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Background: Glaucoma (GLAU), Age-related Macular Degeneration (AMD), 
Retinal Vein Occlusion (RVO), and Diabetic Retinopathy (DR) are common 
blinding ophthalmic diseases worldwide.

Purpose: This approach is expected to enhance the early detection and 
treatment of common blinding ophthalmic diseases, contributing to the 
reduction of individual and economic burdens associated with these conditions.

Methods: We propose an effective deep-learning pipeline that combine both 
segmentation model and classification model for diagnosis and grading of four 
common blinding ophthalmic diseases and normal retinal fundus.

Results: In total, 102,786 fundus images of 75,682 individuals were used for training 
validation and external validation purposes. We test our model on internal validation 
data set, the micro Area Under the Receiver Operating Characteristic curve (AUROC) 
of which reached 0.995. Then, we fine-tuned the diagnosis model to classify each 
of the four disease into early and late stage, respectively, which achieved AUROCs 
of 0.597 (GL), 0.877 (AMD), 0.972 (RVO), and 0.961 (DR) respectively. To test the 
generalization of our model, we conducted two external validation experiments on 
Neimeng and Guangxi cohort, all of which maintained high accuracy.

Conclusion: Our algorithm demonstrates accurate artificial intelligence 
diagnosis pipeline for common blinding ophthalmic diseases based on Lesion-
Focused fundus that overcomes the low-accuracy of the traditional classification 
method that based on raw retinal images, which has good generalization ability 
on diverse cases in different regions.
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Introduction

Despite advancements in medical technology and surgical 
interventions, the incidence and prevalence of visual impairment 
remain high globally. In 2020, among the global population of 7.8 
billion, it is estimated that 2.2 billion people suffer from some form of 
visual impairment or blindness, of which at least 1 billion cases could 
have been prevented or are yet treatable (World Health Organization 
(WHO), 2016). Visual impairment not only leads to a decreased 
quality of life but is also associated with a reduction in economic 
productivity (Wittenborn and Rein, 2013) and an increase in mortality 
rates (Taylor et al., 2001). The rapid development of deep learning 
classification algorithms in recent years, with applications in many 
fields including medical artificial intelligence (AI) (Topol, 2019; Esteva 
et al., 2019; Norgeot et al., 2019; Ravizza et al., 2019), includes image-
based diagnosis (Kermany et al., 2018), voice recognition, and natural 
language processing (Liang et  al., 2019). Particularly, the use of 
convolutional neural networks with transfer learning assists in 
efficient and accurate image diagnostics (Kermany et al., 2018; Liang 
et al., 2019; Wang et al., 2017). In ophthalmology alone, deep learning 
has been applied for semantic segmentation of retinal images for 
vessels and optic disc (Zilly et al., 2015), categorizing cataracts (Gao 
et al., 2014; Long et al., 2017), detecting retinal hemorrhages (Van 
Grinsven et  al., 2016), and interpreting two-dimensional fundus 
photographs and three-dimensional Optical Coherence Tomography 
(OCT) images for diagnosing common retinal diseases, including 
Age-related Macular Degeneration (AMD) (Burlina et  al., 2017), 
Glaucoma (GLAU) (Chen et al., 2015; Li et al., 2018), and Diabetic 
Retinopathy (DR) (Kermany et al., 2018; Van Grinsven et al., 2016; 
Burlina et al., 2017; Chen et al., 2015; Gulshan et al., 2016; Ting et al., 
2017). Recent studies indicate that AI algorithms can predict 
cardiovascular risk factors from retinal images, such as age, gender, 
smoking status, glycated hemoglobin, systolic pressure, and major 
adverse cardiac events (Poplin et al., 2017), demonstrating that deep 
learning algorithms can detect subtle correlations not observable to 
human viewers. Retinal features, such as focal or systemic arteriolar 
narrowing, arteriovenous nicking, retinal hemorrhages, and retinal 
nerve fiber layer defects, indicate ocular manifestations of vascular 
and neuronal diseases. Based on these observations, retinal 
photographs, which can be acquired rapidly and non-invasively, may 
serve as “Point of Care” (POC) biomarkers for systemic diseases.

Although artificial intelligence algorithms are developing rapidly, 
their implementation in the real world poses significant challenges. 
These include the sourcing of large training datasets, privacy issues 
surrounding data sharing, the usability and distribution of algorithms, 
data standardization, the reusability of algorithms across multiple 
platforms, and the need to meet local regulatory requirements (He 
et al., 2019). Compared to the developed coastal cities in China, the 
western regions have relatively scarce medical resources, making the 
development of an intelligent diagnostic system for blinding 
ophthalmic diseases, suitable for portable handheld fundus cameras, 
of great significance. The optical imaging picture quality of portable 
handheld fundus cameras does not meet the image requirements of 
medical-specific fundus cameras. Their images suffer from issues such 
as overexposure, jittery blur, and artifacts. A key challenge is enabling 
intelligent diagnostic algorithms to avoid these interference areas and 
make diagnostic decisions. The application of attention mechanisms 
first gained widespread attention in the field of natural language (Hu, 

2018). This mechanism allocates weights as needed, allowing 
algorithm models to focus more on information-rich areas rather than 
other areas for decision-making. Integrating attention mechanisms 
into research for predicting the onset probability of glaucoma and the 
probability of its late-stage progression based on fundus images is a 
novel direction (Fei et al., 2022). The fundus anatomical structure and 
lesion are the diagnostic basis for blinding ophthalmic diseases. 
Focusing deep learning algorithms on these areas for diagnosis can 
maximally suppress the interference caused by low-quality 
fundus images.

Deep learning techniques have been used by many researcher for 
diagnosis of ophthalmic diseases. However they all used the original 
fundus images as input to the CNN classification network model for 
ophthalmic diseases diagnosis (Kermany et al., 2018; Li et al., 2019; 
Kim et al., 2021). These methods are end-to-end classification tasks, 
and artifacts, fundus camera imaging difference, etc., may become 
confusing factors and lead to misdiagnosis. Other researchers (Das 
et al., 2021) proposed to use semantic segmentation network to first 
segment retinal vessels, and then input to CNN classification network 
for DR diagnosis, which is only effective for vascular fundus diseases, 
and relies heavily on the accuracy of semantic segmentation network. 
In order to solve the above problems, we  propose an intelligent 
diagnostic algorithm (see Supplementary Figure S5) for common 
blinding ophthalmic diseases based on deep learning methods.

This algorithm integrates the fundus anatomical structures and 
lesions into the original fundus images as focal points of attention, the 
network architecture of which is shown in Supplementary Figure S5. The 
original RGB fundus image was input into the U-Net semantic 
segmentation network to obtain the multi-channel binarized lesion 
image, and then the three-channel lesion fusion map was obtained 
through a convolutional layer with a convolution kernel size of 3 × 1 × 1 
and a fixed weight, in which the convolution kernel corresponding to 
the red and green channels was 0, and the convolution kernel 
corresponding to the blue channels was 1. Then, the Threshold activation 
layer was used to binary the original fundus image, and the “bit-sum” 
operation was carried out with the Threshold activation layer to obtain 
the binary blue channel lesion fusion map. The foci fusion image was 
reversed and the original fundus image was obtained by “bit-sum” 
operation. Finally, the foci fusion image and the red-green channel 
image were obtained by “bit-sum” operation, and the foci attention 
images were classified and learned as inputs of the EfficientNet-B0 
convolutional neural network.

This article aims to provide healthcare professionals with an 
effective tool for large-scale retinal disease screening and intelligent 
diagnostics, facilitating the early detection and timely intervention of 
common blinding ophthalmic diseases to alleviate individual and 
economic medical burdens. The framework and flowcharts of our 
system are shown in Figure  1. We  selected common blinding 
ophthalmic diseases, including Glaucoma (GLAU), Age-related 
Macular Degeneration (AMD), Retinal Vein Occlusion (RVO), and 
Diabetic Retinopathy (DR), as they are significant causes of severe 
visual impairment. The fundus images were sourced from different 
models of professional and non-professional handheld fundus cameras. 
We validated the algorithm’s generalizability on an independent patient 
group dataset of fundus images from Neimeng and Guangxi in China. 
The algorithm effectively overcame interference from low-quality 
fundus images and achieved higher accuracy and stronger 
generalizability compared to traditional deep CNN neural networks.
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Materials and methods

Data collection and label

We extracted a comprehensive dataset of 102,786 images from 
retinal examination image databases across various medical 
institutions. This dataset included color fundus photographs focused 
on the macula and optic disc, alongside non-fundus images such as 
reports, blank images, tables, and fundus fluorescein angiography 
images. We approached the data cleansing process in two stages.

In the first stage, data processors began by selecting a small 
subset of both non-fundus and fundus color photographs from 
the initial dataset, exceeding 1 million images, for the inaugural 
training and validation set of a binary classification algorithm 
designed for image classification. Subsequently, a different subset 
of images from the remaining collection was fed into the 
algorithm for inference. Images misclassified by the algorithm 
were added to the training set for subsequent rounds of 
training and validation. This iterative process continued until the 
entirety of the dataset, comprising over 1 million images, was 

FIGURE 1

Framework diagram of intelligent diagnosis for common blinding retinal diseases and intelligent grading algorithms for five common blinding retinal 
diseases.
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processed, culminating in the extraction of more than 200,000 
fundus images.

During the second stage, we uploaded over 200,000 fundus color 
photographs to a web-based Computer Vision Annotation Tool 
(CVAT) system. Five ophthalmologists conducted cross-validation 
through manual image review to provide medical diagnoses, 
ensuring each image was reviewed by three ophthalmologists. The 
consensus diagnosis of two physicians was adopted as the final 
verdict. Images with divergent diagnoses from all three physicians 
were randomized and reassigned for review until a definitive 
diagnosis was established for every image, finalizing the dataset at 
102,786 images. Fragments of the data sets are shown in 
Supplementary Figure S6.

From the refined database of 102,786 fundus images, 
approximately 5% of images representing each category of blinding 
ophthalmic diseases were randomly selected to create a dataset for the 
development of algorithms for semantic segmentation of ocular 
anatomical structures and lesions. Initially, the dataset was uploaded 
to the CVAT system for pixel-level independent annotation by five 
ophthalmologists. Each image received annotations from two 
physicians, with the intersecting areas of annotations constituting the 
final standard regions. The identified ocular anatomical structures 
included the optic cup, optic disc, macula, and blood vessels. The 
lesions identified encompassed hemorrhage, cotton wool spots, 
preretinal fibrosis, atrophic crescent, choroidal atrophy, choroidal 
neovascularization, exudation, macular atrophy, macular 
degeneration, geographic atrophy, retinal nerve fiber layer defect, 
retinal defect, scleral show, leopard fundus, retinal neovascularization, 
vitreous hemorrhage, and retinal detachment.

Algorithm for encoding multi-channel 
images of lesions

To minimize input/output (IO) operations and memory 
consumption during the training of our algorithm, thereby 
expediting network training, we developed a novel data structure 
named BITMAP for storing lesion feature maps. This structure 
comprises 32 channels, divided into groups of 8 channels each. 
After being encoded in bitmap format, the numerical range of each 
channel group is [0 ~ 255]. Consequently, these 32 channels can 
be precisely encoded into PNG image format. For instance, a lesion 
map with dimensions (512 × 512 × 32), when stored in Numpy 
format, occupies a file size of 32 M Bytes. In contrast, when 
encoded as BITMAP and saved as a PNG file, the size is 
dramatically reduced to 1.8 K Bytes, marking an 18,000-fold 
reduction in file size. Storing the entire fundus image database in 
Numpy format would require approximately 6.15 T Bytes of disk 
space, whereas using BITMAP format reduces this requirement to 
merely 354 M Bytes. The AI-based diagnostic algorithm in its 
training phase necessitates numerous iterations of loading the 
complete fundus database, a process that is highly time-intensive. 
Consequently, employing Numpy format for this purpose is 
practically infeasible. Additionally, storing each lesion as an 
individual grayscale image results in an unwieldy number of files 
and hampers efficient management. It also necessitates frequent 
disk accesses during training, thereby hindering the speed of the 
training process.
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As illustrated in Equation 1, the process of encoding in BITMAP 
involves the grayscale images of the Red (R), Green (G), Blue (B), and 
Alpha (A) channels. Here, denotes the BITMAP layer corresponding to 
the th channel. In this encoding scheme, points on the foreground object 
are assigned a value of 1, while all other points are assigned a value of 0. 
This binary encoding method effectively differentiates foreground objects 
from the background within each channel of the BITMAP structure.
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The decoding process of BITMAP, as delineated in Equation 2, 
involves maski, which designates the BITMAP layer for the ith 

channel. Here, i
8
�
��
�
��
signifies the integer quotient of i divided by 8, and 

IJ  (where j∈[0,3]) corresponds to the grayscale images of IR , IG, IB , 
and IA. Our study introduces an innovative storage data structure, 
BITMAP, for managing multiple lesion data. This structure is 
constituted of 32 channels of 8-bit grayscale images, shaped as (Height 
x Width x 32). Each channel records Float32 type values, with 1.0 
indicating target pixels and 0.0 indicating background pixels. The 
32-channel grayscale images are efficiently compressed and encoded 
into a 4-channel RGBA image, subsequently stored as a PNG format 
image. In this encoding, mask0 to mask7 are transformed into an 8-bit 
grayscale image for the Red channel of the PNG image, with mask0 
and mask7 corresponding to the low and high bits, respectively. 
Similarly, mask8 to mask15, mask16 to mask23, and mask24 to mask31 
are encoded as 8-bit grayscale images for the Green, Blue, and Alpha 
channels of the PNG image, respectively, with each mask aligning with 
either the low or high bits within its channel grouping. This method 
facilitates efficient storage and retrieval of detailed image data.

Criteria for diseases diagnostic definition

GLAU: Glaucoma is a group of disorders whose common feature 
is progressive degeneration of the optic nerve, with loss of retinal 
ganglion cells, thinning of the retinal nerve fiber layer, and increasing 
excavation of the optic disc. Intraocular pressure if often the common 
cause for glaucoma. Glaucoma intraocular pressure is generally 
above 21 mmHg. It was defined as having two or more of the 
following features: (1) either vertical expansion of the cup with an 
optic cup-to-disc ratio greater than or equal to 0.8 or (2) notching 
manifested as narrowing of the rim tissue at either the superior or 
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inferior rim, together with (3) localized RNFL defects radiating from 
the optic nerve head. Standard automated perimetry with the 
Humphrey Field Analyzer was used as an additional diagnostic tool. 
The perimetric criteria for glaucoma was (pattern standard deviation 
(PSD) ≥ 5% of normal or glaucoma hemifield test and the mean 
defect (MD) were outside of normal limits (Li et  al., 2004, 
p. 1594–1595).

AMD: Diagnosing AMD entails distinguishing between macular 
aging changes and degenerative abnormalities impacting vision. 
Identifying wet AMD is crucial, as timely intervention can preserve 
vision. Patients with wet AMD often exhibit specific symptoms 
alerting to a macular issue beyond general “blurry vision.” (NICE 
Guideline, No. 82). Our study employs Sigelman’s 1984 four-stage 
classification for age-related macular degeneration, further 
categorizing stage I as early and stages II to stages IV as late, based on 
the presence of exudation within a disc diameter around the 
macular center.

RVO: Central retinal vein occlusion (RVO) presents as widespread 
retinal hemorrhages, potentially with optic disc hyperemia or edema, 
venous dilation, and occluded veins. It encompasses non-ischemic 
and ischemic types of CRVO and BRVO (Cugati et al., 2006). Ischemic 
RVO is marked by extensive hemorrhaging and cotton wool spots, 
with severe vision impairment and late-stage complications like 
rubeosis and neovascular glaucoma. This study differentiates RVO 
into mild and severe categories based on clinical severity.

DR: The diagnosis and staging follow the 1984 standards from 
China’s first National Conference on Fundus Diseases (Li et al., 2004, 
p. 2169). Stage I features microaneurysms and/or small hemorrhages; 
Stage II, yellow-white “hard exudates” and/or hemorrhages; Stage III, 
white “soft exudates” and/or hemorrhages; Stage IV, neovascularization 
or vitreous hemorrhage on the fundus; Stage V, neovascularization or 
fibrovascular proliferation; and Stage VI, neovascularization or 
fibrovascular proliferation with concurrent retinal detachment. In our 
study, stages I  to III are grouped as early, and IV to VI as late, 
contingent upon the presence of neovascularization.

NORM: Under slit-lamp microscopy, optical sections readily 
reveal the physiological indentation of the optic nerve head. The 
internal limiting membrane, seen extending toward the optic nerve 
head, dips slightly deeper at the physiological cupping. Beneath this, 
blood vessels are enveloped by a thin tissue layer, revealing fine 
branches of central vessels. Deeper in the physiological cup, nerve 
fibers ascend through the lamina cribrosa’s small openings to the 
papilla’s apex, then curve toward the retina. Optical sections show 
thinning and indentation of the retina in the macular’s central fovea. 
The central fovea is characterized by a small, bright spot with a 
shimmering reflection, positioned right at the forefront of the retinal 
optical section’s surface (Li et al., 2004, p. 610).

Feature extraction based on deep learning 
semantic segmentation network

The U-Net architecture is a symmetrical network structure, 
comprising three main components: downsampling, upsampling, and 
skip connections, which give it a shape resembling the letter “U.” The 
network is bifurcated into a left and a right section. The left part, the 
Encoder, compresses the image by reducing its dimensions and 
extracting superficial features through convolution and downsampling 

processes. On the right, the Decoder enlarges the image size through 
convolution and upsampling. Convolution in this structure employs 
valid padding to maintain the integrity of contextual features in 
the output.

A distinctive feature of the U-Net is its use of skip connections. 
Each convolutional layer’s feature map is “skip-concatenated” to its 
corresponding upsampling layer. This design ensures effective 
utilization of feature maps from each layer in subsequent calculations, 
thereby integrating both high-level and low-level features. By doing 
so, U-Net avoids the limitations of performing supervision and loss 
calculations solely on high-level feature maps. The final feature map 
in U-net is a composite that includes both high-level and an 
abundance of low-level features, facilitating the fusion of features 
across different scales. This unique amalgamation significantly 
enhances the model’s precision and performance.

In this study, a U-Net semantic segmentation network named 
Retina-Unet was developed using ResNet18 as its structural 
foundation, which is depicted in Supplementary Table S3. The 
features generated by Retina-Unet from fundus images are depicted 
in Supplementary Figure S4. Initially, RGB color fundus images are 
resized into a (256 × 256 × 3) matrix. Through convolution operations, 
the matrix is transformed to (128 × 128 × 64) and then (64 × 64 × 64) 
following pooling operations. The encoding process involves passing 
the data through Stage1 to Stage4 Encoders, reshaping it from 
(64 × 64 × 64) to (8 × 8 × 512). In the decoding phase, the data 
progresses from Stage0 to Stage4 Decoders, altering the shape from 
(16 × 16 × 256) to (256 × 256 × 16). The final output is a (256 × 256 × 1) 
layer, matching the input image size, with the channel count C 
representing the number of lesion categories to be segmented.

The study acknowledges the morphological diversity among 
fundus image lesions. Larger lesions like Tessellated retina, Retinal 
nerve fiber layer defects, and Scleral exposure contrast with smaller 
ones like Hemorrhage, Cotton woolspot, and Exudation. To address 
the challenge of accurately classifying both large and small lesions, the 
research employs separate semantic segmentation networks for each 
lesion type, ensuring precise segmentation results.

Each fundus anatomical structure and lesion type is analyzed 
using a dedicated U-Net semantic segmentation network, built upon 
the ResNet18 backbone. The input layer processes normalized color 
fundus images. Normalization involves subtracting the RGB matrix of 
the fundus photo from the average values of a comprehensive fundus 
image dataset and then dividing by the dataset’s variance, resizing the 
matrix to 256 × 256. The standard deviation for fundus images is 
computed by subtracting the mean image from the entire image 
dataset and calculating the root mean square. This algorithm, trained 
with float32 numerical values, ensures high precision, retaining 
8-decimal accuracy for both mean and standard deviation.

An intelligent diagnostic algorithm for 
common blinding ophthalmic diseases 
based on lesion-focused mechanism

The algorithm for intelligent diagnosis of fundus diseases utilizes 
the Convolutional Neural Network (CNN), a category of feedforward 
neural networks characterized by convolutional computations and 
deep structures, and is one of the cornerstone algorithms in deep 
learning. Convolutional operations function akin to digital image 
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filters, with each convolutional kernel capable of extracting a singular 
feature type. To enable the extraction of multiple features, various 
convolutional kernels can be employed concurrently. An intelligent 
diagnosis algorithm employing CNN typically comprises 
convolutional layers, pooling layers, fully connected layers, loss 
functions, gradient computations, and optimizers.

In this study, the performance of CNN networks is enhanced 
through the simultaneous enlargement of network width, depth, and 
resolution, employing the EfficientNet family of networks. As shown in 
Supplementary Table S4, the network is segmented into nine stages. The 
initial stage features a standard convolutional layer with a kernel size of 
and a stride of 2, inclusive of Batch Normalization (BN) and the Swish 
activation function. Stages two through eight involve the repeated 
layering of the MBConv structure, with the final column’s “Layers” 
denoting the repetition count of the MBConv structure within that stage. 
Stage nine is composed of a standard 1×1 convolutional layer (including 
BN and Swish activation), an average pooling layer, and a fully connected 
layer. Each MBConv entry in the table is succeeded by a numeral 1 or 6, 
indicative of the expansion factor n. This implies that the initial 1×1 
convolutional layer in MBConv augments the channels of the input 
feature matrix by n times, with the symbol or denoting the kernel size 
used in the Depthwise Conv within MBConv. “Channels” refers to the 
channels of the output feature matrix post-stage processing (Tan and Le, 
2020). Focal attention was given to nine anatomical structures and 
lesions pertinent to ophthalmic disease diagnosis, including the optic 
cup, optic disc, macula, and lesions such as hemorrhage, cotton wool 
spots, preretinal fibrosis, atrophic arc, choroidal atrophy, choroidal 
neovascularization, exudation, macular atrophy, and leopard fundus. 
Probability maps of these features were integrated with original fundus 
images and input into the intelligent diagnosis network, enabling 
enhanced focus on lesion areas during training and minimizing 
extraneous information, thereby endowing the neural network with 
diagnostic capabilities akin to those of a clinical doctor. The training data 
was segmented into training, internal validation, internal testing, and 
external validation sets, as delineated in Table 1.

During the training phase, frequent reloading of identical images 
and computation of lesion-focused fundus images can lead to 
unnecessary computational overhead and slow down algorithmic 
training. To address this, caching technology was implemented to 
encapsulate the generation function of lesion-focused fundus images. 
Upon its initial invocation, the caching function retrieves the image and 
lesion image from disk storage, calculates, and returns the lesion-
focused image, simultaneously storing the result in the cache. For 
subsequent invocations with identical parameters, the function retrieves 
the prior result from the cache, circumventing redundant computations. 
In terms of computational resource allocation, each algorithm was 

assigned a Tesla V100 GPU and 30 worker threads for loading fundus 
images and their corresponding BITMAP-format lesion images.

An intelligent grading diagnostic algorithm 
for the five major common blinding 
ophthalmic diseases based on 
lesion-focused mechanism

For the development of FiveDisease-Net, an intelligent diagnostic 
algorithm for five common blinding ophthalmic diseases, subsets of 
fundus images were selected from the comprehensive Develop-Set. 
The dataset for algorithm development was divided, based on patient 
IDs, into training, internal validation, and internal test sets in a 7:1:2 
ratio, ensuring no overlap of a single patient’s images across these sets.

The algorithm leverages the structure and pretrained weights of 
EyeDiagnose-Net as its foundation. It employs fine-tuning training 
with a fully connected output layer activated by Softmax. This fine-
tuning starts from the optimal weights of EyeDiagnose-Net, inheriting 
previously learned features of fundus images. This strategy accelerates 
the convergence of the model in new classification tasks, with 
FiveDisease-Net serving as a base for further training on specific 
conditions like pathological myopia, glaucoma, age-related macular 
degeneration, venous occlusion, and diabetic retinopathy. This 
approach, compared to starting from scratch, results in improved 
accuracy for the same number of training iterations.

For final diagnostics, the algorithm does not directly use the output 
results. Instead, it selects a point on the positive output unit’s ROC 
curve where both sensitivity and specificity are maximized, establishing 
the final threshold for diagnosis. Output probabilities are categorized 
as positive or negative based on this threshold. However, the optimal 
threshold is not always necessary; different thresholds can be applied 
depending on the diagnostic context. For instance, in large-scale retinal 
disease screenings, a lower threshold might be used to identify more 
potential severe cases for timely hospital referral. Conversely, in 
hospital diagnostic stages, a higher threshold might be  chosen to 
minimize misdiagnosis. This flexible threshold approach tailors the 
diagnostic process to the specific needs of different medical scenarios.

Statistics

To evaluate the performance of diagnosis models for disease 
classification in this study, we calculated confusion matrix and receiver 
operating characteristic curve (ROC). The models’ performance on 
binary classification predictions of each disease was evaluated by ROC 

TABLE 1 Summary of fundus image dataset.

Disease Images of 
training set

Images of 
validation set

Images of 
internal testing 

set

Images of 
Neimeng testing 

set

Images of 
Guangxi set

GLAU 20,823 3,022 6,003 827 446

AMD 1,594 203 443 988 319

RVO 2,859 411 860 515 429

DR 6,224 832 1,697 1,025 769

NORM 41,108 5,274 11,433 976 2,162
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curves of sensitivity versus 1-specificity. Sensitivity is defined as the 
proportion of correct model predictions among all results where the 
true value is Positive. Specificity is defined as the proportion of 
correctly predicted results by the model among all results where the 
true value is negative. And accuracy is defined as the proportion of all 
correctly judged results in the classification model to the total observed 
values. We find the threshold point on the ROC curve that maximizes 
the values of sensitivity and specificity, and use this threshold to binary 
the probability value of each disease output from the diagnosis model 
into positive and negative categories, and then draw the conflict 
matrix. Sensitivity and specificity were determined by the selected 
thresholds on the validation set. We calculated the ratio between the 
variance of the model outputs and the variance of ground-truthed data 
using the tuning set to calibrate outputs. We calculated the positive 
rate for the whole cohort and for each risk group (two strata) as the 
number of events. The Byar Poisson approximation method was used 
to calculate 95% CIs of incidence (Breslow, 1978). OR(Odd Ratio) 
were constructed for different risk groups, and the significance of 
differences between groups was tested by Chi-square tests.

Results

Patient and image characteristics

Our model was trained and validated using a total of 102,786 
fundus images from 75,682 individuals, with an average age of 
45.5 ± 14.2 years. The training set and internal validation set comprised 
fundus images captured by professional fundus cameras in Guangdong, 
China, including 29,848 images of GLAU, 2,240 images of AMD, 4,130 
of RVO, 8,753 of DR, and 57,815 of NORM. The fundus images for the 
two external test sets were sourced from Neimeng and Guangxi, China. 
All the fundus images were captured using professional fundus 
cameras. The model was further tested externally with datasets from 

Neimeng and Guangxi, comprised of professional fundus images: 
Neimeng’s set had 827 GLAU, 988 AMD, 515 RVO, 1,025 DR, and 976 
NORM images, while Guangxi’s included 446 GLAU, 319 AMD, 429 
RVO, 769 DR, and 2,162 NORM images, detailed in Table 1.

Semantic segmentation results of fundus 
image anatomical structures and fundus 
lesions

In our study, we independently developed U-Net-based semantic 
segmentation models, each tailored for one of three fundus anatomical 
structures or one of fifteen fundus lesions. For each fundus anatomical 
structure and lesion type, we designed a dedicated binary classification 
semantic segmentation model, where an output of 1 signifies target 
detection and 0 represents background. We  divided the data into 
training and validation sets in a 4:1 ratio, ensuring no overlap in 
patient IDs across these sets (refer to Table 2 for details). The efficacy 
of these models was assessed using the Intersection over Union (IoU) 
metric. We achieved commendable segmentation performance for the 
optic cup, optic disc, and retinal blood vessels - all with IoU scores 
exceeding 0.77. Similarly, segmentation of larger lesions, such as 
geographic atrophy, ganglion cell layer defects, and retinal detachment, 
also yielded positive results, with IoU scores above 0.6. However, the 
segmentation accuracy for smaller lesions was comparatively lower 
(detailed in Table 3; Supplementary Figure S7).

Results of an intelligent diagnostic 
algorithm focused on lesion-focused for 
common blinding ophthalmic diseases

Our intelligent diagnostic system can accurately classify common 
blinding ophthalmic diseases such as GLAU, AMD, RVO, DR, and 

TABLE 2 Dataset splitting of training and validation of semantic segmentation of various lesions in fundus images.

Training Validation Training Validation

Lesion 
name

Positive 
images

Negative 
images

Positive 
images

Negative 
images

Lesion name Positive 
images

Negative 
images

Positive 
images

Negative 
images

Disk 1,946 0 482 0
Choroidal 

neovascularization
350 350 87 87

Cup 1,851 0 461 0 Choroidal atrophy 295 295 73 73

Macular 65 0 14 0 Atrophy arc 339 337 83 80

Vessel 26 0 3 0
Retinal nerve fiber layer 

defects
400 400 100 100

Hemorrhage 2,070 3,175 517 793 Retinal neovascularization 178 356 44 88

Geographic 

atrophy
10 20 2 5 Retinal defects 142 142 35 35

Cotton wool 

spots
800 1,190 200 297 Tessellated retina 263 263 65 65

Exudates 800 2,171 200 541 Sclera exposure 130 130 32 32

Drusen 154 154 38 39 Macular atrophy 214 214 53 53

Vitreous 

hemorrhage
104 207 25 51 Macular degeration 36 36 9 9
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TABLE 3 Anatomical structure and semantic segmentation of fundus 
images.

Anatomy and lesion 
name

IoU of 
training

IoU of 
validate

Score

Optic cup 0.944777 0.668727 0.779147

Optic disk 0.988255 0.847226 0.903637

Retinal vessel 0.979049 0.847226 0.903637

Macular 0.911657 0.340241 0.568807

Hemorrhage 0.581202 0.298246 0.411429

Cotton-wool spot 0.523801 0.260054 0.365553

Drusen 0.453724 0.212842 0.309194

Atrophic arc 0.423962 0.362179 0.386892

Choroidal atrophy 0.490633 0.280601 0.364614

Choroidal neovascularization 0.477546 0.318491 0.382113

Exudation 0.697246 0.420536 0.531220

Macular degeneration 0.537707 0.085275 0.266248

Geogrraphic atrophy 0.99302 0.350863 0.607726

Retinal nerve fiber layer defects 0.960778 0.651179 0.775019

Retinal defect 0.451425 0.129582 0.258319

Sclera exposure 0.467256 0.197711 0.305529

Tessellation 0.494761 0.37732 0.424297

Neovessels elsewhere 0.996863 0.333022 0.598558

Vitreous hemorrhage 0.604791 0.29893 0.421275

Retinal detachment 0.964422 0.381874 0.614893

normal retinal fundus images. It uses a dataset comprising 102,786 
fundus images from 75,682 Guangdong patients, referred to as the 
Develop-Set, for training and validation. We chose the EfficientNet-B0 
network, trained from ImageNet (Tan, 2020), as our starting point. After 
the sixth epoch, no further reduction in validation set loss was observed, 
so the network weights at this point were saved as the final outcome, 
resulting in the creation of the EyeDiagnose-Net, an intelligent 
diagnostic algorithm for the common blinding ophthalmic diseases. The 

Area Under the Receiver Operating Characteristic Curve (AUROC) was 
generated to evaluate the model’s ability to distinguish each disease. The 
internal validation set achieved an micro AUROC of 0.996 and macro 
AUROC of 0.993, and the AUROC of each blinding retinal disease, from 
highest to lowest, was RVO (0.995), DR (0.992), AMD (0.992), GLAU 
(0.992), with normal fundus having a AUROC of 0.993 (see Figure 2A). 
The internal test set achieved an micro AUROC of 0.996 and macro 
AUROC of 0.993, and the AUROC of each blinding retinal disease, from 
highest to lowest, was RVO (0.993), DR (0.993), AMD (0.993), GLAU 
(0.993), with normal fundus having a AUROC of 0.993 (see Figure 2B).

We use the optimal ROC threshold to distinguish positive and 
negative samples for each disease. In the internal validation set, as 
shown in Figures 3A–D, for GLAU, from 2,198 positive samples, 2,115 
were correctly identified (sensitivity of 96%), and 278 out of 6,926 
negative samples were misclassified as positive, leading to a specificity 
of 96% and an overall accuracy of 96.04%. For AMD, out of 180 
positive samples, 168 were accurately diagnosed (sensitivity of 93%), 
and 110 out of 8,944 negative samples were incorrectly classified as 
positive, resulting in a specificity of 99% and an overall accuracy of 
98.66%. For RVO, 394 out of 411 positive samples were correctly 
diagnosed (sensitivity of 96%), and 99 out of 873 negative samples 
were misclassified as positive, giving a specificity of 99.73% and an 
overall accuracy of 98.73%. In the assessment of DR, from 727 positive 
samples, 809 were accurately diagnosed (sensitivity of 90%), and 251 
out of 8,315 negative samples were incorrectly classified as positive, 
leading to a specificity of 97% and an overall accuracy of 96.35%. The 
confusion matrics of test set were shown in Supplementary Figure S1.

In terms of interpretability of diagnostic model, our model is also 
better than the baseline deep convolutional network models. We output 
the heatmaps of both Lesion-Focused mode and baseline model of the 
four common blinding eye diseases to find the different evidence. 
Figure  4 is the heatmaps of the internal validation set, of which 
Figures 4A–C are the raw fundus image, heatmap of baseline model and 
heatmap of the Lesion-Focused model of GLAU respectively, the heat is 
distributed throughout the entire fundus image in Figure 4B, but the heap 
mainly distribute around the optic cup and macula in Figure 4C, which 
matches the diagnostic criteria of Glaucoma. Figures 4D–F are the raw 
fundus image, heatmap of baseline model and heatmap of the 

TABLE 4 Predicted positive rates of common blinding ophthalmic diseases for the validation set, stratified by risk level.

Subset No. of patient 
(95% CI)

Age(mean and 
std years)

Gender(Male/
Female)

Positive 
events

Positive 
rate(95% 

CI)

OR(95% CI) p-
value

Prognostic analysis: GL

Low risk 4,983 23.6(15.7) 2564/2419 160 0.07(0.06, 0.08) NA NA

High risk 1,655 39.6(12.3) 816/839 2,290 0.93(0.9, 0.97) 605.8(474.8, 778.8) <0.001

Prognostic analysis: AMD

Low risk 6,251 27.6(16.3) 3170/3081 11 0.06(0.03, 0.11) NA NA

High risk 336 37.9(16.3) 180/156 169 0.94(0.8, 1.0) 656.2(363.3, 1165.7) <0.001

Prognostic analysis: RVO

Low risk 6,072 26.3(15.3) 3079/2993 9 0.02(0.01, 0.04) NA NA

High risk 556 49.7(14.7) 300/256 402 0.98(0.88, 1.0) 1456.2(777.9, 2534.6) <0.001

Prognostic analysis: DR

Low risk 5,888 26.6(16.1) 3008/2880 78 0.1(0.08, 0.12) NA NA

High risk 720 39.6(15.1) 362/358 731 0.9(0.84, 0.97) 279.4(220.9, 350.9) <0.001
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Lesion-Focused model of AMD respectively, heap mainly locate in the 
area of macula, but Figure 4F is more accurate then Figure 4E. Figures 4G–I 
are the raw fundus image, heatmap of baseline model and heatmap of the 
Lesion-Focused model of RVO respectively, the distribution of heat 
appears as contour shape in Figure  4H, but distributed evenly in 
Figure 4I. Figures 4J–L are the raw fundus image, heatmap of baseline 
model and heatmap of the Lesion-Focused model of DR respectively, 
heat also exhibits contour shape distribution in Figure 4K, but evenly 
distributed in Figure 4L. The results indicate that interpretability of the 
Lesion-Focused model is more refined and accurate. The heatmaps of 
internal testing set were shown in Supplementary Figure S2.

Comparison of performance between 
traditional models and our lesion-focused 
models

In order to demonstrate the superior performance of our model, 
we  compared the results of our model with those of traditional 
classification models. As depicted in Figure  5 for the validation set, 
we  observe that categories, Figures  5A–F represent the Receiver 

Operating Characteristic (ROC) curves for classifications of various 
conditions, including GLAU, AMD, RVO, DR, NORM, and macro. Our 
model’s AUROC consistently surpasses 0.99 across these conditions. 
Apart from the classification of RVO, it outperforms the baseline model 
in all cases. Moreover, in the lesions where our model leads, our ROC 
curve is always higher than the baseline ROC curve, indicating that our 
model’s results are superior to the baseline at various thresholds. This 
finding extends to the test set as well, where Supplementary Figures S3A–F 
likewise denote the ROC curves for the aforementioned conditions. Here, 
our model maintains an AUROC value around 0.993, demonstrating 
consistency with the validation set and indicating satisfactory 
generalization capabilities. In the test set scenario, our model’s AUROC 
values for all conditions exceed those of the baseline, with our ROC 
curves similarly outstripping the baseline’s across all evaluated conditions.

Our lesion-focused diagnostic model is a 
key factor of the diseases

Additionally, to assess the classification efficacy of our intelligent 
diagnostic model, we employed the Odds Ratio (OR) to evaluate the 

FIGURE 2

ROC curve of intelligent diagnosis algorithm for common blinding retinal diseases based on the Lesion-Focused model.
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FIGURE 3

Confusion matrices of internal validation set for common blinding retinal diseases. Acc represents Accuracy, and the decimal above and the integer 
below in the grid of confusion matrix represents the recall rate and the number of images, respectively.

impact of specific factors on the occurrence rates of particular events 
at designated time points. The median of the risk scores, derived from 
the diagnostic model, was utilized to categorize the fundus images in 
the internal validation set into high and low-risk groups.

The ORs were reported alongside 95% Confidence Intervals (CIs), 
calculated using the Byar Poisson approximation method (Breslow, 1978).

Table 4 illustrates that, for the four principal common blinding 
ophthalmic diseases, the Positive events in both high and low scoring 
groups denote the count of positive sample images. The positive rates 
were calculated as the proportion of positive samples in relation to the 
total sample count within each group. These Positive rates were also 
reported with 95% CIs, estimated via the non-parametric bootstrap 
method, involving 1,000 random resamplings with replacement.

A chi-square test was applied for hypothesis testing across the 
nine major common blinding ophthalmic diseases. The findings 
indicated a significant disparity between the high and low-risk groups 
for each disease (p < 0.001), thereby affirming the reliable 
discriminatory capacity of the intelligent diagnostic model for each 
type of blinding retinal disease. Further details are provided in Table 4.

To gauge the diagnostic algorithm’s generalizability, analogous 
testing was performed on both the internal and external test sets. 
Consistently, the high-risk group for each common blinding retinal 

disease shown a significant difference from the low-risk group 
(p < 0.001), as detailed in Supplementary Tables S1, S2.

Artificial intelligent algorithms of grading 
of fundus of common blinding ophthalmic 
diseases

Staging of fundus diseases, based on the characteristics and 
severity of retinal lesions, is pivotal for timely disease detection and 
treatment. This study extends its focus to intelligent grading diagnosis 
methodologies for four prevalent fundus diseases: Glaucoma 
(GLAU), Age-related Macular Degeneration (AMD), Retinal Vein 
Occlusion (RVO), and Diabetic Retinopathy (DR). We fine-tune the 
pretrained EyeDiagnose-Net to develop grading algorithms for these 
four major blinding retinal conditions.

We use the ROC curve to measure the performance of the grading 
algorithms model, and then find the best threshold on the ROC curve 
to distinguish early and late samples, maximizing specificity and 
sensitivity, and calculating the confusion matrix. Figures 6, 7 present 
the internal validation results of the intelligent grading algorithms for 
these major blinding ophthalmic diseases. From the AUROC metric, 
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our model performs significantly better than the Baseline model in 
AMD, RVO, and DR diseases, with AMD 0.877 vs. 0.617, RVO 0.972 
vs. 0.950, and DR 0.961 vs. 0.888, respectively, shown in Figures 6C–D, 
7A–D. Our model does not perform as well as the Baseline model in 
terms of AUROC for the GLAU disease, but overall accuracy and the 
recall of late stage are 10 percentage points higher, with 67.72% vs. 
57.34% and 0.68 vs. 0.57, respectively, shown in Figures 7A,B.

Model performance in independent 
external testing set

We conducted external validation of our model using independent 
groups from distinct geographic regions: Neimeng and Guangxi of 
China, detailed in Figures 2C,D. The dataset for Neimeng included 
4,125 fundus images, whereas the Guangxi dataset comprised 4,331 

FIGURE 4

Raw fundus images vs. heatmaps of the Baseline diagnosis model and Lesion-focused diagnosis model.
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FIGURE 5

Comparison of ROC curves of Baseline model and Lesion-Focused model in the validation set.

fundus images. Our intelligent diagnostic model demonstrated high 
accuracy across all four evaluated common blinding ophthalmic 
diseases, illustrating its widespread applicability to diverse global data 
sets. For the Neimeng dataset, the AUROC of the intelligent diagnostic 
algorithm for each disease surpassed 0.994, as depicted in Figure 2C, 
of which the AUROCs are GLAU (0.991), AMD (0.990), RVO (0.998), 
DR (0.985), and NORM (0.991). In the Guangxi dataset, the AUROC 
for the diseases ranged as follows: GLAU (0.991), AMD (0.990), RVO 
(0.998), DR (0.985), and NORM (0.991), shown in Figure 2D. The 
algorithm’s performance in intelligent diagnosis was marginally better 
in the Guangxi group compared to the Neimeng group.

Discussion

For individuals exhibiting early-stage fundus symptoms, artificial 
intelligence (AI) screening algorithms serve as efficient tools for mass 

screening, enabling prompt detection of disease indicators and 
facilitating access to medical care. This approach is key in managing 
the onset and spread of diseases. Additionally, AI predictive algorithms 
are valuable for mass screening in asymptomatic populations, 
predicting the likelihood of disease development in the future based 
on normal fundus images without lesions. This predictive capability 
aids in early identification of potential patients, allowing for early 
diagnosis and intervention.

This paper presents an innovative algorithm, the Lesion-Focused 
Ophthalmic Disease Intelligent Diagnostic Algorithm, which 
combines semantic segmentation and classification techniques. This 
algorithm stands out from traditional neural network approaches by 
offering greater interpretability and faster convergence. The 
integration of medical expertise in the neural network training, 
particularly through the semantic segmentation of anatomical 
structures and lesions, renders the diagnostic outcomes more 
clinically relevant. Furthermore, building on the intelligent diagnostic 
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algorithm for common blinding ophthalmic diseases, we developed a 
specialized intelligent staging diagnostic algorithm for five major 
blinding ophthalmic diseases. This was achieved by fine-tuning 
training with a minimal dataset. The effectiveness of this algorithm is 
on par with medical professionals, attributed to the incorporation of 
medical expertise into the training process via attention mechanisms.

The effectiveness of semantic segmentation networks is linked to 
the diversity of training data. In this study, to maximize learning from 
various sample types, 500 fundus images for each disease were 
randomly selected from a comprehensive dataset and annotated by 
five ophthalmologists for anatomical structures and lesion areas. This 
task was challenging due to the subtlety of lesions, and imprecise 
annotations could greatly affect network accuracy. To mitigate these 
issues, the online CVAT annotation tool was employed, enabling real-
time annotation updates by doctors.

Our proposed intelligent diagnostic algorithm demonstrated 
superior performance over a conventional algorithm that used 
original fundus images for training. This superiority was evident in 
faster convergence during training and more stable accuracy in 
validation sets. The new algorithm achieved optimal performance by 

the second training round, surpassing the traditional approach based 
on original fundus images. This improvement is attributed to the 
significant role of anatomical structures and lesion areas in the 
training process, focusing the network’s attention on critical areas. 
The lesion attention mechanism not only boosted the network’s 
interpretability but also enabled it to diagnose similarly to a clinical 
doctor. Detail information is shown in Supplementary Figure S8.

In screening for blinding ophthalmic diseases, higher disease 
sensitivity is crucial to avoid missed diagnoses. Our study innovatively 
trained a multi-label classification task using single-label annotated 
data, leading to a sophisticated ophthalmic disease screening 
algorithm. This algorithm can deduce combinations of nine different 
diseases from a single fundus image input, demonstrating high 
sensitivity and specificity, often exceeding 0.90 across various test sets 
including internal, external tests in diverse populations (Neimeng and 
Guangxi). When comparing the original fundus baseline model with 
the Lesion-Focused model, the latter consistently shown superior 
performance in accuracy, sensitivity, and specificity across all test sets 
(Supplementary Figure S3), underscoring the enhanced screening 
efficacy of the Lesion-Focused approach.

FIGURE 6

Comparison of ROC curves of Baseline model and Lesion-Focused model in the test set.
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FIGURE 7

Comparison of ROC curves of Baseline model and Lesion-Focused model in the test set.

In the field of neural network training, starting with a smaller 
dataset typically leads to suboptimal outcomes due to the initial 
random iteration of weights and slow learning progression. However, 
initiating training from pre-trained weights enables the network to 
possess baseline recognition capabilities, allowing it to quickly reach 
satisfactory performance levels after minimal fine-tuning with new 
data. In our approach, we  first developed an intelligent diagnostic 
network for five major blinding fundus diseases. We then modified the 
final output layer from a six-category to a two-category classification, 
creating a staging diagnostic model. This model was further enhanced 
through transfer learning to establish intelligent diagnostic staging 
networks for specific diseases, including GLAU, AMD, RVO, and DR 
staging diagnostics.

From a clinical perspective, diagnosing common blinding 
ophthalmic diseases typically requires a holistic analysis of various 
examination results, such as clinical assessments, optic nerve head 
imaging, and visual field tests. Our study, however, relied solely on 
fundus images due to their high accessibility and usability. Future 
studies may look into integrating additional data modalities to 
increase the predictive algorithms’ accuracy. A limitation of our 

current approach is the exclusive use of high-quality fundus images, 
which restricts applicability in cases with medium opacity that hinder 
the clarity of such images. Additionally, the relatively low incidence of 
the nine major common blinding ophthalmic diseases in the general 
population resulted in a limited number of cases for our study. 
Enhancing the predictive model’s accuracy in the future could involve 
incorporating a more extensive set of training data.
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