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Packed columns are commonly used in post-combustion processes to capture

CO2 emissions by providing enhanced contact area between a CO2-laden

gas and CO2-absorbing solvent. To study and optimize solvent-based

post-combustion carbon capture systems (CCSs), computational fluid dynamics

(CFD) can be used to model the liquid–gas countercurrent flow hydrodynamics

in these columns and derive key determinants of CO2-capture e�ciency.

However, the large design space of these systems hinders the application

of CFD for design optimization due to its high computational cost. In

contrast, data-drivenmodeling approaches can produce fast surrogates to study

large-scale physics problems. We build our surrogates using MeshGraphNets

(MGN), a graph neural network framework that e�ciently learns and produces

mesh-based simulations. We apply MGN to a random packed column modeled

with over 160K graph nodes and a design space consisting of three key input

parameters: solvent surface tension, inlet velocity, and contact angle. Our

models can adapt to a wide range of these parameters and accurately predict

the complex interactions within the system at rates over 1700 times faster than

CFD, a�rming its practicality in downstream design optimization tasks. This

underscores the robustness and versatility of MGN in modeling complex fluid

dynamics for large-scale CCS analyses.

KEYWORDS

surrogate modeling, machine learning, computational fluid dynamics, graph neural

networks, carbon capture, design optimization

1 Introduction

Carbon capture systems (CCSs) play a crucial role in mitigating greenhouse gas

emissions from fossil fuel-based power plants and other industrial processes (Edenhofer,

2015; Koytsoumpa et al., 2018; Chao et al., 2021). Solvent-based post-combustion approach

is a widely adopted technology in which carbon dioxide (CO2) is captured through an

absorption process involving interactions between a liquid solvent and the flue gas inside

a packed column (Yeh et al., 2001; Wang et al., 2017). The design and optimization

of these CO2-capture columns is a foundational challenge, as their capture efficiency

critically depends on maximizing the gas-solvent interfacial area (IA) to enhance the CO2

absorption reaction (Singh et al., 2017; Song et al., 2018; Fu et al., 2022).

Modeling the hydrodynamics, heat, and mass transfer in a packed column typically

relies on computational fluid dynamics (CFD) simulations to numerically solve the

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2024.1441985
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2024.1441985&domain=pdf&date_stamp=2025-01-07
mailto:nguyen97@llnl.gov
https://doi.org/10.3389/frai.2024.1441985
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2024.1441985/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Lei et al. 10.3389/frai.2024.1441985

partial differential equations (PDEs) that govern the underlying

physical processes (Fu et al., 2020, 2022). While CFD methods

can provide physically accurate results, they are computationally

expensive to apply, especially when evaluating numerous column

configurations during the design optimization process. Hence,

generating CFD simulations is a bottleneck in the design

optimization of a CO2-capture column.

Recent advances in machine learning and deep learning

techniques have shown potential in accelerating traditional

numerical simulations (Raissi et al., 2019; Kim et al., 2019;

Brunton et al., 2020; Kochkov et al., 2021; Pfaff et al., 2020;

Karniadakis et al., 2021; Lino et al., 2023; Janny et al., 2023). By

leveraging data-driven models trained on existing simulations, it

becomes possible to develop surrogate models that can quickly

approximate the complex fluid dynamics and derive key CO2-

capture efficiency measures, such as IA. By replacing CFD with

these surrogates, this approach can substantially reduce the

computational burden associated with the design optimization

of CO2-capture columns, enabling a more thorough and rapid

exploration of the configuration space and facilitating the discovery

of high-performance designs.

Previously, Bartoldson et al. (2022) introduced a latent space

simulator that built upon Deep Fluids (Kim et al., 2019) and

leveraged autoencoders and latent space models to learn the

temporal evolution of fluid flow. When trained on simulations of

a CO2-capturing solvent flowing in a random packed column (Fu

et al., 2020), their optimized surrogates achieved 4,000× speedup

with 4% relative error in predicting IA for unseen inlet velocity

conditions. However, a major limitation of this model is its inability

to generalize well to new packing configurations, which required

retraining a separate model for each configuration.

Graph neural networks (GNNs) have emerged as a promising

direction for learning mesh-based simulations directly from mesh

data (Belbute-Peres et al., 2020; Pfaff et al., 2020; Lino et al.,

2021; Brandstetter et al., 2022; Allen et al., 2022; Fortunato

et al., 2022). GNNs operate on graphs, making them well-suited

for modeling the interactions between nodes (representing mesh

elements) and edges (representing connectivity) in non-uniform

meshes that are typically used in CFD. Pfaff et al. (2020) introduced

MeshGraphNets (MGN), a GNN framework that learns to simulate

mesh dynamics accurately and generalize well across different mesh

topologies. Building upon this, Bartoldson et al. (2023) proposed

SCALES2, a set of scientific computing-based enhancements that

can scale training to meshes with millions of nodes. They applied

their methods to 2D and 3D fluid flow simulations on multiple

random packing configurations of a CO2-capture column and

demonstrated that their enhanced MGN models can scale to large,

complex domains and transfer to unseen packed columns while still

achieving low prediction errors.

However, the aforementioned studies only considered

one design parameter (liquid inlet velocity) as a variable

input (Bartoldson et al., 2022, 2023), whereas the CO2-capture

efficiency of a column can be affected by multiple design and

operating conditions (Fu et al., 2022). In this study, we build on

the work by Bartoldson et al. (2023) and consider an expanded

dataset with multi-parametric inputs. We introduce contact angle

and surface tension as additional packing and solvent-related

design parameters to impose additional physical diversity onto

the fluid simulations and broaden the design optimization space

of operating conditions within a packed column. Different

combinations of the liquid inlet velocity, contact angle, and

surface tension can produce drastic differences in the fluid flow,

making surrogate modeling of this higher-dimensional dataset

an extremely challenging task. We demonstrate that MGN

can be successfully trained on these datasets to capture these

differences while still producing fast, accurate surrogates that

can be incorporated into large-scale, multi-dimensional design

optimization problems.

2 Method

2.1 Dataset

Our dataset consists of CFD simulations that model the liquid–

gas countercurrent flow hydrodynamics inside a CO2-capture

column (see Figure 1). The main objective for this dataset is

training models that can accurately predict the liquid volume

fraction and momentum at each position and timestep of the

computational domain. In each simulation, a CO2-capturing

solvent flows from top to bottom across pall rings that are randomly

packed in the column, which aim to spread the solvent across a wide

surface area on the rings to maximize the liquid-gas contact area;

example snapshots of these simulations may be found in Figure 5

and Supplementary Figures S2–S4.

We use the same setup described in Fu et al. (2020)

and Bartoldson et al. (2023): Eulerian simulations of the counter-

current solvent and gas flow are generated by numerically solving

the continuity and momentum equations with STAR-CCM+ and

modeling the multiphase fluid separation with the volume-of-fluid

method. The continuity equation is given by

∂ρ

∂t
+∇ · (ρu) = 0, (1)

where ρ is the density and u is the velocity field. The momentum

conservation equation is given by

∂(ρu)

∂t
+∇ · (ρuu) = −∇p+ µ∇2u+ ρg+ Fσ , (2)

where p is the pressure, µ is the viscosity, g is gravity, and Fσ is the

surface tension force at the gas-liquid interface. The density and

viscosity are computed as a volume fraction average of the liquid

(α) and gas phase (1 − α). The interfacial surface tension force Fσ

is computed as

Fσ = σκ∇α, κ = −∇ ·
∇α

|∇α|
, (3)

where σ is the surface tension coefficient and κ is the local surface

mean curvature. On the packing wall region, ∇α
|∇α|

is computed

as nw cos θ + tw sin θ , where nw and tw are the unit normal and

tangential vectors of the wall surface, respectively. The contact

angle θ is the angle between the gas–liquid interface and the solid

surface. Finally, the evolution of the liquid volume fraction α is

governed by the transport equation

∂α

∂t
+∇ · (uα) = 0. (4)
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FIGURE 1

(A) Visualization of a 3D CO2-capture column packed with pall rings. (B) 2D cross section of the 3D column. Mesh edges are created by Delaunay

triangulation.

TABLE 1 Discrete values for surface tension (σ ), contact angle (θ ), and

liquid inlet velocity (vinlet).

σ (N/m) 0.01, 0.03, 0.05, 0.07, 0.09

θ (◦) 10, 30, 50, 70, 90

vinlet (m/s) 0.002, 0.00326, 0.00531, 0.00864, 0.0141, 0.0218

The dataset consists of 150 unique combinations of these design parameters.

We generate 2D simulations by taking a cross-section of the

3D column (Figure 1A) and solving the governing equations on

that cross-section. STAR-CCM+ uses a timestep size of 0.001s to

solve the equations, but the data is saved at intervals of 0.01s.

Each simulation spans 500 timesteps; the number of timesteps is

chosen such that each simulation reaches a pseudo-steady-state

(stable behavior) by the end of the simulation. The 2D column is

represented by a computational mesh that contains 164,715 nodes,

and each node corresponds to a physical location in the domain

and containsmeasurements of its position, pressure, velocity, liquid

volume fraction, and momentum per unit volume. Momentum per

unit volume, or mass flow rate per unit area, is computed as

m =
[

αρL + (1− α)ρG
]

u, (5)

where ρL = 1010 kg/m3 and ρG = 1.18415 kg/m3 are the

liquid and gas densities, respectively. We construct edges using

Delaunay triangulation. The 2D domain with mesh edges is shown

in Figure 1B.

A key aspect of this dataset is the variation of three input

design parameters: liquid inlet velocity vinlet, contact angle θ , and

surface tension σ . Unlike previous works in which only vinlet was

varied (Bartoldson et al., 2022, 2023), the inclusion of θ and σ

introduces additional complexities in training accurate surrogate

models. These parameters can drastically influence the physical

behavior of the solvent and the interactions between the liquid,

gas, and packing structures within a CO2-capture column; we

describe these differences in detail in Section 3.3.2. Consequently,

the surrogate models must learn to adapt to and predict a larger

variety of fluid dynamics behaviors in order to make accurate

predictions across a wider parameter space. In total, our dataset

contains 150 2D simulations, achieved by varying the contact angle,

surface tension, and inlet velocity across 5, 5, and 6 discrete values,

respectively. The exact values are displayed in Table 1.

2.2 MeshGraphNets

MeshGraphNets (MGN) (Pfaff et al., 2020) is a message-passing

GNN that uses an encode-process-decode architecture (Battaglia

et al., 2018; Sanchez-Gonzalez et al., 2020) to learn from mesh-

based simulations. To make a prediction of a system at a

following timestep, the encoder transforms the input mesh data

at the current timestep into a graph and embeds its nodes and

edges into a high-dimensional feature space. The processor then

applies message-passing to summarize the physics dependencies

between neighboring nodes. By applying a sequence of k message-

passing steps, the processor forces each node and edge to

summarize information about its k-hop neighborhood to update

its embedding. The decoder then converts these latent features into

node outputs that can be used to update the state of the system.

Additional details about the MGN algorithmmay be found in Pfaff

et al. (2020).

2.2.1 Modeling and training details
Our goal is to train MGN models that can accurately predict

the evolution of the liquid volume fraction and momentum per
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unit volume throughout a random packed column. To train on

our 2D simulations, for each node i, we include the physical

location xi, momentum per unit volumemi, liquid volume fraction

αi, node type ni, contact angle θ , and surface tension σ as

input node features. Node types are one-hot encoded features

that contain information about the space or boundary that is

present at a node; details about the node types can be found

in Supplementary Figure S1. As design inputs, the contact angle

θ and surface tension σ are normalized and included in all the

node input features. We normalize θ from (0◦, 90◦) to (−1, 1)

and σ from (0, 0.1) to (−1, 1) using linear scaling. For liquid inlet

velocity vinlet, we incorporate it as a design input by setting and

fixing the corresponding momentum values at nodes that have

a “liquid inlet” node type. Based on the default MGN settings

in Pfaff et al. (2020), we use the same set of edge features (distance

and relative displacement vector), 15 message-passing steps, and

a hidden dimension of 128 to encode nodes and edges. Ablation

studies on the number of message-passing steps and the hidden

dimension size were also performed; see Supplementary Figures S6,

S7.

We train MGN to predict the change in liquid volume fraction

and momentum per unit volume between consecutive timesteps.

Specifically, if Gt represents the input graph and state of the system

and yt represents the target state variables at time t, then we train

MGN(Gt) to predict 1yt = yt+1 − yt . We then predict the next

state as ŷt+1 = yt + MGN(Gt). Given an initial graph G0, we can

generate a full simulation rollout prediction by iteratively applying

the MGNmodel and updating the graph with its predictions.

We use 32 NVIDIA V100 16 GB GPUs and an Adam optimizer

with an exponentially decaying learning rate from 1e-3 to 1e-7

over 4 million steps to train MGN models. Since we cannot fit

our large 165K-node graph on a single GPU during training, we

apply domain decomposition and patch training to train on smaller

subgraphs in a manner that would be equivalent to training on the

whole graph (Bartoldson et al., 2023). We partition the graph into

a 3× 4 grid and add “ghost” nodes to each patch so that each node

that contributes to a gradient update has access to its correct 15-

hop neighborhood, and we randomly sample patches across all the

train simulations and timesteps to perform gradient updates. To

evaluate performance for unseen input parameter configurations,

we partition our dataset into 120 train and 30 test simulations

using Latin hypercube sampling to ensure sufficient coverage of the

design space in the test dataset. Supplementary Figure S9 provides

the design parameter details for each train and test simulation.

3 Results

3.1 Evaluation metrics

We evaluate the performance of our trained models in several

ways. First, we compute the root-mean-square error (RMSE) of

the next-step predictions of liquid volume fraction, denoted as

RMSEVF−1. Since we generate a predicted rollout by repeatedly

feeding the next-step predictions back into the MGN, these errors

may accumulate over the course of a simulation. Therefore, we also

compute the RMSE at the end of a predicted simulation (at timestep

500), denoted as RMSEVF−500. Since our main purpose of training

TABLE 2 Average one-step error RMSEVF−1, final-step error RMSEVF−500

and relative IA error for train and test simulations.

RMSEVF−1 RMSEVF−500 Relative IA
error

Train 0.029 0.310 7.6%

Test 0.030 0.313 9.2%

surrogate models is rapid evaluation of various parameters to

maximize CO2-capture efficiency in a design optimization pipeline,

we also compute the relative error of the steady-state interfacial area

(IA). We compute IA as the total arc length of contours where the

liquid volume fraction is equal to 0.5, and we compute steady-state

IA as the average IA of the last 20 timesteps of a simulation. The

equations of RMSEVF−1, RMSEVF−500, and relative IA error can be

found in Section 1 of the supplementary text. Table 2 summarizes

the RMSEVF−1, RMSEVF−500, and relative IA errors of the train and

test datasets.

3.2 One-step prediction

Since the MGN model is trained using the one-step difference

1yt = yt+1 − yt , the one-step error RMSEVF−1 directly reflects

its training performance. The average RMSEVF−1 for the train

and test datasets are 0.029 and 0.030, respectively, so the MGN

model performs consistently well in one-step prediction across

both train and test datasets. The model also does not overfit to the

train dataset.

To analyze the influence of design parameters on one-step

prediction, we group the results based on the values of each

parameter, as shown in Figure 2. Figure 2A shows a strong

correlation between the prediction error and liquid inlet velocity

vinlet, with RMSEVF−1 increasing as vinlet increases in both train

and test datasets. Since MGN predicts 1yt = yt+1 − yt , the

distribution of 1yt values can influence the resulting RMSEVF−1.

Faster vinlet generally results in larger 1yt values, and as the liquid

travels through column, the interactions with packings can cause

the variance in velocities to increase. This can make 1yt harder to

predict and ultimately lead to higher one-step errors. Additionally,

while the train and test results closely align at lower vinlet, a gap in

their errors emerges as vinlet increases, suggesting that the model

generalizes better at lower vinlet while its performance declines

slightly at higher vinlet. This may be due to increased complexities

in interactions between fluid and packing structures at higher

vinlet (Fu et al., 2020).

Figures 2B, C show results grouped by contact angle θ and

surface tension σ values, respectively. For θ , there is a slight

increase in RMSEVF−1 as θ rises from 10◦ to 90◦ for both train

and test datasets. A large gap emerges between the train and test

results when θ is 90◦. For σ , the train results show consistent

RMSEVF−1 across all σ levels, while the test results are generally

lowest at σ = 0.05, with lower σ tending to produce higher

errors. Overall the one-step errors are more robust to changes in

the contact angle and surface tension than to changes in liquid inlet

velocity, indicating that the MGN model can make consistently
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FIGURE 2

One-step error in liquid volume fraction RMSEVF−1 vs. (A) liquid inlet velocity, (B) contact angle, and (C) surface tension for the training (blue) and test

(orange) datasets.

FIGURE 3

One-step error in liquid volume fraction RMSEVF−1 vs. (A) contact angle θ , and (B) surface tension σ for simulations with vinlet = 0.00531. Lines

connect data points with the same σ and θ , respectively. Train and test data are shown in di�erent markers.

accurate one-step predictions across a broad range of contact angle

and surface tension values.

The errors shown in the aggregated plots in Figures 2B, C

are heavily obscured by the inlet velocity behavior and do not

fully capture the fine-grained relationships of the contact angle

θ and surface tension σ with the one-step errors. To investigate

further, we focus on a subset of the data with a fixed vinlet of

0.00531. Figure 3 shows RMSEVF−1 for this subset, with each line

connecting data points sharing the same θ or σ . Consistent with the

trends observed in Figure 2B, in Figure 3A, we see that RMSEVF−1

increases as θ increases for all σ ; a higher contact angle increases

the hydrophobicity against the packing structure, leading to a larger

1yt and consequently higher prediction errors. In Figure 3B, the

lowest RMSEVF−1 is consistently observed at a surface tension of

0.05, regardless of the contact angle. Lower surface tension also

tends to produces higher prediction errors; smaller surface tension

values tends to result in the formation of smaller droplets that have

higher momentum, which then amplifies 1yt .

In summary, the one-step error analysis shows that the MGN

model generalizes well to unseen design parameter combinations.

In addition, the liquid inlet velocity has the most significant impact

on the one-step error, but this error is also robust to contact

angle and surface tension. Therefore, the MGN model can make

consistently accurate one-step predictions across different contact

angle and surface tension values.

3.3 Rollout prediction

While we trained MGN to minimize the one-step error

predictions, these errors may accumulate over the course of a

rollout. In addition, the dynamics of the rollout that are most

relevant to many CO2-capture efficiency metrics occur when

the system achieves pseudo-steady-state or stable behaviors. We

now consider the errors in the final timestep predictions and

IA calculations.

Once trained, we can apply the MGN model repetitively to

generate predicted rollouts. We use RMSEVF−500 to measure its

prediction performance on the liquid volume fraction for the last
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time frame (t = 500). We also visualize the predicted rollouts

and qualitatively evaluate some example cases. Lastly, we perform a

computational efficiency analysis by comparing theMGN and CFD

generation runtimes.

3.3.1 Last-step error analysis
The MGN model achieves average RMSEVF−500 values of

0.310 and 0.313 for the train and test datasets, respectively. The

small difference in these values highlight the strong generalization

capabilities of MGN for extended rollouts.

Figure 4 shows RMSEVF−500 aggregated based on the design

parameter values. In Figure 4A, we observe that RMSEVF−500

increases with higher vinlet, consistent with the trends noted in the

one-step predictions (Figure 2A). However, the correlation in this

longer-term prediction is not as pronounced as in the one-step

results, since errors can accumulate in a complicated manner over

the course of the predicted rollout.

For contact angle θ (Figure 4B), RMSEVF−500 shows a slight

increase at θ = 70◦ for both train and test datasets. Apart from this

instance, RMSEVF−500 does not exhibit consistent patterns across

other θ values, suggesting that the model’s predictive performance

is generally robust to variations in θ . In contrast, the response

to variations in surface tension σ (Figure 4C) reveals a different

pattern: RMSEVF−500 increases with increasing σ , indicating a

strong sensitivity of the accumulated error to this parameter.

Notably, the model shows a greater disparity in performance

between the train and test datasets at smaller σ values (0.01 and

0.03), so generalization for extended rollout predictions under these

conditions needs to be improved.

In summary, our analysis demonstrates that the last-step error

is particularly sensitive to changes in liquid inlet velocity and

surface tension. This finding underscores the need for careful

consideration of these parameters during the design optimization

process to ensure robust model performance.

3.3.2 Rollout visualizations
Figure 5 shows the predicted evolution of the liquid volume

fraction at select timepoints for three combinations of the design

parameters, alongside their respective ground truth simulations.

The first case features a low vinlet, medium θ , and low σ ,

representing a slow liquid flow with small droplets and medium

wettability. The second case features a low vinlet, low θ , and high

σ , representing a slow liquid flow with large droplets that retain

on the packing structure. The third case features a high vinlet,

high θ , and low σ , representing a fast liquid flow with small

droplets that readily slide through the packing structure. Additional

snapshots at other combinations of vinlet, θ , and σ are shown in

Supplementary Figures S2–S4.

The ground truth rollouts illustrate the varying behaviors in

the fluid dynamics across the different parameter combinations,

highlighting the pronounced impact of the design parameters

on the fluid behaviors. For each design parameter, we make the

following observations:

• In Supplementary Figure S2, we find that liquid inlet velocity

vinlet has a direct influence on the speed and volume of liquid

flow. Higher vinlet is correlated with faster evolution of the

liquid volume fraction due to the increased speed and volume.

• The contact angle θ governs the wettability of the packing

structure (Singh et al., 2020). From Supplementary Figure S3,

we observe that a low value of θ results in high liquid

spreading over the packing surfaces, leading to higher liquid

volume fraction. As θ increases, hydrophobicity increases,

which causes the liquid to flow down across the packings more

quickly.

• Surface tension σ exhibits a synergistic effect with the contact

angle on the wettability of the packing surface (Fu et al.,

2022). Additionally, it highly impacts the size and shape of

the liquid droplets emerging from the inlet. As shown in

Supplementary Figure S4, higher surface tension values result

in larger droplets and larger volume of fluid flow, which

drastically change the volume fraction profiles.

Despite the high complexity of the system, our MGN model

can generate plausible predictions of the liquid volume fraction

rollouts. Visually, the snapshots of the ground truth and predicted

rollouts appear to be very similar and corroborate our analysis

of RMSEVF−500. Combined with the analysis of RMSEVF−500 and

RMSEVF−1, these snapshots demonstrate our model’s ability to

adapt to different design parameters and predict a wide range of

interactions between fluid and packing structures.

3.3.3 Speedup over CFD
The primary advantage of the MGN model lies in its

massive acceleration over the traditional numerical approaches that

were used to generate the simulation datasets. To measure this

performance, we calculate the relative speedup by comparing the

wall-clock time required to generate one of our CFD simulations

in STAR-CCM+ (60 h) to the time taken by our surrogate model

for a complete rollout over the same number of timesteps. The

computation time and speedup results are listed in Table 3.

Using a single GPU, the MGN model achieves over 500×

average speedup on the full domain graph. Domain decomposition

and parallel computing with multiple GPUs can further accelerate

the inference speed of the MGN model (Bartoldson et al., 2023).

After applying a 2× 2 patch decomposition with rollout distributed

on 4 GPUs and automatic mixed precision (AMP) (Micikevicius

et al., 2017), the MGN model reaches an average speedup of 1,773.

We note that that the speedup can be further improved with

additional parallelization, quantization-aware training (Jacob et al.,

2018), and other efficient inference techniques.

3.4 IA analysis

Since the final timesteps of each simulation are used to compute

the steady-state IA, the accuracy at the last timesteps may also be

indicative of the IA error. We now consider the relative IA error by

using our predicted rollouts to compute the IA and averaging over

the last 20 timesteps of each simulation.

Figure 6 compares the predicted and true IA values for each of

the 150 simulations in our dataset, with train and test data points
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FIGURE 4

Last-step error in liquid volume fraction RMSEVF−500 vs. (A) liquid inlet velocity, (B) contact angle, and (C) surface tension for train (blue) and test

(orange) datasets.

denoted by different markers. In each subplot, points are colored by

Figure 6A liquid inlet velocity vinlet, Figure 6B contact angle θ , and

Figure 6C surface tension σ value of the corresponding simulation.

Figure 7 shows the relative IA error aggregated by the values of each

design parameter. Detailed IA results for the test simulations can be

found in Supplementary Table S1.

In general, the error between the predicted and true IA values

is low across the parameter space. The MGN model achieves an

average relative IA error of 7.6% and 9.2% for the train and

test datasets, respectively. The low average errors and small gap

between the train and test results demonstrate MGN’s ability to

sufficiently learn the underlying physics of the countercurrent flow

to accurately predict the simulations across a wide range of design

parameters. However, theMGN does exhibit some differences in IA

prediction quality in certain parameter ranges.

Figure 7A shows the relationship between relative IA error and

liquid inlet velocity vinlet. Both train and test results exhibit a

similar trend: relative IA error decreases initially with increasing

vinlet, achieves the lowest values when vinlet is in the medium range

(0.00531, 0.00864), but then increases beyond the intermediate

values of vinlet. The worst performance occurs at the extreme values

of vinlet. Supplementary Figure S5 shows two test simulations for

such cases with relative IA error over 30%. The first case features

the lowest vinlet. The model makes good predictions of the volume

fraction until near the end of the simulation, when some of the

volume fraction values at the lower left region are over-predicted.

The second case features the highest vinlet, lowest σ and highest

θ , representing the fastest liquid flow in all of the simulations.

The model fails to predict volume fraction accurately from the

very beginning, possibly due to the extremely fast evolution of

momentum and volume fraction of the liquid. Since the IA

calculation is based on the contour surfaces of these volume

fraction values, this subsequently leads to large errors in IA.

The influence of contact angle θ and surface tension σ on the

IA prediction performance is shown in Figures 7B, C, respectively.

In general, the relative IA error for the train dataset tends to be

low and similarly distributed for the smaller θ (10◦ to 50◦). A

slightly higher average error is found for large θ (70◦ and 90◦).

Test results exhibit similar trend, except for the high error at θ =

50◦. For σ , the relative IA error for the train dataset tends to be

similarly distributed at most of the σ values. The test results again

show some high errors and large variations for σ values of 0.01 and

0.05, partially due to the influence of other two design parameters.

Overall, the MGN’s IA prediction error is mostly sensitive to liquid

inlet velocity, but generally robust to contact angle and surface

tension, consistent with our earlier analyses.

We note that while we expect the rollout error to impact the

IA error, high IA errors can still occur as a result of the MGN

having difficulties predicting the simulation within certain regions

of the column or due to complexities of the fluid behavior at

certain parameter settings. For example, in the first case in Figure 5,

the predicted rollout closely resembles the ground truth for the

majority of the volume fraction predictions and achieves a low

RMSEVF−500 at 0.251, but the predicted IA has a high relative

error of 24.1%. The high error can be ascribed to the suboptimal

predictions at the lower left of the simulation domain, where

over-prediction happens from timestep 250. This observation

highlights that the computation of IA may be sensitive to specific

regions within the simulation domain, and a high relative IA error

does not necessarily imply inaccurate predictions throughout the

entire domain.

Overall, the MGNmodel successfully predicts the IA, achieving

an average relative IA error of 9.2% on the test dataset. This error

is sensitive to the liquid inlet velocity, but the model performs

the best when intermediate velocity values are used. The model

also has lower IA errors for low to medium contact angle values.

Finally, the error is generally robust to contact angle and surface

tension differences, but certain regions of the column as well as

certain combinations of design parameters can make IA harder

to predict.

Given the model’s demonstrated accuracy in predicting IA

across the design parameter space, it can be used in various design

optimization applications to screen and assess candidate column

designs. In addition, by understanding the parameters that affect

IA most, we can refine our design optimization strategies to target

specific improvements. We now demonstrate how we utilize the

surrogate model to optimize design configurations to maximize

CO2-capture efficiency.
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FIGURE 5

Predicted and CFD-generated rollouts of the volume fraction for 3 selected test simulations. In each subplot, the top and bottom rows correspond

to the predicted and ground truth rollouts, respectively. From left to right, the timesteps are 50, 100, 250, and 500. The first case represents a slow

liquid flow with small droplets and medium wettability. The second case represents a slow liquid flow with large droplets that retain on the packing

structure. The third case represents a fast liquid flow with small droplets that slide through the packing structure.
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TABLE 3 Acceleration performance of the MGNmodel over CFD simulations.

Configuration # GPU(s) AMP Time(s) Average speedup over CFD (×)

Full domain 1 × 357.6± 1.5 604

Full domain 1 X 232.8± 0.7 928

Patch 2×2 4 × 161.5± 0.3 1,337

Patch 2×2 4 X 121.8± 0.4 1,773

Computational time for a single rollout (500 timesteps) is shown. Standard deviations are computed across 10 runs. The speedup is computed using a CFD reference of 60 h.

FIGURE 6

Predicted vs. true IA for the train and test simulations. The same predictions are shown in each panel but are colored by (A) liquid inlet velocity, (B)

contact angle, and (C) surface tension of the corresponding simulation. The relative IA error for the train and test sets is 7.6% and 9.2%, respectively.

FIGURE 7

Relative IA error vs. (A) liquid inlet velocity, (B) contact angle, and (C) surface tension for the train (blue) and test (orange) datasets.

3.5 Application to design optimization

We use our surrogate model to demonstrate a design

optimization task where the goal is to find a configuration of liquid

inlet velocity vinlet, contact angle θ , and surface tension σ that

maximizes the IA. Without additional restrictions, IA generally

increases as inlet velocity increases, contact angle decreases, and

surface tension decreases. In practice, however, designs for carbon

capture systems will be subject to different types of constraints (e.g.,

financial and structural), and the interactions between different

design parameters may be difficult to characterize. In addition, the

traditional CFD approach represents a bottleneck in the design

optimization pipeline, making it difficult to assess more than a few

design parameter configurations in a reasonable amount of time.

Here, as a mode of example, we consider a simple L1 penalty term

to discourage designs with extreme values in the configuration.
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TABLE 4 Designs that maximize interfacial area subject to di�erent cost functions.

λ σ (N/m) θ(◦) vinlet (m/s) Objective function

0 0.01 11.25 0.03 3.077

1 0.0255 45.0 0.03 2.452

5 0.05 45.0 0.0175 2.148

10 0.05 45.0 0.0175 2.072

More concretely, we write IA as a function of the

aforementioned design variables:

IA = f (vinlet, θ , σ ),

where f is a function that runs 500 timesteps of rollout using our

surrogate model with the given configuration. Then, we solve the

following optimization problem:

max
vinlet , θ , σ

f (vinlet, θ , σ )− λ(|vinlet| + |θ | + |σ |)

s.t. vinlet ∈ [0.001, 0.03]

θ ∈ (−1, 1)

σ ∈ (−1, 1)

(6)

where λ is a regularization parameter, and θ and σ have

been normalized as described in Section 2.2. We set λ to 0

(unconstrained), 1, 5, and 10.

We perform optimization using the minimize procedure in the

scipy module for Python, allowing the procedure to run for 50

simulations. We show the results of the optimization in Table 4.

As expected, in the unconstrained case, IA is maximized by a high

vinlet, low θ , and low σ . As the penalty parameter increases, this

solution at the extreme of the parameter space is no longer ideal.

Instead, the objective function is maximized by a configuration in

the middle of the (normalized) range for all parameters.

Our design optimization process using MGN remarkably

accelerates the evaluation of design configurations compared to

CFD simulations. By employing our MGN-based surrogate model,

the design optimization procedure takes <4 h, whereas the same

optimization using CFD would have taken approximately 3,000 h.

However, this acceleration comes with a tradeoff between accuracy

and speed.While our surrogatemodel maintains an average relative

error in IA predictions of 9.2%, it is sensitive to certain parameter

configurations. These discrepancies highlight the importance of

balancing computational efficiency with the need for precision in

critical regions of the design space. Despite these challenges, the

accelerated design optimization process remains highly promising

for practical applications, allowing for rapid improvement of

carbon capture system designs.

4 Discussion

We reported an improved MGN-based surrogate model that

accelerates the numerical simulations of fluid dynamics in a carbon

capture column and operates in a large design space. Compared

to classical CFD approaches with heavy computational cost, we

showed that our data-driven MGN model can achieve over 500×

speedup on a single modern GPU and 1,700× speedup with parallel

computing and other enhancements. Despite having to learn the

the dynamics across a larger design space than in our previous

works, our model still successfully predicts the fluid dynamics and

achieves low prediction error in IA across wide ranges of liquid

inlet velocity, contact angle, and surface area inputs, with under

10% average test relative error in IA. The high inference speed and

low error of this model holds the potential for fast and accurate

exploration of large parameters for design optimization, and we

showed that that our model can be used to rapidly explore our

design space to optimize IA.

Even with improved acceleration and low error of our model,

the MGN-based approach can still be improved for larger-scale

applications. We observed that RMSEVF and IA error calculated

from the model predictions were not always consistent with

each other. IA error was sensitive to the discrepancies in the

predicted and true interfaces near the packing structure, while

RMSEVF reflected the training loss for global volume fraction

prediction. Thus, training and optimizing MGN based on a

loss function that is indifferent to the packing structure is not

necessarily optimal for minimizing IA error. Future work may

consider adaptively putting more training error weight around

packing structure regions most relevant to the IA computation for

improved results.

Another aspect to consider is that this model was trained

using limited computational resources and can be further improved

for better accuracy by increasing size of the model or a

more extensive hyperparameter search. Specifically, we performed

ablation studies that confirmed that increasing number of message-

passing steps and hidden dimension size in MGN can improve

model capacity (Supplementary Figures S6, S7). Advanced model

architectures can also be explored for improvements, including

multi-scale learning (Lino et al., 2021; Fortunato et al., 2022),

multi-step learning with longer history (Han et al., 2022), physics-

guided approaches (Hu et al., 2023), graph neural operators (Li

et al., 2020), and differentiable design (Allen et al., 2022).

Introducing these cutting-edge enhancements can not only benefit

the 2D modeling of the carbon capture column, but also

enables the application to 3D modeling, which involves extremely

higher complexity and resource requirements (Bartoldson et al.,

2023).

In conclusion, this study marks a crucial step toward rapid

design optimization for carbon capture systems. By establishing

accurate surrogate models that significantly accelerate CFD

simulations, this research opens up the possibilities for more

rapid progress and optimization in the development of carbon

capture technologies.
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