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Impact of hypertension on 
coronary artery plaques and 
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angiography
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China

Objective: This study utilized artificial intelligence (AI) to quantify coronary 
computed tomography angiography (CCTA) images, aiming to compare plaque 
characteristics and CT-derived fractional flow reserve (FFR-CT) in type 2 diabetes 
mellitus (T2DM) patients with or without hypertension (HTN).

Methods: A retrospective analysis was conducted on 1,151 patients with 
suspected coronary artery disease who underwent CCTA at a single center. 
Patients were grouped into T2DM (n  =  133), HTN (n  =  442), T2DM (HTN+) 
(n  =  256), and control (n  =  320). AI assessed various CCTA parameters, including 
plaque components, high-risk plaques (HRPs), FFR-CT, severity of coronary 
stenosis using Coronary Artery Disease Reporting and Data System 2.0 (CAD-
RADS 2.0), segment involvement score (SIS), and segment stenosis score (SSS). 
Statistical analysis compared these parameters among groups.

Results: The T2DM (HTN+) group had the highest plaque volume and length, 
SIS, SSS, and CAD-RADS 2.0 classification. In the T2DM group, 54.0% of the 
plaque volume was noncalcified and 46.0% was calcified, while in the HTN 
group, these values were 24.0 and 76.0%, respectively. The T2DM (HTN+) group 
had more calcified plaques (35.7% noncalcified, 64.3% calcified) than the T2DM 
group. The average necrotic core volume was 4.25  mm3 in the T2DM group and 
5.23  mm3 in the T2DM (HTN+) group, with no significant difference (p  >  0.05). 
HRPs were more prevalent in both T2DM and T2DM (HTN+) compared to HTN 
and control groups (p  <  0.05). The T2DM (HTN+) group had a higher likelihood 
(26.1%) of FFR-CT ≤0.75 compared to the T2DM group (13.8%). FFR-CT ≤0.75 
correlated with CAD-RADS 2.0 (OR  =  7.986, 95% CI  =  5.466–11.667, cutoff  =  3, 
p  <  0.001) and noncalcified plaque volume (OR  =  1.006, 95% CI  =  1.003–1.009, 
cutoff  =  29.65  mm3, p  <  0.001). HRPs were associated with HbA1c levels 
(OR  =  1.631, 95% CI  =  1.387–1.918).

Conclusion: AI analysis of CCTA identifies patterns in quantitative plaque 
characteristics and FFR-CT values. Comorbid HTN exacerbates partially calcified 
plaques, leading to more severe coronary artery stenosis in patients with T2DM. 
T2DM is associated with partially noncalcified plaques, whereas HTN is linked to 
partially calcified plaques.
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Introduction

Type 2 diabetes (T2DM) and hypertension (HTN) both speed up 
the progression of coronary artery disease (CAD), with patients 
having either condition showing faster CAD development (Joseph 
et al., 2017; Leong et al., 2017). Individuals with T2DM are 2 to 4 times 
more likely to develop HTN, cardiovascular disease, and experience 
higher mortality rates compared to those without T2DM. These 
increased risks are observed from the time of T2DM diagnosis and are 
compared to healthy individuals without T2DM (Lee et al., 2017; Jia 
and Sowers, 2021). Both T2DM and HTN can compromise endothelial 
integrity and vascular function, potentially leading to the formation 
of coronary plaques. This process is driven by increased oxidative 
stress, endothelial dysfunction, and impaired nitric oxide production, 
which are well-documented in both conditions (Rochette et al., 2013; 
Yahagi et al., 2017). Nevertheless, it is crucial to acknowledge that the 
fundamental mechanisms underlying these two risk factors may 
exhibit both commonalities and variations. It might be postulated that 
the attributes of coronary plaques exhibit variability across different 
exposure factors. Therefore, the quantitative examination of coronary 
plaques may help identify key biological markers of CAD, such as 
plaque volume, composition, and the presence of high-risk plaques 
(HRPs). These markers can serve as indicators of disease severity and 
potential targets for therapeutic intervention.

Coronary computed tomography angiography (CCTA) is a 
non-invasive technique used to assess key attributes of coronary 
plaques, including plaque volume, composition (calcified, 
non-calcified, or mixed), morphology, and HRPs features. HRPs, 
which are characterized by thin-capped and lipid-rich content, are 
associated with acute coronary syndrome (ACS) (Lee et al., 2019; 
Tomaniak et al., 2020). Identifying HRPs and necrotic cores within 
coronary plaques exhibiting non-severe stenosis (<50%) is crucial, as 
recent evidence suggests that a significant proportion of ACS events 
originate from these plaques, shifting the focus from severe stenosis 
to early detection of HRPs in less severely narrowed regions to prevent 
adverse cardiovascular outcomes (Daghash et al., 2020; Virani et al., 
2020). The Coronary Artery Disease Reporting and Data System 2.0 
(CAD-RADS 2.0) guideline recommends including the HRPs in the 
diagnostic report to expedite clinical intervention and therapy for 
HRPs (Cury et al., 2022).

The integration of artificial intelligence (AI) into CCTA has 
significantly enhanced diagnostic accuracy, particularly in evaluating 
coronary plaque characteristics and CT-derived fractional flow reserve 
(FFR-CT). While traditional convolutional neural networks (CNNs) 
are effective for image classification, they often fall short in providing 
precise pixel-level predictions. In contrast, the U-Net architecture, 
with its encoder-decoder structure and skip connections, allows for 
accurate segmentation, making it especially suitable for the analysis of 
coronary plaque s and the prediction of FFR-CT on CCTA (Föllmer 
et al., 2024; Guo et al., 2024). Previous studies (Fairbairn et al., 2018; 
Mickley et  al., 2022; Hashemi et  al., 2022) have consistently 
demonstrated that FFR-CT achieves a diagnostic accuracy of 80–88% 
and a sensitivity of 81–90%, comparable to invasive FFR. The 

ADVANCE study showed that patients with moderate stenosis 
(50–75%) and FFR-CT ≤0.75 frequently require invasive coronary 
angiography (ICA), while those with stenosis >75% but FFR-CT >0.80 
can often avoid it. FFR-CT >0.80 indicates that the stenosis is not 
functionally significant enough to reduce blood flow and cause 
ischemia (Fairbairn et al., 2018). Similarly, the FACC study reported 
that patients with FFR-CT >0.80 had lower rates of revascularization 
without a significant increase in adverse cardiovascular events 
(Mickley et al., 2022), underscoring the functional rather than purely 
anatomical assessment of CAD. Although limited imaging research 
has specifically examined the impact of HTN on coronary plaque 
characteristics in patients with T2DM, existing studies have largely 
relied on manual, qualitative measurements, which are prone to 
variability and lack precision, particularly due to the absence of 
FFR-CT integration (Jiang et al., 2022; Tomizawa et al., 2015). This 
study addresses this gap by utilizing U-Net model to analyze coronary 
plaque characteristics and FFR-CT on CCTA, providing a 
comprehensive quantitative assessment of cardiovascular risk in 
T2DM patients with or without HTN, potentially enhancing risk 
stratification and management strategies.

Methods

Study population

This study was approved by our hospital’s Research Ethics 
Committee (No. 2023-054-1), and the retrospective study was agreed 
to exempt patients from signing the informed consent. A cohort of 
1,345 patients presenting with clinical suspicion of CAD and 
undergoing CCTA at our institution between October 2022 and 
February 2024 was included in this study. The study’s exclusion criteria 
encompassed several factors: (1) CCTA images incomplete. (2) AI 
detected the image quality based on a scoring system (1–5), where 
scores of 4 or 5 were considered suitable for analysis. The exclusion of 
lower quality images ensures the precision of plaques and FFR-CT 
analysis, as the algorithm relies on high-quality imaging for accurate 
measurements. The typical example for the image quality scores was 
shown in supporting information (Supplementary Figure S1). (3) 
Absence of clinical data in this study. (4) Prior cardiac surgery 
involving procedures such as artificial heart valve surgery, coronary 
artery bypass grafting, and cardiac pacemaker implantation. (5) 
Previous coronary revascularization and coronary stent implantation. 
(6) Cardiac insufficiency classified as grade III–IV, because the altered 
hemodynamics in advanced heart failure could confound the accuracy 
of FFR-CT analysis. (7) Severe renal insufficiency, because patients 
received the minimum dose of iodine contrast agent, and the iodine 
concentration could potentially affect the accuracy of FFR-CT 
analysis. Finally, 1,151 patients were enrolled in the study (Figure 1), 
including the T2DM group (n = 133), the HTN group (n = 442), the 
T2DM (HTN+) group (n = 256), and the control group (n = 320). The 
diagnosis of T2DM was established based on a fasting plasma glucose 
level of ≥126 mg/dL, a 2-h plasma glucose level of ≥200 mg/dL during 
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an oral glucose tolerance test, or an HbA1c level of ≥6.5%. HTN was 
diagnosed with a systolic blood pressure of ≥140 mmHg or a diastolic 
blood pressure of ≥90 mmHg based on at least two separate 
measurements. The patient’s clinical data was gathered, including their 
gender, age, dyslipidemia (high levels of total cholesterol, triglycerides, 
or low-density lipoprotein), smoking, drinking, family history of CAD 
(first-degree relatives, including parents or siblings), length of illness 
(determined from the patient’s medical records and self-reported 
diagnosis by healthcare providers), and body mass index (BMI, kg/
m2). The following serum biomarkers were measured: low-density 
lipoprotein cholesterol (LDL-C, mmol/L), hemoglobin A1c (HbA1c, 
%), and C-reactive protein (CRP, mg/L).

CCTA scanning protocols

The CCTA examinations were performed by a third-generation 
dual-source CT scanner (SOMATOM Force, Siemens Healthineers, 
Germany). The retrospective or prospective coronary artery scanning 
mode was chosen based on the patient’s respiratory control and heart 
rate. Automated tube voltage and current modulation (CAREkV, 
CAREDose4D), collimator 192 × 0.6 mm, field of view 184 × 184 mm, 
pitch 0.15–0.28 (automatic adjustment based on the heart rate) were 
utilized. The trigger point was at the center of the descending aorta at 
a level of 1 cm above the tracheal bifurcation (the trigger threshold was 
100 HU), and the acquisition was delayed for 5 s. The RR interval 
exhibited variability ranging from 30 to 80%. The sector reconstruction 
time of 66 ms automatically recreated the highest-quality images of the 
diastolic and systolic periods. The reconstructed slice thickness was 

0.75 mm, and the slice increment was 0.5 mm. The convolution used 
was BV40, and the matrix size was 512 × 512. The contrast agent was 
administered via a bolus injection through the cubital vein at a rate of 
4.0 mL/s. The contrast agent was an iodinated contrast agent (370 mg/
mL, BeiLu Pharmaceutical, Beijing, China). The total volume of 
contrast agent administered varied between 60 and 
80 mL. Subsequently, an additional 40 mL of saline solution (75%) was 
supplied at an equivalent rate.

CCTA analysis

The superior CCTA images were chosen from the diastolic and 
systolic periods and subsequently examined using an AI software 
program (skFFR-CT version v0.6.1, Beijing, China). The process of 
AI analysis of CCTA is shown in Figure 2. The analysis of FFR-CT 
from the CCTA includes the following two major steps: (1) automatic 
coronary artery reconstruction from CCTA images in this work was 
performed using a modified U-Net. Generally, U-Net is composed 
of a contracting path and a symmetric expanding path, with skip 
connections applied between them for feature fusion. The 
contracting path contains successive down-sampling layers to 
capture context, while the symmetric expanding path consists of a 
series of up-sampling layers aimed at recovering localization. In this 
modified U-Net, bottleneck blocks were inserted into adjacent 
down-sampling layers of the contracting path, as well as in the 
symmetric expanding path. Thousands of well-labeled CCTA scans 
from multiple centers were used to train the modified U-Net model. 
Additionally, plaque detection and segmentation based on coronary 

FIGURE 1

Flowchart of the inclusion and exclusion criteria.
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structure, guided by a 3D + 2D convolutional neural network model 
combined with a fully adaptive receptive field and multi-head self-
attention, were performed to accurately segment the coronary vessel 
lumen. Using this U-Net model, the entire coronary artery tree, 
including branch vessels with diameters of 1–2 mm, can 
be automatically and precisely segmented within 2 min. (2) FFR-CT 
calculation. The distribution of pressure along the centerline of each 
vessel is calculated in two steps. In the first step, the pressure is 
calculated with a reduced-order model (Guo et al., 2024). In the 
second step, the calculated pressure is further processed with a 
neural network, which is trained to minimize the discrepancy of 
pressure between the reduced-order model results and 3D 
computational fluid dynamics (CFD) or invasive measurement 
results. The major steps of the FFR-CT computation were shown in 
the supporting information (Supplementary Figure S2). FFR-CT 
≤0.75 was defined as myocardial-specific ischemia (Fairbairn et al., 
2018). Images with an Agatston calcification score greater than 1,000 
were excluded from FFR-CT computation, but plaque calculation 
was still conducted.

Plaque characteristics, including total plaque length, total plaque 
volume, plaque component volume, and proportion, were calculated 
by AI software (Figure 2; Supplementary Figure S3). The components 
of the plaque were separated based on their Hounsfield unit (HU) 
values: calcium volume (CV) ≥351 HU, fibrous volume (FV) between 
131 to 350 HU, fibrous fatty volume (FFV) between 31 to 130 HU, 
and necrotic core volume (NCV) between −30 to 30 HU (de Graaf 
et al., 2013). The HRPs are defined as plaques that meet at least the 
following two conditions: low-density plaque (NCV >1 mm3 or >40% 
of the total plaque volume), positive remodeling (remodeling index 
≥1.1), punctate calcification (<3 mm), and napkin ring sign (high-
density ring sign formed around low-density plaque) (Yang et al., 
2022). Coronary stenosis severity classification was assessed 
according to the CAD-RADS 2.0 (0–5, 0 = 0%, 1 = 1–24%, 2 = 25–49%, 
3 = 50–69%, 4 = 70–99%, and 5 = 100%). The calculation of the 
segment involve score (SIS) and segment stenosis score (SSS) was 
performed. The SIS ranges from 0 to 16, while the SSS ranges from 0 
to 48, which is obtained by summing the product of SSS and coronary 

stenosis severity (1 < 50, 50% ≤ 2 < 70%, 3 ≥ 70%). The determination 
of HRPs was collaboratively conducted by two radiologists who were 
ignorant of the clinical data (with 8 and 20 years of experience, 
respectively). Consultation determined the ultimate result in 
situations when the two radiologists encountered disagreement.

Statistical analysis

The data was analyzed statistically using IBM SPSS Statistics 27 
and GraphPad Prism 10 software. The continuous data was displayed 
as the mean ± standard deviation (SD) or median and interquartile 
range (IQR), depending on whether it matched a normal distribution. 
The normality of the data was assessed using the Kolmogorov–
Smirnov test. The categorical data were presented as absolute 
frequencies and proportions. The one-way ANOVA was implemented 
to compare continuous variables across distinct groups, assuming the 
data adheres to a normal distribution. A post-hoc test (Tukey’s HSD 
or Dunn–Bonferroni) was conducted following the one-way ANOVA 
to identify which specific groups differed from each other. The 
nonparametric Kruskal–Wallis H test was utilized for statistical 
analysis in scenarios where the data does not conform to a normal 
distribution. Logistic regression analysis investigates the risk factors 
associated with FFR-CT ≤0.75 and HRPs. p-values<0.05 are 
considered statistically significant.

Results

Baseline characteristics

Table  1 summarizes the baseline characteristics of the study 
participants. This study encompassed an overall population of 1,151 
patients. There were significant discrepancies in age (p < 0.001), but 
not in gender, BMI, dyslipidemia, smoking, alcohol consumption, or 
family history of CAD among the four groups (p > 0.05). A statistically 
significant disparity in disease duration was seen between groups 

FIGURE 2

Principle of the fully-automatic plaque characteristics and FFR-CT calculation by AI software.
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(p = 0.002). There was no statistically significant difference in the 
location of the narrowest coronary artery among the four groups. 
With a statistically significant difference (p < 0.001), the SIS and SSS 
showed the highest values in the T2DM (HTN+) group, then the 
T2DM and HTN groups, and the lowest in the control group.

Plaque characteristics

The quantitative characteristics of coronary plaques across groups 
are illustrated in Figure  3. The T2DM group exhibited a higher 
percentage of noncalcified plaque volume (54.0%) compared to calcified 
plaque (46.0%), suggesting a higher vulnerability to rupture. In contrast, 
the HTN group showed a predominance of calcified plaques (24.0% 
noncalcified vs. 76.0% calcified), indicating greater plaque stability but 
potential procedural challenges. The T2DM (HTN+) group had a 
mixed plaque composition (35.7% noncalcified vs. 64.3% calcified). 
When combined with HTN, coronary plaques in T2DM patients 
predominantly presented as an increase in calcified plaques, with values 
of 12.00 mm3 and 70.79 mm3, respectively. The detailed comparative 
analysis between groups is presented in Supplementary Tables S1, S2. 
The T2DM (HTN+) group exhibited an average NCV of 5.23 mm3 
versus 4.25 mm3 for the T2DM group, which was not statistically 
significant (p > 0.05) (Supplementary Table S3). The probability of HRPs 
in the T2DM and T2DM (HTN+) groups is higher compared to the 
HTN and control groups, with no significant difference between the 
T2DM and T2DM (HTN+) groups (p > 0.05). T2DM (HTN+) exhibited 
the highest CAD-RADS 2.0 classification scores. Figure 4 illustrates the 

plaque characteristics and FFR-CT fluctuations on CCTA images 
among groups.

Risk factors associated with FFR-CT ≤0.75

In the AI analysis procedure, 10 cases were removed from the 
FFR-CT calculation because their Agatston calcification score surpassed 
1,000. When comparing the control group (13/319, 4.1%), the T2DM 
group (18/130, 13.8%), and the HTN group (39/439, 8.9%), the T2DM 
(THN+) group exhibited the highest odds (66/253, 26.1%) of having an 
FFR-CT ≤0.75 (Figure  5a), indicating more severe functional 
impairment in coronary circulation due to the combined effect of T2DM 
and HTN. Nevertheless, among the three remaining groups, no 
statistical significance was identified. Pair-wise correlations between 
variables were checked using the variance inflation factor (VIF), 
ensuring all included variables had a VIF <5, indicating no significant 
multicollinearity. An analysis of 17 risk factors for FFR-CT ≤0.75 
incorporated 1,141 instances into a logistic regression model. Table 2 
demonstrated a statistically significant positive association between 
FFR-CT ≤0.75 and CAD-RADS 2.0 [Regression coefficient B (B) =2.078, 
adjusted odds ratio (OR) =7.986, 95% CI = 5.466–11.667, cutoff value = 3, 
p < 0.001] and a relatively weak positive correlation with noncalcified 
plaque volume (B = 0.006, adjusted OR = 1.006, 95% CI = 1.003–1.009, 
cutoff value = 29.65 mm3, p < 0.001). The AUC value for the logistic 
regression model is 0.956 (Figure 5b). The formula used in the model is 
as follows: ln (p/1 − p) = −8.221 + 2.078 * CADRADS+0.006 * NCV. In 
this equation, p represents the probability of FFR-CT ≤0.75.

TABLE 1 Baseline characteristics.

T2DM (n =  133) HTN (n =  442) T2DM (HTN+) 
(n =  256)

Control (n =  320) p

Age (years) 66.01 ± 10.39 67.30 ± 8.79 67.14 ± 9.26 62.22 ± 11.02 <0.001a

Male, n (%) 62 (46.6) 180 (40.7) 119 (46.5) 144 (45.0) 0.383b

BMI, kg/m2 22.67 ± 2.54 22.46 ± 1.85 22.82 ± 2.09 22.53 ± 2.05 0.135a

Duration (years) 9.28 ± 7.78 11.31 ± 10.13 8.45 ± 7.43 0 <0.001a

Dyslipidemia, no (%) 37 (27.8) 114 (32.6) 75 (29.3) 77 (24.1) 0.527b

Current smoker, n (%) 29 (21.8) 78 (17.6) 48 (18.8) 40 (12.5) 0.058b

Current drinker, n (%) 12 (9.0) 40 (9.0) 22 (8.6) 20 (6.3) 0.529b

Family history, n (%) 13 (9.8) 22 (5.0) 18 (7.0) 16 (5.0) 0.156b

Narrowest artery, n

  LM 0 9 3 6 0.091b

  LAD 70 225 167 91

  RCA 16 39 35 12

  LCX 10 17 17 7

  RI 0 1 1 0

  D (1–2) 0 4 3 2

  OM (1–2) 0 1 3 0

SISc 2 (4) 1 (3) 4 (5) 0 (1) <0.001b

SSSc 3 (7) 1 (3) 6 (12) 0 (1) <0.001b

aOne-way ANOVA for analysis.
bNon parametric tests for analysis.
cMedian (IQR).
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Correlation between HRPs and serum 
biomarkers

Figure 6 shows that the U-Net model can accurately separate the 
compounds inside HRPs by using HU threshold segmentation. From 
the total cohort of 1,151 patients, a sample of 439 was selected, as only 
these individuals had all three blood biomarkers (HbA1c, LDL-C, 

and CRP) measured. Logistic regression was performed to assess the 
relationship between these biomarkers and HRPs. Of the 439 patients, 
188 (42.8%) exhibited HRPs on CCTA images. The findings 
demonstrated a favorable correlation between HRPs and HbA1c 
(B = 0.489, OR = 1.631, 95% CI: 1.387–1.918, cutoff value = 6.9%, 
p < 0.001). However, no correlation was observed between HRPs and 
CRP or LDL-C (Table 3).

FIGURE 3

Comparison of the tot al length (a) and volume (b) of coronary artery plaques, the volume (c–f) and proportion (g) of plaque components, the fraction 
of high-risk plaques (h), and CAD-RADS 2.0 (i) across four groups. NCV, necrotic core volume; FFV, fibrous fatty volume; FV, fibrous volume; CV, 
calcium volume.
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Discussion

The U-Net model enables rapid, multiparametric analysis of CCTA 
images within minutes, providing diagnostic information and 
supporting large-scale epidemiological studies. Traditional methods 
provide basic plaque morphology and stenosis grading. AI adds 
detailed plaque component quantification and FFR-CT analysis, 
improving risk stratification and enabling more personalized clinical 
decisions. This research focuses on integrating U-Net for 
comprehensive plaques and FFR-CT analysis in T2DM patients, with 

an emphasis on the role of hypertension. Our findings suggest that 
T2DM (HTN+) increased the volume of calcified plaques but not 
noncalcified and necrotic core plaques than T2DM patients. T2DM 
patients exhibited a higher risk of HRPs compared to HTN and control 
groups. The CAD-RADS, SIS, SSS, and the probability of FFR-CT 
≤0.75 in T2DM (HTN+) were significantly higher than in T2DM, 
indicating a concomitant development of coronary atherosclerosis.

In this work, it was observed that T2DM (HTN+) results in an 
augmentation in calcified plaque volume and more serious coronary 
atherosclerosis than T2DM. This is consistent with previous research 

FIGURE 4

Groups differed in plaque characteristics and FFR-CT on CCTA images. (a–e) This 46-year-old male belongs to the control group. The LAD, RCA, and 
LCX have no restriction on the CCTA, and the FFR-CT >0.75. (f–j) This 74-year-old female had hypertension for 3  years. CCTA reveals calcified plaques 
on LAD, RCA, LCX, and OM1. Plaques are 168.8  mm3 in volume and 26.23  mm in length. The proximal LAD exhibited moderate constriction, with CAD-
RADS 2.0 classification 3, SSS 5, SIS 6, and the FFR-CT >0.75. (k–o) This 74-year-old male had T2DM for 20  years. CCTA scans show calcified, mixed, 
and HRPs in the LAD, RCA, LCX, D1-2, and OM1. The plaque is 556.42  mm3 in volume and 94.64  mm in length. The core necrotic volume is 26.67  mm3, 
the fiber lipid content is 121.22  mm3, the fiber volume is 79.47  mm3, and the calcification volume is 329.06  mm3. The middle RCA, proximal LAD, and 
middle and distal LCX have severe stenosis, with CAD-RADS 2.0 classification 4, SIS 8, and SSS 18. FFR-CT ≤0.75 was seen in the RCA, LAD, D1, and D2.
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results (Jiang et al., 2022). Complex hemodynamic feedback in T2DM 
(HTN+) individuals worsens cardiovascular disease (Ferrannini and 
Cushman, 2012; Climie et  al., 2019). The probability of FFR-CT 
≤0.75 in T2DM (HTN+) was found to be higher than in T2DM or 
HTN alone, which is a novel finding. The additional FFR-CT 
examination may increase the diagnosis cost of CAD patients (Curzen 
et al., 2021; Hlatky et al., 2023), and whether an FFR-CT examination 
is necessary for patients should be discussed. This study suggests that 
the need for FFR-CT evaluation is primarily driven by CCTA imaging 
findings, rather than the patient’s clinical history (Table 2), especially 
when the CAD-RADS 2.0 score is ≥3. FFR-CT ≤0.75 indicates a higher 
likelihood of requiring intervention, while FFR-CT >0.80 may avoid 
unnecessary invasive procedures (Fairbairn et al., 2018; Mickley et al., 
2022). Additionally, U-Net algorithms enhance the accuracy and 
consistency of analyzing large-scale CCTA datasets. Unbiased results 
are ensured by the algorithm’s reliance on objective image analysis 
rather than subjective interpretation by radiologists.

Previous studies have shown AI’s effectiveness in improving FFR-CT 
diagnostic accuracy for CAD (Guo et al., 2024) and identifying HRPs 
(Föllmer et  al., 2024). This study uniquely integrates the analysis of 
noncalcified and calcified plaques, HRPs, and FFR-CT in T2DM patients 
with and without HTN, uncovering compounded risk factor patterns. 
Notably, the study highlights the association between FFR-CT ≤0.75 and 
increased noncalcified plaque volume, suggesting a higher risk of 
coronary ischemia even in the absence of significant calcification. 
Quantitative characteristics of coronary plaques using CCTA can 
facilitate personalized strategies for prevention, therapy, and early drug 
intervention in patients with or without T2DM. Our findings indicated 
that patients diagnosed with T2DM exhibited an elevated susceptibility 
to the formation of noncalcified plaques compared to those with 
HTN. Although this study observed a greater percentage of calcified 
plaques in individuals with HTN, HTN still represents a risk factor for 
the formation of noncalcified plaques. Miller et al. (2023) found that both 
T2DM and HTN were associated with the formation of noncalcified 
plaques, with an OR of 2.192 and 1.613, respectively, which indicated a 

heightened risk of developing noncalcified plaques in individuals with 
T2DM. Pathological studies have revealed that the coronary arteries of 
people with T2DM have a larger necrotic core and more obvious vascular 
inflammation, mostly made up of macrophages and T lymphocytes 
(Yahagi et al., 2017). Even without hyperlipidemia, diabetes stimulates 
macrophages to transform into inflammatory cells and increase the lipid 
core (Tabas, 2010). Additionally, hyperglycemia may increase vascular 
smooth muscle cell (VSMC) proliferation, migration, and reactivity, 
promoting atherosclerosis (Climie et al., 2019). HTN activates L-type 
calcium channels in VSMCs, which raises intracellular calcium. Excessive 
intracellular calcium quickly decomposes VSMCs’ mitochondria and 
structural components, resulting in calcium accumulation in elastic fibers 
(Miller et al., 2023; Tabas, 2010; Godfraind, 2017; Tedla et al., 2017; Zhou 
et al., 2018; Zhu et al., 2018). Plaque treatment improves cardiovascular 
outcomes in patients with T2DM. Statins inhibited noncalcified plaque 
growth, converted the HRPs phenotype to calcified plaques, and 
attenuated coronary atherosclerosis (Ferrannini and Cushman, 2012; Lee 
et al., 2018; van Rosendael et al., 2021).

Enhancing plaque treatment by targeting the amount of 
noncalcified plaque volume can effectively improve coronary 
atherosclerosis (Kini et al., 2013). Previous studies (Okada et al., 
2015; Li et al., 2020) indicated that the instability and inconsistency 
of glucose and HbA1c in individuals with T2DM might heighten 
the susceptibility to coronary culprit plaque, or HRPs. In this work, 
we found that individuals with HbA1c ≥6.9% are more likely to 
possess HRPs, which supports the role of glycemic metabolism 
abnormalities as a strong independent risk factor for HRPs and is 
consistent with previous studies (Conte et al., 2021; Heinsen et al., 
2021). It was observed that there was a favorable association 
between FFR-CT ≤0.75 and noncalcified plaque volume (Table 2). 
When assessing the impact of coronary artery stenosis on 
myocardial ischemia using CCTA, it is important to take the volume 
of the noncalcified plaque volume into account, especially for 
coronary atherosclerosis patients with an Agatston calcium score of 
0. Gaur et al. (2016) found that FFR ≤0.80 was associated with both 

FIGURE 5

The comparison between groups (a) and the AUC curve (b) generated by logistic regression analysis of risk factors for FFR-CT ≤0.75 are displayed.
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coronary stenosis severity and noncalcified plaque volume, 
indicating a risk factor for myocardial ischemia. Lu et al. (2023) 
demonstrated that CCTA could estimate plaque NCV to identify 
residual risk in non-ST-elevation myocardial infarction patients.

The quantification of CCTA using the U-Net model is non-invasive 
and more cost-effective, as it reduces the need for unnecessary invasive 
intravascular procedures (Curzen et  al., 2021). While invasive 
coronary angiography cannot assess plaque composition and some 
plaques that do not restrict blood flow can still cause adverse events 
(Erlinge et  al., 2021), intravascular ultrasonography and optical 
coherence tomography can identify plaques but are invasive with a 
0.4–1.6% complication rate (Waksman et  al., 2019). This model 
combines U-Net driven CAD-specific functional parameters with 
quantitative CCTA assessment, offering new diagnostic insights for 
coronary heart disease. This approach has significant potential for 
predicting coronary artery disease and improving patient outcomes 
(Guo et al., 2023). The U-Net model has the capability to aggregate 
data from multiple patients, enabling the identification of trends and 
patterns in plaque characteristics and FFR-CT values. Although this 
analysis is based on a large single-center cohort, AI analysis of CCTA 
allows for a more comprehensive identification of trends in plaque 
characteristics and FFR-CT values. This enables earlier, more 
personalized interventions, tailored medication regimens, and more 
precise decision-making regarding invasive procedures.

Limitations of the study

There are some limitations to this study. It is important to note that 
there may be variations or discrepancies in the findings of a single-
center study. Therefore, it is necessary to conduct additional research 

involving multiple centers to obtain more comprehensive and reliable 
results. On the other hand, it should be noted that non-invasive FFR-CT 
was not validated using invasive FFR. The AI software used in this study 
has been licensed by the National Medical Products Administration 
(NMPA) in China and its accuracy was validated during the initial 
software development phase. Furthermore, the comparison between the 
measurement of coronary plaque and invasive intracoronary plaque 
imaging has yet to be conducted. Nevertheless, it is important to note 
that in the present investigation, stringent measures were taken to 
ensure the image quality of the included CCTA scans (4–5 points). 
Additionally, the research team acknowledged the accuracy of coronary 
plaque delineation achieved in this study. Finally, coronary plaques and 
FFR-CT were discussed in this investigation, but the predictive risk 
factors for major adverse cardiovascular events (MACE) in T2DM 
patients with or without HTN are not addressed. We will continue to 
monitor patient data, with MACE as the endpoint event.

Conclusion

Our research indicates that patients with diverse risk factors 
exhibit variations in coronary plaques and hemodynamics on 
CCTA. Utilizing U-Net algorithms, AI significantly enhances CCTA 
by accurately quantifying coronary plaques, including non-calcified 
plaques with an Agatston score of 0. In patients with T2DM, HTN 
confers an enhanced risk of coronary atherosclerosis. Coronary 
calcified plaques, stenosis severity, and FFR ≤0.75 deteriorate in 
T2DM (THN+) patients. T2DM patients exhibited a larger volume of 
necrotic core and an elevated risk of developing HRPs than HTN. HTN 
patients had a higher prevalence of partly calcified plaques. 
CAD-RADS 2.0 ≥3 is recommended to perform FFR-CT evaluations. 

TABLE 2 Risk factors analysis utilizing univariate and multivariate logistic regression for FFR-CT ≤0.75 (N  =  1,141).

Variates Univariate analysis Multivariate analysis (forward: LR)

OR 95% CI p-value OR 95% CI p-value

Gender (male = 1) 0.487 0.339–0.702 <0.001 0.162

Age 1.038 1.018–1.059 0.001 0.079

BMI 1.006 0.922–1.098 0.892 0.597

CADRADS (per + 1) 9.127 6.320–13.183 <0.001 7.986 5.466–11.667 <0.001

HRPs 0.114 0.077–0.168 <0.001 0.886

Total plaque length 1.041 1.034–1.047 <0.001 0.664

Total plaque volume 1.006 1.005–1.007 <0.001 0.496

Noncalcified volumea 1.018 1.015–1.021 <0.001 1.006 1.003–1.009 <0.001

Calcified volume 1.006 1.005–1.007 <0.001 0.496

T2DM 3.814 2.631–5.529 <0.001 0.164

HTN 2.412 1.585–3.670 <0.001 0.683

Dyslipidemia 1.561 1.067–2.285 0.022 0.674

Current smoker 3.132 2.110–4.648 <0.001 0.957

Current drinker 2.805 1.682–4.677 <0.001 0.615

Family history of CAD 1.273 0.635–2.551 0.497 0.853

SIS 1.614 1.502–1.735 <0.001 0.876

SSS 1.330 1.281–1.381 <0.001 0.256

aNoncalcified volume = Fibrous volume + Fibrous fatty volume + Necrotic core volume.
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AI technology analysis of CCTA has broad application prospects in 
improving the diagnosis and management of cardiovascular diseases.
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5  years and (a) HbA1c level of 7.0%. The volume of proximal LAD plaques is 175.24  mm3 (b). Plaque component classification by AI is contingent upon HU.
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