
TYPE Original Research

PUBLISHED 08 January 2025

DOI 10.3389/frai.2024.1444127

OPEN ACCESS

EDITED BY

Bee Luan Khoo,

City University of Hong Kong, Hong Kong

SAR, China

REVIEWED BY

Ting Li,

National Center for Toxicological Research

(FDA), United States

Mohamed Omar,

Cornell University, United States

*CORRESPONDENCE

Jinxi He

jinxi.he@jcmedicine.cn

†These authors have contributed equally to

this work and share first authorship

RECEIVED 06 June 2024

ACCEPTED 23 December 2024

PUBLISHED 08 January 2025

CITATION

Wang Y, Jin X, Qiu R, Ma B, Zhang S, Song X

and He J (2025) Developing and validating a

drug recommendation system based on

tumor microenvironment and drug

fingerprint. Front. Artif. Intell. 7:1444127.

doi: 10.3389/frai.2024.1444127

COPYRIGHT

© 2025 Wang, Jin, Qiu, Ma, Zhang, Song and

He. This is an open-access article distributed

under the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited,

in accordance with accepted academic

practice. No use, distribution or reproduction

is permitted which does not comply with

these terms.

Developing and validating a drug
recommendation system based
on tumor microenvironment and
drug fingerprint

Yan Wang1†, Xiaoye Jin1†, Rui Qiu2, Bo Ma2, Sheng Zhang2,

Xuyang Song2 and Jinxi He2*

1Department of Medical Oncology, General Hospital of Ningxia Medical University, Yinchuan, China,
2General Thoracic Surgery, General Hospital of Ningxia Medical University, Yinchuan, China

Introduction: Tumor heterogeneity significantly complicates the selection

of e�ective cancer treatments, as patient responses to drugs can vary

widely. Personalized cancer therapy has emerged as a promising strategy to

enhance treatment e�ectiveness and precision. This study aimed to develop

a personalized drug recommendation model leveraging genomic profiles to

optimize therapeutic outcomes.

Methods: A content-based filtering algorithm was implemented to predict drug

sensitivity. Patient features were characterized by the tumor microenvironment

(TME), and drug features were represented by drug fingerprints. The model

was trained and validated using the Genomics of Drug Sensitivity in Cancer

(GDSC) database, followed by independent validation with the Cancer Cell Line

Encyclopedia (CCLE) dataset. Clinical application was assessed using The Cancer

Genome Atlas (TCGA) dataset, with Best Overall Response (BOR) serving as the

clinical e�cacy measure. Two multilayer perceptron (MLP) models were built to

predict IC50 values for 542 tumor cell lines across 18 drugs.

Results: The model exhibited high predictive accuracy, with correlation

coe�cients (R) of 0.914 in the training set and 0.902 in the test set. Predictions

for cytotoxic drugs, including Docetaxel (R = 0.72) and Cisplatin (R = 0.71), were

particularly robust, whereas predictions for targeted therapies were less accurate

(R < 0.3). Validation with CCLE (MFI as the endpoint) showed strong correlations

(R = 0.67). Application to TCGA data successfully predicted clinical outcomes,

including a significant association with 6-month progression-free survival (PFS,

P = 0.007, AUC = 0.793).

Discussion: The model demonstrates strong performance across preclinical

datasets, showing its potential for real-world application in personalized cancer

therapy. By bridging preclinical IC50 and clinical BOR endpoints, this approach

provides a promising tool for optimizing patient-specific treatments.
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1 Introduction

In recent years, significant advancements have been made in novel cancer treatment

modalities, notably in the realms of immunotherapy and targeted therapy (Zhu et al.,

2018; Xue et al., 2020). While immunotherapy has transformed the landscape of cancer

treatment, instances of successful outcomes remain relatively sparse (Fan et al., 2021).

Immunotherapy typically necessitates the identification of specific biomarkers within a

patient’s tumor, such as PD-1 and PD-L1, to predict its efficacy (Dong et al., 2023;

Shergold et al., 2019). However, the positivity rates for these biomarkers typically fall

below 10%. Furthermore, though targeted therapies for cancer have offered hope in the
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field of oncology, their effectiveness is plagued by multiple

limitations (Zhou et al., 2021). Tumor heterogeneity presents

a substantial challenge to treatment, as these cancer cells may

mutate or selectively adapt under therapeutic pressure, altering the

expression or function of the target and rendering targeted therapy

ineffective (Viallard and Larrivée, 2017; Deepak et al., 2020). This

implies that in the coming decade, the majority of patients may not

benefit from such treatments. Therefore, chemotherapy remains

the primary approach to cancer treatment at present.

Due to the broad-spectrum cytotoxicity of chemotherapy

drugs, they exhibit antitumor effects across a variety of cancer

types (El-Hussein et al., 2021; Salas-Benito et al., 2021). This

characteristic endows chemotherapy with wide applicability in

the treatment of tumors of various types and stages. However,

the diversity of cancer and varying patient responses to different

therapies present a significant challenge in cancer treatment.

While chemotherapy can effectively target cancer cells, there

are noticeable individual differences in treatment outcomes and

tolerances. Personalized medicine has become a paramount

objective in the field of oncology to enhance treatment efficacy and

reduce unnecessary side effects (Masood and Wu, 2023; Pasetto

and Lu, 2023). Hence, there is an urgent need for a method to

more accurately identify which patients will benefit from these drug

therapies, thereby avoiding unnecessary treatments and alleviating

patient discomfort.

In the early stages of single-molecule analysis, researchers

attempted to predict patient responses to chemotherapy drugs by

analyzing specific biomarkers such as ERCC1. However, years of

effort have shown that patient responses to chemotherapy drugs

are an extremely complex process influenced by multiple variables

(Irajizad et al., 2022). Importantly, this process requires substantial

data support. In the absence of large-scale data models, data

screening, organization, and analysis are time-consuming tasks,

and manual screening is prone to errors.

With the advancement of large-scale data and computational

capabilities, researchers are now able to leverage multi-

level information from patients, including genomics and

transcriptomics (Mann et al., 2021; Chen et al., 2022; Li R. et al.,

2022). Building upon this foundation, researchers have developed

models applicable to various scenarios for a more comprehensive

and precise evaluation of individual sensitivity to chemotherapy

drugs (Huang et al., 2023). Among various computational models,

deep learning methods have received significant attention and

recognition for their outstanding ability to extract complex

patterns and relationships from diverse datasets (Li Y. et al.,

2022). Deep learning methods utilize neural network architectures

with multiple interconnected nodes, mimicking the complex

structure and functions of the human brain (Ho et al., 2020).

This architecture enables models to efficiently process and analyze

various data representations, including genomic data, clinical data,

and imaging data, thereby aiding in the comprehensive evaluation

of multiple factors influencing drug sensitivity in cancer patients

(Vatansever et al., 2021).

This study aims to fully harness the potential of DL to establish

a model that predicts the utility of chemotherapy drugs in cancer

treatment. Initially, we meticulously selected 407 cell lines from

the Genomics of Drug Sensitivity in Cancer (GDSC) database

to construct and validate predictive models for drug sensitivity.

Independent validation was conducted using 93 cell lines from

the Cancer Cell Line Encyclopedia (CCLE) database. Furthermore,

we applied the model to test its performance using 105 human

tissue samples fromThe Cancer GenomeAtlas (TCGA). The results

demonstrate that this model accurately predicts drug sensitivity.

It not only provides physicians with a more reliable decision

support tool for precise, personalized treatment planning but also

alleviates the physical and economic burdens imposed on patients

by treatment. The success of this research holds the potential to

overcome previous challenges, offering more effective treatment

choices for cancer patients and further advancing the field of

precision medicine.

2 Materials and methods

2.1 Database and data cleaning

We employed the GDSC database (https://www.cancerrxgene.

org/) for model development and validation. The CCLE database

(https://sites.broadinstitute.org/ccle) served as an independent

validation dataset, while TCGA human tissue samples were used

to assess the real-world application of the model.

Given our ultimate goal of applying the model within the

TCGA dataset, data cleaning became crucial for our research.

Consequently, we utilized pertinent data from the TCGA database

to infer the necessary cell line data. We initiated this process by

meticulously screening patient treatment data, with a particular

focus on selecting patients who underwent single-agent therapy,

using their BOR as the endpoint. Therefore, we selected 542

GDSC cell lines from GDSC, 93 cases from CCLE, and 105

patient data from TCGAwho received single-agent drug treatment,

encompassing 12 tumor types and 18 drug categories.

The TCGA-PANCANCER dataset was obtained from UCSC

Xena (https://xenabrowser.net/datapages/) and includes phenotype

data, somatic mutation status (SNV), and gene expression profiles

(GEP). In total, 8,347 patients had complete SNV and GEP data

available. BOR data for TCGA patients were retrieved from a

previous publication (Ding et al., 2016), resulting in a subset of

1,197 patients. After intersecting patient IDs, 404 patients who

receivedmonotherapy had complete SNV, GEP, and BOR data. This

preprocessed TCGA cohort spans 54 drugs and 24 cancer types,

which were used for further data filtering. In the GDSC dataset,

978 cell lines were collected initially. By intersecting this data with

the preprocessed TCGA cohort, we filtered down to 18 drugs and

12 cancer types. After considering SNV and GEP, a final set of 542

GDSC cell lines were selected. Based on the final drug and cancer-

type selection, the TCGA cohort was filtered to 105 patients, and

cell lines in the CCLE dataset were reduced from 1,826 to 93 cases

(Supplementary Figure S1).

Data normalization primarily followed the procedures

established by the respective databases. We used three types of

explanatory variables: phenotypic features (sex, age, cancer type),

SNV (single nucleotide variants), and GEP. Phenotypic features

were converted into dummy variables, i.e., binary variables with

values of 0 or 1. For SNV features, genes with non-silent mutations
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were labeled as 1, and 0 otherwise. For GEP features, we used

the normalized expression format, transcripts per million (TPM).

For response variables (y), we utilized three types: IC50 from

GDSC, MFI from CCLE, and BOR from TCGA. IC50 values were

log-transformed using the natural logarithm. MFI values were

used directly in their normalized form, specifically the replicate-

collapsed log-fold-change values (Corsello et al., 2020). For BOR,

we categorized the response into binary outcomes: PD (progressive

disease) and non-PD.

All three datasets (GDSC, CCLE, and TCGA) employed

consistent data transformation methods. The response variables

(y) were processed into a one-dimensional format, representing

the drug response for each sample-drug pair. For instance, in

the GDSC dataset, the y value was the log-transformed IC50 for

each cell line-drug pair, resulting in a vector with 9,756 values

(corresponding to 542∗18). The explanatory variables (X) were

transformed accordingly. For example, the SNV data in GDSC

was reshaped into a matrix with 9,756 rows and 776 columns,

where each row represents a cell line-drug pair, and each column

represents the mutation status of the selected genes.

Drug molecular structures were represented using SMILES

(Simplified Molecular Input Line Entry System), which were

sourced from PubChem (https://pubchem.ncbi.nlm.nih.gov/). The

SMILES were converted into Morgan fingerprints (also known as

Extended Connectivity Fingerprints, ECFP) using RDKit software

(version 2022.09.1), a widely used cheminformatics tool for circular

fingerprint generation.

2.2 Model construction

Our methodology, mainly based on small molecule drugs,

focuses on cytotoxicity, using IC50 as a key indicator of cytotoxicity

in the GDSC database. The response variables in CCLE are slightly

more complicated (Corsello et al., 2020). In brief, a barcode is

introduced for each cell line. After drug treatment, the fluorescence

intensity of each barcode, called luminex MFI, is measured. This

fluorescence intensity is then compared with the MFI of negative

controls treated with dimethylsulfoxide (DMSO). The resulting log

fold change of MFI is used as the final drug sensitivity indicator

(referred to as MFI hereafter in our text). The smaller the MFI, the

more sensitive to the drug. We used known genomic mutations of

tumor-driving genes, transcriptomic expression data, and essential

clinical characteristics of cell lines, including tumor type, patient

age, and gender, as explanatory variables (X).

We adopted a content-based filtering algorithm to construct the

recommendation model. In our model, users represent cell lines,

items represent drugs, and features include clinical characteristics,

somatic mutation status (SNV), and GEP of cell lines and

fingerprint of drugs. We constructed the model with multiple

inputs consisting of the above features, with multiple dense

layers, and with a single numeric output that represented the

recommendation level (Figure 1; Supplementary Figure S1). The

ReLU and linear activation function were used for hidden and

output layers, respectively. Mean Squared Error (MSE) was used as

the performance evaluation metric for our model, and the adaptive

moment estimation (Adam) algorithm was used for optimization.

The same L2 normalization was used for all layers, and the

regularization coefficient was trained as a hyperparameter by a

10-fold cross-validation approach.

Model construction was implemented in jupyter notebook

(version 6.5.2) on python (version 3.10.6) platform. Analysis

software used in this study include: tensorflow (version 2.9.1),

sklearn (version 1.1.3), rdkit (version 2022.09.1), pandas (version

1.5.1), numpy (version 1.23.4), pickle5 (version 0.0.11). Data

visualization were conducted in R (version 4.4.0) with packages

including ggplot2 (version 3.5.1), ggpubr (version 0.6.0), pheatmap

(version 1.0.12), survival (version 3.6.4), survminer (version 0.4.9),

and survivalROC (version 1.0.3.1)

3 Results

3.1 Construction of drug recommendation
models

To build a drug recommendation model, we need data source,

data structure, and model framework. We collected 542 GDSC cell

lines with IC50 scores for 18 drugs from the GDSC database. To

construct and validate the model, we performed the following steps

to partition the data into training and validation sets: stratification

based on cancer type and drug usage to ensure a balanced

distribution of these two crucial factors, and random allocation of

the data into a training set (N = 407) and a validation set (N =

135) in a 75:25 ratio. We then used cell lines (N = 93) in CCLE

database as an independent validation dataset. The CCEL database

uses MFI as drug sensitivity indicator, which differs from GDSC’s

IC50. Finally, to evaluate the performance of our model in real

clinical scenarios, we applied the model to human tissue samples

from the TCGA database (N = 105) by comparing the association

between model-generated predictions and real BOR (Figure 1A).

The critical endpoint of the model is IC50, which is a

matrix with each row representing a cell line, and each column

representing a drug (Denck et al., 2023). The features of cell line

and drug are documented as the left and top of the core matrix.

Cell line features consisted of three integrated parts: the phenotype

that include age, sex, and cancer type, the somatic mutation status

(SNV) of known cancer driver genes (Supplementary Table S2),

and the GEP of the same driver genes. Drug fingerprints with

shape (512.0) were used as drug features (Supplementary Table S3;

Figure 1B).

We constructed two model architectures using the same input

data structure, namely the dot model and the concatenate model

(Figures 1C, D; Supplementary Figure S2). The only difference

between the two models was how to deal with the two vectors

Vsample and Vdrug. In the dot model, we made a dot product of the

two vectors, while in concatenate model we simply concatenated

them together to a new vector and processed by one more

dense layer.

To determine which architecture is better in drug

recommendation, we trained the two models under the same

hyperparameter alpha, the regularization coefficient, and compared

the model metrics, i.e., the MSE using the 10-fold cross-validation

setting (Figures 1E, F). The mean MSEs (Mean Square Errors)

of the 10-folds decreased slightly in the dot model, while they
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FIGURE 1

Study design and model description. (A) Study design and database usage. (B) Data structure. (C) Dot product (vector dot multiplication) algorithm.

(D) Concatenate algorithm. (E) Model performance under dot algorithm: variations in model performance (mean square error) with changing

regularization coe�cients under the dot algorithm. (F) Model performance under concatenate algorithm.

decreased more quickly and then increased in the concatenate

model, which implies that the concatenate model was more

sensitive to alpha and was more accurate under optimal setting, i.e.,

alpha equals 0.001. Therefore, we chose the concatenated model

with an alpha value of 0.001 as the foundational framework for

our model.
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3.2 Overview of model features in the
GDSC dataset

In the GDSC dataset, we considered a comprehensive set

of features for model construction, and these features played a

pivotal role in the development of our predictive model. Our

analysis encompassed 542 cell lines, including clinical attributes

such as gender, age, and tumor type. Notably, there was a

slightly higher proportion of males in the dataset, and the

median age was 60 years (Figures 2A, C). Additionally, there

were a total of 12 different tumor types (Figure 2B), with LUAD,

SARC, SCLC, and SKCM having the highest sample counts, each

exceeding 10%.

Regarding features related to the TME, we observed that

PABPC1, TP53, and KMT2C exhibited the highest mutation

frequencies (Figure 2D), while HOXC11, MAFB, and FAT4

displayed the greatest variation in gene expression (Figure 2E).

These particular features likely made the most significant

contributions to our model. It’s worth noting that single

nucleotide variations (SNV) and GEP complemented each other

in deciphering the TME. Some genes exhibited high mutation

rates, while others showed substantial expression variation. For

instance, PABPC1 [Poly(A)-binding protein, cytoplasmic 1] is a

gene that encodes a multifunctional protein involved in various

cellular processes, including transcription and translation. It

displayed a high mutation rate but low variance across samples,

suggesting that its mutation status remained relatively consistent

across different samples, despite mutations being present in the

majority of samples. On the other hand, HOXC11 (Homeobox

C11), a gene encoding a protein belonging to the HOX family

of transcription factors critical for embryonic development and

tissue positioning, had a low mutation rate but a high coefficient

of variation. This indicated significant variation in mutation

status among different samples, with some samples showing

high variability.

Finally, we evaluated the sensitivity of various tumors to

different drugs primarily using IC50 as the main indicator.

Firstly, the most significant variation in drug sensitivity

lies among different drugs (Figure 2G), with Docetaxel,

Paclitaxel, and Vinorelbine showing the highest sensitivity,

while Temozolomide, Fluorouracil, and others appear relatively

less sensitive. Secondly, there is no apparent pattern of

drug sensitivity differences among various cancer types for

the same drug (Figure 2G). In other words, we did not

observe any specific cancer type exhibiting markedly higher

or lower sensitivity. Thirdly, substantial variations in drug

sensitivity exist among different patients for the same drug

(Figure 2H), particularly noticeable with Dasatinib, Temsirolimus,

and Gemcitabine.

3.3 Training and evaluating model in GDSC
dataset

Utilizing the above features, we trained and validated the

recommendation model in the GDSC dataset, with IC50 as

response variable. The overall correlation coefficient (R) between

the model-predicted scores and the actual IC50 in the training set

and testing set was 0.914 and 0.902, respectively (Figures 3A, B).

Regarding cancer type-specific evaluation, the correlation across

all 12 cancer types in the testing set exceeded 0.85 (Figure 3C).

Particularly in SARC, SCLC, HNSC, COAD, PAAD, and OV, the

correlation surpassed 0.9, indicating a strong relationship between

the predicted scores and actual IC50 Furthermore, we assessed the

predictive performance of the model for different drugs within

the testing set. In the correlation analysis of 18 drugs, varying

degrees of correlation were observed (Figure 3D). Among them,

Docetaxel, cisplatin, gemcitabine, and seven other drugs showed

a strong correlation (R > 0.6), while Oxaliplatin, Tamoxifen, and

10 other drugs exhibited significant correlations with e IC50 (P

< 0.05).

Deeply into predication accuracy in cancer type and drug

specific way, we analyzed correlation analysis between predicted

scores and IC50 in each pair of cancer-type and drug (Figure 3E).

The numerical values within these heatmaps represent correlation

coefficients. It’s worth noting that the majority of these correlations

are positive and exhibit relatively high values. For instance,

in KIRC, SARC, OV, and ESCA, Cisplatin yielded positive

correlations. However, in a few instances, negative correlations

were observed. For negative correlations, one potential explanation

could be the limited size of the training dataset, which may have

constrained the model’s ability to generalize effectively to these

specific contexts.

3.4 Overview and comparison of model
features in the CCLE dataset

To evaluate the generalization capacity of the model, we used

the CCLE dataset for independent validation. First, we performed

a comparative analysis of features between the CCLE and GDSC

datasets. The analysis covered 12 different cancer types, revealing

notable differences in the distribution priorities across the two

datasets. SARC, SKCM, and COAD had similar proportions in both

datasets, whereas BRCA, ESCA, and SCLC were more prevalent

in GDSC but less so in CCLE. Conversely, OV, GBM, and PAAD

were more heavily represented in CCLE but less frequent in

GDSC (Figure 4A). These differences in cancer type distribution

could potentially lead to suboptimal model training for cancer

types underrepresented in GDSC. Figures 4B, C illustrate the

composition of age groups and sex, respectively. Both datasets

predominantly include individuals aged 45–70, and there’s no

significant difference of sex distribution was observed between the

two databases. An intriguing observation is the consistent lower

gene mutation rates in the CCLE dataset compared to GDSC,

indicating that the cell lines in the CCLE dataset carry a lower

mutational burden (Figure 4D). PCA analysis of gene expression

data from CCLE and GDSC datasets reveals distinct clusters for

each dataset, indicating their independence as separate data sources

(Figure 4E). Nevertheless, the CCLE and GDSC datasets exhibit a

high degree of correlation in terms of gene expression variability

(Figure 4F).

Unlike the evaluation in GDSC, we utilized MFI as the primary

endpoint to assess drug sensitivity in the CCLE dataset. While
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FIGURE 2

Features and endpoint description in GDSC dataset. (A) Gender composition. (B) Tumor type composition. (C) Age distribution. (D) Frequency of

gene mutations (frequency of occurrence in samples). (E) Distribution of coe�cient of variance for gene expression. (F) Mutations and expression of

same genes. (G) Distribution of IC50 across di�erent drugs. (H) Heatmap of IC50 within each patient.
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FIGURE 3

Model training and validation in GDSC. (A) Correlation between predicted score and actual IC50 in the training-set. (B) Correlation between predicted

score and actual IC50 in the testing-set. (C) Correlation by cancer type in the testing-set. (D) Correlation by drug in the testing-set. (E) Correlation by

cancer type and drug in the testing-set.

both measures assess drug sensitivity, it’s noteworthy that in

GDSC, Docetaxel had the lowest IC50 values (Figures 2G, H),

whereas in CCLE, Doxorubicin displayed the lowest MFI values

(Figures 4G, H). Of note, drugs like Capecitabine and Paclitaxel

exhibited variations in drug sensitivity among different patients,

highlighting the pronounced individual differences within the

CCLE cell lines.

3.5 Evaluating model in the independent
CCLE dataset

We independently validated our model using the CCLE dataset

by assessing the correlation between the predicted scores and

mean fluorescence intensity (MFI). Initially, we observed a strong

correlation across the overall dataset (R = 0.67, Figure 5A).
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FIGURE 4

Description of features in the CCLE dataset and comparison with the GDSC dataset. Features concordance between CCLE and GDSC of cancer type

(A), age composition (B), gender composition (C), gene mutation frequency (D), PCA of gene expression (E), and coe�cient variation of gene

expression (F). (G) Heatmap of MFI in each patient. (H) Distribution of MFI across di�erent drugs.

Given that some predictions deviated from actual MFI values,

we conducted a more detailed analysis of correlations by cancer

type and drug. Overall, the model performed well in a cancer-

type-specific manner, with 11 out of 12 cancer types showing

strong correlations (R > 0.6, Figure 5B). Specifically, the model

performed best in cancer types with higher representation in

the GDSC dataset, such as BRCA, ESCA, and SARC, but was

slightly less accurate in underrepresented cancers like GBM and

PAAD, which had a larger presence in the CCLE dataset. The

model’s performance in predicting sensitivity to individual drugs
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FIGURE 5

Independent model validation in CCLE Dataset. Correlation between predicted score and actual MFI in overall dataset (A), in each cancer type (B), in

each drug (C), and in each cancer type and drug pair (D).

was suboptimal (Figure 5C), likely due to differences between IC50

and MFI measurements.

Like that in GDSC, we evaluated mode performance in

a cancer type and drug specific way (Figure 5D). Correlation

coefficient between predicted score and MFI in most cancer-

type and drug pairs were positive, indicating an acceptable

generalization performance of the model on an independent

dataset with a different response variable. For instance, in KIRC,

drugs including Dasatinib, Vinorelbine, Erlotinib, Temozolomide,

Fluorouracil, and Docetaxel displayed strong positive correlations.

However, there were some negative values, such as Pazopanib and

Bicalutamide in KIRC, which maybe resulted from limited data in

the cancer-type and drug pair.

3.6 Application of the model on patient
data from TCGA dataset

To assess the model performance in clinical scenario, we

applied the model to TCGA dataset. We first retrieved 105

patient data from TCGAwho received single-agent drug treatment,

encompassing 12 tumor types and 18 drug categories, and then

compared features between them and GDSC datasets. PAAD

and HNSC are the two most prevalent cancer types in the

TCGA dataset, but they are relatively underrepresented in the

GDSC. In contrast, other cancer types have a lower prevalence

in TCGA (Figure 6A). Notably, we observed a higher number of

individuals aged between 60 and 80 in the TCGA dataset, while

the GDSC cohort had more individuals aged between 10 and 40

(Figure 6B). Additionally, the proportion of males in the TCGA

cohort was significantly higher than that in the GDSC cohort

(Figure 6C).

Regarding gene mutation frequencies, the TCGA dataset

displayed relatively lower mutation rates compared to GDSC

(Figure 6D). We conducted Principal Component Analysis (PCA)

on gene expression data from both TCGA and GDSC datasets. This

analysis revealed that data points from the same database clustered

closely together, while the differences between the two databases

were substantial, confirming significant batch differences and the

independence of these datasets as distinct data sources (Figure 6E).

However, despite their different origins, we observed a high degree

of correlation in gene expression variability between TCGA and

GDSC datasets (R = 0.679) (Figure 6F), indicating consistent
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FIGURE 6

Model Application in TCGA patient data. Features concordance between TCGA and GDSC of cancer type (A), age composition (B), gender

composition (C), gene mutation frequency (D), PCA of gene expression (E), and coe�cient variation of gene expression (F). (G) Heatmap of predicted

score. (H) Drug composition in TCGA dataset. (I) Comparison of predicting scores between PD and non-PD groups after gemcitabine treatment at

pan-cancer level. (J) PFS curves and 6-month PFS rates for PAAD patients who received gemcitabine, categorized by high and low predicting scores.

(K). AUC curves for predicting 6-month PFS and 12-month PFS using model scores.
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internal gene expression patterns across different datasets and

further validating the broad applicability of our model.

By inputting the above parameters into the model, we obtained

the predicted IC50 for each sample (Figure 6G). Consistent with

findings from the GDSC dataset, drugs such as Docetaxel,

Doxorubicin, and Paclitaxel exhibited the lowest predicted scores,

indicating the highest sensitivity. Notably, drugs like Etoposide,

Gemcitabine, and Temsirolimus displayed significant variations in

sensitivity among patients, suggesting tumor heterogeneity. Since

our cohort included patients who received only one drug, we

were able to analyze the association between predicted IC50 and

patients’ BOR. Due to the predominance of patients receiving

Gemcitabine andCisplatin (Figure 6H) and the uneven distribution

of BOR, only the Gemcitabine cohort was suitable for statistical

analysis. At pan-cancer level, Gemcitabine tended to have a higher

predicted score, indicating lower sensitivity, in the Progressive

Disease (PD) group (P = 0.170, Figure 6I). Focusing specifically

on PAAD, which is the cancer type that most frequently received

monotherapy with Gemcitabine. When we divided patients into

two groups based on the median of the predicted score, those

with lower scores tended to have better progression-free survival

(PFS) (HR = 0.572, 95% CI 0.26–12.6, P = 0.160, Figure 6J).

Importantly, the 6-month PFS rate was significantly higher in the

lower-score group compared to the higher-score group (0.9474 vs.

0.6111, P= 0.007, Figure 6J). Correspondingly, the predicting score

accurately forecasted 6-month PFS (AUC 0.793; sensitivity 0.88;

specificity 0.76, Figure 6K). However, its performance decreased

significantly for 12-month PFS (AUC 0.649). This aligns with our

understanding that drug sensitivity reflects immediate response

rates, which can often translate into short-term survival, whereas

long-term survival is influenced by various factors, including the

patient’s immune status.

4 Discussion

Drug recommendation models are designed to predict the

response of cell lines or tumor tissue samples to various

pharmacological agents based on their characteristics (Rafique

et al., 2021). These models assist cancer researchers and clinicians

in swiftly identifying the most suitable medication from a

multitude of options, thereby enhancing the efficiency and

personalization of cancer treatment (Qi and Zou, 2023). The

models incorporate a wealth of clinical and omics features

associated with the samples. Subtle individual differences can lead

to diametrically opposite reactions to the same drug, necessitating

the collection of diverse and representative data that reflect

the variations among individual patients and the heterogeneity

of tumors (Pinar et al., 2021; Khan et al., 2022; Xie et al.,

2022).

For example, patient demographics such as age and gender

can reveal disparities in cancer incidence across different

sexes and age groups. The highest susceptibility to cancer

is observed in individuals aged 50–70 (Figures 2A, C). As

humans age, the accumulation of cellular mutations and

metabolic changes may impact cellular growth and death,

thereby increasing the risk of cancer. Omics characteristics

can reveal changes at the genetic level, including the frequency

of driver gene mutations and the variability of expression

levels (Figures 2D–F). These genetic variations are crucial for

understanding the molecular mechanisms of tumors, as they

can help predict patient responses to chemotherapeutic drugs.

By analyzing these gene mutations and expression patterns,

researchers can target drugs to specific genes sensitive in different

patients, better identifying those who may benefit from specific

drug treatments.

To prevent model overfitting, L2 regularization was applied

by introducing a penalty term to the loss function, which ensures

the model avoids assigning excessively large weights to features.

This approach promotes a simpler, more generalizable model that

focuses on the most relevant characteristics, reducing noise from

the training data. Additionally, L2 regularization improves stability

by minimizing the model’s sensitivity to small fluctuations in the

data, leading to more consistent predictions. Using 5-fold cross-

validation, we optimized the regularization strength (λ) within a

range of [1, 1e-1, 1e-2, 1e-3, 1e-4, 1e-5]. Optimal performance was

achieved at λ ≈ 1e-3, where the mean MSE was minimized (0.188)

and standard deviation remained low (0.0167). Higher values of

λ led to underfitting, while lower values introduced instability,

underscoring the importance of appropriate regularization in

optimizing model performance.

Performance validation is crucial for drug sensitivity prediction

models. It serves multiple critical purposes: firstly, it ensures model

credibility, enabling clinical practitioners and patients to trust

the model’s predictions (Mauvais-Jarvis et al., 2021). Secondly,

performance validation aids in assessing a model’s generalization

capability, i.e., whether it can perform well on unseen data,

which is pivotal for practical applications (Zhao et al., 2022;

Krishnan et al., 2023). To achieve this, we split GDSC data into

training and testing sets and investigated the correlation between

predicted and actual values. The primary endpoint selected was

IC50, with the performance metric being the Pearson correlation

coefficient. High correlations (R > 0.9) were observed on both

datasets (Figures 3A, B). Different cancer types may exhibit varying

biological features, molecular mechanisms, drug targets, and drug

sensitivities, all of which can affect the model’s applicability,

accuracy, and generalization capacity (Yu et al., 2021; Jin and

Nam, 2021). Furthermore, diverse drugs may possess different

modes of action, mechanisms, metabolic pathways, and side effects,

influencing model complexity, interpretability, and translatability

(Earl Hostallero et al., 2023; Chen and Zhang, 2022). In our

correlation analysis based on cancer type and drug category,

we made several noteworthy observations. When considering

cancer type, we observed an excellent correlation among all 18

cancer types in the test dataset (Figure 3C). This indicated that

our drug sensitivity prediction model maintained consistent and

good performance across multiple cancer types. Secondly, when

considering drug category, our analysis showed that 7 drugs

had strong correlation (R > 0.6), and 17 drugs had significant

correlation (p < 0.05) (Figure 3D). By further examining all

possible combinations of 12 cancer types and 18 drugs (216 cases in

total), we found that most cases showed positive correlation. This

suggested that the predictive ability of our model could be extended

to various cancer types and drugs. Notably, some drugs, such
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as Cisplatin, Paclitaxel, and Gemcitabine, exhibited correlation

coefficients above 0.9 in specific cancer types, such as ESCA, SKCM,

and SARC. These high correlations highlighted the potential of the

model in identifying particularly effective therapeutic approaches

for specific cancer types.

Utilizing different databases for validation helps evaluate a

model’s generalization capacity (Rong et al., 2021). To achieve

this, we introduced CCLE as an independent database for

model validation. We compared clinical and omics features

between CCLE and GDSC (Figure 4). Significant differences were

observed in gene mutation rates and principal component analysis,

confirming the distinct nature of these datasets and ensuring

the model’s reliability and practicality across diverse backgrounds

(Figures 4D, E). While the MFI endpoint was used in CCLE,

IC50 was used in GDSC. IC50 measures the concentration at

which a drug inhibits 50% of cell growth, providing a quantitative

indicator of cytotoxicity. MFI, on the other hand, reflects a

drug’s inhibitory effect in a multiplexed high-throughput assay

(He et al., 2022). Although the methodologies differ, both IC50

and MFI serve to quantify the cellular response to drugs,

allowing us to draw meaningful comparisons regarding sensitivity.

Different drugs may have different mechanisms of action on

different cell lines, leading to varying sensitivities in GDSC and

CCLE. For instance, Docetaxel is a microtubule stabilizer that

inhibitsmicrotubule dynamics, thereby preventing cell division and

proliferation (Gambardella et al., 2022). Hence, it exhibits very

low IC50 values in GDSC, indicating high sensitivity (Figures 2G,

H). Conversely, Doxorubicin is a topoisomerase inhibitor that

induces DNA damage and apoptosis. Consequently, it shows low

MFI values in CCLE, indicating high sensitivity. However, in

GDSC, Doxorubicin might not have a significant inhibitory effect

on cell proliferation, resulting in higher IC50 values, indicating

lower sensitivity (Figures 4G, H). These differences underscore

the importance of considering the specific mechanisms of action

of drugs and the context of the dataset when interpreting IC50

and MFI values in GDSC and CCLE. Despite the differences

in features and endpoint measures between the two datasets,

we still achieved strong correlations in CCLE, with an overall

correlation coefficient of 0.67 (Figures 5B, C). In fact, this strong

correlation held true in 10 out of 11 cancer types, and even

in the remaining LUAD cancer type, while not exceptionally

strong, a correlation coefficient of 0.55 was reached. However,

when we analyzed the correlation between predicted values and

MFI for individual drugs, we observed that most drugs did not

exhibit significant correlations. Several factors might contribute to

this observation. Firstly, it’s possible that the differences between

MFI and IC50 values play a role, as their association exists

but does not follow a linear correlation pattern. Additionally,

our sample size might be relatively small, leading to a wide

distribution of cancer types for each drug. This aspect becomes

apparent in the analysis of correlations among different cancer

types and drugs. In most cancer types, the linear correlation

for drugs hovers around 0.2. However, KIRC stands out as a

unique case where some drugs, such as Dasatinib and Docetaxel,

show a strong positive correlation, while others like Pazopanib

and Bicalutamide exhibit a strong negative correlation. These

findings emphasize the complexity of the relationship between

predicted values and MFI in the context of different drugs and

cancer types.

The use of cell lines for developing and validating drug

prediction models offers significant convenience and cost-

efficiency, facilitating in-depth exploration of molecular

mechanisms and drug interactions (Wang et al., 2022; Feng

et al., 2021). However, differences between cell lines and human

patients, including genetic mutations, expression profiles, and

epigenetic modifications, may affect the accuracy and reliability

of these models in clinical applications (Singh et al., 2023).

Therefore, integrating patient data from TCGA was essential

to evaluate model performance in real-world clinical scenarios.

Despite the observed differences in features between GDSC and

TCGA datasets, the model demonstrated robust generalizability

across various cancer types and age groups (Figures 6A–C).

It is important to note that most patients in TCGA received

combination therapies, making it difficult to isolate the effects of

a single drug. To address this, we carefully selected patients who

underwent monotherapy and used BOR as the clinical endpoint.

While IC50 and MFI serve as laboratory-based drug sensitivity

indicators, BOR directly reflects patient clinical outcomes, bridging

the gap between preclinical and clinical data (Figures 6G–I).

This cross-endpoint comparability demonstrates that, despite

inherent differences between in vitro and in vivo measurements,

our model can still provide consistent and accurate predictions.

For patients treated with gemcitabine, Kaplan-Meier survival

analysis revealed a significant difference in progression-free

survival (PFS) between high and low predicted score groups.

Patients with higher predicted scores showed notably lower

6-month PFS. The area under the curve (AUC) for 6-month

survival was 0.793, indicating that the model’s predictions not

only capture drug sensitivity but also provide valuable insights

into long-term survival, making it a promising tool for optimizing

cancer treatment strategies.

It is important to note that while AI-driven models, such

as ours, can offer valuable data-driven insights to aid clinicians,

the responsibility for patient care must always reside with

human healthcare professionals. AI models should function as

decision-support tools, augmenting human judgment rather than

replacing it. To ensure ethical and patient-centered decision-

making, clinicians must have access to transparent explanations

of the model’s predictions, including any inherent limitations.

Future efforts should focus on improving the interpretability of

AI models in healthcare, enabling clinicians to fully comprehend

the underlying mechanisms and rationale for the model’s

predictions, ensuring alignment with the best interests of

the patient.

5 Conclusion

This study has successfully developed a drug recommendation

model based on the TME and drug fingerprints, demonstrating

high accuracy and stability in training and validation on

the GDSC database. Furthermore, independent validation on

the CCLE database and application to clinical patients in

the TCGA database showcase the model’s robust predictive
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performance across diverse data sources and drug sensitivity

metrics, highlighting its potential value in real clinical scenarios.

This work introduces a novel approach to precision cancer therapy,

emphasizing the research’s value and innovation. In summary, the

paper provides new tools and methods for personalized cancer

treatment, underscores the importance of model performance

validation, and explores the heterogeneity between different data

sources, offering substantial support for future cancer research

and therapy.
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