint. This necessitates ongoing 
research on model design, focusing on patch/pixel-level annotation, 
explainability, and generalizability of AI algorithms, while also 
considering the heterogeneity of multiethnic populations. Our 
study has rigorously compared the current AI model for GI cancer 
and has identified the challenges in developing AI for clinical 
analysis. We  have provided a comprehensive summary of the 
existing AI algorithms developed for GI cancers and have 
highlighted clinical insights for the future development of GI cancer 
AI algorithms. As AI algorithms progress, we anticipate that the 
transparency of these applications will also enhance. We were also 
of the opinion that the therapeutic utility of AI might be shown by 
prospective studies.

Author contributions

AA: Conceptualization, Supervision, Writing – original draft. MA: 
Data curation, Writing – original draft. MM: Writing – original draft. 
AN: Writing – original draft. FM: Writing – review & editing. ST: 
Supervision, Writing – original draft. ZS: Writing – review & editing, 
Conceptualization, Data curation.

Funding

The author(s) declare that financial support was received for the 
research, authorship, and/or publication of this article. This work was 
supported by Grant number 1402-3-49-26954 from Iran University of 
Medical Sciences.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

References
Abdul Rahman, H., Ottom, M. A., and Dinov, I. D. (2023). Machine learning-based 

colorectal cancer prediction using global dietary data. BMC Cancer 23:144. doi: 10.1186/
s12885-023-10587-x

Abraham, P., Wang, L., Jiang, Z., Gricar, J., Tan, H., and Kelly, R. J. (2021). Healthcare 
utilization and total costs of care among patients with advanced metastatic gastric and 
esophageal cancer. Future Oncol. 17, 291–299. doi: 10.2217/fon-2020-0516

Adlung, L., Cohen, Y., Mor, U., and Elinav, E. (2021). Machine learning in clinical 
decision making. Med. 2, 642–665. doi: 10.1016/j.medj.2021.04.006

Afrash, M. R., Shafiee, M., and Kazemi-Arpanahi, H. (2023). Establishing machine 
learning models to predict the early risk of gastric cancer based on lifestyle factors. BMC 
Gastroenterol. 23, 1–13. doi: 10.1186/s12876-022-02626-x

Ahn, J. C., Qureshi, T. A., Singal, A. G., Li, D., and Yang, J.-D. (2021). Deep learning 
in hepatocellular carcinoma: current status and future perspectives. World J. Hepatol. 
13, 2039–2051. doi: 10.4254/wjh.v13.i12.2039

Ahn, J. C., and Shah, V. H. (2024). “Artificial intelligence in gastroenterology and 
hepatology” in Artificial intelligence in clinical practice (Cambridge, MA: Academic 
Press), 443–464.

Alboaneen, D., Alqarni, R., Alqahtani, S., Alrashidi, M., Alhuda, R., Alyahyan, E., et al. 
(2023). Predicting colorectal Cancer using machine and deep learning algorithms: 
challenges and opportunities. Big Data Cogn. Comput. 7:74. doi: 10.3390/bdcc7020074

Al-Fatlawi, A., Malekian, N., García, S., Henschel, A., Kim, I., Dahl, A., et al. (2021). 
Deep learning improves pancreatic Cancer diagnosis using RNA-based variants. Cancers 
13:2654. doi: 10.3390/cancers13112654

Allegra, A., Tonacci, A., Sciaccotta, R., Genovese, S., Musolino, C., Pioggia, G., et al. 
(2022). Machine learning and deep learning applications in multiple myeloma diagnosis, 
prognosis, and treatment selection. Cancers 14:606. doi: 10.3390/cancers14030606

Allemani, C., Matsuda, T., Di Carlo, V., Harewood, R., Matz, M., Nikšić, M., et al. 
(2018). Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): 
analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers 

from 322 population-based registries in 71 countries. Lancet 391, 1023–1075. doi: 
10.1016/S0140-6736(17)33326-3

American Cancer Society. (2023). Treatment of Colon Cancer, by stage. Available 
online at: https://www.cancer.org/cancer/types/colon-rectal-cancer/treating/by-stage-
colon.html (Accessed August 8, 2023)

American Society of Clinical Oncology (ASCO). (2023). Stomach Cancer: Statistics. 
Available online at: https://www.cancer.net/cancer-types/stomach-cancer/statistics 
(Accessed March, 2023)

Arnold, M., Abnet, C. C., Neale, R. E., Vignat, J., Giovannucci, E. L., McGlynn, K. A., 
et al. (2020). Global burden of 5 major types of gastrointestinal cancer. Gastroenterology 
159, 335–349.e15. e15. doi: 10.1053/j.gastro.2020.02.068

Barat, M., Chassagnon, G., Dohan, A., Gaujoux, S., Coriat, R., Hoeffel, C., et al. (2021). 
Artificial intelligence: a critical review of current applications in pancreatic imaging. Jpn. 
J. Radiol. 39, 514–523. doi: 10.1007/s11604-021-01098-5

Bhardwaj, P., Bhandari, G., Kumar, Y., and Gupta, S. (2022). An investigational 
approach for the prediction of gastric cancer using artificial intelligence techniques: a 
systematic review. Archiv. Comput. Methods Eng. 29, 4379–4400. doi: 10.1007/
s11831-022-09737-4

Buk Cardoso, L., Cunha Parro, V., Verzinhasse Peres, S., Curado, M. P., 
Fernandes, G. A., Wünsch Filho, V., et al. (2023). Machine learning for predicting 
survival of colorectal cancer patients. Sci. Rep. 13:8874. doi: 10.1038/s41598-023-35649-9

Bychkov, D., Linder, N., Turkki, R., Nordling, S., Kovanen, P. E., Verrill, C., et al. 
(2018). Deep learning based tissue analysis predicts outcome in colorectal cancer. Sci. 
Rep. 8:3395. doi: 10.1038/s41598-018-21758-3

Cao, H., Phan, H., and Yang, L.-X. (2012). Improved chemotherapy for hepatocellular 
carcinoma. Anticancer Res. 32, 1379–1386.

Cao, R., Tang, L., Fang, M., Zhong, L., Wang, S., Gong, L., et al. (2022). Artificial 
intelligence in gastric cancer: applications and challenges. Gastroenterol. Report 
10:goac064. doi: 10.1093/gastro/goac064

https://doi.org/10.3389/frai.2024.1446693
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://doi.org/10.1186/s12885-023-10587-x
https://doi.org/10.1186/s12885-023-10587-x
https://doi.org/10.2217/fon-2020-0516
https://doi.org/10.1016/j.medj.2021.04.006
https://doi.org/10.1186/s12876-022-02626-x
https://doi.org/10.4254/wjh.v13.i12.2039
https://doi.org/10.3390/bdcc7020074
https://doi.org/10.3390/cancers13112654
https://doi.org/10.3390/cancers14030606
https://doi.org/10.1016/S0140-6736(17)33326-3
https://www.cancer.org/cancer/types/colon-rectal-cancer/treating/by-stage-colon.html
https://www.cancer.org/cancer/types/colon-rectal-cancer/treating/by-stage-colon.html
https://www.cancer.net/cancer-types/stomach-cancer/statistics
https://doi.org/10.1053/j.gastro.2020.02.068
https://doi.org/10.1007/s11604-021-01098-5
https://doi.org/10.1007/s11831-022-09737-4
https://doi.org/10.1007/s11831-022-09737-4
https://doi.org/10.1038/s41598-023-35649-9
https://doi.org/10.1038/s41598-018-21758-3
https://doi.org/10.1093/gastro/goac064


Akbari et al. 10.3389/frai.2024.1446693

Frontiers in Artificial Intelligence 18 frontiersin.org

Centers for Disease Control and Prevention. (2023a) What is colorectal Cancer?. 
Available online at: https://www.cdc.gov/cancer/colorectal/basic_info/what-is-
colorectal-cancer.htm (Accessed February 23, 2023)

Centers for Disease Control and Prevention. (2023b) Colorectal Cancer statistics. 
Available online at: https://www.cdc.gov/cancer/colorectal/basic_info/what-is-
colorectal-cancer.htm (Accessed June 8, 2023)

Chen, Z., Gao, Y., Huang, X., Yao, Y., Chen, K., Zeng, S., et al. (2021). Tissue-based 
metabolomics reveals metabolic biomarkers and potential therapeutic targets for 
esophageal squamous cell carcinoma. J. Pharm. Biomed. Anal. 197:113937. doi: 
10.1016/j.jpba.2021.113937

Chen, F., Wang, J., Wu, Y., Gao, Q., and Zhang, S. (2022). Potential biomarkers for liver 
cancer diagnosis based on multi-omics strategy. Front. Oncol. 12:822449. doi: 10.3389/
fonc.2022.822449

Chen, Y., Wei, K., Liu, D., Xiang, J., Wang, G., Meng, X., et al. (2021). A machine 
learning model for predicting a major response to neoadjuvant chemotherapy in 
advanced gastric cancer. Front. Oncol. 11:675458. doi: 10.3389/fonc.2021.675458

Chlebus, G., Schenk, A., Moltz, J. H., van Ginneken, B., Hahn, H. K., and Meine, H. 
(2018). Automatic liver tumor segmentation in CT with fully convolutional neural 
networks and object-based postprocessing. Sci. Rep. 8:15497. doi: 10.1038/
s41598-018-33860-7

Choi, M., Ishizawa, S., Kraemer, D., Sasson, A., and Feinberg, E. (2022). Perioperative 
chemotherapy versus adjuvant chemotherapy strategies in resectable gastric and 
gastroesophageal cancer: a Markov decision analysis. Eur. J. Surg. Oncol. 48, 403–410. 
doi: 10.1016/j.ejso.2021.08.012

Chu, L. C., Park, S., Kawamoto, S., Fouladi, D. F., Shayesteh, S., Zinreich, E. S., et al. 
(2019a). Utility of CT radiomics features in differentiation of pancreatic ductal 
adenocarcinoma from normal pancreatic tissue. Am. J. Roentgenol. 213, 349–357. doi: 
10.2214/AJR.18.20901

Chu, L. C., Park, S., Kawamoto, S., Wang, Y., Zhou, Y., Shen, W., et al. (2019b). 
Application of deep learning to pancreatic cancer detection: lessons learned from our 
initial experience. J. Am. Coll. Radiol. 16, 1338–1342. doi: 10.1016/j.jacr.2019.05.034

Corral, J. E., Hussein, S., Kandel, P., Bolan, C. W., Bagci, U., and Wallace, M. B. (2019). 
Deep learning to classify Intraductal papillary mucinous neoplasms using magnetic 
resonance imaging. Pancreas 48, 805–810. doi: 10.1097/MPA.0000000000001327

Cozzi, L., Comito, T., Fogliata, A., Franzese, C., Franceschini, D., Bonifacio, C., et al. 
(2019). Computed tomography based radiomic signature as predictive of survival and 
local control after stereotactic body radiation therapy in pancreatic carcinoma. PLoS One 
14:e0210758. doi: 10.1371/journal.pone.0210758

D’Orazio, M., Murdocca, M., Mencattini, A., Casti, P., Filippi, J., Antonelli, G., et al. 
(2022). Machine learning phenomics (MLP) combining deep learning with time-lapse-
microscopy for monitoring colorectal adenocarcinoma cells gene expression and drug-
response. Sci. Rep. 12:8545. doi: 10.1038/s41598-022-12364-5

Das, A., Acharya, U. R., Panda, S. S., and Sabut, S. (2019). Deep learning based liver 
cancer detection using watershed transform and Gaussian mixture model techniques. 
Cogn. Syst. Res. 54, 165–175. doi: 10.1016/j.cogsys.2018.12.009

Dasgupta, P., Henshaw, C., Youlden, D. R., Clark, P. J., Aitken, J. F., and Baade, P. D. 
(2020). Global trends in incidence rates of primary adult liver cancers: a systematic 
review and meta-analysis. Front. Oncol. 10:171. doi: 10.3389/fonc.2020.00171

Del Chiaro, M., Segersvärd, R., Lohr, M., and Verbeke, C. (2014). Early detection and 
prevention of pancreatic cancer: is it really possible today? World J Gastroenterol: WJG 
20, 12118–12131. doi: 10.3748/wjg.v20.i34.12118

Deng, Z., Ji, Y., Han, B., Tan, Z., Ren, Y., Gao, J., et al. (2023). Early detection of 
hepatocellular carcinoma via no end-repair enzymatic methylation sequencing of cell-
free DNA and pre-trained neural network. Genome Med. 15:93. doi: 10.1186/
s13073-023-01238-8

Dias, R., and Torkamani, A. (2019). Artificial intelligence in clinical and genomic 
diagnostics. Genome Med. 11:70. doi: 10.1186/s13073-019-0689-8

Dinesh, M., Bacanin, N., Askar, S., and Abouhawwash, M. (2023). Diagnostic ability 
of deep learning in detection of pancreatic tumour. Sci. Rep. 13:9725. doi: 10.1038/
s41598-023-36886-8

Ding, J., and Wen, Z. (2021). Survival improvement and prognosis for hepatocellular 
carcinoma: analysis of the SEER database. BMC Cancer 21, 1–12. doi: 10.1186/
s12885-021-08904-3

Eshkiki, Z. S., Agah, S., Tabaeian, S. P., Sedaghat, M., Dana, F., Talebi, A., et al. (2022). 
Neoantigens and their clinical applications in human gastrointestinal cancers. World J. 
Surg. Oncol. 20, 1–15. doi: 10.1186/s12957-022-02776-y

Gao, J., Guo, Y., Sun, Y., and Qu, G. (2020). Application of deep learning for early 
screening of colorectal precancerous lesions under white light endoscopy. Comput. 
Math. Methods Med. 2020, 1–8. doi: 10.1155/2020/8374317

Ghishan, F. K., and Kiela, P. R. (2011). Advances in the understanding of mineral and 
bone metabolism in inflammatory bowel diseases. American journal of physiology-
gastrointestinal and liver. Physiology 300, G191–G201. doi: 10.1152/ajpgi.00496.2010

Godkhindi, A. M., and Gowda, R. M. (2017). Automated detection of polyps in CT 
colonography images using deep learning algorithms in colon cancer diagnosis. 2017 
international conference on energy, communication, data analytics and soft computing 
(ICECDS).

Gonçalves, W. G. E., Santos, M. H. d. P. d., Lobato, F. M. F., Ribeiro-dos-Santos, Â., 
and Araújo, G. S. d. (2020). Deep learning in gastric tissue diseases: a systematic review. 
BMJ Open Gastroenterol. 7:e000371. doi: 10.1136/bmjgast-2019-000371

Gruber, N., Antholzer, S., Jaschke, W., Kremser, C., and Haltmeier, M. (2019). A joint 
deep learning approach for automated liver and tumor segmentation. 2019 13th 
international conference on sampling theory and applications (SampTA).

Guo, L., Xiao, X., Wu, C., Zeng, X., Zhang, Y., Du, J., et al. (2020). Real-time automated 
diagnosis of precancerous lesions and early esophageal squamous cell carcinoma using 
a deep learning model (with videos). Gastrointest. Endosc. 91, 41–51. doi: 10.1016/j.
gie.2019.08.018

Gupta, A., Koul, A., and Kumar, Y. (2022). Pancreatic cancer detection using machine 
and deep learning techniques. 2022 2nd international conference on innovative practices 
in technology and management (ICIPTM).

Haleem, A., Javaid, M., and Khan, I. H. (2019). Current status and applications of 
artificial intelligence (AI) in medical field: an overview. Curr. Med. Res. Practice 9, 
231–237. doi: 10.1016/j.cmrp.2019.11.005

Hao, D., Li, Q., Feng, Q.-X., Qi, L., Liu, X.-S., Arefan, D., et al. (2022). Identifying 
prognostic markers from clinical, radiomics, and deep learning imaging features for 
gastric cancer survival prediction. Front. Oncol. 11:725889. doi: 10.3389/
fonc.2021.725889

Hashimoto, R. R. J., Dao, T., Ninh, A., Tran, E., Mai, D., Lugo, M., et al. (2020). 
Artificial intelligence using convolutional neural networks for real-time detection of 
early esophageal neoplasia in Barrett’s esophagus (with video). Gastrointest. Endosc. 91, 
1264–1271.e1. doi: 10.1016/j.gie.2019.12.049

He, H., Zhang, P., Li, F., Liu, D., and Wu, K. (2022). The role of adjuvant chemotherapy 
after neoadjuvant chemotherapy or chemoradiotherapy plus esophagectomy in patients 
with esophageal cancer: a retrospective cohort study. J. Gastrointestinal Oncol. 13, 
2736–2748. doi: 10.21037/jgo-22-1008

Hirasawa, T., Aoyama, K., Tanimoto, T., Ishihara, S., Shichijo, S., Ozawa, T., et al. 
(2018). Application of artificial intelligence using a convolutional neural network for 
detecting gastric cancer in endoscopic images. Gastric Cancer 21, 653–660. doi: 10.1007/
s10120-018-0793-2

Hoerter, N., Gross, S. A., and Liang, P. S. (2020). Artificial intelligence and polyp 
detection. Curr. Treat. Options Gastroenterol. 18, 120–136. doi: 10.1007/
s11938-020-00274-2

Hosseini, F., Asadi, F., Emami, H., and Ebnali, M. (2023a). Machine learning 
applications for early detection of esophageal Cancer: A systematic review. BMC Med 
Inform Decis Mak 17:124. doi: 10.1186/s12911-023-02235-y

Hosseini, F., Asadi, F., Emami, H., and Ebnali, M. (2023b). Machine learning 
applications for early detection of esophageal cancer: a systematic. Endoscopy 723:3.

Hu, Y., Xie, C., Yang, H., Ho, J. W., Wen, J., Han, L., et al. (2021). Computed 
tomography-based deep-learning prediction of neoadjuvant chemoradiotherapy 
treatment response in esophageal squamous cell carcinoma. Radiother. Oncol. 154, 6–13. 
doi: 10.1016/j.radonc.2020.09.014

Huang, C., Dai, Y., Chen, Q., Chen, H., Lin, Y., Wu, J., et al. (2022). Development and 
validation of a deep learning model to predict survival of patients with esophageal 
cancer. Front. Oncol. 12:971190. doi: 10.3389/fonc.2022.971190

Huang, C.-M., Huang, M.-Y., Huang, C.-W., Tsai, H.-L., Su, W.-C., Chang, W.-C., et al. 
(2020). Machine learning for predicting pathological complete response in patients with 
locally advanced rectal cancer after neoadjuvant chemoradiotherapy. Sci. Rep. 10:12555. 
doi: 10.1038/s41598-020-69345-9

Huang, B., Tian, S., Zhan, N., Ma, J., Huang, Z., Zhang, C., et al. (2021). Accurate 
diagnosis and prognosis prediction of gastric cancer using deep learning on digital 
pathological images: a retrospective multicentre study. EBioMedicine:103631. doi: 
10.1016/j.ebiom.2021.103631

Huang, S., Yang, J., Fong, S., and Zhao, Q. (2020). Artificial intelligence in cancer 
diagnosis and prognosis: opportunities and challenges. Cancer Lett. 471, 61–71. doi: 
10.1016/j.canlet.2019.12.007

Huang, F.-L., and Yu, S.-J. (2018). Esophageal cancer: risk factors, genetic association, 
and treatment. Asian J. Surg. 41, 210–215. doi: 10.1016/j.asjsur.2016.10.005

International Agency for Research on Canver (IARC). (2022) The current and future 
incidence and mortality of gastric cancer in 185 countries, 2020–40: a population-based 
modelling study. Available online at: https://www.iarc.who.int/news-events/the-current-
and-future-incidence-and-mortality-of-gastric-cancer-in-185-countries-2020-40-a-
population-based-modelling-study/ (Accessed April 22, 2022)

Ioannou, G. N., Tang, W., Beste, L. A., Tincopa, M. A., Su, G. L., Van, T., et al. (2020). 
Assessment of a deep learning model to predict hepatocellular carcinoma in patients 
with hepatitis C cirrhosis. JAMA Netw. Open 3:15626. doi: 10.1001/
jamanetworkopen.2020.15626

Iqbal, M. J., Javed, Z., Sadia, H., Qureshi, I. A., Irshad, A., Ahmed, R., et al. (2021). 
Clinical applications of artificial intelligence and machine learning in cancer diagnosis: 
looking into the future. Cancer Cell Int. 21:270. doi: 10.1186/s12935-021-01981-1

Iseke, S., Zeevi, T., Kucukkaya, A. S., Raju, R., Gross, M., Haider, S. P., et al. (2023). 
Machine learning models for prediction of posttreatment recurrence in early-stage 
hepatocellular carcinoma using pretreatment clinical and MRI features: a proof-of-
concept study. AJR Am. J. Roentgenol. 220, 245–255. doi: 10.2214/AJR.22.28077

https://doi.org/10.3389/frai.2024.1446693
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://www.cdc.gov/cancer/colorectal/basic_info/what-is-colorectal-cancer.htm
https://www.cdc.gov/cancer/colorectal/basic_info/what-is-colorectal-cancer.htm
https://www.cdc.gov/cancer/colorectal/basic_info/what-is-colorectal-cancer.htm
https://www.cdc.gov/cancer/colorectal/basic_info/what-is-colorectal-cancer.htm
https://doi.org/10.1016/j.jpba.2021.113937
https://doi.org/10.3389/fonc.2022.822449
https://doi.org/10.3389/fonc.2022.822449
https://doi.org/10.3389/fonc.2021.675458
https://doi.org/10.1038/s41598-018-33860-7
https://doi.org/10.1038/s41598-018-33860-7
https://doi.org/10.1016/j.ejso.2021.08.012
https://doi.org/10.2214/AJR.18.20901
https://doi.org/10.1016/j.jacr.2019.05.034
https://doi.org/10.1097/MPA.0000000000001327
https://doi.org/10.1371/journal.pone.0210758
https://doi.org/10.1038/s41598-022-12364-5
https://doi.org/10.1016/j.cogsys.2018.12.009
https://doi.org/10.3389/fonc.2020.00171
https://doi.org/10.3748/wjg.v20.i34.12118
https://doi.org/10.1186/s13073-023-01238-8
https://doi.org/10.1186/s13073-023-01238-8
https://doi.org/10.1186/s13073-019-0689-8
https://doi.org/10.1038/s41598-023-36886-8
https://doi.org/10.1038/s41598-023-36886-8
https://doi.org/10.1186/s12885-021-08904-3
https://doi.org/10.1186/s12885-021-08904-3
https://doi.org/10.1186/s12957-022-02776-y
https://doi.org/10.1155/2020/8374317
https://doi.org/10.1152/ajpgi.00496.2010
https://doi.org/10.1136/bmjgast-2019-000371
https://doi.org/10.1016/j.gie.2019.08.018
https://doi.org/10.1016/j.gie.2019.08.018
https://doi.org/10.1016/j.cmrp.2019.11.005
https://doi.org/10.3389/fonc.2021.725889
https://doi.org/10.3389/fonc.2021.725889
https://doi.org/10.1016/j.gie.2019.12.049
https://doi.org/10.21037/jgo-22-1008
https://doi.org/10.1007/s10120-018-0793-2
https://doi.org/10.1007/s10120-018-0793-2
https://doi.org/10.1007/s11938-020-00274-2
https://doi.org/10.1007/s11938-020-00274-2
https://doi.org/10.1186/s12911-023-02235-y
https://doi.org/10.1016/j.radonc.2020.09.014
https://doi.org/10.3389/fonc.2022.971190
https://doi.org/10.1038/s41598-020-69345-9
https://doi.org/10.1016/j.ebiom.2021.103631
https://doi.org/10.1016/j.canlet.2019.12.007
https://doi.org/10.1016/j.asjsur.2016.10.005
https://www.iarc.who.int/news-events/the-current-and-future-incidence-and-mortality-of-gastric-cancer-in-185-countries-2020-40-a-population-based-modelling-study/
https://www.iarc.who.int/news-events/the-current-and-future-incidence-and-mortality-of-gastric-cancer-in-185-countries-2020-40-a-population-based-modelling-study/
https://www.iarc.who.int/news-events/the-current-and-future-incidence-and-mortality-of-gastric-cancer-in-185-countries-2020-40-a-population-based-modelling-study/
https://doi.org/10.1001/jamanetworkopen.2020.15626
https://doi.org/10.1001/jamanetworkopen.2020.15626
https://doi.org/10.1186/s12935-021-01981-1
https://doi.org/10.2214/AJR.22.28077


Akbari et al. 10.3389/frai.2024.1446693

Frontiers in Artificial Intelligence 19 frontiersin.org

Islam, M. M., Poly, T. N., Walther, B. A., Yeh, C.-Y., Seyed-Abdul, S., Li, Y.-C., et al. 
(2022). Deep learning for the diagnosis of esophageal Cancer in endoscopic images: a 
systematic review and Meta-analysis. Cancers 14:5996. doi: 10.3390/cancers14235996

Jamil, D., Palaniappan, S., Lokman, A., Naseem, M., and Zia, S. S. (2022). Diagnosis 
of gastric cancer using machine learning techniques in healthcare sector: a survey. 
Informatica 45:3633. doi: 10.31449/inf.v45i7.3633

Jang, H.-J., Go, J.-H., Kim, Y., and Lee, S. H. (2023). Deep learning for the pathologic 
diagnosis of hepatocellular carcinoma, cholangiocarcinoma, and metastatic colorectal 
cancer. Cancers 15:5389. doi: 10.3390/cancers15225389

Jiang, S., Gao, H., He, J., Shi, J., Tong, Y., and Wu, J. (2022). Machine learning: a non-
invasive prediction method for gastric cancer based on a survey of lifestyle behaviors. 
Front. Artif. Intel. 5:956385. doi: 10.3389/frai.2022.956385

Jiang, Y., Jin, C., Yu, H., Wu, J., Chen, C., Yuan, Q., et al. (2021). Development and 
validation of a deep learning CT signature to predict survival and chemotherapy benefit 
in gastric cancer: a multicenter, retrospective study. Ann. Surg. 274, e1153–e1161. doi: 
10.1097/SLA.0000000000003778

Jiang, Y., Zhou, K., Sun, Z., Wang, H., Xie, J., Zhang, T., et al. (2023). Non-invasive 
tumor microenvironment evaluation and treatment response prediction in gastric 
cancer using deep learning radiomics. Cell Reports Med. 4:101146. doi: 10.1016/j.
xcrm.2023.101146

Jin, P., Ji, X., Kang, W., Li, Y., Liu, H., Ma, F., et al. (2020). Artificial intelligence in 
gastric cancer: a systematic review. J. Cancer Res. Clin. Oncol. 146, 2339–2350. doi: 
10.1007/s00432-020-03304-9

Jung, J.-O., Crnovrsanin, N., Wirsik, N. M., Nienhüser, H., Peters, L., Popp, F., et al. 
(2023). Machine learning for optimized individual survival prediction in resectable 
upper gastrointestinal cancer. J. Cancer Res. Clin. Oncol. 149, 1691–1702. doi: 10.1007/
s00432-022-04063-5

Kang, S. H., Jeon, K., Kim, H.-J., Seo, J. K., and Lee, S.-H. (2020). Automatic three-
dimensional cephalometric annotation system using three-dimensional convolutional 
neural networks: a developmental trial. Comput. Methods Biomech. Biomed. Eng. 
Imaging Vis. 8, 210–218. doi: 10.1080/21681163.2019.1674696

Kanth, P., and Inadomi, J. M. (2021). Screening and prevention of colorectal cancer. 
BMJ:374. doi: 10.1136/bmj.n1855

Karahan Şen, N. P., Aksu, A., and Çapa, K. G. (2021). A different overview of staging 
PET/CT images in patients with esophageal cancer: the role of textural analysis with 
machine learning methods. Ann. Nucl. Med. 35, 1030–1037. doi: 10.1007/
s12149-021-01638-z

Karar, M. E., El-Fishawy, N., and Radad, M. (2023). Automated classification of urine 
biomarkers to diagnose pancreatic cancer using 1-D convolutional neural networks. J. 
Biol. Eng. 17:28. doi: 10.1186/s13036-023-00340-0

Kather, J. N., Krisam, J., Charoentong, P., Luedde, T., Herpel, E., Weis, C.-A., et al. 
(2019). Predicting survival from colorectal cancer histology slides using deep learning: 
a retrospective multicenter study. PLoS Med. 16:e1002730. doi: 10.1371/journal.
pmed.1002730

Katta, M. R., Kalluru, P. K. R., Bavishi, D. A., Hameed, M., and Valisekka, S. S. (2023). 
Artificial intelligence in pancreatic cancer: diagnosis, limitations, and the future 
prospects—a narrative review. J. Cancer Res. Clin. Oncol. 149, 6743–6751. doi: 10.1007/
s00432-023-04625-1

Kawahara, D., Murakami, Y., Tani, S., and Nagata, Y. (2022). A prediction model for 
pathological findings after neoadjuvant chemoradiotherapy for resectable locally 
advanced esophageal squamous cell carcinoma based on endoscopic images using deep 
learning. Br. J. Radiol. 95:20210934. doi: 10.1259/bjr.20210934

Kloeckner, J., Sansonowicz, T. K., Rodrigues, Á. L., and Nunes, T. W. N. (2020). Multi-
categorical classification using deep learning applied to the diagnosis of gastric cancer. 
Jornal Brasileiro de Patologia e Medicina Laboratorial. 56:e1522020. doi: 
10.5935/1676-2444.20200013

Kumagai, Y., Takubo, K., Kawada, K., Aoyama, K., Endo, Y., Ozawa, T., et al. (2019). 
Diagnosis using deep-learning artificial intelligence based on the endocytoscopic 
observation of the esophagus. Esophagus 16, 180–187. doi: 10.1007/s10388-018-0651-7

Kumar, Y., Gupta, S., Singla, R., and Hu, Y.-C. (2022). A systematic review of artificial 
intelligence techniques in cancer prediction and diagnosis. Arch. Comput. Methods Eng. 
29, 2043–2070. doi: 10.1007/s11831-021-09648-w

Lambin, P., Rios-Velazquez, E., Leijenaar, R., Carvalho, S., Van Stiphout, R. G., 
Granton, P., et al. (2012). Radiomics: extracting more information from medical images 
using advanced feature analysis. Eur. J. Cancer 48, 441–446. doi: 10.1016/j.
ejca.2011.11.036

Larson, D. B., Magnus, D. C., Lungren, M. P., Shah, N. H., and Langlotz, C. P. (2020). 
Ethics of using and sharing clinical imaging data for artificial intelligence: a proposed 
framework. Radiology 295, 675–682. doi: 10.1148/radiol.2020192536

Laszkowska, M., Tramontano, A. C., Kim, J., Camargo, M. C., Neugut, A. I., 
Abrams, J. A., et al. (2020). Racial and ethnic disparities in mortality from gastric and 
esophageal adenocarcinoma. Cancer Med. 9, 5678–5686. doi: 10.1002/cam4.3063

Lee, K.-S., Jang, J.-Y., Yu, Y.-D., Heo, J. S., Han, H.-S., Yoon, Y.-S., et al. (2021). 
Usefulness of artificial intelligence for predicting recurrence following surgery for 
pancreatic cancer: retrospective cohort study. Int. J. Surg. 93:106050. doi: 10.1016/j.
ijsu.2021.106050

Lee, J., Lee, G., Kwak, T.-Y., Kim, S. W., and Chang, H. (2022). A deep learning 
based pancreatic adenocarcinoma survival prediction model applicable to 
adenocarcinoma of other organs. Cancer Res. 82:5060. doi: 10.1158/1538-7445.
AM2022-5060

Leon, F., Gelvez, M., Jaimes, Z., Gelvez, T., and Arguello, H. (2019). “Supervised 
classification of histopathological images using convolutional neuronal networks for 
gastric cancer detection” in 2019 XXII symposium on image, signal processing and 
artificial vision (STSIVA).

Li, X., Chen, L., Luan, S., Zhou, J., Xiao, X., Yang, Y., et al. (2022a). The development 
and progress of nanomedicine for esophageal cancer diagnosis and treatment. Semin. 
Cancer Biol. 86, 873–885. doi: 10.1016/j.semcancer.2022.01.007

Li, G. Z., Doherty, G. M., and Wang, J. (2022). Surgical management of gastric cancer: 
a review. JAMA Surg. 157:446. doi: 10.1001/jamasurg.2022.0182

Li, X., Jonnagaddala, J., Cen, M., Zhang, H., and Xu, S. (2022b). Colorectal cancer 
survival prediction using deep distribution based multiple-instance learning. Entropy 
24:1669. doi: 10.3390/e24111669

Li, J., Li, L., You, P., Wei, Y., and Xu, B. (2023). Towards artificial intelligence to multi-
omics characterization of tumor heterogeneity in esophageal Cancer. Semin Cancer Biol 
91, 35–49. doi: 10.1016/j.semcancer.2023.02.009

Li, J. J., Rogers, J. E., Yamashita, K., Waters, R. E., Blum Murphy, M., and Ajani, J. A. 
(2023). Therapeutic advances in the treatment of gastroesophageal cancers. Biomol. Ther. 
13:796. doi: 10.3390/biom13050796

Li, M.-X., Sun, X.-M., Cheng, W.-G., Ruan, H.-J., Liu, K., Chen, P., et al. (2021). Using 
a machine learning approach to identify key prognostic molecules for esophageal 
squamous cell carcinoma. BMC Cancer 21, 1–11.

Li, X., Yang, L., Yuan, Z., Lou, J., Fan, Y., Shi, A., et al. (2021). Multi-institutional 
development and external validation of machine learning-based models to predict 
relapse risk of pancreatic ductal adenocarcinoma after radical resection. J. Transl. Med. 
19, 1–10. doi: 10.1186/s12967-021-02955-7

Lin, J. S., Perdue, L. A., Henrikson, N. B., Bean, S. I., and Blasi, P. R. (2021). 
Screening for colorectal cancer: updated evidence report and systematic review for 
the US preventive services task force. JAMA 325, 1978–1998. doi: 10.1001/
jama.2021.4417

Liu, Y., Chi, H., Chen, H., Wang, R., Jiang, L., Zhang, S., et al. (2023). Proposing new 
early detection indicators for pancreatic cancer: combining machine learning and neural 
networks for serum miRNAbased diagnostic model. Front. Oncol. 13:1244578. doi: 
10.3389/fonc.2023.1244578

Liu, Q., Li, S., Li, Y., Yu, L., Zhao, Y., Wu, Z., et al. (2023). Identification of urinary 
volatile organic compounds as a potential non-invasive biomarker for esophageal cancer. 
Sci. Rep. 13:18587. doi: 10.1038/s41598-023-45989-1

Liu, Z., Liu, Y., Zhang, W., Hong, Y., Meng, J., Wang, J., et al. (2022). Deep learning for 
prediction of hepatocellular carcinoma recurrence after resection or liver transplantation: 
a discovery and validation study. Hepatol. Int. 16, 577–589. doi: 10.1007/
s12072-022-10321-y

Lowe, V. J., Booya, F., Fletcher, J., Nathan, M., Jensen, E., Mullan, B., et al. (2005). 
Comparison of positron emission tomography, computed tomography, and endoscopic 
ultrasound in the initial staging of patients with esophageal cancer. Mol. Imaging Biol. 
7, 422–430. doi: 10.1007/s11307-005-0017-0

Lukomski, L., Pisula, J., Wirsik, N., Damanakis, A., Jung, J.-O., Knipper, K., et al. 
(2023). Prediction of five-year survival of patients with esophageal cancer and the effect 
of biomarkers on predictive performance using artificial intelligence.

Malhotra, A., Rachet, B., Bonaventure, A., Pereira, S. P., and Woods, L. M. (2021). Can 
we screen for pancreatic cancer? Identifying a sub-population of patients at high risk of 
subsequent diagnosis using machine learning techniques applied to primary care data. 
PLoS One 16:e0251876. doi: 10.1371/journal.pone.0251876

Mangone, L., Marinelli, F., Bisceglia, I., Braghiroli, M. B., Damato, A., and Pinto, C. 
(2022). Five-year relative survival by stage of breast and colon cancers in northern Italy. 
Front. Oncol. 12:982461. doi: 10.3389/fonc.2022.982461

Masud, M., Sikder, N., Nahid, A.-A., Bairagi, A. K., and AlZain, M. A. (2021). A 
machine learning approach to diagnosing lung and colon cancer using a deep learning-
based classification framework. Sensors 21:748. doi: 10.3390/s21030748

Mayo Clinic. (2023a). Colon cancer. Available online at: https://www.mayoclinic.org/
diseases-conditions/colon-cancer/diagnosis-treatment/drc-20353674 (Accessed July 
27, 2023)

Mayo Clinic. (2023b). Pancreatic cancer. https://www.mayoclinic.org/diseases-
conditions/pancreatic-cancer/diagnosis-treatment/drc-20355427 (Accessed September 
8, 2023)

Menegotto, A. B., Becker, C. D. L., and Cazella, S. C. (2021). Computer-aided diagnosis 
of hepatocellular carcinoma fusing imaging and structured health data. Health Inform. 
Sci. Syst. 9:20. doi: 10.1007/s13755-021-00151-x

Mitra, R. (2011). Adverse effects of corticosteroids on bone metabolism: a review. 
PM&R 3, 466–471. doi: 10.1016/j.pmrj.2011.02.017

Mokoatle, M., Marivate, V., Mapiye, D., Bornman, R., and Hayes, V. M. (2023). A 
review and comparative study of cancer detection using machine learning: SBERT 
and SimCSE application. BMC Bioinformatics 24:112. doi: 10.1186/
s12859-023-05235-x

https://doi.org/10.3389/frai.2024.1446693
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://doi.org/10.3390/cancers14235996
https://doi.org/10.31449/inf.v45i7.3633
https://doi.org/10.3390/cancers15225389
https://doi.org/10.3389/frai.2022.956385
https://doi.org/10.1097/SLA.0000000000003778
https://doi.org/10.1016/j.xcrm.2023.101146
https://doi.org/10.1016/j.xcrm.2023.101146
https://doi.org/10.1007/s00432-020-03304-9
https://doi.org/10.1007/s00432-022-04063-5
https://doi.org/10.1007/s00432-022-04063-5
https://doi.org/10.1080/21681163.2019.1674696
https://doi.org/10.1136/bmj.n1855
https://doi.org/10.1007/s12149-021-01638-z
https://doi.org/10.1007/s12149-021-01638-z
https://doi.org/10.1186/s13036-023-00340-0
https://doi.org/10.1371/journal.pmed.1002730
https://doi.org/10.1371/journal.pmed.1002730
https://doi.org/10.1007/s00432-023-04625-1
https://doi.org/10.1007/s00432-023-04625-1
https://doi.org/10.1259/bjr.20210934
https://doi.org/10.5935/1676-2444.20200013
https://doi.org/10.1007/s10388-018-0651-7
https://doi.org/10.1007/s11831-021-09648-w
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1016/j.ejca.2011.11.036
https://doi.org/10.1148/radiol.2020192536
https://doi.org/10.1002/cam4.3063
https://doi.org/10.1016/j.ijsu.2021.106050
https://doi.org/10.1016/j.ijsu.2021.106050
https://doi.org/10.1158/1538-7445.AM2022-5060
https://doi.org/10.1158/1538-7445.AM2022-5060
https://doi.org/10.1016/j.semcancer.2022.01.007
https://doi.org/10.1001/jamasurg.2022.0182
https://doi.org/10.3390/e24111669
https://doi.org/10.1016/j.semcancer.2023.02.009
https://doi.org/10.3390/biom13050796
https://doi.org/10.1186/s12967-021-02955-7
https://doi.org/10.1001/jama.2021.4417
https://doi.org/10.1001/jama.2021.4417
https://doi.org/10.3389/fonc.2023.1244578
https://doi.org/10.1038/s41598-023-45989-1
https://doi.org/10.1007/s12072-022-10321-y
https://doi.org/10.1007/s12072-022-10321-y
https://doi.org/10.1007/s11307-005-0017-0
https://doi.org/10.1371/journal.pone.0251876
https://doi.org/10.3389/fonc.2022.982461
https://doi.org/10.3390/s21030748
https://www.mayoclinic.org/diseases-conditions/colon-cancer/diagnosis-treatment/drc-20353674
https://www.mayoclinic.org/diseases-conditions/colon-cancer/diagnosis-treatment/drc-20353674
https://www.mayoclinic.org/diseases-conditions/pancreatic-cancer/diagnosis-treatment/drc-20355427
https://www.mayoclinic.org/diseases-conditions/pancreatic-cancer/diagnosis-treatment/drc-20355427
https://doi.org/10.1007/s13755-021-00151-x
https://doi.org/10.1016/j.pmrj.2011.02.017
https://doi.org/10.1186/s12859-023-05235-x
https://doi.org/10.1186/s12859-023-05235-x


Akbari et al. 10.3389/frai.2024.1446693

Frontiers in Artificial Intelligence 20 frontiersin.org

Montavon, G., Samek, W., and Müller, K.-R. (2018). Methods for interpreting and 
understanding deep neural networks. Digit. Signal Process. 73, 1–15. doi: 10.1016/j.
dsp.2017.10.011

Muhammad, W., Hart, G. R., Nartowt, B., Farrell, J. J., Johung, K., Liang, Y., et al. 
(2019). Pancreatic Cancer prediction through an artificial neural network. Front Artif. 
Intell. 2:2. doi: 10.3389/frai.2019.00002

Mukherjee, S., Vagha, S., and Gadkari, P. (2024). Navigating the future: a 
comprehensive review of artificial intelligence applications in gastrointestinal Cancer. 
Cureus 16:54467. doi: 10.7759/cureus.54467

NHS. (2023) Treatment for pancreatic cancer. Available online at: https://www.nhs.
uk/conditions/pancreatic-cancer/treatment/ (Accessed June 9, 2023)

Niu, P.-H., Zhao, L.-L., Wu, H.-L., Zhao, D.-B., and Chen, Y.-T. (2020). Artificial 
intelligence in gastric cancer: application and future perspectives. World J. Gastroenterol. 
26, 5408–5419. doi: 10.3748/wjg.v26.i36.5408

Nunez, J.-J., Leung, B., Ho, C., Bates, A. T., and Ng, R. T. (2023). Predicting the 
survival of patients With Cancer from their initial oncology consultation document 
using natural language processing. JAMA Netw. Open 6:813. doi: 10.1001/
jamanetworkopen.2023.0813

Ohmori, M., Ishihara, R., Aoyama, K., Nakagawa, K., Iwagami, H., Matsuura, N., 
et al. (2020). Endoscopic detection and differentiation of esophageal lesions using a 
deep neural network. Gastrointest. Endosc. 91, 301–309.e1. e1. doi: 10.1016/j.
gie.2019.09.034

Osman, M. H. (2019). Pancreatic cancer survival prediction using machine learning 
and comparing its performance with TNM staging system and prognostic nomograms. 
Cancer Res. 79:1644. doi: 10.1158/1538-7445.AM2019-1644

Palumbo, D., Mori, M., Prato, F., Crippa, S., Belfiori, G., Reni, M., et al. (2021). 
Prediction of early distant recurrence in upfront resectable pancreatic adenocarcinoma: 
a multidisciplinary, machine learning-based approach. Cancers 13:4938. doi: 10.3390/
cancers13194938

Pancreatic Cancer UK. (2023). Pancreatic cancer statistics. Available online at: 
https://www.pancreaticcancer.org.uk/what-we-do/media-centre/pancreatic-cancer-
statistics/

Papadimitroulas, P., Brocki, L., Chung, N. C., Marchadour, W., Vermet, F., Gaubert, L., 
et al. (2021). Artificial intelligence: deep learning in oncological radiomics and 
challenges of interpretability and data harmonization. Phys. Med. 83, 108–121. doi: 
10.1016/j.ejmp.2021.03.009

Park, J., Artin, M. G., Lee, K. E., Pumpalova, Y. S., Ingram, M. A., May, B. L., et al. 
(2022). Deep learning on time series laboratory test results from electronic health 
records for early detection of pancreatic cancer. J. Biomed. Inform. 131:104095. doi: 
10.1016/j.jbi.2022.104095

Park, S., Chu, L., Fishman, E., Yuille, A., Vogelstein, B., Kinzler, K., et al. (2020). 
Annotated normal CT data of the abdomen for deep learning: challenges and strategies 
for implementation. Diagn. Interv. Imaging 101, 35–44. doi: 10.1016/j.diii.2019.05.008

Parr, E., Du, Q., Zhang, C., Lin, C., Kamal, A., McAlister, J., et al. (2020). Radiomics-
based outcome prediction for pancreatic cancer following stereotactic body radiotherapy. 
Cancers 12:1051. doi: 10.3390/cancers12041051

Partin, A., Brettin, T. S., Zhu, Y., Narykov, O., Clyde, A., Overbeek, J., et al. (2023). 
Deep learning methods for drug response prediction in cancer: predominant and 
emerging trends. Front. Med. 10:1086097. doi: 10.3389/fmed.2023.1086097

Placido, D., Yuan, B., Hjaltelin, J. X., Zheng, C., Haue, A. D., Chmura, P. J., et al. (2023). 
A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories. 
Nat. Med., 1–10.

Pooja, K. (2024). Diagnosis of gastric cancer in role of endoscopic imaging techniques 
in artificial intelligence and machine learning applications: an overview. E3S Web Conf. 
491:3016.

Preuss, K., Thach, N., Liang, X., Baine, M., Chen, J., Zhang, C., et al. (2022). Using 
quantitative imaging for personalized medicine in pancreatic cancer: a review of 
radiomics and deep learning applications. Cancers 14:1654. doi: 10.3390/
cancers14071654

Prevedello, L. M., Halabi, S. S., Shih, G., Wu, C. C., Kohli, M. D., Chokshi, F. H., et al. 
(2019). Challenges related to artificial intelligence research in medical imaging and the 
importance of image analysis competitions. Radiology. Artif. Intell. 1:e180031. doi: 
10.1148/ryai.2019180031

Qiu, H., Ding, S., Liu, J., Wang, L., and Wang, X. (2022). Applications of artificial 
intelligence in screening, diagnosis, treatment, and prognosis of colorectal cancer. Curr. 
Oncol. 29, 1773–1795. doi: 10.3390/curroncol29030146

Rakha, E. A., Toss, M., Shiino, S., Gamble, P., Jaroensri, R., Mermel, C. H., et al. (2021). 
Current and future applications of artificial intelligence in pathology: a clinical 
perspective. J. Clin. Pathol. 74, 409–414. doi: 10.1136/jclinpath-2020-206908

Rasheed, K., Qayyum, A., Ghaly, M., Al-Fuqaha, A., Razi, A., and Qadir, J. (2022). 
Explainable, trustworthy, and ethical machine learning for healthcare: a survey. Comput. 
Biol. Med. 149:106043. doi: 10.1016/j.compbiomed.2022.106043

Săftoiu, A., Vilmann, P., Dietrich, C. F., Iglesias-Garcia, J., Hocke, M., Seicean, A., et al. 
(2015). Quantitative contrast-enhanced harmonic EUS in differential diagnosis of focal 
pancreatic masses (with videos). Gastrointest. Endosc. 82, 59–69. doi: 10.1016/j.
gie.2014.11.040

Sakai, Y., Takemoto, S., Hori, K., Nishimura, M., Ikematsu, H., Yano, T., et al. (2018). 
Automatic detection of early gastric cancer in endoscopic images using a transferring 
convolutional neural network. 2018 40th annual international conference of the IEEE 
engineering in medicine and biology society (EMBC).

Sakr, A. S., Soliman, N. F., Al-Gaashani, M. S., Pławiak, P., Ateya, A. A., and 
Hammad, M. (2022). An efficient deep learning approach for colon cancer detection. 
Appl. Sci. 12:8450. doi: 10.3390/app12178450

Sánchez-Martínez, S., Camara, O., Piella, G., Cikes, M., Gonzalez Ballester, M. A., 
Miron, M., et al. (2019). Machine learning for clinical decision-making: Challenges and 
opportunities.

Shaheen, M. Y. (2021). Applications of artificial intelligence (AI) in healthcare: a 
review. ScienceOpen.

Shao, D., Dai, Y., Li, N., Cao, X., Zhao, W., Cheng, L., et al. (2022). Artificial 
intelligence in clinical research of cancers. Brief. Bioinform. 23:523. doi: 10.1093/
bib/bbab523

Shen, X., Wu, J., Su, J., Yao, Z., Huang, W., Zhang, L., et al. (2023). Revisiting artificial 
intelligence diagnosis of hepatocellular carcinoma with DIKWH framework. Front. 
Genet. 14:1004481. doi: 10.3389/fgene.2023.1004481

Sheng, L., Zhuang, L., Yang, J., Zhang, D., Chen, Y., Zhang, J., et al. (2023). Radiation 
pneumonia predictive model for radiotherapy in esophageal carcinoma patients. BMC 
Cancer 23:988. doi: 10.1186/s12885-023-11499-6

Shibata, T., Teramoto, A., Yamada, H., Ohmiya, N., Saito, K., and Fujita, H. (2020). 
Automated detection and segmentation of early gastric cancer from endoscopic images 
using mask R-CNN. Appl. Sci. 10:3842. doi: 10.3390/app10113842

Shin, Y., Qadir, H. A., Aabakken, L., Bergsland, J., and Balasingham, I. (2018). 
Automatic colon polyp detection using region based deep CNN and post learning 
approaches. IEEE Access. 6, 40950–40962. doi: 10.1109/ACCESS.2018.2856402

Shokati Eshkiki, Z., Khayer, N., Talebi, A., Karbalaei, R., and Akbari, A. J. B. M. G. 
(2022). Novel insight into pancreatic adenocarcinoma pathogenesis using liquid 
association analysis. BMC Med. Genet. 15:30:30. doi: 10.1186/s12920-022-01174-3

Singh, S., Hoque, S., Zekry, A., and Sowmya, A. (2023). Radiological diagnosis of 
chronic liver disease and hepatocellular carcinoma: a review. J. Med. Syst. 47:73. doi: 
10.1007/s10916-023-01968-7

Sinkala, M., Mulder, N., and Martin, D. (2020). Machine learning and network 
analyses reveal disease subtypes of pancreatic Cancer and their molecular characteristics. 
Sci. Rep. 10:1212. doi: 10.1038/s41598-020-58290-2

Skawran, S. M., Kambakamba, P., Baessler, B., von Spiczak, J., Kupka, M., Müller, P. C., 
et al. (2021). Can magnetic resonance imaging radiomics of the pancreas predict 
postoperative pancreatic fistula? Eur. J. Radiol. 140:109733. doi: 10.1016/j.
ejrad.2021.109733

Struyvenberg, M., van der Sommen, F., Swager, A., de Groof, A., Rikos, A., Schoon, E., 
et al. (2020). Improved Barrett's neoplasia detection using computer-assisted multiframe 
analysis of volumetric laser endomicroscopy. Dis. Esophagus 33:doz065. doi: 10.1093/
dote/doz065

Tabari, A., Chan, S. M., Omar, O. M., Iqbal, S. I., Gee, M. S., and Daye, D. (2022). Role 
of machine learning in precision oncology: applications in gastrointestinal cancers. 
Cancers 15:63. doi: 10.3390/cancers15010063

Tamang, L. D., and Kim, B. W. (2021). Deep learning approaches to colorectal cancer 
diagnosis: a review. Appl. Sci. 11:10982. doi: 10.3390/app112210982

Thanh-Hai, N., and Thai-Nghe, N. (2020). Diagnosis approaches for colorectal cancer 
using manifold learning and deep learning. SN Comput. Sci. 1:281. doi: 10.1007/
s42979-020-00297-7

Thapa, S., Fischbach, L. A., Delongchamp, R., Faramawi, M. F., and Orloff, M. S. 
(2019). Using machine learning to predict progression in the gastric precancerous 
process in a population from a developing country who underwent a gastroscopy for 
dyspeptic symptoms. Gastroenterol. Res. Pract. 2019, 1–8. doi: 10.1155/2019/8321942

Tharwat, M., Sakr, N. A., El-Sappagh, S., Soliman, H., Kwak, K.-S., and Elmogy, M. 
(2022). Colon cancer diagnosis based on machine learning and deep learning: modalities 
and analysis techniques. Sensors 22:9250. doi: 10.3390/s22239250

Tomita, N., Abdollahi, B., Wei, J., Ren, B., Suriawinata, A., and Hassanpour, S. (2019). 
Attention-based deep neural networks for detection of cancerous and precancerous 
esophagus tissue on histopathological slides. JAMA Netw. Open 2:14645. doi: 10.1001/
jamanetworkopen.2019.14645

Tong, T., Gu, J., Xu, D., Song, L., Zhao, Q., Cheng, F., et al. (2022). Deep learning 
radiomics based on contrast-enhanced ultrasound images for assisted diagnosis of 
pancreatic ductal adenocarcinoma and chronic pancreatitis. BMC Med. 20:74. doi: 
10.1186/s12916-022-02258-8

Tran, K. A., Kondrashova, O., Bradley, A., Williams, E. D., Pearson, J. V., and 
Waddell, N. (2021). Deep learning in cancer diagnosis, prognosis and treatment 
selection. Genome Med. 13, 1–17. doi: 10.1186/s13073-021-00968-x

Tsuji, T., Matsuda, S., Takeuchi, M., Kawakubo, H., and Kitagawa, Y. (2023). Updates 
of perioperative multidisciplinary treatment for surgically resectable esophageal cancer. 
Jpn. J. Clin. Oncol. 53, 645–652. doi: 10.1093/jjco/hyad051

Valkema, M. J., Doukas, M., Spaander, M. C., Valkema, R., Woodruff, H. C., and Van 
Lanschot, J. J. B. (2021). Optimization of detection of residual disease after neoadjuvant 

https://doi.org/10.3389/frai.2024.1446693
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://doi.org/10.1016/j.dsp.2017.10.011
https://doi.org/10.1016/j.dsp.2017.10.011
https://doi.org/10.3389/frai.2019.00002
https://doi.org/10.7759/cureus.54467
https://www.nhs.uk/conditions/pancreatic-cancer/treatment/
https://www.nhs.uk/conditions/pancreatic-cancer/treatment/
https://doi.org/10.3748/wjg.v26.i36.5408
https://doi.org/10.1001/jamanetworkopen.2023.0813
https://doi.org/10.1001/jamanetworkopen.2023.0813
https://doi.org/10.1016/j.gie.2019.09.034
https://doi.org/10.1016/j.gie.2019.09.034
https://doi.org/10.1158/1538-7445.AM2019-1644
https://doi.org/10.3390/cancers13194938
https://doi.org/10.3390/cancers13194938
https://www.pancreaticcancer.org.uk/what-we-do/media-centre/pancreatic-cancer-statistics/
https://www.pancreaticcancer.org.uk/what-we-do/media-centre/pancreatic-cancer-statistics/
https://doi.org/10.1016/j.ejmp.2021.03.009
https://doi.org/10.1016/j.jbi.2022.104095
https://doi.org/10.1016/j.diii.2019.05.008
https://doi.org/10.3390/cancers12041051
https://doi.org/10.3389/fmed.2023.1086097
https://doi.org/10.3390/cancers14071654
https://doi.org/10.3390/cancers14071654
https://doi.org/10.1148/ryai.2019180031
https://doi.org/10.3390/curroncol29030146
https://doi.org/10.1136/jclinpath-2020-206908
https://doi.org/10.1016/j.compbiomed.2022.106043
https://doi.org/10.1016/j.gie.2014.11.040
https://doi.org/10.1016/j.gie.2014.11.040
https://doi.org/10.3390/app12178450
https://doi.org/10.1093/bib/bbab523
https://doi.org/10.1093/bib/bbab523
https://doi.org/10.3389/fgene.2023.1004481
https://doi.org/10.1186/s12885-023-11499-6
https://doi.org/10.3390/app10113842
https://doi.org/10.1109/ACCESS.2018.2856402
https://doi.org/10.1186/s12920-022-01174-3
https://doi.org/10.1007/s10916-023-01968-7
https://doi.org/10.1038/s41598-020-58290-2
https://doi.org/10.1016/j.ejrad.2021.109733
https://doi.org/10.1016/j.ejrad.2021.109733
https://doi.org/10.1093/dote/doz065
https://doi.org/10.1093/dote/doz065
https://doi.org/10.3390/cancers15010063
https://doi.org/10.3390/app112210982
https://doi.org/10.1007/s42979-020-00297-7
https://doi.org/10.1007/s42979-020-00297-7
https://doi.org/10.1155/2019/8321942
https://doi.org/10.3390/s22239250
https://doi.org/10.1001/jamanetworkopen.2019.14645
https://doi.org/10.1001/jamanetworkopen.2019.14645
https://doi.org/10.1186/s12916-022-02258-8
https://doi.org/10.1186/s13073-021-00968-x
https://doi.org/10.1093/jjco/hyad051


Akbari et al. 10.3389/frai.2024.1446693

Frontiers in Artificial Intelligence 21 frontiersin.org

therapy in patients with esophageal cancer. Annals of. Esophagus 4:4. doi: 10.21037/
aoe-2020-02

Valkema, M., Mostert, B., Lagarde, S., Wijnhoven, B., and van Lanschot, J. (2023). The 
effectivity of targeted therapy and immunotherapy in patients with advanced metastatic 
and non-metastatic cancer of the esophagus and esophago-gastric junction. Updat. Surg. 
75, 313–323. doi: 10.1007/s13304-022-01327-0

Van der Jeught, K., Xu, H.-C., Li, Y.-J., Lu, X.-B., and Ji, G. (2018). Drug resistance and 
new therapies in colorectal cancer. World J. Gastroenterol. 24, 3834–3848. doi: 10.3748/
wjg.v24.i34.3834

van der Putten, J., Struyvenberg, M., de Groof, J., Scheeve, T., Curvers, W., Schoon, E., 
et al. (2020). Deep principal dimension encoding for the classification of early neoplasia 
in Barrett's esophagus with volumetric laser endomicroscopy. Comput. Med. Imaging 
Graph. 80:101701. doi: 10.1016/j.compmedimag.2020.101701

Van Rossum, P. S., Goense, L., Meziani, J., Reitsma, J. B., Siersema, P. D., Vleggaar, F. P., 
et al. (2016). Endoscopic biopsy and EUS for the detection of pathologic complete response 
after neoadjuvant chemoradiotherapy in esophageal cancer: a systematic review and meta-
analysis. Gastrointest. Endosc. 83, 866–879. doi: 10.1016/j.gie.2015.11.026

Wang, K., Duan, X., Gao, F., Wang, W., Liu, L., and Wang, X. (2018). Dissecting cancer 
heterogeneity based on dimension reduction of transcriptomic profiles using extreme 
learning machines. PLoS One 13:e0203824. doi: 10.1371/journal.pone.0203824

Wang, Y., Lei, X., Shan, F., Li, S., Jia, Y., Miao, R., et al. (2022). Safety and short-term 
outcomes of gastrectomy after preoperative chemotherapy plus immunotherapy versus 
preoperative chemotherapy: a retrospective cohort study. BMC Cancer 22, 1–10. doi: 
10.1186/s12885-022-10272-5

Wang, Z., Liu, Y., and Niu, X. (2023). Application of artificial intelligence for improving 
early detection and prediction of therapeutic outcomes for gastric cancer in the era of 
precision oncology. Semin Cancer Biol 93, 83–96. doi: 10.1016/j.semcancer.2023.04.009

Wang, S., Wang, S., and Wang, Z. (2023). A survey on multi-omics-based cancer 
diagnosis using machine learning with the potential application in gastrointestinal 
cancer. Front. Med. 9:1109365. doi: 10.3389/fmed.2022.1109365

Wang, J., Zeng, J., Li, H., and Yu, X. (2022). A deep learning radiomics analysis for 
survival prediction in esophageal cancer. Journal of healthcare. Engineering 2022, 1–9. 
doi: 10.1155/2022/4034404

Watson, M. D., Baimas-George, M. R., Murphy, K. J., Pickens, R. C., Iannitti, D. A., 
Martinie, J. B., et al. (2021). Pure and hybrid deep learning models can predict pathologic 
tumor response to neoadjuvant therapy in pancreatic adenocarcinoma: a pilot study. 
Am. Surg. 87, 1901–1909. doi: 10.1177/0003134820982557

WCRF International. (2022). Stomach cancer statistics. Available online at: https://
www.wcrf.org/cancer-trends/stomach-cancer-statistics/ (Accessed March 23, 2022)

Wesdorp, N., van Goor, V., Kemna, R., Jansma, E., van Waesberghe, J., Swijnenburg, R., 
et al. (2021). Advanced image analytics predicting clinical outcomes in patients with 
colorectal liver metastases: a systematic review of the literature. Surg. Oncol. 38:101578. 
doi: 10.1016/j.suronc.2021.101578

Wong, A. N., He, Z., Leung, K. L., To CCWong, C. Y., Wong, S. C., et al. (2022). 
Current developments of artificial intelligence in digital pathology and its future clinical 
applications in gastrointestinal cancers. Cancers 14:3780. doi: 10.3390/cancers14153780

Xiao, Z., Ji, D., Li, F., Li, Z., and Bao, Z. (2022). Application of artificial intelligence in 
early gastric cancer diagnosis. Digestion 103, 69–75. doi: 10.1159/000519601

Xie, C.-Y., Pang, C.-L., Chan, B., Wong, E. Y.-Y., Dou, Q., and Vardhanabhuti, V. 
(2021). Machine learning and radiomics applications in esophageal cancers using non-
invasive imaging methods—a critical review of literature. Cancers 13:2469. doi: 10.3390/
cancers13102469

Xie, W., Yang, T., Zuo, J., Ma, Z., Yu, W., Hu, Z., et al. (2022). Chinese and global 
burdens of gastrointestinal cancers from 1990 to 2019. Front. Public Health 10:941284. 
doi: 10.3389/fpubh.2022.941284

Xu, H., Li, T., Shao, G., Wang, W., He, Z., Xu, J., et al. (2023). Evaluation of neoadjuvant 
immunotherapy plus chemotherapy in Chinese surgically resectable gastric cancer: a 

pilot study by meta-analysis. Front. Immunol. 14:1193614. doi: 10.3389/
fimmu.2023.1193614

Yamada, M., Saito, Y., Imaoka, H., Saiko, M., Yamada, S., Kondo, H., et al. (2019). 
Development of a real-time endoscopic image diagnosis support system using deep 
learning technology in colonoscopy. Sci. Rep. 9:14465. doi: 10.1038/s41598-019-50567-5

Yamashita, R., Long, J., Longacre, T., Peng, L., Berry, G., Martin, B., et al. (2021). Deep 
learning model for the prediction of microsatellite instability in colorectal cancer: a 
diagnostic study. Lancet Oncol. 22, 132–141. doi: 10.1016/S1470-2045(20)30535-0

Yin, J., Ngiam, K. Y., and Teo, H. H. (2021). Role of artificial intelligence applications 
in real-life clinical practice: systematic review. J. Med. Internet Res. 23:e25759. doi: 
10.2196/25759

Yin, Z., Yao, C., Zhang, L., and Qi, S. (2023). Application of artificial intelligence in 
diagnosis and treatment of colorectal cancer: a novel Prospect. Front. Med. 10:1128084. 
doi: 10.3389/fmed.2023.1128084

You, H., Wang, J., Ma, R., Chen, Y., Li, L., Song, C., et al. (2023). Clinical interpretability 
of deep learning for predicting microvascular invasion in hepatocellular carcinoma by 
using attention mechanism. Bioengineering 10:948. doi: 10.3390/bioengineering10080948

Zeng, J., Li, K., Cao, F., and Zheng, Y. (2023). Development and validation of survival 
prediction model for gastric adenocarcinoma patients using deep learning: a SEER-
based study. Front. Oncol. 13:1131859. doi: 10.3389/fonc.2023.1131859

Zhang, L., Jiang, Y., Jin, Z., Jiang, W., Zhang, B., Wang, C., et al. (2022). Real-time 
automatic prediction of treatment response to transcatheter arterial chemoembolization 
in patients with hepatocellular carcinoma using deep learning based on digital 
subtraction angiography videos. Cancer Imaging 22:23. doi: 10.1186/s40644-022-00457-3

Zhang, H., Jiang, X., Yu, Q., Yu, H., and Xu, C. (2023). A novel staging system based 
on deep learning for overall survival in patients with esophageal squamous cell 
carcinoma. J. Cancer Res. Clin. Oncol. 149, 8935–8944. doi: 10.1007/s00432-023-04842-8

Zhang, P., She, Y., Gao, J., Feng, Z., Tan, Q., Min, X., et al. (2022). Development of a 
deep learning system to detect esophageal cancer by barium Esophagram. Front. Oncol. 
12:766243. doi: 10.3389/fonc.2022.766243

Zhang, Z.-M., Tan, J.-X., Wang, F., Dao, F.-Y., Zhang, Z.-Y., and Lin, H. (2020). Early 
diagnosis of hepatocellular carcinoma using machine learning method. Front. Bioeng. 
Biotechnol. 8:254. doi: 10.3389/fbioe.2020.00254

Zhang, M.-M., Yang, H., Jin, Z.-D., Yu, J.-G., Cai, Z.-Y., and Li, Z.-S. (2010). 
Differential diagnosis of pancreatic cancer from normal tissue with digital imaging 
processing and pattern recognition based on a support vector machine of EUS images. 
Gastrointest. Endosc. 72, 978–985. doi: 10.1016/j.gie.2010.06.042

Zhang, R., Zheng, Y., Mak, T. W. C., Yu, R., Wong, S. H., Lau, J. Y., et al. (2016). 
Automatic detection and classification of colorectal polyps by transferring low-level 
CNN features from nonmedical domain. IEEE J. Biomed. Health Inform. 21, 41–47. doi: 
10.1109/JBHI.2016.2635662

Zhao, X., Xia, X., Wang, X., Bai, M., Zhan, D., and Shu, K. (2022). Deep learning-based 
protein features predict overall survival and chemotherapy benefit in gastric cancer. 
Front. Oncol. 12:847706. doi: 10.3389/fonc.2022.847706

Zhou, D., Tian, F., Tian, X., Sun, L., Huang, X., Zhao, F., et al. (2020). Diagnostic 
evaluation of a deep learning model for optical diagnosis of colorectal cancer. Nat. 
Commun. 11:2961. doi: 10.1038/s41467-020-16777-6

Zhu, X., Ma, Y., Guo, D., Men, J., Xue, C., Cao, X., et al. (2022). A framework to predict 
gastric Cancer based on tongue features and deep learning. Micromachines 14:53. doi: 
10.3390/mi14010053

Zhu, H. B., Xu, D., Ye, M., Sun, L., Zhang, X. Y., Li, X. T., et al. (2021). Deep learning-
assisted magnetic resonance imaging prediction of tumor response to chemotherapy in 
patients with colorectal liver metastases. Int. J. Cancer 148, 1717–1730. doi: 10.1002/
ijc.33427

Zou, Z.-M., Chang, D.-H., Liu, H., and Xiao, Y.-D. (2021). Current updates in machine 
learning in the prediction of therapeutic outcome of hepatocellular carcinoma: what 
should we know? Insights Imaging 12, 1–13.

https://doi.org/10.3389/frai.2024.1446693
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://doi.org/10.21037/aoe-2020-02
https://doi.org/10.21037/aoe-2020-02
https://doi.org/10.1007/s13304-022-01327-0
https://doi.org/10.3748/wjg.v24.i34.3834
https://doi.org/10.3748/wjg.v24.i34.3834
https://doi.org/10.1016/j.compmedimag.2020.101701
https://doi.org/10.1016/j.gie.2015.11.026
https://doi.org/10.1371/journal.pone.0203824
https://doi.org/10.1186/s12885-022-10272-5
https://doi.org/10.1016/j.semcancer.2023.04.009
https://doi.org/10.3389/fmed.2022.1109365
https://doi.org/10.1155/2022/4034404
https://doi.org/10.1177/0003134820982557
https://www.wcrf.org/cancer-trends/stomach-cancer-statistics/
https://www.wcrf.org/cancer-trends/stomach-cancer-statistics/
https://doi.org/10.1016/j.suronc.2021.101578
https://doi.org/10.3390/cancers14153780
https://doi.org/10.1159/000519601
https://doi.org/10.3390/cancers13102469
https://doi.org/10.3390/cancers13102469
https://doi.org/10.3389/fpubh.2022.941284
https://doi.org/10.3389/fimmu.2023.1193614
https://doi.org/10.3389/fimmu.2023.1193614
https://doi.org/10.1038/s41598-019-50567-5
https://doi.org/10.1016/S1470-2045(20)30535-0
https://doi.org/10.2196/25759
https://doi.org/10.3389/fmed.2023.1128084
https://doi.org/10.3390/bioengineering10080948
https://doi.org/10.3389/fonc.2023.1131859
https://doi.org/10.1186/s40644-022-00457-3
https://doi.org/10.1007/s00432-023-04842-8
https://doi.org/10.3389/fonc.2022.766243
https://doi.org/10.3389/fbioe.2020.00254
https://doi.org/10.1016/j.gie.2010.06.042
https://doi.org/10.1109/JBHI.2016.2635662
https://doi.org/10.3389/fonc.2022.847706
https://doi.org/10.1038/s41467-020-16777-6
https://doi.org/10.3390/mi14010053
https://doi.org/10.1002/ijc.33427
https://doi.org/10.1002/ijc.33427

	Artificial intelligence: clinical applications and future advancement in gastrointestinal cancers
	1 Introduction
	2 The difference between AI in research and clinical applications
	3 AI’s role in GI cancers
	3.1 Esophageal cancer
	3.2 Gastric cancer
	3.3 Hepatocellular carcinoma
	3.4 Colorectal cancer
	3.5 Pancreatic cancer

	4 AI obstacles in GI cancers
	5 AI future advancement/perspective in GI cancers
	6 Conclusion

	References

