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The COVID-19 pandemic marked a before and after in the business world, causing a 
growing demand for applications that streamline operations, reduce delivery times 
and costs, and improve the quality of products. In this context, artificial intelligence 
(AI) has taken a relevant role in improving these processes, since it incorporates 
mathematical models that allow analyzing the logical structure of the systems to 
detect and reduce errors or failures in real-time. This study aimed to determine 
the most relevant aspects to be considered for detecting software defects using 
AI. The methodology used was qualitative, with an exploratory, descriptive, and 
non-experimental approach. The technique involved a documentary review of 
79 bibliometric references. The most relevant finding was the use of regression 
testing techniques and automated log files, in machine learning (ML) and robotic 
process automation (RPA) environments. These techniques help reduce the time 
required to identify failures, thereby enhancing efficiency and effectiveness in the 
lifecycle of applications. In conclusion, companies that incorporate AI algorithms 
will be able to include an agile model in their lifecycle, as they will reduce the rate 
of failures, errors, and breakdowns allowing cost savings, and ensuring quality.
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1 Introduction

Artificial Intelligence (AI) is not a technology far from everything that surrounds us in 
our daily lives: robots, computers that understand our language, and autonomous cars, among 
others, are part of the future that we saw on television and that we now have in our present 
(Kacena et al., 2024; Finlay and Dix, 1996).

AI in software quality assurance has brought great benefits to companies, helping 
in tasks such as predicting and locating defects, sequence learning, code cloning, and 
many other functions. Correctly using these technologies has resulted in software 
companies reducing the effort, time, and costs required for defect discovery and 
resolution (Satapathy et al., 2020).

In recent years, there has been a strong desire by engineers and companies to automate as 
much as possible and to use the latest trends in technology. However, this focus often overlooks 
the potential side effects. Despite this, AI is increasingly being applied to autonomously detect 
and analyze defects. In the early days of software development, people wrote program code 
and found defects as they used it during development (Acemoglu and Restrepo, 2018; 
Rodríguez-Pérez et al., 2020). Later, to improve the quality of applications, more thorough 
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testing was incorporated to detect defects as early as possible (Xu et al., 
2014). Consequently, as the lines of code increased, the testing and 
verification processes became longer and more complex, even causing 
errors or omissions that were performed manually (Nagaria and 
Hall, 2020).

The processes for analyzing and detecting faults or failures in 
information applications are highly time-consuming. Kushwaha 
and Misra (2008) identified that the tests in these technological 
platforms must be  repeated several times, in order for the 
developers to identify the root cause of the defect, an arduous job 
that does not guarantee that the failure will be fully corrected. 
Thus, this study aims to identify the main techniques that can 
be used to reduce the failure rate for these technological solutions 
automatically through the use of AI.

If the process of analysis and failure detection could be automated, 
companies would experience continuous improvement. Automating 
tasks related to planning, execution, control, and monitoring in 
application coding would reduce the time and costs, while enhancing 
product quality, as many of these tasks would be performed in an 
automated way. Gonçalves et  al. (2017) identified that, by freeing 
collaborators from software quality review tasks, this knowledge, 
experience, and expertise could be  used in new processes and 
procedures of new applications. However, automation also has its 
limitations, Skripchuk et al. (2022) identified that if machine learning 
(ML) algorithms are not trained with sufficient statistical data that 
represents the universe, undesired results can be obtained, generating 
failures in the applications that can have an impact in different areas 
of the organization.

2 Literature review

The implementation of AI is based on a measurable characteristic 
and its impact on business needs. A clear example is the projects that 
use AI to automate many manual processes, providing a solution to 
the users in charge of these tasks. However, there are also AI projects 
that need constant justifications to keep them running when they 
could be replaced by other projects that perform more functions in a 
better way (Moore, 2019).

Before continuing, let us define the concept of AI. Suleimenov 
et  al. (2020) cataloged it from the field of computer science as a 
discipline and a set of cognitive and intellectual capabilities expressed 
by computer systems or combinations of algorithms whose purpose is 
the creation of machines that mimic human intelligence to perform 
tasks, and that can improve as they collect information.

In the field of AI, different methods can be used to efficiently 
manage data. Robotic process automation (RPA) tries to reduce 
human intervention mainly by interacting with high-level applications, 
which are the graphical interface layers (Madakam et al., 2019), i.e., it 
is an application that emulates the real interaction that a human would 
have with conventional computer applications. Whereas, ML is an 
application of AI that allows systems to learn and improve 
automatically by using data patterns; once these patterns are detected, 
ML adjusts the program’s actions using algorithms (Baştanlar and 
Özuysal, 2014; Bi et al., 2019).

To understand how process automation works using AI, one 
must know the four principles of intelligent automation: Thinking 

and Learning, Vision, Language, and Execution (Tyagi et  al., 
2021). The first principle is based on where technologies such as 
ML, data visualization, and big data analytics are used (Dohn 
et al., 2022). Second is vision, which allows computers to analyze 
and process activities such as optical character recognition 
(OCR), intelligent character recognition (ICR), video and image 
analysis, and biometric data analysis and processing (Li and Shi, 
2018). Language is the third principle that includes technologies 
such as Chatbots (conversations with intelligent robots) and 
unstructured information management (UIM), as well as 
sentiment and speech analysis (Bornet et al., 2021). Finally, the 
execution is the principle based on low-code (no-code) 
technologies, allowing individuals without software development 
knowledge to create applications or automate repetitive processes 
using RPA (Sahay et al., 2020).

Undoubtedly, the quality of the application development 
methodology has essential aspects that must be considered throughout 
its lifecycle, to ensure the requirements and provide value to the 
company (Saran, 2023). Barstow (1988), as part of his study, indicates 
that AI brings new functionalities in the software development process 
as it provides functions that automate the intellectual capacity of the 
individual, such as automated processes, Chatbots, and 
autonomous robots.

AI applied to software testing is evolving, altering the testing 
landscape by taking this process to another level where it will no 
longer rely so much on human reasoning. It focuses on facilitating the 
lifecycle by applying logic, problem-solving, and ML to solve tedious 
tasks related to software testing and its limitations. AI reviews recent 
code changes, code coverage, and other software testing metrics to 
decide which tests to run and when to run them, helping developers 
focus on other, more valuable tasks for the benefit of the company or 
organization (Dong et al., 2022; Ramalho et al., 2020).

The use of AI in test scenario optimization is projected to grow 
in every facet of creative technology due to the increasing number 
of applications we  use daily (Jain, 2023). AI applied to software 
testing aims to help organizational teams develop and test their code 
efficiently and effectively and create higher-quality software faster 
(Khaliq et al., 2022). Januszewski et al. (2021) and Lamberton et al. 
(2017) agree that AI, through applications such as RPA, can provide 
the ability to automate business processes, through repetitive tasks, 
along with the ability to integrate with other management 
information systems and facilitate the recording, organization, 
review and reporting of processes, activities, and tasks that impact 
the business.

Seth and Bagalkoti (2023) identified the ability of RPA to automate 
business, allowing to improve efficiency and effectiveness in the 
operation, since it facilitated the generation of automatic reports 
denoting defects and failures in the software, this is because they had 
a roadmap that outlined the methodology used by developers when 
implementing a technological solution.

An important aspect to consider when evaluating the ability of 
automated solutions to identify potential flaws in software 
development is the consideration of potential cyber vulnerabilities in 
development environments. Alfadel et al. (2023) found that the use of 
supervised and unsupervised algorithms allows the identification of 
programming code information circulating on the dark web. This 
allows companies to detect these codes and be notified of possible 
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vulnerabilities in their online infrastructure, helping to predict and 
address these flaws promptly. Horawalavithana et al. (2019) identified 
that the use of AI also allows for identifying vulnerabilities that are 
published as code flaws in technological platforms through comments 
in social networks, which allows for detecting vulnerabilities and 
exposures promptly.

A possible hypothesis that could arise around the use of AI is 
whether the technology can identify possible faults or errors in 
the code through automated tests based on supervised algorithms. 
Singh et al. (2016) posit that to achieve this goal, algorithms must 
be trained with valid old records, which allows for establishing 
the basis of coding and determining the root cause of a defect 
without supervision. In the year 2023, there were already 
technological platforms in the industry that provided automated 
tests for the verification of coding errors in web pages: (1) 
Selenium, is one of the leading platforms in this area, but it has 
some limitations such as the lack in handling dynamic web pages, 
reducing its responsiveness and accuracy in the results 
(Alsuwailem and Alharbi, 2023), and (2) Cypress simplifies 
asynchronous testing by executing tests only after everything 
necessary is loaded in the web application. It employs a test-
driven development (TDD) methodology and uses a Page Object 
Model (POM) framework, which provides high profitability. This 
approach increases the number of functions covered by the tests, 
improves execution speed by 21%, and reduces complexity of 
automation by 31% (Mobaraya and Ali, 2019).

Currently, as different automation environments could be used to 
generate reports that are useful during the development lifecycle of an 
application, Yatskiv et al. (2019) and Li et al. (2020) agree that RPA can 
be a powerful tool for the automation of software testing through a 
user-friendly graphical interface. This would allow the establishment 
of standardized processes and procedures, leading the organization 
toward a methodology for the design, planning, development, and 
implementation of applications, thus reducing the common problems 
in coding, but to achieve this goal, it is necessary to create the installed 
base (viable old codes) that will require a cost–benefit analysis by the 
company. The software testing stage requires an even more significant 
amount of time and effort than the software development stage, which 
is why it is vital for achieving the company’s objectives, as it guarantees 
the robustness of the software (Kushwaha and Misra, 2008).

Software development involves more than just knowing how to 
develop an application; it encompasses the entire software 
development lifecycle. This includes steps such as requirements 
elicitation, application design, creating the working software, testing, 
and many more steps. However, automating the analysis of failed tests 
would allow companies to reduce human intervention by performing 
these tasks using AI (Mauro, 2023).

AI allows companies to automate repetitive processes, which is 
very useful when autonomously reporting defects in task management 
tools such as JIRA. This allows staff to focus on different areas, as AI, 
together with ML, enhances RPA, speeding up decision-making and 
reducing the risk of errors (UIPath, 2023).

It is worth noting that there are relevant differences between the 
technologies because RPA focuses more on “doing.” At the same time, 
AI and ML are more concerned with “thinking and learning”; another 
difference is that RPA focuses primarily on processes. In contrast, AI 
and ML focus on data quality and how these help in good application 

development. RPA uses structured and logical inputs, while AI uses 
unstructured inputs and develops logical fields (NICE, 2023).

Use cases can be  created through the processes performed 
manually by users for defect reporting to allow RPA to automate 
this task. While AI and ML analyze the root cause of defects, RPA 
can take care of automatic defect reporting by first analyzing 
whether any similar defects are reported in the task management 
tool to avoid creating duplicate tickets (Bots, 2023). Because the 
uses or functions of the software are different within each company, 
and what is essential to one company is not necessary to another, 
each organization should automate its processes based on its usage 
manuals or policies established within the organization 
(Voss, 1985).

With increased competition among companies, the demand for 
software developers is constantly growing, resulting in an increase in 
the number of lines of code that must be analyzed and tested before 
they are considered optimal for delivery (Baddoo et al., 2006). Lodge 
(2023) identified that software developers spend 35% of their 
productive time on software testing.

With the imminent and forced technological update brought by 
the COVID-19 pandemic, coupled with the lack and difficulty of 
hiring qualified personnel, companies are increasingly forced to do 
more with the staff they have. This leads to the subject of this 
research, looking at how to automate those monotonous tasks. 
Aspects such as regression testing, log files automated test, and data 
validation method, through technologies such as AI, thus, manage 
to free up quality time for jobs that require more human input from 
the staff.

Although it might seem like common sense, implementing AI in 
software testing must address a major bottleneck: the need for an 
oracle. This mechanism defines what is right and what is wrong. AI is 
rarely used in bug detection due to the problem of automating the 
prophet; the only exception to this rule is regression testing, in which 
expected results can be analyzed and determined based on previous 
versions of the system or software (Lima et al., 2020).

Finally, all this saving of time means more quality time that 
developers and the rest of the team can allocate to more intellectually 
challenging work and any other task aimed at meeting the needs of 
customers or organizations. However, it should be  noted that, 
despite the many benefits that may bring the automation of software 
testing, if such automation is based on poorly designed processes, 
this will only potentiate errors and cause chaos and confusion for 
the team.

Finally, and most importantly, this new wave of thinking and 
implementation will allow the team to be free from repetitive and 
tedious tasks. It will give breathing room and creative freedom to 
other, more innovative ideas to benefit organizations that risk 
investing in these technologies.

3 Methodology

In the context of this study, a methodology that amalgamates a 
narrative and critical literature review with an exploratory and 
descriptive qualitative approach was implemented. The objective was 
to determine the most relevant aspects to be considered within AI that 
enable automatic analysis and reporting of software defects.
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TABLE 3 Relevant findings in the literature review.

Topic Number of 
matches

Percentage

Regression testing 37 36.27%

Log files automated test 30 29.41%

Data validation method and model 20 19.61%

Binary classification 15 14.71%

As a starting point, a narrative and critical review of previously 
existing literature in the field of automatic analysis and reporting of 
software defects was conducted to develop a solid conceptual 
framework based on previous research (Creswell et al., 2007). The 
methodology relied on a deductive line of reasoning to logically and 
productively structure the proposal of this study.

Consequently, it allowed a deep dive into the automatic analysis 
and reporting of software defects and the emerging trends in this field, 
focusing on the coexistence and evolution of AI automation testing to 
detect software defects, based on the approaches cited (Mariani 
et al., 2023).

To this end, a bibliometric review was carried out that included 
the review of scientific articles from 2013 to 2024, from here 79 
bibliographic references highlighted to the topic of the study 
were selected.

Subsequently, the documentary review was conducted through 
searches in electronic databases, such as Google Scholar, Web of 
Science, Emerald, Scopus, Science Direct, and EBSCO host, and 
consultation of websites of recognized authors in the field. These were 
carried out in Spanish and English, using specific search criteria, 
incorporating keywords such as “artificial intelligence,” “automation 
testing,” “software defects,” “software development,” “software failures,” 
“quality assurance,” and “quality control.”

Once the sources were compiled, the search for scientific articles 
was limited to finding 79 articles among the scientific databases 
consulted for the established time interval.

Subsequently, the 79 summaries of each research were read, which 
allowed the classification of the research into the categories of 
literature review and use cases. Then, by counting words and phrases, 
we were able to identify the aspects with the greatest repetition in the 
studies that stood out as relevant to the topic addressed in 
this research.

Finally, with all the information gathered, we  proceeded to 
identify and infer the characteristics, highlighting the controversies, 
main conversations, and threats associated with using AI for automatic 
analysis and reporting of software defects. This analysis is supported 
by notable researchers such as Khaliq et al. (2022), Ricca et al. (2021), 
and Job (2021), who highlight the growth and diversity of approaches 
in the use of AI for automation testing software.

4 Results

The phrase “artificial intelligence” appeared in 95% of the searches 
performed, which when combined with the word “automation testing” 
was reduced to 75% of the results obtained. In contrast, when 
combinations of “artificial intelligence” + “automation testing” + 
“software development” with “software defects” were performed, the 
results were reduced to 0.0014%, suggesting an opportunity for studies 
related to the use of artificial intelligence for automated software 
testing for defect detection. Other relevant descriptors were also 
identified, such as “regression testing,” “automated test,” “data 
validation,” “binary classification,” “machine learning algorithms,” 
“RPA,” and “API,” which allowed inferring the existence of a state of 
the art on the use of artificial intelligence for automatic analysis and 
reporting of software defects in a comprehensive manner and from a 
multidisciplinary perspective. Table 1 presents the results by year of 
the articles related to the subject of the study.

As shown in Table  2, the object of study acquired great 
relevance as of 2019, mainly driven by the commercial boom of 
artificial intelligence. Khakurel et  al. (2018) and Krittanawong 
(2018) agree that AI has taken a preponderant role in the digital 
era since it has allowed the acceleration of the digital 
transformation processes in organizations facing an uncertain 
future, while Vaishya et  al. (2020) state that the use of AI is a 
fundamental element for the survival of organizations after the 
impacts caused by the COVID-19 pandemic.

Table  2 summarizes the selected studies and the standard for 
identifying patterns and emerging trends when using AI for automatic 
analysis and reporting of software defects.

Table  2 shows two significant categories associated with the 
theme, the details of which are set out below:

The literature review, which includes empirical studies, has a 
46.84% representation in the results obtained. However, when 
reviewing the content of the studies in detail, by counting words and 
phrases, the following results were identified and obtained (see 
Table 3).

The results highlight the studies that take as their main interest 
the use of regression algorithms for automatic analysis and 
notification of software defects with 36.27% importance. In second 
position, with 29.41% is the use of automated testing through RPA 

TABLE 1 Results of the search for the object of study.

Year Items Percentage

2013 1 1.27%

2014 0 0.00%

2015 0 0.00%

2016 1 1.27%

2017 4 5.06%

2018 6 7.59%

2019 8 10.13%

2020 12 15.19%

2021 15 18.99%

2022 20 25.32%

2023 12 15.19%

2024 0 0.00%

TABLE 2 Scientific studies identified.

Type of study Items Percentage

Literature review (Empirical) 37 46.84%

Case studies 42 53.16%
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to review the logs of the log files generated by the applications. 
Then, in third position (19.61%), is the use of methods and models 
for data validation with the help of AI. Finally, 14.71% is the use of 
binary data classification algorithms. An important aspect to 
highlight is that the studies agree on the use of algorithms as a tool 
for predicting future patterns, but with the caveat that to obtain 
this result, it is necessary to have a statistically significant data 
sample, which allows training the models and avoiding an 
unexpected result.

Case studies (42 studies, 53.16%): This category is highlighted 
within the findings as developers are on a quest for detailed knowledge 
of uses, applications, experiences, and lessons learned in the field 
surrounding the use of AI for automatic analysis and software defect 
notification. The following have been documented for academic and 
scientific purposes. These have been documented for academic and 
scientific purposes (see Table 4).

The results are grouped into six aspects: (1) regression testing 
(31.5%), (2) log files automated test (24.5%), (3) data validation 
method and model (17.5%), indicating the AI applications that 
are being documented in science and that allow us to see the 
trend that this technology is taking for the automatic analysis of 
software defects as main aspects to be considered, (4) machine 
learning algorithms (11%), (5) RPA (9%), and (6) API (6.5%), 
which provides us with evidence of the most common aspects as 
models and processes in AI that allow us to detect and report a 
software defect. All categories document the impact of the use of 
mathematical models to predict data patterns that can 
be efficiently and effectively identified by AI, identifying lessons 
learned that seek to document these aspects as implications in a 
timely manner.

In summary, the use of AI for automated software testing for 
defect detection has advanced in the field of software engineering. 
In recent years, there have been emerging studies that seek 
evidence in the field of how AI technology can contribute to the 
efficiency and effectiveness of processes. However, from the 
results obtained in the bibliometric review conducted on the 
subject, together with recognized authors and the expert 
judgment of researchers, it has been identified that it is still an 
area with great opportunities for exploration since the studies are 
only focused on applications such as ML and RPA, through 
prediction models such as regression testing and log files 
automated test, which generates a huge potential for 
transformation for the incorporation of AI in the lifecycle of 
applications. These findings highlight an opportunity for 
scientific studies to address these issues as part of the digital 
acceleration processes.

5 Discussion

The results obtained highlight the main trends in the use of AI 
for software defect detection, the relevant categories being the 
literature review and case studies, where regression testing, the log 
files automated test model, and the data validation method and 
model stand out and coincide in both categories. Therefore, the 
importance and relevance of these findings are expanded in this 
section with the following articles.

Jyolsna and Anuar (2022) in their study used the automatic testing 
functionality of the Cypress Test Runner in a web environment; 
obtaining as results the execution of software tests and generation of a 
report of the positive and negative results of the tests in real-time. 
However, the study highlights the complexity of the automatic testing 
process. Without a data validation method and model in the 
development environment, it becomes impossible to establish a baseline 
to guide the testing process. This can lead to multiple validation paths, 
potentially containing untrained data, and result in different versions of 
tests and reports due to the lack of a proper methodology (regression 
testing and log files automated test).

Pelivani et al. (2022) emphasize the importance of having aspects 
such as regression testing, log files automated test, and data validation 
method, so that the Cypress AI algorithms can function correctly in 
the generation of information and report generation. The lack of this 
pattern will generate an error log in the automated tests, due to the 
lack of a standard. Satapathy et al. (2020) identified that when an 
error occurs in the execution of the automated test, the Cypress-
Failed-Log application generates a log in JavaScript Object Notation 
(JSON) format with the data associated with the error identified in 
the test, being a functionality that adds value to the software 
testing process.

de Silva et al. (2023) identified in their field study on the Cypress 
application, that the application at the moment of having the 
normalized data, uses algorithms based on natural language 
processing (NLP), normalizing the content being created within the 
JSON file, through the sintering of the data, using the words and 
phrases that are not necessary.

Ahmadi (2023) emphasizes that any automatic software 
testing process must start with the training process of the data 
validation method and model; in the case of Cypress-Failed-Log, 
training is performed from the log files (JSON) generated, which 
is then converted into information that is parameterized through 
a token.

After the creation of the token, the entities to be used are created, 
which contain the information and categories of error classification; 
which are entered as part of the process for error analysis (Trad, 2023), 
being available during the analysis process, evaluation, and reporting of 
software defects at the time of the study, being available during the 
analysis process an opportunity for the development of future study in the 
field of self-analysis of software defects.

An alternative solution to the lack of automated platforms for 
the analysis, evaluation, and reporting of software defects, would 
be the delivery of the software coding done by the developers as 
a source (baseline) for the establishment of a roadmap that 
would allow the creation of a version comparison in the solution 
to be  designed. Bui et  al. (2020) mention that AI has the 
capability and potential to search within a repository all the 
changes in the coding of the software programming performed; 

TABLE 4 Relevant findings in the case studies.

Topic Number of 
matches

Percentage

Regression testing 69 31,5%

Log files automated test 53 24.5%

Data validation method and model 38 17.5%

Machine learning algorithms 24 11%

RPA 20 9%

API 14 6.5%

https://doi.org/10.3389/frai.2024.1443956
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Esposito et al. 10.3389/frai.2024.1443956

Frontiers in Artificial Intelligence 06 frontiersin.org

and from a baseline of the coding provided by the company, 
identify the variations in real-time using an automatic analysis 
and testing process.

Seth and Bagalkoti (2023) argue that an RPA platform could 
access a repository with the details of the reported bugs (data), and 
from here it would run the comparison process to identify the defect 
in the software and generate the report with the identified finding. 
However, this functionality is not yet available for software engineering 
organizations, remaining only as an assumption or proposal to 
be evaluated by future researchers.

6 Conclusion

6.1 Context

Currently, the business sector is under strong pressure to 
be increasingly competitive in the digital landscape. The use of AI will 
help create more agile organizations by reducing the mechanical activities 
associated with quality processes for products, goods, and services.

6.2 Findings

However, the limitation to incorporating an agile mindset in 
software defects will depend on the data management models inside 
the culture. Examples of these aspects are the use of regression tests 
and automated log files, which can contribute to the reduction of 
errors. Unfortunately, the lack of methodologies to implement a 
software defects protocol is currently a challenge to several 
companies, since there is no standard roadmap for reporting 
software bugs and defects that can serve as a collaborative knowledge 
to the industry.

The lack of this methodological standard has led to the 
generation of research studies that seek to identify best practices to 
be applied to the business sector. However, in academia, common 
thoughts are emerging that promote the use of mathematical 
models based on AI, such as regression tests or mathematical 
procedures for automated processes.

6.3 Recommendations

The following recommendations are proposed based on the 
results obtained:

 1 Obtaining, validating, and arranging the data as a representative 
sample of the functionality to be evaluated.

 2 Verify and validate the training model (supervised or 
unsupervised) from the data model, to obtain the most 
accurate results possible.

 3 Establish a methodology for documenting the results of the 
software tests, to document failures, errors, and faults.

 4 Establish within the methodology a roadmap to identify the 
root cause of a possible failure or malfunction.

6.4 Future research

Finally, from the findings identified in this study related to the 
use of AI for software defects, it was possible to identify the use and 
proliferation of this science in the last 5 years, through practical 
applications in the fields of ML and RPA, which allow the 
identification, analysis, testing, and reporting of errors and faults that 
have been identified in previous scenarios, improving costs, and 
ensuring quality.

In the area of future research lines, the use of AI for software 
defect notification will be explored in greater detail, through field tests 
that allow for generating a greater number and variety of case studies.
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