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In Uganda, the absence of a unified dataset for constructing machine learning 
models to predict Foot and Mouth Disease outbreaks hinders preparedness. 
Although machine learning models exhibit excellent predictive performance 
for Foot and Mouth Disease outbreaks under stationary conditions, they are 
susceptible to performance degradation in non-stationary environments. Rainfall 
and temperature are key factors influencing these outbreaks, and their variability 
due to climate change can significantly impact predictive performance. This 
study created a unified Foot and Mouth Disease dataset by integrating disparate 
sources and pre-processing data using mean imputation, duplicate removal, 
visualization, and merging techniques. To evaluate performance degradation, 
seven machine learning models were trained and assessed using metrics 
including accuracy, area under the receiver operating characteristic curve, recall, 
precision and F1-score. The dataset showed a significant class imbalance with 
more non-outbreaks than outbreaks, requiring data augmentation methods. 
Variability in rainfall and temperature impacted predictive performance, 
causing notable degradation. Random Forest with borderline SMOTE was the 
top-performing model in a stationary environment, achieving 92% accuracy, 
0.97 area under the receiver operating characteristic curve, 0.94 recall, 0.90 
precision, and 0.92 F1-score. However, under varying distributions, all models 
exhibited significant performance degradation, with random forest accuracy 
dropping to 46%, area under the receiver operating characteristic curve to 0.58, 
recall to 0.03, precision to 0.24, and F1-score to 0.06. This study underscores 
the creation of a unified Foot and Mouth Disease dataset for Uganda and reveals 
significant performance degradation in seven machine learning models under 
varying distributions. These findings highlight the need for new methods to 
address the impact of distribution variability on predictive performance.
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1 Introduction

Foot and Mouth Disease (FMD) is a highly contagious disease 
primarily affecting cloven-hoofed animals such as cattle, pigs, sheep, 
and goats (Udahemuka et al., 2020; Chepkwony et al., 2021). FMD is 
caused by an aphthovirus of the family Picornaviridae, inducing fever 
and blister-like sores in the mouth and feet of susceptible animals 
(Childs et al., 2022). While adult animals usually survive, morbidity 
rates can reach 100% in susceptible populations, especially among 
young livestock (Bertram et al., 2020; Rodríguez-Habibe et al., 2020). 
Clinical symptoms include vesicles or blisters on the tongue, hooves, 
mouth, and udder, leading to lameness and reduced appetite 
(Alexandersen et al., 2019; Clemmons et al., 2021).

In the endemic setting of Uganda, FMD has persisted as a 
significant challenge for over 60 years (Munsey et al., 2019), leading to 
a 23% decline in income for livestock stakeholders at the processing 
level, along with reductions in market values of bulls and cows by 83 
and 88%, respectively (Baluka, 2016). Despite implementing 
traditional intervention methods such as vaccination campaigns, 
quarantine measures, and movement restrictions, the country 
continues to face significant challenges in effectively mitigating the 
impact of FMD (Kerfua et al., 2018; Mwiine et al., 2019; Velazquez-
Salinas et al., 2020). Figure 1 shows FMD prevalence between 2011 
and 2022 across the districts of Uganda. The insufficient preparedness, 
partly due to lack of timely and accurate information on potential 
outbreaks, hinders the country’s response efforts (Munsey et al., 2019; 
Mwiine et al., 2019). The absence of such information undermines 
continuous monitoring of FMD for early detection and efficient 
distribution of resources, thereby greatly affecting the overall 
effectiveness of FMD control efforts (Munsey et  al., 2019). This 
obstacle obstructs the country’s progress within the global Progressive 
Control Pathway for Foot and Mouth Disease (PCP-FMD) framework, 
aimed at assisting endemic countries reduce the impact of FMD by 
progressively increasing the level of control through development of 
risk-based control strategies (Sumption et  al., 2012). The country 
remains at stage 2 of the 5 PCP-FMD framework (FAO, 2018), where 
early-warning systems are recommended for enhancing preparedness 
through continuous surveillance, enabling early detection of FMD and 
optimal resource allocation (Munsey et al., 2019).

Enhancing Foot and Mouth Disease (FMD) preparedness is 
essential to mitigate the impact of outbreaks (Yadav et  al., 2020). 
Machine learning (ML)-based predictive modeling has shown 
promise in enabling early detection and optimal resource allocation 
for outbreak prevention and control (Punyapornwithaya et al., 2022). 
However, these models have been typically trained and tested in 
stationary environments where training and test data distributions are 
similar (Punyapornwithaya et al., 2022; Sueabua and Seresangtakul, 
2023), neglecting the effects of varying distributions on predictive 
performance. The lack of empirical evidence on how ML models for 
FMD outbreaks perform under varying conditions presents a 
significant research gap. This gap is critical for policy makers in 
dynamic settings of Uganda, where key risk factors including rainfall 
and temperature (Munsey et al., 2019), influenced by climate change 
(Nsubuga and Rautenbach, 2018), exhibit distribution variability. 
Additionally, FMD outbreak data and influencing factors are dispersed 
across multiple sources (Kerfua et  al., 2018; Obubu et  al., 2021), 
complicating the creation of comprehensive and high-performing 
predictive models. This study aims to fill these gaps by (1) creating a 

unified and curated FMD dataset for Uganda, and (2) assessing the 
predictive performance degradation rates of ML models under 
varying distributions. The study makes several 
significant contributions:

 • Provides a valuable unified dataset for future research.
 • Offers insights into the impact of varying distribution on ML 

model performance, underscoring the need for adaptive 
approaches in changing environmental conditions.

The rest of the paper is structured as follows: Section 2 details 
comprehensive literature; Section 3 focuses on the methodology; 
Section 4 presents the study results; Section 5 discusses the findings; 
and Section 6 provides conclusions for the study.

2 Literature review

In this section, the study reviews related literature on the key 
factors influencing FMD in Uganda and across the African continent, 
identifies data sources, and examines prior research on the 
application of ML algorithms in predicting FMD for 
improved preparedness.

2.1 Risk factors influencing FMD outbreaks

The disease transmission occurs through contact with infected 
animals, secretions, or contaminated environments, as well as through 
aerosols, facilitating long-distance spread (Paton et al., 2018; Poonsuk 
et al., 2018; Brown et al., 2022). Contact with wildlife is another risk 
factor for FMD occurrence (Munsey et al., 2019). While the African 
buffalo, Syncerus caffer, is the only confirmed wildlife reservoir (Dubie 
and Negash, 2021), transmission occurs when livestock share grazing 
land or water points with wildlife, especially during the dry season 
when pastures and water become scarce (Miguel et  al., 2017). 
Similarly, several studies, including Hamoonga et al. (2014), Hasahya 
et al. (2023), Jemberu et al. (2016), Munsey et al. (2019), and Sinkala 
et al. (2014), have stressed the significance of animal movements in 
disease spread. Additionally, research by Chimera et al. (2022), Dubie 
and Negash (2021), Fasina et  al. (2013), Hamoonga et  al. (2014), 
Jemberu et al. (2016), Jenbere et al. (2011), and Munsey et al. (2019) 
has highlighted the impact of animal density and demographics on 
transmission dynamics. Furthermore, environmental conditions, 
including temperature, and rainfall play a crucial role in FMD 
outbreaks, as shown by studies conducted by Ayebazibwe et al. (2010), 
Baluka et  al. (2013), Molla et  al. (2013), Hamoonga et  al. (2014), 
Wungak et al. (2016), Abdela (2017), Munsey et al. (2019), Udahemuka 
et al. (2020), Kerfua et al. (2021), and Chimera et al. (2022). FMD 
impacts approximately 77% of the global livestock population 
(Bachanek-Bankowska et al., 2018; Zewdie et al., 2023), with seven 
known serotypes of the FMD virus: A, O, C, Asia 1, SAT 1, SAT 2, and 
SAT 3, causing varying distributions across regions (Jamal and 
Belsham, 2018; Paton et al., 2021; Salem et al., 2021). The low-income 
and middle-income countries bear 75% of the costs associated with 
preventing and controlling FMD, with Africa and Eurasia accounting 
for 50 and 33% of the total expenses, respectively (World Organization 
for Animal Health, 2024).
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2.2 Absence of a unified and curated FMD 
dataset for Uganda

Historical FMD data for Uganda, collected over the past 
60 years, is stored at the National Animal Disease Diagnostic and 
Epidemiology Centre (NADDEC) and the World organization for 
Animal Health (WOAH). This data includes key features such as the 
time and location of outbreaks, confirmed cases, animals at risk, 
and total animal density. Data on risk factors reported to influence 
FMD occurrences, such as rainfall and temperature, are maintained 
by the Uganda National Meteorological Authority (UNMA). 
Additional factors, including proximity to protected areas and 
international borders, can be  accessed from various sources 

including the Pennsylvania State University. Despite prior literature 
identifying these critical factors (Ayebazibwe et al., 2010; Baluka 
et al., 2013; Abdela, 2017; Munsey et al., 2019; Kerfua et al., 2021), 
there remains a lack of a comprehensive, integrated, and curated 
dataset for predicting potential FMD outbreaks in Uganda. The 
existing data is fragmented across multiple organizations, hindering 
the development of effective predictive models. Therefore, this 
study aims to access data on historical FMD outbreaks and relevant 
risk factors, preprocess and integrate them into a unified and 
curated dataset. This dataset will be used for training, testing, and 
validating ML-based models to predict FMD outbreaks in Uganda. 
By creating a comprehensive dataset, the study seeks to enhance the 
performance and reliability of predictive modeling, ultimately 

FIGURE 1

Prevalence of FMD outbreaks in Uganda between 2011 and 2022.
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improving FMD preparedness and response strategies in 
the country.

2.3 Machine learning-based prediction of 
diseases under stationary environment

In disease prediction, machine learning approaches are 
increasingly utilized across diverse fields. Uddin et  al. (2019) 
conducted a comprehensive literature review encompassing various 
studies that examined supervised learning methods including Logistic 
Regression (LR), Decision Trees (DT), Random Forest, Support 
Vector Machines (SVM), Naïve Bayes, K-nearest neighbors (kNN), 
and Artificial Neural Networks (ANN) for predicting diseases 
including heart disease, diabetes, Parkinson’s disease, and breast 
cancer. Their focus centered on studies employing multiple supervised 
machine learning algorithms within the same research context for 
disease prediction. Their findings highlighted the frequent application 
of the Support Vector Machine algorithm in 29 studies and the Naïve 
Bayes algorithm in 23 studies. However, despite this prevalence, the 
Random Forest algorithm demonstrated notably higher performance. 
Among the 17 studies employing Random Forest, it exhibited the 
highest accuracy in 53% of cases, surpassing SVM, which achieved the 
highest accuracy in 41% of the studies it was involved in.

In another study, Carslake et  al. (2020) leveraged machine 
learning and wearable sensor technology to monitor multiple 
behaviors in pre-weaned dairy calves. Through an AdaBoost 
ensemble learning algorithm, the research achieved high 
performance in identifying behaviors including locomotor play, 
self-grooming, feeding, and lying activity. Additionally, the study 
introduced an adjusted count quantification method specifically 
tailored to estimate the prevalence of locomotor play behavior. 
While showcasing substantial accuracy in behavior identification 
up to (99.73%), the quantification estimates revealed a notable 
correlation with the true prevalence of behaviors, albeit with a slight 
overestimation around (18.97%). This novel approach utilizing 
machine learning for behavior identification and quantification in 
calves using wearable sensors offers significant potential to assess 
calf health and welfare.

In the prediction of FMD outbreaks for enhanced preparedness, 
Punyapornwithaya et al. (2022) explored ML algorithms to identify 
FMD outbreaks in the endemic setting of Thailand. In their study, 
algorithms, including classification trees, random forests, and 
Chi-squared automatic interaction detection (CHAID), were equipped 
with external risk factors as input variables. The results of the study 
were highly promising under stationary environment. Notably, the 
random forest model stood out, showcasing a remarkable predictive 
capability with an accuracy rate of 74%. Furthermore, it achieved the 
highest area under the operating  characteristic curve (AUC) at 0.83 as 
shown in Table 1. Similarly, another study conducted by Sueabua and 
Seresangtakul (2023) also utilized machine learning techniques, such 
as support vector machines, decision trees, and artificial neural 
networks, to predict FMD outbreaks in the Nakhon Ratchasima 
province of Thailand. This research employed risk factors like rainfall, 
temperature, animal purchases in an animal market, sick animals in the 
month, and the percentage of vaccinated animals as input variables in 
the model development process. To address imbalanced datasets, the 
researchers applied the synthetic minority oversampling technique T
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(SMOTE) to oversample the minority class, a common approach to 
mitigate class imbalance. The experimental results were quite  
promising, with the decision tree model adjusted for the imbalanced 
data, outperforming other models with an impressive accuracy rate of 
98.86% as indicate in Table 1. However, like the previous study, the 
evaluation was based on a test dataset with a distribution similar to the 
training dataset as illustrated in Figure 2.

The findings emphasize machine learning models’ vital role in 
predicting outbreaks for better disease management. However, their 
reliance on the independently identically distributed data assumption 
creates vulnerability to distribution shifts, limiting their use in new 
environments and affecting global disease mitigation efforts. Despite 
previous studies exploring machine learning for FMD prediction, they 
often overlooked varying distributions, a known concern in the field. 
The potential occurrence of these distribution variability over time 
may affect model performance, making them unreliable for FMD 
outbreak prediction. Given the disease’s rapid spread and impact on 
the livestock industry, timely intervention is crucial. Therefore, 
investigating distribution shifts in FMD datasets and their impact on 
machine learning methods is critical in developing adaptive models 
capable of accurate predictions, enhancing preparedness against 
FMD’s rapid spread.

3 Materials and methods

3.1 Utilizing the experimental design to 
conduct the study

To achieve the research objectives of developing a unified and 
curated FMD dataset and assess predictive performance degradation 
rates under varying distributions in Uganda, the study adopted an 
experimental research design. Experimental research design in ML 
entails a systematic methodology for planning, executing, and 
analyzing experiments to assess the performance of ML models 
while minimizing biases, noise, and distribution mismatch (Kamiri 
and Mariga, 2021). By adhering to a well-defined experimental 
design, the study can make informed decisions regarding the ML 
models, leading to improved performance and a deeper 
comprehension of the underlying mechanisms. Figure 3 outlines the 
experimental methodological approach with various phases for 

conducting experiments to meet the specified objectives in this 
study. The phases include Literature review, Data collection, Data 
pre-processing, Model training, Model testing, and Model evaluation.

In this study, six phases depicted in Figure 3 were carried out 
across six key activities. Phase 1 (section 3.1.1) encompasses the 
activities of identifying a research problem and data sources. Phase 2 
(section 3.1.2) focuses on data acquisition and compilation. Phase 3 
(section 3.1.3) involves data cleaning and integrating disparate 
datasets into a unified and curated dataset. Phase 4 (section 3.1.4) 
involves training seven ML-based models. Phase 5 (section 3.1.5) 
entails testing the predictive performances of the seven trained 
models. Phase 6 (section 3.1.6) focuses on evaluating the predictive 
performances of the trained seven models using validation set. Table 2 
provides a summary of these phases, key activities, accomplished 
study objectives, methods, and descriptions illustrating how the 
methods were employed to achieve the objectives. In the following 
sections, the study discusses in detail how the various phases are 
executed to achieve the study objectives.

3.1.1 Phase 1: literature review
In Phase 1, the study conducted a traditional literature review to 

identify the research problem and a systematic literature review, 
guided by the Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) framework, to identify the risk factors 
influencing FMD outbreaks, as discussed in the following sections.

3.1.1.1 Identification of research problem and risk factors
This phase largely involved conducting a traditional and 

systematic literature review, as reported in section 2 Literature Review. 
The study highlighted the inadequacy in FMD preparedness and the 
potential of ML to generate predictive information for continuous 
surveillance, enabling early detection and optimal allocation of 
resources. Furthermore, the study identified absence of a unified and 
curated FMD dataset as an obstacle in developing ML-based predictive 
models. Additionally, the study identified the uncertainty aspect on 
the extent of performance degradation that can be caused by varying 
distribution in key risk factors including rainfall and temperature. 
While previous research has made significant advancements in 
ML-based prediction of FMD outbreaks (Punyapornwithaya et al., 
2022; Sueabua and Seresangtakul, 2023), the focus on stationary 
environments renders such predictions vulnerable to unexpected 

FIGURE 2

A general framework for training and testing ML-based prediction models for FMD under stationary environment.
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distribution shifts. Therefore, this study investigated the extent to 
which varying distribution can have on the ML-based predictive 
performance for FMD outbreaks in Uganda. Based on this research 
gap identified through comprehensive literature review, research 
objectives were formulated. In addition, this phase identified crucial 
risk factors influencing FMD outbreaks, such as rainfall, temperature, 
proximity to protected areas, proximity to international borders, and 
cattle density (Figure 4). The circled factors (Figure 4) were utilized to 
identify data sources (Table 3) and acted as predictors in constructing 
the predictive model. Furthermore, the study utilized a descriptive 
statistical approach, leveraging Python 3.11.4 with Jupyter Notebook 
7.0.0. Python libraries, particularly Pandas and Matplotlib, were 
instrumental in data handling, analysis, and visualization.

3.1.2 Phase 2: data collection
Uganda, situated in East Africa, is a landlocked country bordered 

by Kenya to the east, Tanzania to the south, Rwanda to the southwest, 
South Sudan to the north, and the Democratic Republic of Congo to 
the west. Positioned near the equator, Uganda spans diverse landscapes, 
encompassing expansive savannahs, dense forests, and the towering 
Rwenzori Mountains. With a latitude range of approximately 1°N to 
4°N and a longitude between 29°E and 35°E, Uganda experiences a 
tropical climate, fostering a wide array of flora and fauna. The country’s 
diverse topography and climates contribute to varied ecological 
conditions, potentially affecting disease transmission dynamics 
(Munsey et al., 2019). From the lush vegetation of the southern regions 
to the arid landscapes in the north, these geographic and climatic 
diversities can significantly influence the occurrence and spread of 
FMD outbreaks, underscoring the importance of a comprehensive 
approach to disease prediction and control strategies within 
the country.

The study utilized a retrospective approach to guide the data 
collection process. The choice is justified by the approach’s ability to 
access historical information spanning a significant period, 
providing a rich dataset crucial for training and validating the 
ML-based predictive model for FMD. The study gathered an 
extensive dataset, spanning the period from 2011 to 2022 and 
encompassing various critical sources of information (Table  3). 
From 2011 to 2022, FMD outbreaks were confirmed in 86 districts 
across the country, as shown in Figure  1, with their prevalence 
detailed in Supplementary Figure 1. The historical FMD outbreak 
data were obtained from reputable sources, including the NADDEC 
and WOAH. The dataset contained essential details such as outbreak 
locations, timing of occurrence, and confirmed cases. Additionally, 
the study incorporated climatic factors by including rainfall and 
temperature data from the Uganda National Meteorological 
Authority (UNMA). Furthermore, to account for livestock-related 
factors, the utilized data from the National Livestock Census 2008 
(NLC2008), jointly conducted by the Ministry of Agriculture, 
Animal Industry, and Fisheries (MAAIF) and the Uganda Bureau of 
Statistics (UBOS). The data provided valuable insights into livestock 
population densities across different regions. Moreover, the study 
collected geographical information concerning areas adjacent to 
protected wildlife zones and international borders from the 
Pennsylvania State University Department of Geography psugeo.
org/Africa/Africa_files/, as these geographical features significantly 
influence FMD transmission dynamics. The FMD risk factors and 
their corresponding data sources are shown in Table 3.
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3.1.2.1 Data sampling
Various data sampling techniques exist in data science, each 

suitable for different research needs (Bhardwaj, 2019; Sarker and 
Al-Muaalemi, 2022). This study leveraged the insights gained from the 
dominance of FMD outbreaks across the districts of Uganda, as 
illustrated in Supplementary Figure 1, 22 districts were purposively 
selected for inclusion (Figure 5). Specifically, the circled districts with 
the highest frequency of outbreaks during the study period of 2011–
2022 were prioritized (Supplementary Figure  1). This approach 

ensured that the ML-based models had access to a substantial amount 
of data, which is crucial for their performance. Additionally, it helped 
avoid high imbalanced datasets that could negatively impact ML 
performance, especially in districts with fewer outbreaks. Moreover, 
research indicates that dominant districts, often referred to as 
hotspots, serve as sources of outbreaks that spread to other districts. 
Therefore, by focusing on these dominant districts, the study aimed to 
facilitate generalization to other districts and enhance the predictive 
model’s applicability.

FIGURE 4

Visualization of FMD risk factors across Africa and the specific setting of Uganda.

FIGURE 3

An experimental methodology to guide the study.
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3.1.3 Phase 3: data pre-processing
In Phase 3, the study aimed to achieve a unified and curated 

dataset for training, testing, and evaluating ML-based predictive 
models for FMD outbreaks in Uganda. Data pre-processing is a crucial 
step in ML-based research, focused on refining and harmonizing 
datasets from various sources (Grafberger et al., 2021; Laila et al., 
2022). This preparatory phase ensures data accuracy and reliability by 
rectifying inconsistencies, eliminating redundant information, and 
addressing missing or erroneous data entries. Additionally, it 
establishes uniformity across disparate datasets, facilitating seamless 
integration and analysis. The pre-processing workflow is illustrated in 
Figure 6.

3.1.3.1 Handling missing values
During data preprocessing, addressing missing values from 

various sources, including historical FMD outbreak datasets and 
environmental data, was crucial. Imputation techniques were 
employed to handle these gaps, with mean imputation being the 
chosen strategy (Ahn et al., 2022). Python, with libraries like Pandas, 
offered effective tools for identifying missing values. Functions 
including isnull or isna along with methods like sum facilitated the 
assessment of missing data prevalence per feature in datasets. For 
instance, using df.isnull().sum with a Pandas DataFrame ‘df ’ efficiently 
detected missing values across columns. Mean imputation involved 
substituting missing values with the mean of their respective features. 
This approach aimed to maintain dataset completeness and preserve 
critical variables necessary for subsequent analyses and model 
development. The datasets retained essential information by 
employing mean imputation, ensuring integrity for analyzing risk 
factors associated with FMD outbreaks in Uganda. This strategy 
prevented the loss of valuable data points, enabling comprehensive 
analyses and robust model development with a more complete dataset.

3.1.3.2 Handling duplicate records
Addressing duplicate records from various datasets, including 

FMD outbreak historical records and environmental data, was crucial 
during preprocessing. Removing duplicates aimed to eliminate 
redundancy and ensure data accuracy (Tae et al., 2019; Mishra et al., 
2020). Python, with libraries like Pandas, facilitated efficient detection 
and elimination of duplicate records. The drop_duplicates() function 
in Pandas allowed for the identification and removal of duplicate 
entries from a DataFrame. For instance, using 

df.drop_duplicates(subset = [‘column1’, ‘column2’], keep = ‘first’, 
inplace = True) with a Pandas DataFrame ‘df ’ enabled the detection 
and deletion of duplicate entries based on specified columns.

Eliminating duplicates was vital for dataset accuracy and integrity. 
Duplicate entries could introduce biases, skewing analytical outcomes 
and affecting modeling reliability. Removing duplications preserved 
dataset integrity, ensuring each entry was unique and meaningful to 
analysis. This process enhanced dataset quality by ensuring each 
record was distinct and accurate, minimizing the risk of inflated 
statistics or biased outcomes. Removing duplicate records refined the 
dataset, laying the groundwork for more accurate analyses and 
predictive performances for FMD outbreaks in Uganda.

3.1.3.3 Outlier detection and treatment
Outlier detection and treatment were essential during 

preprocessing to ensure data consistency and accuracy. Python, with 
libraries like Pandas, Matplotlib, and NumPy, provided robust 
techniques for this task. The Z-score method was effective for 
identifying outliers, calculating the deviation of a data point from the 
mean in terms of standard deviations. Points with Z-scores beyond a 
threshold were considered outliers (Chikodili et al., 2021). Scatter 
plots visually confirmed identified outliers, aiding in recognizing data 
points significantly deviating from the general pattern.

Once outliers were confirmed, mean imputation treated them by 
replacing outlier values with the mean of the respective feature. 
Despite more sophisticated methods available, mean imputation was 
chosen for its simplicity and effectiveness in maintaining data 
consistency and integrity (Rubin, 2018; Jadhav et  al., 2019). This 
meticulous outlier detection and treatment resulted in a refined 
dataset, devoid of extreme values that could skew analytical processes. 
By ensuring data integrity, we enhanced the accuracy and reliability 
of subsequent analyses and the FMD outbreak prediction model. This 
process was critical in training the model on accurate data, leading to 
more precise and dependable predictive modeling of FMD outbreaks.

3.1.3.4 Data integration
Data integration involves merging multiple datasets from 

various sources into a unified and coherent dataset (Isaac et al., 
2020). Creating a comprehensive dataset that consolidates 
information from different sources is crucial for enabling more 
effective and thorough analysis. By utilizing the set function in 
Python, the study extracted columns from disparate datasets loaded 
in DataFrames, including historical FMD outbreak records 
(district, month, year, confirmed_cases), rainfall measurements 
(district, month, year, rainfall_daily), temperature data (district, 
month, year, max_temp_daily), proximity to national parks 
(district, month, year, adjacent_national_parks), cattle density 
(district, year, month, cattle_density), and proximity to 
international borders (district, month, year, adjacent_international_
border) into sets. Using the intersection function on these sets, 
common columns were identified. Finally, the Pandas pd.merge 
function was utilized to combine the datasets based on the 
identified common identifiers. The choice of using the pd.merge 
function in Python is justified by its flexibility in merging datasets 
based on common features. It allows for a seamless integration 
process, ensuring that relevant information from different datasets 
is appropriately combined. The flowchart (Figure 6) illustrates this 
integration process, guiding the sequential steps from extracting 

TABLE 3 FMD risk factors and data sources.

Content Source Timeframe

Historical data on monthly 

FMD outbreaks [location, time, 

vaccination coverage, serotype, 

confirmed cases, animal at risk]

NADDEC, WOAH 2011–2022

Climate data

[rainfall, temperature]

UNMA, https://iridl.

ldeo.columbia.edu

2011–2022

Animal density NLC2008, MAAIF & UBOS

Adjacent to protected areas Pennsylvania State University Department of 

Geography psugeo.org/Africa/Africa_files/

Adjacent to international 

border

Pennsylvania State University Department of 

Geography psugeo.org/Africa/Africa_files/
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columns into sets, identifying common identifiers, to joining 
datasets, ensuring consistency and reliability in preparing the 
unified dataset. The data distribution of the unified and curated 
dataset in shown in Figure 7.

3.1.3.5 Feature engineering
Feature engineering, a vital process in data pre-processing, 

involves creating new variables or modifying existing ones to enhance 
the performance of machine learning models (Kang and Tian, 2018; 
Maharana et al., 2022). It transforms raw data into meaningful features 
that better represent the underlying problem. In this study, feature 
engineering was utilized to create two key features: monthly rainfall 
(rainfall) and monthly maximum temperature (max_temp). Daily 

rainfall measurements were averaged, and daily maximum 
temperature values were averaged to align with the monthly FMD 
outbreak data. These engineered features were crucial for improving 
the predictive accuracy of the models, allowing for a more relevant 
and effective analysis of FMD outbreaks.

3.1.3.6 Categorical data encoding
During data preparation, categorical data encoding was crucial for 

converting qualitative variables into numerical formats, essential for 
machine learning algorithms (Jo, 2021). Using Pandas in Python, a 
‘target’ class was created to represent outbreak (1) and non-outbreak 
(0) instances. This encoding was achieved by mapping ‘outbreak’ to 1 
and ‘no-outbreak’ to 0  in the ‘target’ column using Pandas’ map() 

FIGURE 5

Map of Uganda with highlighted study districts.
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FIGURE 6

Visualization of the data pre-processing workflow.

function. Converting categorical variables into numerical 
representations facilitated machine learning models’ interpretation of 
outbreak occurrences, aiding in predictive modeling (Hancock and 
Khoshgoftaar, 2020).

3.1.4 Phase 4: model training, testing and 
evaluation

In Phase 4, the study, aimed to investigate the performance 
degradation rates of ML-based models in predicting FMD outbreaks 
in the dynamic setting of Uganda. To fulfill this objective, the study 
conducted experiments on selected ML algorithms known to exhibit 
better predictive power using supervised learning techniques. In the 
following sections, study provides a detailed discussion of the methods 
employed to achieve this objective.

3.1.4.1 Splitting the dataset into reference (training) and 
current (target) sets

While investigating the degradation in performance exhibited 
by ML-based algorithms in a non-stationary environment when 
predicting FMD outbreaks using a curated dataset, a pivotal step 
entailed dividing the dataset into two subsets: the reference and 
target datasets. This study employed the sequential sampling 
technique which is suitable for splitting timeseries data. The 
reference (training) dataset encapsulated records from 2011 to 
2020, while the current (target) dataset encompassed records from 
2021 to 2022. This division allowed for distinct periods for training 
and validation purposes, ensuring that the models developed were 
based on historical data reference and then validated against more 
recent target information.

FIGURE 7

Visualization illustrating the variability in rainfall (A) and max temperature (B) features, highlighting distribution shifts.
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3.1.4.2 Visualizing varying distributions for rainfall and 
max temperature

To confirm data variability in rainfall and Max Temperature features, 
the study utilized violin plots to depict the changes in rainfall and max 
temperature distributions across different years in Uganda. Variations in 
the shape, median position, and quartiles within each violin plot highlight 
the dissimilarities in rainfall distribution patterns over time. The choice 
to use rainfall and temperature as metrics for demonstrating potential 
distribution shifts is grounded in the literature indicating their significance 
as contributing factors to FMD outbreaks in Uganda (Munsey et al., 2019).

3.1.4.3 Handling class imbalance
In ML domain, various researchers have reported on the 

significant impact of class imbalance on the predictive performance 
of ML-based algorithms (Tran et  al., 2021). Class imbalance is a 
phenomenon where the instances of one class (majority) are 
significantly more than the samples in the other class (minority) 
(Buda et al., 2018). The study explored matplotlib to visualize the 
distribution of the dataset. Supplementary Figure  2 confirms the 
existence of existence of class imbalance where the non-outbreak 
samples (majority) are significantly more than the outbreak samples 
(minority). To a certain the impact of class imbalance, the study 
trained baseline models with the imbalanced instances. Additionally, 
the study conducted a random under-sampling technique to balance 
the classes (Supplementary Figure 3) and evaluated the performance. 
Similarly, the study explored SMOTE (original) and its variants 
including borderline-SMOTE, SMOTE-SVM, and ADASYN 
techniques to mitigate the impact of imbalanced classes 
(Supplementary Figure 4; Figure 8). The choice of SMOTE and its 
variants over other augmentation techniques is justified by its ability 
to intricately handle imbalanced datasets. Unlike random 
oversampling or under-sampling methods, SMOTE generates 
synthetic instances by considering the attributes of existing data 
points, thus producing more diverse and representative samples.

3.1.4.4 Experiments to assess performance degradation 
rates under distribution shifts

To assess the performance of ML-based models in predicting 
FMD outbreaks under distribution shifts required selecting 

appropriate ML algorithms suitable for the FMD datasets. In the 
subsequent sections the study discusses the experimental setup where 
seven ML algorithms were chosen, trained, tested and validated their 
performances using target dataset (Figure 9).

The pipeline guides the development of Random Forest (RF), 
Support Vector Machine (SVM), Gradient Boosting Machine (GBM), 
Classification Regression Tree (CART), Logistic Regression (LR), 
k-Nearest Neighbors (kNN), and AdaptiveBoost (AdaBoost) models, 
testing, and validation.

3.1.4.4.1 Experimental setup
The study designed experiments for developing and evaluating 

ML-based models for predicting FMD outbreaks under non-stationary 
environment. The study began by employing Python programming 
language 3.11.4, known for its rich collection of libraries and tools tailored 
explicitly for machine learning applications (Soklaski et  al., 2022; 
Rajamani and Iyer, 2023). This choice facilitated the data analysis and 
development processes, allowing efficient data exploration and code 
development within the Jupyter Notebook integrated development 
environment (IDE) 7.0.0 (Brewer et  al., 2022; Hewage and 
Meedeniya, 2022).

In optimizing the computational resources, the study relied on a local 
machine learning platform configured to synergistically utilize the 
Graphics Processing Unit (GPU) and Central Processing Unit (CPU). 
Leveraging this combined processing power significantly accelerated 
general-purpose machine learning tasks, expediting the research pace and 
productivity. The study employed Pandas library for effective data 
manipulation, which excels in handling diverse data formats and 
structures (Chang et al., 2022). Complementing this, the study utilized 
NumPy for numerical operations and array manipulation, acknowledging 
its fundamental role in data science and machine learning (Ziatdinov 
et al., 2022; Rajamani and Iyer, 2023).

The development and evaluation of the ML-based models 
were conducted using the Scikit-Learn library (Narayanan et al., 
2022). This comprehensive library offered extensive machine 
learning algorithms and evaluation tools, streamlining the 
experimentation process. Additionally, the study employed 
Matplotlib and Seaborn for data visualization and result 
communication. These visualization libraries created insightful 

FIGURE 8

Utilizing SMOTE (original), SMOTE-SVM, borderline-SMOTE and ADASYN techniques for oversampling the minority class for a balanced dataset.
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graphs and charts (Schessner et  al., 2022; Weiss, 2022). This 
thoughtfully constructed environment and toolset played a 
pivotal role in establishing a robust foundation for model training 
and subsequent analyses. They ensured the reliability and validity 
of the research outcomes, providing a structured and efficient 
framework for experimentation and evaluation.

3.1.4.4.2 Choosing machine learning algorithms
The selection of machine learning algorithms for predicting FMD 

outbreaks stemmed from the groundwork laid by Punyapornwithaya 
et al. (2022) and Sueabua and Seresangtakul (2023). Their research 
explored the efficacy of supervised learning methods in predicting 
FMD outbreaks within Thailand’s provinces. However, despite 
showcasing promising predictive capabilities, these prior studies 
overlooked the crucial aspect of assessing the models’ performance 
under distribution shifts, a significant limitation addressed in this 
research. By building upon this foundation, the researcher chose seven 
distinct machine learning algorithms for their proven strengths in 
predictive modeling (Karapapas and Goumopoulos, 2021; Dutta et al., 
2022). The study chose Random Forest (RF), Support Vector Machine 
(SVM), k-Nearest Neighbors (kNN), Gradient Boosting Machine 
(GBM), AdaBoost, Logistic Regression (LR), and Classification and 
Regression Tree (CART) for predicting Foot and Mouth Disease 
outbreaks in the endemic settings of Uganda due to their diverse 
functionalities and strengths in handling various aspects of 
predictive modeling.

Random Forest: RF is a versatile ensemble learning method that excels 
in handling large datasets and complex interactions among variables 
(Choudhury et  al., 2021). Its ability to aggregate the predictions of 
multiple decision trees reduces overfitting and enhances 
predictive performance.

Support Vector Machine: SVM is renowned for handling high-
dimensional data and finding optimal hyperplanes for classification 

tasks (Cervantes et al., 2020). Its effectiveness in separating data points 
with a clear margin makes it suitable for binary classification problems 
like predicting FMD outbreaks.

Classification and Regression Tree: CART provides transparent 
decision-making processes through interpretable tree structures 
(Aghaei et al., 2021). Its simplicity and ease of interpretation make it 
a valuable tool for understanding the relationships between predictors 
and the target variable.

Logistic Regression: Logistic Regression, a classic method, remains 
robust and effective, especially in binary classification problems (Joshi 
and Dhakal, 2021). Its straightforward implementation and 
interpretability make it a staple in predictive modeling.

Gradient Boosting Machine: GBM is included due to its capability 
to effectively handle complex relationships in the data and its 
robustness against overfitting (Touzani et  al., 2018). By building 
multiple weak learners sequentially, each learner focuses on the 
mistakes of its predecessors, leading to a strong overall model.

k-Nearest Neighbors: kNN is valuable in non-linear data scenarios 
by finding patterns based on neighboring data points (Bansal et al., 
2022). Its simplicity and effectiveness in capturing local data patterns 
make it a useful addition.

AdaBoost: AdaBoost is a powerful ensemble learning technique 
that works by sequentially training a series of weak learners, such as 
decision trees, with each subsequent learner focusing on the examples 
that were misclassified by the previous ones (Mienye and Sun, 2022). 
Its robustness to overfitting and ability to generalize well to new data, 
along with its effectiveness in handling imbalanced datasets, make it 
a valuable tool for predicting FMD outbreaks.

The selection of these algorithms was grounded in their diverse 
functionalities, aimed at capturing various aspects of FMD outbreak 
prediction. Each algorithm brings unique capabilities, ensuring a 
comprehensive exploration of predictive modeling for FMD 
outbreaks, considering the details and complexities within the unified 

FIGURE 9

Experimental flowchart for the model development process.
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dataset. By focusing on these seven models, the study aimed to balance 
predictive power, interpretability, and computational feasibility in the 
context of predicting FMD outbreaks in Uganda under 
varying distribution.

3.1.4.4.2.1 Selection criteria and hyperparameter tuning
The study employed RF, SVM, LR, GBM, AdaBoost, CART, and 

kNN for predicting FMD outbreaks in Uganda. The choice of RF, 
GBM, and AdaBoost was motivated by their strong ensemble 
predictive power (Sahin, 2020). SVM and LR were selected for their 
robustness in high-dimensional spaces (Pisner and Schnyer, 2020) and 
binary classification (Nusinovici et al., 2020), respectively, while kNN 
and CART were chosen for their simplicity and interpretability (Zafar 
and Khan, 2021). Moreover, these models exhibit computational 
efficiency in prediction (Reddy et  al., 2020; Shobana and 
Umamaheswari, 2021; Singh et al., 2021; Sethuraman et al., 2023). The 
study used default hyperparameters across all models, justified by 
prior works (Punyapornwithaya et  al., 2022; Sueabua and 
Seresangtakul, 2023) and to maintain consistency and simplicity in 
comparative analysis.

3.1.4.4.3 Performance evaluation metrics
In this study, classification performance metrics were employed to 

assess the efficacy of the learning algorithms in predicting FMD 
outbreaks. From the literature, performance is evaluated using two data 
sets: the training and test or validation sets (Ferri et al., 2009; Jiao and Du, 
2016; Tharwat, 2020). The robustness of the ML-based models utilized in 
the experiments was evaluated through various performance metrics that 
provide quantitative measures, including accuracy, F-score, recall, 
precision, and the Area Under the Curve (AUC) of the Receiver Operating 
Characteristic (ROC) curve. Below, the study elaborates on the formulas 
utilized to calculate these performance metrics.

Accuracy (ACC): Accuracy measures the overall correctness of 
predictions made by the model (El-Hasnony et  al., 2022). It is 
calculated as the ratio of correctly predicted instances to the 
total instances.

 
ACC TP TN

TP TN FP FN
=

+
+ + +

TP (true positive) is the number of samples whose actual value 
is positive, and the model predicts them as positive. TN (true 
negative) is the number of samples whose actual value is negative, 
and the model predicts them as negative. FP (false positive) is the 
number of samples whose actual value is negative, and the model 
predicts them as positive. FN (false negative) is the number of 
samples whose actual value is positive, and the model predicts them 
as negative.

Area Under the Curve (AUC) of the Receiver Operating 
Characteristic (ROC) Curve: AUC measures the model’s ability to 
distinguish between positive and negative instances (Wu et al., 2020; 
Kaur et al., 2022). It quantifies the area under the ROC curve, where 
a higher AUC indicates better model performance.

Precision (PR): Precision assesses the proportion of true positive 
predictions among all positive predictions made by the model (Iwendi 
et al., 2020; Wang et al., 2020).

 
PR TP

TP FP
=

+

Recall [Sensitivity (SE)] or True Positive Rate (TPR): Recall 
measures the proportion of true positive predictions among all actual 
positive instances (Powers, 2020).

 
Recall TP

TP FN
=

+

F1-score: The F1 score is the harmonic mean of precision and 
recall, providing a balanced measure of model performance (Iwendi 
et al., 2020; Dixit, 2022).

 
F score PR Recall

PR Recall
1

2
− =

∗ ∗
+

The study computed and compared these classification 
performance metrics for each of the seven ML algorithms: RF, SVM, 
CART, LR, GBM, kNN, and AdaBoot. The comparative performance 
analysis assessed the predictive performance degradation rates under 
varying distribution.

3.1.4.4.4 Baseline model training and testing
In pursuit of achieving accurate FMD predictions in Uganda, 

this study commenced by undertaking baseline model training, 
testing and validation (Figure 9). The study began by segmenting 
the curated dataset from 2011 to 2020 (source) into two 
distinctive subsets using the train_test_split method in Python 
with random sampling: 70% allocated for training and 30% for 
testing. Random sampling ensures that each data point has an 
equal chance of being included in either the training or testing 
set, which helps to minimize bias and ensure that the resulting 
model’s performance is representative of its generalization ability 
(Mehrabi et al., 2021). Therefore, random sampling technique 
ensures that the training and testing sets are independent and 
identically distributed (i.i.d.), which is essential for evaluating the 
model’s performance accurately. The deliberate segregation of the 
source dataset was a critical step, ensuring a robust assessment of 
the predictive capabilities of the developed models. Each 
algorithm offered unique strengths and learning approaches, 
which aimed to leverage for the most effective predictive model.

The experimental approach encompassed a systematic 
procedure for each algorithm (Figure 9). The study initiated the 
training phase, utilizing 70% of source dataset. During this phase, 
the models analyzed the data, identifying intricate patterns and 
relationships crucial for accurate predictions. This intensive 
training phase was fundamental for each model to grasp the 
underlying features characterizing FMD outbreaks in Uganda. 
Subsequently, transitioned to the testing phase, employing the 
remaining 30% of the dataset. This independent subset played a 
vital role in rigorously evaluating each model’s predictive 
capabilities and ability to generalize when faced with previously 
unseen data with similar distribution. The predictive performance 
results from this phase would be vital in assessing the degradation 
rates for the various models under distribution shifts.
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3.1.4.4.5 Optimal performing model under stationary 
environment

The process of choosing the best-performing model among the 
experimented class imbalance handling techniques involved 
combining individual performance metric scores into a single 
measure, the weighted average performance core which was 
subsequently used for ranking the model performance. The process 
was guided by the following steps:

 a. Assign weights: Based on the relative importance for each 
performance metric, the study assigned an equal weight of 1 
across all the metrics.

 b. Calculate the weighted scores: Multiplied each performance 
metric by its corresponding weight and summed up the results.

 c. Compute weighted average scores: Divided the sum of the 
weighted scores from (b) by the total number of 
performance metrics.

Therefore, the formula for calculating the weighted average score 
for n metrics is as follows:

 
Weighted average score

W

=
×

=∑i
n

i iM

n
1

Where:
Wi represents the weight assigned to metric i, Mi  represents the 

value of metric, i and  n is the total number of metrics.

3.1.4.4.6 Validating baseline model under distribution shifts
To validate the performances of the seven baseline models 

under distribution shifts in predicting FMD outbreaks, the study 
utilized the sequentially sampled target dataset (2021–2022). To 
quantify the impact of distribution shifts on these models, the 
study computed the degradation rates of the selected performance 
metrics, including accuracy, Area Under the Curve (AUC), recall, 
F1-score, and precision (Khattak et  al., 2022). The degradation 
rates for each metric i of every model n  were computed using the 
formula below.

 
Performance Degradation Rate

P P

P

test target

test

=
−( )

×100%

Where:
Ptest  represents the performance for matric  

i and corresponding model n  ,
Ptarget  represents the performance for matric  

i and corresponding model n  .
This systematic approach allowed the study to gauge the reduction 

in performance metrics, serving as crucial indicators of the influence 
of distribution shifts on model efficacy. By quantifying the degradation 
rates across multiple performance metrics, the study comprehensively 
understood how the change in data distribution affected the models’ 
predictive abilities.

3.1.4.4.7 Analyzing key predictive features for FMD outbreaks
The analysis of feature importance is a critical aspect within 

machine learning models, offering invaluable insights into the 
contribution and influence of individual features or variables on 
predictive outcomes (Kumar et  al., 2020; Feng et  al., 2021). 
Understanding the relative importance of these features aids in 
comprehending their impact on the model’s predictive power. To 
delve into feature importance, the study leveraged the feature_
importances_ attribute, a model-specific attribute associated with 
the algorithm that exhibited superior performance in predicting 
FMD outbreaks in Uganda. The study generated feature 
importance values for the selected models by utilizing this 
attribute. This analysis holds immense significance as it reveals 
which variables are pivotal in predicting FMD outbreaks within 
the machine learning models. Identifying such influential factors 
is instrumental in refining models, enhancing predictive 
accuracy, and strategically allocating resources toward the most 
impactful variables. By scrutinizing the importance of features 
across various models, the researchers comprehensively 
understand the primary drivers behind the strategies for 
predicting FMD outbreaks.

4 Results

In this section, the study reveals the research findings related to 
creation of a unified and curated FMD dataset and assessment of 
performance degradation rates under varying distribution in Uganda. The 
comprehensive investigation unfolds in two significant sections: a unified 
and curated dataset, and assessment of predictive performance 
degradation rates under varying distribution. Each section sheds light on 
distinct yet interconnected aspects.

4.1 A unified and curated FMD dataset

Through comprehensive data pre-processing, the study addressed 
missing values and outlier data points, resulting in the creation of a 
unified and curated FMD dataset. This pre-processed dataset is 
essential for constructing ML-based predictive models for FMD 
outbreaks. By ensuring the data’s accuracy and consistency, the study 
enhances the reliability and effectiveness of ML-based models, which 
are critical for early detection and optimal allocation of resources to 
mitigate FMD outbreaks.

4.1.1 Data collection and sources
Historical FMD Data: Data was collected from NADDEC and 

WOAH, covering a period of 12 years from 2011 to 2022. This data 
included 12,484 records detailing the time and location of outbreaks, 
confirmed cases, animals at risk, and animal density as indicated in 
Table 4.

Risk Factor Data: Rainfall and maximum temperature data were 
obtained from UNMA, while proximity to protected areas and 
international borders was sourced from the Pennsylvania 
State University.
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4.1.2 Data pre-processing
Data Cleaning: Initial data contained 0.3% missing values, 0.8% 

duplicates and 0.1% outliers. Missing and outlier values were handled 
using mean imputation, and duplicates were removed, resulting in a 
clean dataset with complete records.

Data Integration: Datasets were merged using common primary 
keys including location and time. Temporal data was aligned to ensure 
consistency across all records.

4.1.3 Final unified and curated dataset 
composition

The unified and curated dataset comprised a total of 12,384 
records from 86 districts. Of these records, 97.88% represented 
non-outbreaks, while only 2.12% represented outbreaks, highlighting 
a significant class imbalance in the FMD dataset, as shown in 
Supplementary Table 1. This imbalance is crucial to consider as it can 
impact the performance of machine learning models trained on this 
data. Additionally, the prevalence of FMD outbreaks across different 
districts varies significantly, as illustrated in Supplementary Figure 5.

4.2 Assessing baseline predictive 
performance degradation rates in a 
non-stationary environment

To assess the impact of distribution shifts on the predictive 
performance of machine learning-based models for FMD outbreaks 
in Uganda, the study employed a comprehensive experimental 
methodology. Seven classification machine learning algorithms were 
carefully selected, trained, tested, and validated. To present the results 
effectively, the study adopted a structured three-phase approach: 
Phase 1 (Section 4.2.1.1) involved presenting the test results for the 
baseline models with imbalanced dataset. Phase 2 (Section 4.2.1.2) 
focused on presenting the test results for the baseline models using a 
randomly under-sampled dataset, aiming to address the class 
imbalance issue. Phase 3 (Section 4.2.1.3) encompassed presenting the 
test results for the baseline models utilizing various over-sampling 
techniques, including SMOTE (original), Borderline-SMOTE, 
SMOTE-SVM, and ADASYN, to further explore the impact of 
balancing techniques on model performance. From Phase 1 to 3, the 
study tested the baseline models under stationary environment. 
Finally, Phase 4 (Section 4.2.2.1) presents the results regarding the 
model performance degradation rates under distribution shifts, 

shedding light on the vulnerability of ML-based models to changes in 
data distribution.

4.2.1 Baseline model test performance under 
stationary environment

To comprehend the influence of distribution shifts on the 
predictive accuracy of ML-based models for FMD outbreaks, the 
study initially assessed the performance of baseline models in a 
stationary environment (section 4.2.1). Subsequently, in section 4.2.2, 
it examined performance under distribution shifts and conducts a 
comparative analysis for the performance degradation effect.

4.2.1.1 Phase 1: model performance with imbalanced 
classes

Examining the baseline models that were trained and tested 
on imbalanced dataset, Supplementary Table 2 reveals notably poor 
performance across all metrics, with bold values depicting the 
highest performance. This subpar predictive capability primarily 
stems from the substantial class imbalance present within the 
FMD dataset. The imbalance in class distribution poses a 
significant challenge for the ML-based models to accurately 
predict occurrences of FMD outbreaks, leading to lower 
performance across various evaluation metrics.

4.2.1.2 Phase 2: model performance with randomly 
undersampled dataset

Under-sampling the majority class (non-outbreak) to balance it 
with the minority class (outbreak) resulted in only marginal 
performance improvement, with the overall performance remaining 
poor across all metrics. The best performance is depicted in bold 
values, as highlighted in Supplementary Table  3. The poor 
performance can be attributed to the limited dataset used for training 
the baseline models.

4.2.1.3 Phase 3: baseline model performance with 
oversampled dataset

The original SMOTE algorithm and its three variants, 
including Borderline-SMOTE, SMOTE-SVM, and ADASYN, 
were explored to address the imbalanced dataset and enhance the 
baseline model performances for predicting FMD outbreaks in 
Uganda. The study compares the findings between two  
scenarios: one where the minority samples were oversampled by 
a factor of 20 and the other where the minority samples were 

TABLE 4 Raw FMD dataset.

Features Description Source Data type
Total 

records
Missing 
values

Duplicates Outliers

rainfall Rainfall UNMA Continuous

12,484 37 (0.3%) 100 (0.8%) 12 (0.1%)

max_temp
Maximum 

temperature

UNMA
Continuous

cattle_density Animal density NADDEC Continuous

adjacent_national_

parks

Adjacent to national 

parks

Pennsylvania 

State University
Categorical

adjacent_

international_border

Adjacent to 

international border

Pennsylvania 

State University
Categorical
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oversampled to achieve balance with the majority class. Results 
from the oversampling process indicate that baseline models 
trained on a balanced dataset for all techniques consistently 
outperformed those trained on minority samples oversampled by 
a factor of 20. The highest performance is depicted in bold values, 
as shown in Tables 5–8. Similarly, Figures 10–13 visualize the 
performance across the SMOTE and itsvariants.

When considering the oversampled balanced dataset across 
all techniques, the Random Forest (RF) model consistently 
demonstrated the most impressive performance among the seven 
machine learning algorithms utilized in the study. Across all 
techniques where the classes were balanced, RF achieved an 
accuracy of 85% and above, indicating its high precision in 
making correct predictions. Moreover, RF showcased an AUC 

value of 0.93 and above, implying a strong ability to distinguish 
between positive and negative cases and offering excellent overall 
model performance. Additionally, RF attained high values for 
precision (0.81) and above, recall (0.88) and above, and F1 score 
(0.85) and above, signifying its balanced performance across 
various evaluation criteria (Supplementary Table  3 and 
Tables 5–7).

4.2.1.4 Optimal baseline model performance under 
stationary environment

To determine the most effective baseline model among the 
experimented oversampling techniques, the study calculated the 
weighted average scores, which were utilized to rank their 
performance, as illustrated in Table 9, with bold values showing 

TABLE 5 Comparative analysis of baseline model performance with minority class oversampled by a factor of 20 and balanced dataset using SMOTE 
(original).

SMOTE (original) test results

Dataset before oversampling: no-outbreak – 2769; outbreak – 111

Dataset after oversampling: no-outbreak – 2769; outbreak – 
2220 (aug. by 20)

Dataset after oversampling: no-outbreak – 2769; 
outbreak – 2769 (Balanced)

Training dataset: 70% Training dataset: 70%

Test dataset: 30% Test dataset: 30%

Model ACC AUC Recall Precision
F1-

score
ACC AUC Recall Precision

F1-
score

RF # 0.65 0.42 0.70 0.53 0.86 0.94 0.90 0.83 0.86

SVM # 0.48 0.00 0.00 0.00 0.57 0.57 0.56 0.56 0.56

GBM # 0.78 0.06 0.56 0.11 0.75 0.84 0.82 0.70 0.76

CART # 0.71 0.52 0.53 0.53 0.81 0.81 0.82 0.80 0.81

LR # 0.55 0.00 0.00 0.00 0.51 0.49 0.62 0.49 0.55

kNN # 0.79 0.28 0.59 0.38 0.76 0.84 0.84 0.71 0.77

AdaBoost # 0.69 0.02 0.80 0.04 0.63 0.70 0.66 0.61 0.63

TABLE 6 Comparative analysis of baseline model performance with minority class oversampled by a factor of 20 and balanced dataset using borderline 
SMOTE.

Borderline SMOTE Test Results

Dataset before Oversampling: no-outbreak – 2769; outbreak – 111

Dataset after Oversampling: no-outbreak – 2769; outbreak – 
2220 (aug. by 20)

Dataset after Oversampling: no-outbreak – 2769; 
outbreak – 2769 (Balanced)

Training dataset: 70% Training dataset: 70%

Test dataset: 30% Test dataset: 30%

Model ACC AUC Recall Precision
F1-

score
ACC AUC Recall Precision

F1-
score

RF # 0.89 0.58 0.77 0.66 0.92 0.97 0.94 0.90 0.92

SVM # 0.46 0.00 0.00 0.00 0.70 0.71 0.73 0.68 0.70

GBM # 0.83 0.46 0.74 0.57 0.87 0.93 0.86 0.86 0.86

CART # 0.81 0.69 0.68 0.68 0.90 0.90 0.90 0.89 0.90

LR # 0.52 0.00 0.00 0.00 0.52 0.53 0.05 0.52 0.10

kNN # 0.86 0.59 0.66 0.62 0.87 0.92 0.91 0.84 0.87

AdaBoost # 0.78 0.21 0.60 0.31 0.77 0.85 0.81 0.74 0.77
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the highest performance. Among all the experimented models, 
RF emerged as the best-performing model across the board, as 
depicted in Figure 14. Similarly, Borderline-SMOTE technique 
demonstrated superiority as the most effective oversampling 
technique for mitigating class imbalance and improving the 
prediction of FMD outbreaks in Uganda, as evidenced in 
Figure 14.

4.2.2 Baseline model validation performance 
under distribution shifts

In this section, the study presents the validation performance of 
the baseline models under varying distributions. It includes a 
comparative analysis of baseline model performance, highlighting the 
rates of performance degradation.

4.2.2.1 Phase 4: baseline model performance
Based on the results presented in Table  9, the Borderline 

SMOTE technique emerges as the most effective method for 
addressing class imbalance within the FMD dataset. Therefore, the 
baseline model test performances obtained under the Borderline 
SMOTE technique are considered as the reference results for 
evaluating the impact of distribution shifts on the predictive 
capability of the seven selected machine learning models for 
predicting FMD outbreaks in Uganda. In this section, the study 
presents findings that illustrate the influence of distribution shifts 
on the predictive performance of the baseline models, as depicted 
in Supplementary Table 4 and Table 10, with bold values showing the 
highest performance. The results indicate significant degradation 
rates across all models.

TABLE 7 Comparative analysis of baseline model performance with minority class oversampled by a factor of 20 and balanced dataset using SMOTE-
SVM.

SMOTE-SVM Test Results

Dataset before Oversampling: no-outbreak – 2769; outbreak – 111

Dataset after Oversampling: no-outbreak – 2769; outbreak – 
2220 (aug. by 20)

Dataset after Oversampling: no-outbreak – 2769; 
outbreak – 2769 (Balanced)

Training dataset: 70% Training dataset: 70%

Test dataset: 30% Test dataset: 30%

Model ACC AUC Recall Precision
F1-

score
ACC AUC Recall Precision

F1-
score

RF # 0.83 0.45 0.66 0.53 0.91 0.95 0.88 0.86 0.87

SVM # 0.58 0.00 0.00 0.00 0.70 0.71 0.68 0.57 0.62

GBM # 0.80 0.12 0.72 0.20 0.87 0.92 0.81 0.83 0.82

CART # 0.70 0.49 0.44 0.46 0.87 0.86 0.83 0.80 0.82

LR # 0.60 0.00 0.00 0.00 0.65 0.61 0.00 0.00 0.00

kNN # 0.80 0.46 0.58 0.51 0.87 0.92 0.86 0.80 0.83

AdaBoost # 0.76 0.03 0.60 0.05 0.79 0.85 0.61 0.73 0.67

TABLE 8 Comparative analysis of baseline model performance with minority class oversampled by a factor of 20 and balanced dataset using ADASYN.

ADASYN test results

Dataset before Oversampling: no-outbreak – 2769; outbreak – 111

Dataset after Oversampling: no-outbreak – 2769; outbreak – 
2220 (aug. by 20)

Dataset after Oversampling: no-outbreak – 2769; 
outbreak – 2769 (Balanced)

Training dataset: 70% Training dataset: 70%

Test dataset: 30% Test dataset: 30%

Model ACC AUC Recall Precision
F1-

score
ACC AUC Recall Precision

F1-
score

RF # 0.86 0.34 0.64 0.44 0.85 0.93 0.90 0.81 0.85

SVM # 0.59 0.00 0.00 0.00 0.58 0.59 0.61 0.55 0.58

GBM # 0.81 0.08 0.88 0.15 0.76 0.85 0.87 0.70 0.78

CART # 0.68 0.46 0.46 0.46 0.83 0.83 0.85 0.80 0.82

LR # 0.57 0.00 0.00 0.00 0.49 0.47 0.56 0.47 0.51

kNN # 0.78 0.29 0.51 0.37 0.76 0.84 0.83 0.72 0.77

AdaBoost # 0.69 0.04 0.75 0.07 0.64 0.71 0.70 0.61 0.65
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4.2.2.1.1 Baseline model performance degradation rates
When assessing the performance of the seven baseline models 

on the target (validation) dataset, the study noted varying degrees 
of performance, highlighting the impact of distribution shifts on 

model performances in predicting FMD outbreaks (Table 10). 
Each model displayed distinct characteristics concerning 
accuracy, sensitivity, precision, and specificity under 
these conditions.

FIGURE 10

Combined AUC-ROC performance of baseline models with minority class oversampled by a factor of 20 (A) and balanced dataset (B) using SMOTE 
(original).

FIGURE 11

Combined AUC-ROC performance of baseline models with minority class oversampled by a factor of 20 (A) and balanced dataset (B) using borderline 
SMOTE.

FIGURE 12

Combined AUC-ROC performance of baseline models with minority class oversampled by a factor of 20 (A) and balanced dataset (B) using SMOTE-
SVM.

https://doi.org/10.3389/frai.2024.1446368
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Kapalaga et al. 10.3389/frai.2024.1446368

Frontiers in Artificial Intelligence 19 frontiersin.org

FIGURE 13

Combined AUC-ROC performance of baseline models with minority class oversampled by a factor of 20 (A) and balanced dataset (B) using ADASYN.

TABLE 9 Weighted average performance scores of baseline models across oversampling techniques.

Weighted average performance scores

Model SMOTE (original) Borderline-SMOTE SMOTE-SVM ADASYN

RF 0.88 0.93 0.89 0.87

SVM 0.56 0.70 0.66 0.58

GBM 0.77 0.88 0.85 0.79

CART 0.81 0.90 0.84 0.83

LR 0.53 0.34 0.25 0.50

kNN 0.78 0.88 0.86 0.78

AdaBoost 0.65 0.79 0.73 0.66

FIGURE 14

Visual overview of baseline model performance across oversampling techniques.
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Random Forest (RF), initially displaying superior overall performance 
in the absence of distribution shifts, saw a significant decrease in accuracy 
(ACC) by 50% and a notable decline of 40.21% in the Area Under the 
Curve (AUC) value of the Receiver Operating Characteristic (ROC) 
curve. Additionally, RF experienced reductions in Recall by 96.81%, 
Precision by 73.33%, and F1-score by 93.48%. Support Vector Machine 
(SVM) encountered reductions in accuracy (ACC) by 35.71%, AUC by 
21.13%, Recall by 68.49%, Precision by 39.71%, and F1-score by 57.14%. 
Gradient Boosting Machine (GBM) saw decreases in accuracy (ACC) by 
39.08%, AUC by 48.39%, Recall by 73.26%, Precision by 34.88%, and 
F1-score by 62.79%. Classification and Regression Trees (CART) 
experienced declines in accuracy (ACC) by 45.56%, AUC by 45.56%, 
Recall by 87.78%, Precision by 50.56%, and F1-score by 81.11%. Logistic 
Regression (LR) encountered reductions in accuracy (ACC) by 7.69%, 
Recall by 100.00%, Precision by 84.62%, and F1-score by 90.00%, yet LR 
demonstrated improved performance for AUC by 22.64%, attributed to 
its incorporation of regularization techniques including L1 and L2. 
k-Nearest Neighbors (kNN) experienced reductions in accuracy (ACC) 
by 39.08%, AUC by 43.48%, Recall by 71.43%, Precision by 33.33%, and 
F1-score by 59.77%. AdaBoost saw decreases in accuracy (ACC) by 
41.56%, AUC by 51.76%, Recall by 77.78%, Precision by 47.30%, and 
F1-score by 67.53%. These findings underscore the considerable influence 
of distribution shifts on the predictive performance of ML-based 
algorithms across various evaluation metrics.

4.2.2.1.2 Feature importance
In predicting FMD outbreaks in Uganda, the importance of features 

played a pivotal role in enhancing the understanding and predictive 
capabilities of the models. Feature importance refers to the measure of 
how much each input feature contributes to the predictive power of a 
machine learning model (Kumar et al., 2020; Feng et al., 2021). It provides 
insights into which features have the most significant impact on the 
model’s performance and can help identify the key factors influencing the 
occurrence of FMD outbreaks. The study used the Random Forest (RF) 
model, which demonstrated superior predictive performance, and CART 
to assess feature importance (Figure 15). Based on the importance results, 
the following features were found to have the most significant impact on 
FMD outbreak prediction:

 • Rainfall: This feature exhibited the highest level of importance, 
signifying its strong association with FMD outbreaks. Low rainfall 
may create conditions conducive to the disease’s transmission and, 
as such, serves as an essential early warning indicator.

 • Max temperature: Max temperature was identified as the second 
most important feature. Temperature can influence disease 
vectors, animal behavior, and the survival of the virus, making it 
crucial in predicting outbreaks.

 • Cattle density: The density of cattle populations was the third 
most important feature. High cattle density areas may experience 
a more rapid spread of FMD, making this a critical factor to 
consider in preventive measures.

 • Proximity to adjacent parks: The proximity of areas to 
protected wildlife zones was identified as the fourth most 
important feature. These regions may serve as reservoirs for the 
disease, increasing the risk of outbreaks in nearby 
livestock populations.

 • Proximity to international borders: Closeness to international 
borders rounded out the list of important features. Border areas T
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may be more susceptible to the introduction of the virus through 
cross-border movements of animals.

By recognizing the importance of these features, the study emphasizes 
the need to focus on these variables when implementing preventive 
strategies and early warning systems. It is clear that understanding the 
importance of features significantly contributes to developing effective 
measures for managing and controlling FMD outbreaks in Uganda.

As indicated, rainfall and maximum temperature contribute 
significantly to the predictive power of the models, followed by cattle 
density. Proximity to national parks and the international border 
contributes little to the predictive power.

5 Discussion of results

The study aimed, firstly, to create a unified and curated dataset for 
Foot-and-Mouth Disease (FMD) in Uganda. This was achieved by 
utilizing a retrospective approach to collect disparate datasets from 
various sources and conducting experiments to address missing data and 
outliers. Secondly, the study aimed to assess the performance degradation 
rates under varying distribution. This was accomplished by training 
machine learning models on the unified and curated FMD dataset, testing 
them, and evaluating their predictive performance on the holdout dataset 
to measure the impact of variability in the dataset. This section presents a 
discussion of the study’s findings, contributions, limitations, 
and recommendations.

5.1 A unified and curated dataset for FMD

The study retrospectively collected historical data on FMD 
outbreaks and the factors influencing their occurrences, disparate 

datasets were pre-processed to create a unified and curated dataset for 
FMD in Uganda. The statistical results provide significant evidence of 
class imbalance, which is known to impact performance in the ML 
domain. Predictions tend to be biased toward the majority class, as the 
number of FMD non-outbreaks were significantly greater than the 
number of outbreaks.

5.2 ML-based predictive performance 
degradation under varying distribution

The study investigated seven ML algorithms as baseline models 
for FMD outbreak prediction. Notably, significant impacts of class 
imbalance on the predictive performance of these algorithms were 
observed when using the randomly sampled test dataset. The poor 
performance was observed across multiple evaluation metrics, 
including area under the curve (AUC), recall, precision, and F1-score. 
Such consistent poor performance highlighted the critical need for 
addressing the class imbalance problem for improved performance in 
prediction of FMD outbreaks in Uganda. To mitigate class imbalance 
in the FMD dataset, various data augmentation techniques were 
explored, including random undersampling, SMOTE (Original), 
Borderline-SMOTE, SMOTE-SVM, and ADASYN.

The findings revealed that oversampling techniques led to 
substantial improvements in model performance, particularly 
when the classes were balanced. Among these techniques, 
Borderline-SMOTE emerged as the most effective, attributed to its 
superior handling of noise through synthetic sample generation. 
Additionally, among the seven models examined, random forest 
(RF) exhibited superior performance across all evaluation metrics 
including accuracy, AUC, recall, precision and F1-score on the test 
dataset. This can be  attributed to its ensemble nature, where it 
combines various decision trees to enhance predictive accuracy. 

FIGURE 15

Comparison of feature importance for RF and CART models.
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However, when validated with a target dataset exhibiting varying 
distributions, all models experienced significant degradation 
across all performance metrics. These findings underscore the 
significance of addressing distribution shifts in FMD 
outbreak prediction.

5.3 Limitations of the study

This section acknowledges the limitations encountered during the 
study and discusses their potential impact on the results:

 a. While this study focused on five key risk factors including 
rainfall, temperature, proximity to international borders, 
proximity to national parks, and cattle density as predictors for 
FMD outbreaks, it acknowledges the potential importance of 
other factors. These include animal movement, animal trade, 
water sources, and breeding methods, which could further 
enhance the predictive performance of machine 
learning models.

 b. The study was conducted within the endemic settings of 
Uganda. Consequently, the predictors identified may be unique 
to Uganda’s context, impacting the generalizability of the 
findings to other regions.

 c. Variations in FMD outbreak reporting practices can lead to 
inconsistencies in the data. Some regions have better reporting 
mechanisms for FMD outbreaks, while others may underreport 
or overreport cases.

 d. The use of performance degradation rates across metrics to 
detect distribution shifts in the FMD dataset is prone to trigger 
false alarms, prompting retraining which is time-consuming 
and costly.

6 Conclusion

This study aimed to explore the predictive capabilities of machine 
learning models for Foot and Mouth Disease outbreaks in Uganda by 
creating a unified dataset and evaluating model performance under 
varying distribution conditions. The unified dataset highlighted 
significant class imbalances in FMD outbreak data, a critical challenge 
for accurate predictive modeling. Various data augmentation 
techniques, including SMOTE, borderline-SMOTE, SMOTE-SVM, 
and ADASYN, were explored to mitigate these imbalances. In a 
stationary environment, where data distributions were consistent, 
models such as Random Forest (RF) with borderline-SMOTE excelled 
on the test dataset, showcasing robust predictive performance. 
However, when validated under scenarios of varying distributions, all 
models exhibited notable performance degradation. This highlighted 
a critical limitation: the current models are not sufficiently robust to 
reliably predict FMD outbreaks in Uganda when environmental 
conditions change. The findings underscore the need for future 
research to focus on advancing both data-centric and model-centric 
approaches. Specifically, efforts should explore advanced techniques in 
domain adaptation to effectively handle the challenges posed by 
varying distributions in FMD outbreak prediction. Furthermore, 
integrating additional predictors such as animal movement patterns, 

trade data, and ecological factors could enhance the predictive power 
of models. These enhancements are crucial for improving preparedness 
and response strategies against FMD outbreaks, not only in Uganda but 
also in other endemic regions globally.
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