
Frontiers in Artificial Intelligence 01 frontiersin.org

The use of artificial intelligence
for automatic analysis and
reporting of software defects
Mark Esposito 1,2*, Saman Sarbazvatan 3, Terence Tse 1 and
Gabriel Silva-Atencio 4

1 Hult International Business School, Cambridge, MA, United States, 2 Berkman Klein Center for Internet
and Society at Harvard University, Cambridge, MA, United States, 3 École des ponts ParisTech (ENPC),
Marne-la-Vallée, France, 4 Universidad Latinoamérica de Ciencia y Tecnología (ULACIT), San José,
Costa Rica

The COVID-19 pandemic marked a before and after in the business world, causing a
growing demand for applications that streamline operations, reduce delivery times
and costs, and improve the quality of products. In this context, artificial intelligence
(AI) has taken a relevant role in improving these processes, since it incorporates
mathematical models that allow analyzing the logical structure of the systems to
detect and reduce errors or failures in real-time. This study aimed to determine
the most relevant aspects to be considered for detecting software defects using
AI. The methodology used was qualitative, with an exploratory, descriptive, and
non-experimental approach. The technique involved a documentary review of
79 bibliometric references. The most relevant finding was the use of regression
testing techniques and automated log files, in machine learning (ML) and robotic
process automation (RPA) environments. These techniques help reduce the time
required to identify failures, thereby enhancing efficiency and effectiveness in the
lifecycle of applications. In conclusion, companies that incorporate AI algorithms
will be able to include an agile model in their lifecycle, as they will reduce the rate
of failures, errors, and breakdowns allowing cost savings, and ensuring quality.

KEYWORDS

artificial intelligence, software development, automation testing, software defect,
software failure

1 Introduction

Artificial Intelligence (AI) is not a technology far from everything that surrounds us in
our daily lives: robots, computers that understand our language, and autonomous cars, among
others, are part of the future that we saw on television and that we now have in our present
(Kacena et al., 2024; Finlay and Dix, 1996).

AI in software quality assurance has brought great benefits to companies, helping
in tasks such as predicting and locating defects, sequence learning, code cloning, and
many other functions. Correctly using these technologies has resulted in software
companies reducing the effort, time, and costs required for defect discovery and
resolution (Satapathy et al., 2020).

In recent years, there has been a strong desire by engineers and companies to automate as
much as possible and to use the latest trends in technology. However, this focus often overlooks
the potential side effects. Despite this, AI is increasingly being applied to autonomously detect
and analyze defects. In the early days of software development, people wrote program code
and found defects as they used it during development (Acemoglu and Restrepo, 2018;
Rodríguez-Pérez et al., 2020). Later, to improve the quality of applications, more thorough

OPEN ACCESS

EDITED BY

Asif Gill,
University of Technology Sydney, Australia

REVIEWED BY

Biju Bajracharya,
East Tennessee State University, United States
Antonio Sarasa-Cabezuelo,
Complutense University of Madrid, Spain

*CORRESPONDENCE

Mark Esposito
 mark@mark-esposito.com

RECEIVED 04 June 2024
ACCEPTED 18 November 2024
PUBLISHED 11 December 2024

CITATION

Esposito M, Sarbazvatan S, Tse T and
Silva-Atencio G (2024) The use of artificial
intelligence for automatic analysis and
reporting of software defects.
Front. Artif. Intell. 7:1443956.
doi: 10.3389/frai.2024.1443956

COPYRIGHT

© 2024 Esposito, Sarbazvatan, Tse and
Silva-Atencio. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research
PUBLISHED 11 December 2024
DOI 10.3389/frai.2024.1443956

https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2024.1443956&domain=pdf&date_stamp=2024-12-11
https://www.frontiersin.org/articles/10.3389/frai.2024.1443956/full
https://www.frontiersin.org/articles/10.3389/frai.2024.1443956/full
https://www.frontiersin.org/articles/10.3389/frai.2024.1443956/full
mailto:mark@mark-esposito.com
https://doi.org/10.3389/frai.2024.1443956
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2024.1443956

Esposito et al. 10.3389/frai.2024.1443956

Frontiers in Artificial Intelligence 02 frontiersin.org

testing was incorporated to detect defects as early as possible (Xu et al.,
2014). Consequently, as the lines of code increased, the testing and
verification processes became longer and more complex, even causing
errors or omissions that were performed manually (Nagaria and
Hall, 2020).

The processes for analyzing and detecting faults or failures in
information applications are highly time-consuming. Kushwaha
and Misra (2008) identified that the tests in these technological
platforms must be repeated several times, in order for the
developers to identify the root cause of the defect, an arduous job
that does not guarantee that the failure will be fully corrected.
Thus, this study aims to identify the main techniques that can
be used to reduce the failure rate for these technological solutions
automatically through the use of AI.

If the process of analysis and failure detection could be automated,
companies would experience continuous improvement. Automating
tasks related to planning, execution, control, and monitoring in
application coding would reduce the time and costs, while enhancing
product quality, as many of these tasks would be performed in an
automated way. Gonçalves et al. (2017) identified that, by freeing
collaborators from software quality review tasks, this knowledge,
experience, and expertise could be used in new processes and
procedures of new applications. However, automation also has its
limitations, Skripchuk et al. (2022) identified that if machine learning
(ML) algorithms are not trained with sufficient statistical data that
represents the universe, undesired results can be obtained, generating
failures in the applications that can have an impact in different areas
of the organization.

2 Literature review

The implementation of AI is based on a measurable characteristic
and its impact on business needs. A clear example is the projects that
use AI to automate many manual processes, providing a solution to
the users in charge of these tasks. However, there are also AI projects
that need constant justifications to keep them running when they
could be replaced by other projects that perform more functions in a
better way (Moore, 2019).

Before continuing, let us define the concept of AI. Suleimenov
et al. (2020) cataloged it from the field of computer science as a
discipline and a set of cognitive and intellectual capabilities expressed
by computer systems or combinations of algorithms whose purpose is
the creation of machines that mimic human intelligence to perform
tasks, and that can improve as they collect information.

In the field of AI, different methods can be used to efficiently
manage data. Robotic process automation (RPA) tries to reduce
human intervention mainly by interacting with high-level applications,
which are the graphical interface layers (Madakam et al., 2019), i.e., it
is an application that emulates the real interaction that a human would
have with conventional computer applications. Whereas, ML is an
application of AI that allows systems to learn and improve
automatically by using data patterns; once these patterns are detected,
ML adjusts the program’s actions using algorithms (Baştanlar and
Özuysal, 2014; Bi et al., 2019).

To understand how process automation works using AI, one
must know the four principles of intelligent automation: Thinking

and Learning, Vision, Language, and Execution (Tyagi et al.,
2021). The first principle is based on where technologies such as
ML, data visualization, and big data analytics are used (Dohn
et al., 2022). Second is vision, which allows computers to analyze
and process activities such as optical character recognition
(OCR), intelligent character recognition (ICR), video and image
analysis, and biometric data analysis and processing (Li and Shi,
2018). Language is the third principle that includes technologies
such as Chatbots (conversations with intelligent robots) and
unstructured information management (UIM), as well as
sentiment and speech analysis (Bornet et al., 2021). Finally, the
execution is the principle based on low-code (no-code)
technologies, allowing individuals without software development
knowledge to create applications or automate repetitive processes
using RPA (Sahay et al., 2020).

Undoubtedly, the quality of the application development
methodology has essential aspects that must be considered throughout
its lifecycle, to ensure the requirements and provide value to the
company (Saran, 2023). Barstow (1988), as part of his study, indicates
that AI brings new functionalities in the software development process
as it provides functions that automate the intellectual capacity of the
individual, such as automated processes, Chatbots, and
autonomous robots.

AI applied to software testing is evolving, altering the testing
landscape by taking this process to another level where it will no
longer rely so much on human reasoning. It focuses on facilitating the
lifecycle by applying logic, problem-solving, and ML to solve tedious
tasks related to software testing and its limitations. AI reviews recent
code changes, code coverage, and other software testing metrics to
decide which tests to run and when to run them, helping developers
focus on other, more valuable tasks for the benefit of the company or
organization (Dong et al., 2022; Ramalho et al., 2020).

The use of AI in test scenario optimization is projected to grow
in every facet of creative technology due to the increasing number
of applications we use daily (Jain, 2023). AI applied to software
testing aims to help organizational teams develop and test their code
efficiently and effectively and create higher-quality software faster
(Khaliq et al., 2022). Januszewski et al. (2021) and Lamberton et al.
(2017) agree that AI, through applications such as RPA, can provide
the ability to automate business processes, through repetitive tasks,
along with the ability to integrate with other management
information systems and facilitate the recording, organization,
review and reporting of processes, activities, and tasks that impact
the business.

Seth and Bagalkoti (2023) identified the ability of RPA to automate
business, allowing to improve efficiency and effectiveness in the
operation, since it facilitated the generation of automatic reports
denoting defects and failures in the software, this is because they had
a roadmap that outlined the methodology used by developers when
implementing a technological solution.

An important aspect to consider when evaluating the ability of
automated solutions to identify potential flaws in software
development is the consideration of potential cyber vulnerabilities in
development environments. Alfadel et al. (2023) found that the use of
supervised and unsupervised algorithms allows the identification of
programming code information circulating on the dark web. This
allows companies to detect these codes and be notified of possible

https://doi.org/10.3389/frai.2024.1443956
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Esposito et al. 10.3389/frai.2024.1443956

Frontiers in Artificial Intelligence 03 frontiersin.org

vulnerabilities in their online infrastructure, helping to predict and
address these flaws promptly. Horawalavithana et al. (2019) identified
that the use of AI also allows for identifying vulnerabilities that are
published as code flaws in technological platforms through comments
in social networks, which allows for detecting vulnerabilities and
exposures promptly.

A possible hypothesis that could arise around the use of AI is
whether the technology can identify possible faults or errors in
the code through automated tests based on supervised algorithms.
Singh et al. (2016) posit that to achieve this goal, algorithms must
be trained with valid old records, which allows for establishing
the basis of coding and determining the root cause of a defect
without supervision. In the year 2023, there were already
technological platforms in the industry that provided automated
tests for the verification of coding errors in web pages: (1)
Selenium, is one of the leading platforms in this area, but it has
some limitations such as the lack in handling dynamic web pages,
reducing its responsiveness and accuracy in the results
(Alsuwailem and Alharbi, 2023), and (2) Cypress simplifies
asynchronous testing by executing tests only after everything
necessary is loaded in the web application. It employs a test-
driven development (TDD) methodology and uses a Page Object
Model (POM) framework, which provides high profitability. This
approach increases the number of functions covered by the tests,
improves execution speed by 21%, and reduces complexity of
automation by 31% (Mobaraya and Ali, 2019).

Currently, as different automation environments could be used to
generate reports that are useful during the development lifecycle of an
application, Yatskiv et al. (2019) and Li et al. (2020) agree that RPA can
be a powerful tool for the automation of software testing through a
user-friendly graphical interface. This would allow the establishment
of standardized processes and procedures, leading the organization
toward a methodology for the design, planning, development, and
implementation of applications, thus reducing the common problems
in coding, but to achieve this goal, it is necessary to create the installed
base (viable old codes) that will require a cost–benefit analysis by the
company. The software testing stage requires an even more significant
amount of time and effort than the software development stage, which
is why it is vital for achieving the company’s objectives, as it guarantees
the robustness of the software (Kushwaha and Misra, 2008).

Software development involves more than just knowing how to
develop an application; it encompasses the entire software
development lifecycle. This includes steps such as requirements
elicitation, application design, creating the working software, testing,
and many more steps. However, automating the analysis of failed tests
would allow companies to reduce human intervention by performing
these tasks using AI (Mauro, 2023).

AI allows companies to automate repetitive processes, which is
very useful when autonomously reporting defects in task management
tools such as JIRA. This allows staff to focus on different areas, as AI,
together with ML, enhances RPA, speeding up decision-making and
reducing the risk of errors (UIPath, 2023).

It is worth noting that there are relevant differences between the
technologies because RPA focuses more on “doing.” At the same time,
AI and ML are more concerned with “thinking and learning”; another
difference is that RPA focuses primarily on processes. In contrast, AI
and ML focus on data quality and how these help in good application

development. RPA uses structured and logical inputs, while AI uses
unstructured inputs and develops logical fields (NICE, 2023).

Use cases can be created through the processes performed
manually by users for defect reporting to allow RPA to automate
this task. While AI and ML analyze the root cause of defects, RPA
can take care of automatic defect reporting by first analyzing
whether any similar defects are reported in the task management
tool to avoid creating duplicate tickets (Bots, 2023). Because the
uses or functions of the software are different within each company,
and what is essential to one company is not necessary to another,
each organization should automate its processes based on its usage
manuals or policies established within the organization
(Voss, 1985).

With increased competition among companies, the demand for
software developers is constantly growing, resulting in an increase in
the number of lines of code that must be analyzed and tested before
they are considered optimal for delivery (Baddoo et al., 2006). Lodge
(2023) identified that software developers spend 35% of their
productive time on software testing.

With the imminent and forced technological update brought by
the COVID-19 pandemic, coupled with the lack and difficulty of
hiring qualified personnel, companies are increasingly forced to do
more with the staff they have. This leads to the subject of this
research, looking at how to automate those monotonous tasks.
Aspects such as regression testing, log files automated test, and data
validation method, through technologies such as AI, thus, manage
to free up quality time for jobs that require more human input from
the staff.

Although it might seem like common sense, implementing AI in
software testing must address a major bottleneck: the need for an
oracle. This mechanism defines what is right and what is wrong. AI is
rarely used in bug detection due to the problem of automating the
prophet; the only exception to this rule is regression testing, in which
expected results can be analyzed and determined based on previous
versions of the system or software (Lima et al., 2020).

Finally, all this saving of time means more quality time that
developers and the rest of the team can allocate to more intellectually
challenging work and any other task aimed at meeting the needs of
customers or organizations. However, it should be noted that,
despite the many benefits that may bring the automation of software
testing, if such automation is based on poorly designed processes,
this will only potentiate errors and cause chaos and confusion for
the team.

Finally, and most importantly, this new wave of thinking and
implementation will allow the team to be free from repetitive and
tedious tasks. It will give breathing room and creative freedom to
other, more innovative ideas to benefit organizations that risk
investing in these technologies.

3 Methodology

In the context of this study, a methodology that amalgamates a
narrative and critical literature review with an exploratory and
descriptive qualitative approach was implemented. The objective was
to determine the most relevant aspects to be considered within AI that
enable automatic analysis and reporting of software defects.

https://doi.org/10.3389/frai.2024.1443956
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Esposito et al. 10.3389/frai.2024.1443956

Frontiers in Artificial Intelligence 04 frontiersin.org

TABLE 3 Relevant findings in the literature review.

Topic Number of
matches

Percentage

Regression testing 37 36.27%

Log files automated test 30 29.41%

Data validation method and model 20 19.61%

Binary classification 15 14.71%

As a starting point, a narrative and critical review of previously
existing literature in the field of automatic analysis and reporting of
software defects was conducted to develop a solid conceptual
framework based on previous research (Creswell et al., 2007). The
methodology relied on a deductive line of reasoning to logically and
productively structure the proposal of this study.

Consequently, it allowed a deep dive into the automatic analysis
and reporting of software defects and the emerging trends in this field,
focusing on the coexistence and evolution of AI automation testing to
detect software defects, based on the approaches cited (Mariani
et al., 2023).

To this end, a bibliometric review was carried out that included
the review of scientific articles from 2013 to 2024, from here 79
bibliographic references highlighted to the topic of the study
were selected.

Subsequently, the documentary review was conducted through
searches in electronic databases, such as Google Scholar, Web of
Science, Emerald, Scopus, Science Direct, and EBSCO host, and
consultation of websites of recognized authors in the field. These were
carried out in Spanish and English, using specific search criteria,
incorporating keywords such as “artificial intelligence,” “automation
testing,” “software defects,” “software development,” “software failures,”
“quality assurance,” and “quality control.”

Once the sources were compiled, the search for scientific articles
was limited to finding 79 articles among the scientific databases
consulted for the established time interval.

Subsequently, the 79 summaries of each research were read, which
allowed the classification of the research into the categories of
literature review and use cases. Then, by counting words and phrases,
we were able to identify the aspects with the greatest repetition in the
studies that stood out as relevant to the topic addressed in
this research.

Finally, with all the information gathered, we proceeded to
identify and infer the characteristics, highlighting the controversies,
main conversations, and threats associated with using AI for automatic
analysis and reporting of software defects. This analysis is supported
by notable researchers such as Khaliq et al. (2022), Ricca et al. (2021),
and Job (2021), who highlight the growth and diversity of approaches
in the use of AI for automation testing software.

4 Results

The phrase “artificial intelligence” appeared in 95% of the searches
performed, which when combined with the word “automation testing”
was reduced to 75% of the results obtained. In contrast, when
combinations of “artificial intelligence” + “automation testing” +
“software development” with “software defects” were performed, the
results were reduced to 0.0014%, suggesting an opportunity for studies
related to the use of artificial intelligence for automated software
testing for defect detection. Other relevant descriptors were also
identified, such as “regression testing,” “automated test,” “data
validation,” “binary classification,” “machine learning algorithms,”
“RPA,” and “API,” which allowed inferring the existence of a state of
the art on the use of artificial intelligence for automatic analysis and
reporting of software defects in a comprehensive manner and from a
multidisciplinary perspective. Table 1 presents the results by year of
the articles related to the subject of the study.

As shown in Table 2, the object of study acquired great
relevance as of 2019, mainly driven by the commercial boom of
artificial intelligence. Khakurel et al. (2018) and Krittanawong
(2018) agree that AI has taken a preponderant role in the digital
era since it has allowed the acceleration of the digital
transformation processes in organizations facing an uncertain
future, while Vaishya et al. (2020) state that the use of AI is a
fundamental element for the survival of organizations after the
impacts caused by the COVID-19 pandemic.

Table 2 summarizes the selected studies and the standard for
identifying patterns and emerging trends when using AI for automatic
analysis and reporting of software defects.

Table 2 shows two significant categories associated with the
theme, the details of which are set out below:

The literature review, which includes empirical studies, has a
46.84% representation in the results obtained. However, when
reviewing the content of the studies in detail, by counting words and
phrases, the following results were identified and obtained (see
Table 3).

The results highlight the studies that take as their main interest
the use of regression algorithms for automatic analysis and
notification of software defects with 36.27% importance. In second
position, with 29.41% is the use of automated testing through RPA

TABLE 1 Results of the search for the object of study.

Year Items Percentage

2013 1 1.27%

2014 0 0.00%

2015 0 0.00%

2016 1 1.27%

2017 4 5.06%

2018 6 7.59%

2019 8 10.13%

2020 12 15.19%

2021 15 18.99%

2022 20 25.32%

2023 12 15.19%

2024 0 0.00%

TABLE 2 Scientific studies identified.

Type of study Items Percentage

Literature review (Empirical) 37 46.84%

Case studies 42 53.16%

https://doi.org/10.3389/frai.2024.1443956
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Esposito et al. 10.3389/frai.2024.1443956

Frontiers in Artificial Intelligence 05 frontiersin.org

to review the logs of the log files generated by the applications.
Then, in third position (19.61%), is the use of methods and models
for data validation with the help of AI. Finally, 14.71% is the use of
binary data classification algorithms. An important aspect to
highlight is that the studies agree on the use of algorithms as a tool
for predicting future patterns, but with the caveat that to obtain
this result, it is necessary to have a statistically significant data
sample, which allows training the models and avoiding an
unexpected result.

Case studies (42 studies, 53.16%): This category is highlighted
within the findings as developers are on a quest for detailed knowledge
of uses, applications, experiences, and lessons learned in the field
surrounding the use of AI for automatic analysis and software defect
notification. The following have been documented for academic and
scientific purposes. These have been documented for academic and
scientific purposes (see Table 4).

The results are grouped into six aspects: (1) regression testing
(31.5%), (2) log files automated test (24.5%), (3) data validation
method and model (17.5%), indicating the AI applications that
are being documented in science and that allow us to see the
trend that this technology is taking for the automatic analysis of
software defects as main aspects to be considered, (4) machine
learning algorithms (11%), (5) RPA (9%), and (6) API (6.5%),
which provides us with evidence of the most common aspects as
models and processes in AI that allow us to detect and report a
software defect. All categories document the impact of the use of
mathematical models to predict data patterns that can
be efficiently and effectively identified by AI, identifying lessons
learned that seek to document these aspects as implications in a
timely manner.

In summary, the use of AI for automated software testing for
defect detection has advanced in the field of software engineering.
In recent years, there have been emerging studies that seek
evidence in the field of how AI technology can contribute to the
efficiency and effectiveness of processes. However, from the
results obtained in the bibliometric review conducted on the
subject, together with recognized authors and the expert
judgment of researchers, it has been identified that it is still an
area with great opportunities for exploration since the studies are
only focused on applications such as ML and RPA, through
prediction models such as regression testing and log files
automated test, which generates a huge potential for
transformation for the incorporation of AI in the lifecycle of
applications. These findings highlight an opportunity for
scientific studies to address these issues as part of the digital
acceleration processes.

5 Discussion

The results obtained highlight the main trends in the use of AI
for software defect detection, the relevant categories being the
literature review and case studies, where regression testing, the log
files automated test model, and the data validation method and
model stand out and coincide in both categories. Therefore, the
importance and relevance of these findings are expanded in this
section with the following articles.

Jyolsna and Anuar (2022) in their study used the automatic testing
functionality of the Cypress Test Runner in a web environment;
obtaining as results the execution of software tests and generation of a
report of the positive and negative results of the tests in real-time.
However, the study highlights the complexity of the automatic testing
process. Without a data validation method and model in the
development environment, it becomes impossible to establish a baseline
to guide the testing process. This can lead to multiple validation paths,
potentially containing untrained data, and result in different versions of
tests and reports due to the lack of a proper methodology (regression
testing and log files automated test).

Pelivani et al. (2022) emphasize the importance of having aspects
such as regression testing, log files automated test, and data validation
method, so that the Cypress AI algorithms can function correctly in
the generation of information and report generation. The lack of this
pattern will generate an error log in the automated tests, due to the
lack of a standard. Satapathy et al. (2020) identified that when an
error occurs in the execution of the automated test, the Cypress-
Failed-Log application generates a log in JavaScript Object Notation
(JSON) format with the data associated with the error identified in
the test, being a functionality that adds value to the software
testing process.

de Silva et al. (2023) identified in their field study on the Cypress
application, that the application at the moment of having the
normalized data, uses algorithms based on natural language
processing (NLP), normalizing the content being created within the
JSON file, through the sintering of the data, using the words and
phrases that are not necessary.

Ahmadi (2023) emphasizes that any automatic software
testing process must start with the training process of the data
validation method and model; in the case of Cypress-Failed-Log,
training is performed from the log files (JSON) generated, which
is then converted into information that is parameterized through
a token.

After the creation of the token, the entities to be used are created,
which contain the information and categories of error classification;
which are entered as part of the process for error analysis (Trad, 2023),
being available during the analysis process, evaluation, and reporting of
software defects at the time of the study, being available during the
analysis process an opportunity for the development of future study in the
field of self-analysis of software defects.

An alternative solution to the lack of automated platforms for
the analysis, evaluation, and reporting of software defects, would
be the delivery of the software coding done by the developers as
a source (baseline) for the establishment of a roadmap that
would allow the creation of a version comparison in the solution
to be designed. Bui et al. (2020) mention that AI has the
capability and potential to search within a repository all the
changes in the coding of the software programming performed;

TABLE 4 Relevant findings in the case studies.

Topic Number of
matches

Percentage

Regression testing 69 31,5%

Log files automated test 53 24.5%

Data validation method and model 38 17.5%

Machine learning algorithms 24 11%

RPA 20 9%

API 14 6.5%

https://doi.org/10.3389/frai.2024.1443956
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Esposito et al. 10.3389/frai.2024.1443956

Frontiers in Artificial Intelligence 06 frontiersin.org

and from a baseline of the coding provided by the company,
identify the variations in real-time using an automatic analysis
and testing process.

Seth and Bagalkoti (2023) argue that an RPA platform could
access a repository with the details of the reported bugs (data), and
from here it would run the comparison process to identify the defect
in the software and generate the report with the identified finding.
However, this functionality is not yet available for software engineering
organizations, remaining only as an assumption or proposal to
be evaluated by future researchers.

6 Conclusion

6.1 Context

Currently, the business sector is under strong pressure to
be increasingly competitive in the digital landscape. The use of AI will
help create more agile organizations by reducing the mechanical activities
associated with quality processes for products, goods, and services.

6.2 Findings

However, the limitation to incorporating an agile mindset in
software defects will depend on the data management models inside
the culture. Examples of these aspects are the use of regression tests
and automated log files, which can contribute to the reduction of
errors. Unfortunately, the lack of methodologies to implement a
software defects protocol is currently a challenge to several
companies, since there is no standard roadmap for reporting
software bugs and defects that can serve as a collaborative knowledge
to the industry.

The lack of this methodological standard has led to the
generation of research studies that seek to identify best practices to
be applied to the business sector. However, in academia, common
thoughts are emerging that promote the use of mathematical
models based on AI, such as regression tests or mathematical
procedures for automated processes.

6.3 Recommendations

The following recommendations are proposed based on the
results obtained:

 1 Obtaining, validating, and arranging the data as a representative
sample of the functionality to be evaluated.

 2 Verify and validate the training model (supervised or
unsupervised) from the data model, to obtain the most
accurate results possible.

 3 Establish a methodology for documenting the results of the
software tests, to document failures, errors, and faults.

 4 Establish within the methodology a roadmap to identify the
root cause of a possible failure or malfunction.

6.4 Future research

Finally, from the findings identified in this study related to the
use of AI for software defects, it was possible to identify the use and
proliferation of this science in the last 5 years, through practical
applications in the fields of ML and RPA, which allow the
identification, analysis, testing, and reporting of errors and faults that
have been identified in previous scenarios, improving costs, and
ensuring quality.

In the area of future research lines, the use of AI for software
defect notification will be explored in greater detail, through field tests
that allow for generating a greater number and variety of case studies.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding author.

Author contributions

ME: Writing – original draft, Writing – review & editing. SS:
Writing – original draft, Writing – review & editing. TT: Writing –
original draft, Writing – review & editing. GS-A: Writing – original
draft, Writing – review & editing.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Acknowledgments

The authors would like to thank all those involved in the study
who made it possible to achieve the objectives of the research study.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

https://doi.org/10.3389/frai.2024.1443956
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Esposito et al. 10.3389/frai.2024.1443956

Frontiers in Artificial Intelligence 07 frontiersin.org

References
Acemoglu, D., and Restrepo, P. (2018). Artificial intelligence, automation, and work

(the economics of artificial intelligence: An agenda). Chicago, IL: University of Chicago
Press, 197–236.

Ahmadi, S. (2023). A tokenization system for the Kurdish language. ACL Anthology.
Available online at: https://aclanthology.org/2020.vardial-1.11

Alfadel, M., Costa, D. E., and Shihab, E. (2023). Empirical analysis of security vulnerabilities
in python packages. Empir. Softw. Eng. 28:59. doi: 10.1007/s10664-022-10278-4

Alsuwailem, G., and Alharbi, O. (2023). "utilizing machine learning for predicting
software faults through selenium testing tool," international journal of computations.
Informat. Manufact. 3, 13–27.

Baddoo, N., Hall, T., and Jagielska, D. (2006). Software developer motivation in a high
maturity company: a case study. Software Process 11, 219–228. doi: 10.1002/spip.265

Barstow, D. (1988). Artificial intelligence and software engineering. Exploring Artif.
Intel., 641–670. doi: 10.1016/B978-0-934613-67-5.50020-4

Baştanlar, Y., and Özuysal, M. (2014). “Introduction to machine learning” in
miRNomics: MicroRNA biology and computational analysis, Humana Press. 105–128.

Bi, Q., Goodman, K. E., Kaminsky, J., and Lessler, J. (2019). What is machine learning? A
primer for the epidemiologist. Am. J. Epidemiol. 188, 2222–2239. doi: 10.1093/aje/kwz189

Bornet, P., Barkin, I., and Wirtz, J. (2021). Intelligent automation: Welcome to the
world of hyperautomation: Learn how to harness artificial intelligence to boost business
& make our world more human. World of Hyperautomation.

Bots, C. (2023). The difference between robotic process automation and artificial
intelligence. CFB Bots. Available online at: https://cfb-bots.medium.com/the-difference-
between-robotic-process-automation-and-artificial-intelligence-4a71b4834788

Bui, X., Nguyen, H., Choi, Y., Nguyen-Thoi, T., Zhou, J., and Dou, J. (2020). Prediction of
slope failure in open-pit mines using a novel hybrid artificial intelligence model based on
decision tree and evolution algorithm. Sci. Rep. 10:9939. doi: 10.1038/s41598-020-66904-y

Creswell, J. W., Hanson, W. E., Clark Plano, V. L., and Morales, A. (2007). Qualitative
research designs: selection and implementation. Couns. Psychol. 35, 236–264. doi:
10.1177/0011000006287390

de Silva, D., Samarasekara, H. M. P. P. K. H., de Silva, L. S. M., de Silva, W. L. P.,
Methmini, P. K. H., Wijewickrama, G. R. P. S., et al. (2023). Evaluating the effectiveness
of different software testing frameworks on software quality. Research Square. doi:
10.21203/rs.3.rs-2928368/v1

Dohn, N. B., Kafai, Y., Mørch, A., and Ragni, M. (2022). Survey: artificial intelligence,
computational thinking and learning. KI-Künstliche Intelligenz 36, 5–16. doi: 10.1007/
s13218-021-00751-5

Dong, H., Falis, M., Whiteley, W., Alex, B., Matterson, J., Ji, S., et al. (2022). Automated
clinical coding: what, why, and where we are? NPJ Dig. Med. 5:159. doi: 10.1038/
s41746-022-00705-7

Finlay, J., and Dix, A. (1996). An introduction to artificial intelligence. Boca Raton,
FL: CRC Press.

Gonçalves, W. F., de Almeida, C. B., de Araújo, L. L., Ferraz, M. S., Xandú, R. B., and
de Farias, I. (2017). "The influence of human factors on the software testing process: the
impact of these factors on the software testing process," in 2017 12th Iberian conference
on information systems and technologies (CISTI): IEEE, pp. 1–6.

Horawalavithana, S., Bhattacharjee, A., Liu, R., Choudhury, N., Hall, L. O., and
Iamnitchi, A., (2019). "Mentions of security vulnerabilities on Reddit, twitter and
Github," in IEEE/WIC/ACM international conference on web intelligence, pp. 200–207.

Jain, R. (2023). 23 Software Testing Trends To Look Out For In 2023. Lambdatest.
Available online at: https://www.lambdatest.com/blog/software-testing-trends/

Januszewski, A., Kujawski, J., and Buchalska-Sugajska, N. (2021). Benefits of and
obstacles to RPA implementation in accounting firms. Procedia Comput. Sci. 192,
4672–4680. doi: 10.1016/j.procs.2021.09.245

Job, M. A. (2021). Automating and optimizing software testing using artificial
intelligence techniques. Int. J. Adv. Comput. Sci. Appl. 12:120571. doi: 10.14569/
IJACSA.2021.0120571

Jyolsna, J., and Anuar, S. (2022). Modern web automation with cypress. Io. Open Int.
J. Informatics 10, 182–196. doi: 10.11113/oiji2022.10n2.229

Kacena, M. A., Plotkin, L. I., and Fehrenbacher, J. C. (2024). The use of artificial
intelligence in writing scientific review articles. Curr. Osteoporos. Rep. 22, 115–121. doi:
10.1007/s11914-023-00852-0

Khakurel, J., Penzenstadler, B., Porras, J., Knutas, A., and Zhang, W. (2018). The rise
of artificial intelligence under the lens of sustainability. Technologies 6:100. doi: 10.3390/
technologies6040100

Khaliq, Z., Farooq, S. U., and Khan, D. A. (2022). Artificial intelligence in software testing:
Impact, problems, challenges and prospect. arXiv. doi: 10.48550/arXiv.2201.05371

Krittanawong, C. (2018). The rise of artificial intelligence and the uncertain future for
physicians. Eur. J. Intern. Med. 48, e13–e14. doi: 10.1016/j.ejim.2017.06.017

Kushwaha, D. S., and Misra, A. K. (2008). Software test effort estimation. ACM Sigsoft
Software Eng. Notes 33, 1–5. doi: 10.1145/1360602.1361211

Lamberton, C., Brigo, D., and Hoy, D. (2017). Impact of robotics, RPA and AI on the
insurance industry: challenges and opportunities. J. Finan. Perspect. 4. Available at:
https://ssrn.com/abstract=3079495

Li, X., and Shi, Y. (2018). "Computer vision imaging based on artificial intelligence,"
International conference on virtual reality and intelligent systems (ICVRIS),
pp. 22–25.

Li, J., Ulrich, A., Bai, X., and Bertolino, A. (2020). Advances in test automation for
software with special focus on artificial intelligence and machine learning. Softw. Qual.
J. 28, 245–248. doi: 10.1007/s11219-019-09472-3

Lima, R., da Cruz, A., and Ribeiro, J. (2020). "Artificial intelligence applied to software
testing: A literature review," in 2020 15th Iberian Conference on Information Systems
and Technologies (CISTI). pp. 1–6.

Lodge, M. (2023). Software testing is tedious. AI can help. Havard Business
Review. Available online at: https://hbr.org/2021/02/software-testing-is-tedious-ai-
can-help.

Madakam, S., Holmukhe, R. M., and Jaiswal, D. K. (2019). The future digital work
force: robotic process automation (RPA). JISTEM 16:6001. doi: 10.4301/
S1807-1775201916001erratum

Mariani, M., Machado, I., and Nambisan, S. (2023). Types of innovation and artificial
intelligence: a systematic quantitative literature review and research agenda. J. Bus. Res.
155:113364. doi: 10.1016/j.jbusres.2022.113364

Mauro, J. (2023). Intelligent Automation. AuraQuantic. Available online at: https://
www.auraquantic.com/what-is-intelligent-automation/

Mobaraya, F., and Ali, S. (2019). Technical analysis of selenium and cypress as
functional automation framework for modern web application testing," in 9th
international conference on computer science.

Moore, A. (2019). When AI becomes an everyday technology. Harv. Bus. Rev. 7.
Available at: https://hbr.org/2019/06/when-ai-becomes-an-everyday-technology

Nagaria, B., and Hall, T. (2020). How software developers mitigate their errors when
developing code. IEEE Trans. Softw. Eng. 48, 1853–1867. doi: 10.1109/
TSE.2020.3040554

NICE. (2023). AI and RPA: What is the Difference and Which is Best for Your
Organization? NICE Systems. Available online at: https://www.nice.com/rpa/rpa-guide/
rpa-ai-and-rpa-whats-the-difference-and-which-is-best-for-your-organization/

Pelivani, E., Besimi, A., and Cico, B. (2022). "A comparative study of UI testing framework,"
11th Mediterranean Conference on Embedded Computing (MECO), pp. 1–5.

Ramalho, A., Souza, J., and Freitas, A. (2020). The use of artificial intelligence for
clinical coding automation: a bibliometric analysis. Int. Symp. Distributed Comput. Artif.
Intel. 1237, 274–283. doi: 10.1007/978-3-030-53036-5_30

Ricca, F., Marchetto, A., and Stocco, A. (2021). "Ai-based test automation: A grey
literature analysis," in 2021 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), pp. 263–270.

Rodríguez-Pérez, G., Robles, G., Serebrenik, A., Zaidman, A., Germán, D. M., and
Gonzalez-Barahona, J. M. (2020). How bugs are born: a model to identify how bugs are
introduced in software components. Empir. Softw. Eng. 25, 1294–1340. doi: 10.1007/
s10664-019-09781-y

Sahay, A., Indamutsa, A., Di Ruscio, D., and Pierantonio, A. (2020). "Supporting the
understanding and comparison of low-code development platforms," in 2020 46th
Euromicro Conference on Software Engineering and Advanced Applications (SEAA),
pp. 171–178.

Saran, C. (2023). The Art of developing happy customers: Artificial Intelligence is
playing a growing role in modern software development. ComputerWeekly. Available
online at: https://www.computerweekly.com/feature/The-art-of-developing-happy-
customers.

Satapathy, S., Jena, A., Singh, J., Bilgaiyan, S., Mahapatra, S., and Mishra, S. (2020).
Usage of machine learning in software testing (automated software engineering: a deep
learning-based approach), Springer. 39–54.

Seth, S., and Bagalkoti, V. (2023). JIRA Report Extraction. Jaypee University of
Information Technology, Solan, H.P. Available online at: http://ir.juit.ac.in:8080/jspui/
jspui/handle/123456789/7226

Singh, A., Thakur, N., and Sharma, A. (2016). "A review of supervised machine
learning algorithms," in 2016 3rd International Conference on Computing for
Sustainable Global Development (INDIACom). pp. 1310–1315.

Skripchuk, J., Shi, Y., and Price, T. (2022). "Identifying common errors in open-ended
machine learning projects," in Proceedings of the 53rd ACM Technical Symposium on
Computer Science Education, pp. 216–222.

Suleimenov, I. E., Vitulyova, Y. S., Bakirov, A. S., and Gabrielyan, O. A. (2020).
"Artificial intelligence: what is it?," Proceedings of the 2020 6th International Conference
on Computer and Technology Applications, pp. 22–25.

Trad, T. (2023). Integration testing for enterprise web applications. Politecnico di
Torino. Available online at: http://webthesis.biblio.polito.it/id/eprint/28677

https://doi.org/10.3389/frai.2024.1443956
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://aclanthology.org/2020.vardial-1.11
https://doi.org/10.1007/s10664-022-10278-4
https://doi.org/10.1002/spip.265
https://doi.org/10.1016/B978-0-934613-67-5.50020-4
https://doi.org/10.1093/aje/kwz189
https://cfb-bots.medium.com/the-difference-between-robotic-process-automation-and-artificial-intelligence-4a71b4834788
https://cfb-bots.medium.com/the-difference-between-robotic-process-automation-and-artificial-intelligence-4a71b4834788
https://doi.org/10.1038/s41598-020-66904-y
https://doi.org/10.1177/0011000006287390
https://doi.org/10.21203/rs.3.rs-2928368/v1
https://doi.org/10.1007/s13218-021-00751-5
https://doi.org/10.1007/s13218-021-00751-5
https://doi.org/10.1038/s41746-022-00705-7
https://doi.org/10.1038/s41746-022-00705-7
https://www.lambdatest.com/blog/software-testing-trends/
https://doi.org/10.1016/j.procs.2021.09.245
https://doi.org/10.14569/IJACSA.2021.0120571
https://doi.org/10.14569/IJACSA.2021.0120571
https://doi.org/10.11113/oiji2022.10n2.229
https://doi.org/10.1007/s11914-023-00852-0
https://doi.org/10.3390/technologies6040100
https://doi.org/10.3390/technologies6040100
https://doi.org/10.48550/arXiv.2201.05371
https://doi.org/10.1016/j.ejim.2017.06.017
https://doi.org/10.1145/1360602.1361211
https://ssrn.com/abstract=3079495
https://doi.org/10.1007/s11219-019-09472-3
https://hbr.org/2021/02/software-testing-is-tedious-ai-can-help
https://hbr.org/2021/02/software-testing-is-tedious-ai-can-help
https://doi.org/10.4301/S1807-1775201916001erratum
https://doi.org/10.4301/S1807-1775201916001erratum
https://doi.org/10.1016/j.jbusres.2022.113364
https://www.auraquantic.com/what-is-intelligent-automation/
https://www.auraquantic.com/what-is-intelligent-automation/
https://hbr.org/2019/06/when-ai-becomes-an-everyday-technology
https://doi.org/10.1109/TSE.2020.3040554
https://doi.org/10.1109/TSE.2020.3040554
https://www.nice.com/rpa/rpa-guide/rpa-ai-and-rpa-whats-the-difference-and-which-is-best-for-your-organization/
https://www.nice.com/rpa/rpa-guide/rpa-ai-and-rpa-whats-the-difference-and-which-is-best-for-your-organization/
https://doi.org/10.1007/978-3-030-53036-5_30
https://doi.org/10.1007/s10664-019-09781-y
https://doi.org/10.1007/s10664-019-09781-y
https://www.computerweekly.com/feature/The-art-of-developing-happy-customers
https://www.computerweekly.com/feature/The-art-of-developing-happy-customers
http://ir.juit.ac.in:8080/jspui/jspui/handle/123456789/7226
http://ir.juit.ac.in:8080/jspui/jspui/handle/123456789/7226
http://webthesis.biblio.polito.it/id/eprint/28677

Esposito et al. 10.3389/frai.2024.1443956

Frontiers in Artificial Intelligence 08 frontiersin.org

Tyagi, A. K., Fernandez, T. F., Mishra, S., and Kumari, S. (2021). Intelligent automation
Systems at the Core of industry 4.0. Adv. Intel. Syst. Comput., 1–18. doi:
10.1007/978-3-030-71187-0_1

UIPath. (2023). AI and RPA Whitepaper – AI Center. UIPath. Available online at:
https://www.uipath.com/resources/automation-whitepapers/bringing-power-ai-rpa-
together-with-ai-center

Vaishya, R., Javaid, M., Khan, I. H., and Haleem, A. (2020). Artificial intelligence (AI)
applications for COVID-19 pandemic. Diabetes Metab. Syndr. Clin. Res. Rev. 14,
337–339. doi: 10.1016/j.dsx.2020.04.012

Voss, C. A. (1985). The role of users in the development of applications software. J.
Prod. Innov. Manag. 2, 113–121. doi: 10.1016/0737-6782(85)90007-4

Xu, D., Xu, W., Kent, M., Thomas, L., and Wang, L. (2014). An automated test
generation technique for software quality assurance. IEEE Trans. Reliab. 64, 247–268.
doi: 10.1109/TR.2014.2354172

Yatskiv, S., Voytyuk, I., Yatskiv, N., Kushnir, O., Trufanova, Y., and Panasyuk, V. (2019).
"Improved method of software automation testing based on the robotic process
automation technology," in 2019 9th International Conference on Advanced Computer
Information Technologies (ACIT). pp. 293–296.

https://doi.org/10.3389/frai.2024.1443956
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://doi.org/10.1007/978-3-030-71187-0_1
https://www.uipath.com/resources/automation-whitepapers/bringing-power-ai-rpa-together-with-ai-center
https://www.uipath.com/resources/automation-whitepapers/bringing-power-ai-rpa-together-with-ai-center
https://doi.org/10.1016/j.dsx.2020.04.012
https://doi.org/10.1016/0737-6782(85)90007-4
https://doi.org/10.1109/TR.2014.2354172

	The use of artificial intelligence for automatic analysis and reporting of software defects
	1 Introduction
	2 Literature review
	3 Methodology
	4 Results
	5 Discussion
	6 Conclusion
	6.1 Context
	6.2 Findings
	6.3 Recommendations
	6.4 Future research

	References

