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Computational analysis of countercurrent flows in packed absorption columns,

often used in solvent-based post-combustion carbon capture systems (CCSs),

is challenging. Typically, computational fluid dynamics (CFD) approaches are

used to simulate the interactions between a solvent, gas, and column’s packing

geometry while accounting for the thermodynamics, kinetics, heat, and mass

transfer e�ects of the absorption process. These simulations can then be used

explain a column’s hydrodynamic characteristics and evaluate its CO2-capture

e�ciency. However, these approaches are computationally expensive, making

it di�cult to evaluate numerous designs and operating conditions to improve

e�ciency at industrial scales. In this work, we comprehensively explore the

application of statistical ML methods, convolutional neural networks (CNNs),

and graph neural networks (GNNs) to aid and accelerate the scale-up and

design optimization of solvent-based post-combustion CCSs. We apply these

methods to CFD datasets of countercurrent flows in absorption columns with

structured packings characterized by several geometric parameters. We train

models to use these parameters, inlet velocity conditions, and other model-

specific representations of the column to estimate key determinants of CO2-

capture e�ciency without having to simulate additional CFD datasets. We also

evaluate the impact of di�erent input types on the accuracy and generalizability

of each model. We discuss the strengths and limitations of each approach

to further elucidate the role of CNNs, GNNs, and other machine learning

approaches for CO2-capture property prediction and design optimization.

KEYWORDS

machine learning, graph neural networks, convolutional neural networks,

computational fluid dynamics, carbon capture systems

1 Introduction

Electricity generation is a main contributor to global greenhouse gas emissions, and

reducing the carbon intensity of this process is critical to reducing greenhouse gas

concentrations to safe, sustainable levels (Arto and Dietzenbacher, 2014). Mitigating

emissions from fossil-based power plants can be achieved with various CO2-capture

technologies. Typically, CO2-capture from flue gas is accomplished using pre-combustion,

oxyfuel-combustion, or post-combustion technologies (Koytsoumpa et al., 2018). Among

these, the most utilized approach is solvent-based post-combustion, wherein CO2 is

absorbed through interactions between a liquid solvent and flue gas inside a reactor column
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filled with packings (Wang et al., 2017); an example of a column is

shown in Figure 1a. Packings are structured materials placed inside

the column to help distribute the flow of a solvent throughout

the column and increase the contact surface between the solvent

and flue gas, thereby enhancing the efficiency of CO2 absorption.

A fundamental challenge in designing such solvent-based carbon

capture systems (CCSs) is optimizing the selection of solvent,

packing geometry, and operating conditions to maximize CO2-

capture. The combination of the large design space of parameters

and complex interactions between the solvent, gas, and packings

makes it difficult to find an optimal configuration that maximizes

CO2-capture efficiency while minimizing costs associated with

searching, building, and testing a candidate design of a CCS.

Computational fluid dynamics (CFD) simulations can provide

detailed insights into the fluid flow and interactions between

solvents and CO2-rich flue gases without physical testing, making

it possible to virtually evaluate a wide range of alternative designs

quickly and cost-effectively. These simulations are crucial for

reducing product-development cycles and scaling up from lab

to industrial applications, ensuring robust and scalable designs

(Mudhasakul et al., 2013; Razavi et al., 2013). However, generating

CFD simulations is computationally expensive, presenting a major

bottleneck in evaluating potential configurations within a CCS

design optimization process. As a result, there has been a growing

interest in using machine learning (ML) to accelerate CFD

simulations and obtain near-real-time predictions (Bhatnagar et al.,

2019; Kochkov et al., 2021; Thuerey et al., 2020). Carbon capture

technologies have seen emerging applications of ML to both

large-scale (industries) and small-scale (R&D and laboratory-scale)

problems, including optimizing flow operating conditions and

screening ionic liquids, adsorbents, and membranes (Shalaby et al.,

2021; Venkatraman and Alsberg, 2017; Meng et al., 2019; Zhang

et al., 2022). Additional backgound information and related works

can be found in Supplementary material, Section 3.

In this study, we evaluate the performance of statistical ML

methods, convolutional neural networks (CNNs), and graph neural

networks (GNNs) in predicting CO2-capture efficiency metrics.

Our results indicate that the GNN-based model outperforms other

methods in terms of prediction accuracy. We also highlight the

importance of using detailed data representations, such as images

and structured graphs, to enhance predictive performance. The

findings of this research provide valuable guidance for selecting

appropriate ML algorithms and demonstrate the potential of

leveraging these models to identify optimal packing geometries and

operating conditions.

2 Method

2.1 Dataset description

We focus on a CO2-capture column with periodic or

structured packings, which is commonly used in solvent-based

post-combustion CCSs. Within these columns, CO2 is captured

through an absorption process caused by the interaction between

a liquid solvent and a CO2-laden gas. The structured packings

help distribute the flow of solvent and increase the surface area

of interaction. Figure 1b shows a CFD simulation snapshot of

countercurrent flow occurring in a 2D bench-scale column, in

which solvent is injected into the column from the top “inlets” and

a compressible ideal gas is injected below.

Two key CO2-capture efficiency metrics that can be derived

from CFD simulations of this flow are the interfacial area and the

wetted area. The interfacial area represents the total surface area

where the liquid solvent meets the CO2-laden gas. The rate of CO2

absorption is correlated with the available interfacial area for mass

transfer between the gas and liquid phases; an increased interfacial

area provides more points of interaction, which can enhance the

CO2 absorption efficiency (Ataki and Bart, 2006; Tsai et al., 2011).

The wetted area measures the surface area of the packing materials

that is in contact with the liquid solvent (Bolton et al., 2019). Proper

wetting of the packing materials is crucial for ensuring optimal

effective mass transfer between the two phases, and the amount of

wetted area can influence how effectively the solvent is distributed

and retained, thereby affecting its contact with the gas (Singh et al.,

2022).

Due to the high computational costs of generating a CFD

simulation and the labor, material, and other expenses required

to physically build a column, we seek to train ML models

to accurately estimate CO2-capture efficiency metrics based on

the physical geometry of a column and its expected operating

conditions to screen designs, without having to compute additional

CFD simulations or physically build a candidate design. However,

to train ML models, we still require an initial dataset of CFD

simulations of countercurrent flows from which we can compute

these metrics. We use Ansys Fluent (Ansys, 2011) to model the

fluid dynamics and chemical interactions within a CO2-capture

column under various operating conditions and packing geometry

configurations. In particular, we consider two inlet velocity values,

0.01 and 0.05 m/s, which describe the flow rate of the solvent into

the column. For small inlet velocities, the wetted area may be more

stable and predictable, but the interfacial area may be less effective

due to lower turbulence (Zhu et al., 2020). In contrast, for large inlet

velocities, the wetted area may be more variable due to increased

turbulence, which may enhance the interfacial area by improving

the contact between the phases, thus potentially increasing the

efficiency of CO2 capture (Zhu et al., 2020). We also consider

structured packing geometries that are parameterized by three

structural variables: θ , H, and d. Figure 1c shows a representative

column; θ describes the angle of a packing unit, H describes the

length of unit, and d describes the distance between units. We

consider the following values: θ ∈ [30, 45, 65], H ∈ [10, 13, 14.8],

and d ∈ [1.78, 2.68, 3.56].

For each combination of inlet velocity and packing

configuration, we generate a simulation in Ansys Fluent using

a detailed two-phase reacting flow model (see Prosperetti and

Tryggvason, 2009; Brackbill et al., 1992; Panagakos and Shah, 2023

for further details). We use three types of data representations

in our machine learning models: a 3-parameter representation

(θ , H, d), an image-based representation of the CO2-capture

column, and a graph-based representation derived from the CFD

mesh used to generate the simulations in Ansys Fluent. To assess

the impact of turbulent data, we consider three dataset variants

based on the inlet velocity: one using data with an inlet velocity of

0.01 m/s only, another with 0.05 m/s only, and a third combining

data from both inlet velocities. We divide each dataset into train
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FIGURE 1

(a) Illustration of 3D CCS with packings placed inside the reactor column; (b) CFD simulation of a 2D slice at a given time step and a zoomed view of

triangular meshes; (c) structured packing geometry (defined with three parameters) and colored node types: column walls, packing, inlet, gas outlet,

pressure outlet.

and test splits using Latin hypercube sampling (Loh, 1996) to

ensure sufficient coverage of the 3-parameter space in the training

set. In the combined velocity dataset, we include the inlet velocity

value as an additional input modeling feature. These scenarios

allow us to better assess each model’s performance under specific

conditions (single velocity) and its ability to make predictions

across varied operational conditions (combined velocities). If

our ML models are trained accurately with these simulations,

additional CFD simulations will not be required to estimate the

efficiency measures of other unseen parameter and operating

configurations. Additional data processing details can be found in

Supplementary material, Section 1.1.

2.2 Methods details

2.2.1 Statistical ML methods
We first consider a set of baseline statistical ML methods,

including elastic net, lasso regression, linear regression, partial least

squares regression, and ridge regression, to predict CO2-capture

efficiency metrics. To apply these methods, we use the 3-parameter

representation of the packing geometries and the inlet velocity as

inputs. Some of the major advantages of this approach include

the simplicity of the data representation, availability and ease of

use of the methods, computational efficiency, potential robustness

to overfitting with proper training, and model interpretability.

Because of the simplicity of the methods and the input data

representation, this approach serves as a benchmark for the more

complex data representations and advanced ML algorithms that we

will consider. We implemented these methods using scikit-learn

and optimized their hyperparameters through cross-validation.

The data representation used in this approach, however,

may be too simplistic and limited for practical application

and extrapolation. While the 3-parameter model efficiently

encapsulates the basic dimensions and arrangements of the design

shown in Figure 1c, it cannot fully account for more complex

or novel packing geometries. First, the model will be strongly

limited to the domain covered by the training dataset’s parameter

space. In addition, the model cannot be used to make predictions

about CO2-capture efficiency when the design of the column is

scaled or augmented, such as by expanding the column’s width

or height, and increasing or lengthening the pairs of packings.

More advanced ML architectures can potentially overcome these

limitations; methods such as CNNs and GNNs are capable of

capturing spatial hierarchies and complex topologies within data,

thus providing a more detailed understanding of fluid dynamics

and interactions within varied packing geometries.

Overall, while statistical ML methods are computationally

efficient and provide a solid foundation for initial modeling, their

inability to fully extrapolate to more complex geometries limits

their potential in scaling and optimizing CCS designs. More

sophisticated techniques may yield significant improvements in

predictive accuracy and design flexibility. To this end, we consider

CNNs and GNNs.

2.2.2 Convolutional neural networks
Since the computational mesh used to generate CFD

simulations of the CO2-capture column can also be represented

as an image by using a grid interpolation, we next consider

applications of CNNs to predict CO2-capture efficiency. CNNs are

a class of deep learning models widely used for image classification,

object detection, and other visual recognition tasks (Li et al., 2021)

and have also been used in other CO2-capture-related applications

(Zhou et al., 2019; Kaur et al., 2023). Here, we adapt the LeNet

architecture (LeCun et al., 1998) and hypothesize that the CNN

can use the image representation of the column and analyze the

spatial complexities of the walls, packing structures, inlets, outlets,

and other physical components to make accurate predictions of the

interfacial area and wetted area.

We consider two types of image representations of the column.

First, we interpolate the CFD mesh onto a 3 × 128 × 128 colored
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image. A colored image allows us to distinctly represent the various

physical components of the column, each differentiated by unique

colors (see Figure 1c). Compared to the 3-parameter representation

used in the statistical ML models, these images provide richer

detail about the spatial and structural components of the column

and provide an avenue to extrapolate to structures that cannot

be represented by the three parameters. However, CNNs typically

require more computational power and, given the size of our

dataset, may be prone to overfitting. We therefore also interpolate

the mesh onto a 1 × 128 × 128 grayscale image, which simplifies

the representation by translating all features into shades of black

and white but eliminates the explicit distinction between different

types of boundaries and structures. The reduced dimensionality

provides a more generalized view but forces a tradeoff between

computational efficiency and data intricacy that may be critical for

making accurate predictions about CO2-capture efficiency.

The LeNet architecture that we adapted to our use-case consists

of two convolutional layers, each with a kernel size of 32, followed

by three multi-layer perceptron (MLP) layers. We use ReLU

activation functions throughout the model. To incorporate inlet

velocity as an input, we use an additional linear layer to generate

a 128-dimensional velocity embedding. This embedding is then

concatenated with the LeNet model’s output after the first two

MLP layers. We then process the resulting vector through the

third MLP layer to produce the final output prediction. We

train the model using an Adam optimizer with a learning rate

of 1e-4, 1,000 training steps, and a batch size of 8. Additional

information on data processing and model details can be found in

Supplementary material, Sections 1.2, 2.1.

CNNs provide a powerful tool for capturing and analyzing

the intricate details of the packed column, allowing us to begin

generalizing predictions to packing geometries that cannot be

represented by the three-parameter representation. However, these

models demand careful management of computational resources

and model complexity. Furthermore, the models require a fixed

image size as input, which prevents the models from generalizing

to columns of different scales. For example, a column that has

twice the physical height or width of the columns that our CNN is

trained on still needs to be projected onto a 128 × 128 image to be

processed by the CNN, but information about the details and scale

of the column is lost. To address this weakness, we now consider

GNNs.

2.2.3 Graph neural networks
GNNs (Zhou et al., 2020) are a class of deep learning

models designed to operate on graph-structured data, allowing

them to capture relational information between entities. GNNs

have demonstrated promising results in various application areas,

including chemical reaction and property prediction (Do et al.,

2019; Gilmer et al., 2017; Xie and Grossman, 2018; Sanyal et al.,

2018; Nguyen et al., 2021; Zhang et al., 2024), fluid dynamics

prediction (Hu et al., 2023), and CO2-capture-related applications

(Jian et al., 2022; Bartoldson et al., 2023). Unlike CNNs, GNNs can

operate on unstructured grids of arbitrary sizes and thus have better

generalizability across various packing columns and scales. Since

the computational mesh used to generate CFD simulations of the

CO2-capture column is also a graph, we can apply GNNs to handle

the complex geometries of the column. GNNs come in various

architectures, each with unique approaches to aggregating and

processing information across graph structures. Here we consider

three commonly used models: Graph Convolutional Networks

(GCN) (Zhang et al., 2019), Graph Attention Networks (GAT)

(Veličković et al., 2017), and Graph Isomorphism Networks (GIN)

(Xu et al., 2018).

We construct a graph by starting with the mesh representation

of the packed columns used in the CFD simulations. Nodes in the

graph represent different locations in the column. To incorporate

geometric information, we include each node’s position and one-

hot encoded type as node features, and we include relative positions

and distances between nodes as edge features. This approach

allows our GNN-based models to effectively capture the spatial

relationships and geometric characteristics of the column’s packing

geometry, scale to arbitrary mesh sizes, and infer on novel column

designs.

On average, the graph of each column configuration consists

of 183,844 nodes and 1,090,258 edges. To preprocess the mesh

data (see Figure 1b) for GNN, we encode node and edge features

using a linear layer to obtain 64-dimensional latent embedding

vectors, which are then passed through eight GNN layers to

perform message-passing and obtain node embeddings. We obtain

the final graph embedding by applying max pooling to the node

embeddings. Our experiments indicate that only considering nodes

related to packing geometries during the pooling process yields

better performance compared to pooling over all nodes. To

incorporate inlet velocity as an input, we use an additional linear

layer to generate a 64-dimensional velocity embedding. We then

concatenate the graph and velocity embeddings and feed them

through a two-layer MLP to obtain an output prediction. To train

the model, we use a batch size of 4 and an Adam optimizer with a

learning rate decayed from 1e-3 to 1e-5 over 1,000 training steps.

Additional information on data processing and model details can

be found in Supplementary material, Sections 1.3, 2.2.

Compared to the statistical ML- and CNN-based approaches,

the GNN-based approach is more flexible in adapting to different

packing geometries and scales. Since GNNs can process graphs

of arbitrary sizes, we can infer CO2-capture efficiency measures

for columns whose sizes are different from those of the training

set by simply representing the new columns with a larger graph.

In addition, we can perform inference for packing geometries

not captured by the 3-parameter representation (Figure 1c) by

assigning the node types correctly in the new geometries. Therefore,

GNNs can provide more flexibility in evaluating a broader range

of designs and operational scenarios within a design optimization

pipeline.

3 Results

We evaluate the accuracy of our models using three

metrics: R-squared (R2), Root Mean Square Error (RMSE),

and Mean Absolute Percentage Error (MAPE). Comparisons

of these metrics and predictions for our statistical ML,

CNN-based, and GNN-based models are shown in Table 1

and Figures 2, 3.
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TABLE 1 A comparative analysis of various ML models in their ability to predict CO2-capture e�ciency metrics.

Interfacial area Wetted area

R2 ↑ RMSE ↓ MAPE ↓ R2 ↑ RMSE ↓ MAPE ↓

Inlet velocity @ 0.01 m/s

Elastic net 0.876 0.028 0.037 0.919 0.028 0.064

Lasso regression 0.649 0.047 0.066 0.913 0.029 0.065

Linear regression 0.833 0.033 0.054 0.836 0.040 0.096

Partial least squares 0.833 0.033 0.054 0.836 0.040 0.096

Ridge regression 0.854 0.030 0.046 0.868 0.036 0.086

CNN (gray) 0.899 ± 0.036 0.025 ± 0.004 0.041± 0.007 0.875± 0.029 0.035± 0.004 0.079± 0.012

CNN (color) 0.872± 0.119 0.027± 0.013 0.038± 0.019 0.844± 0.047 0.039± 0.006 0.082± 0.026

GNN (gcn) 0.814± 0.076 0.034± 0.008 0.057± 0.015 0.855± 0.039 0.037± 0.005 0.083± 0.017

GNN (gat) 0.711± 0.193 0.040± 0.015 0.063± 0.025 0.834± 0.119 0.038± 0.013 0.081± 0.027

GNN (gin) 0.667± 0.182 0.045± 0.011 0.074± 0.020 0.730± 0.156 0.049± 0.014 0.105± 0.032

Inlet velocity @ 0.05 m/s

Elastic net 0.417 0.068 0.063 0.337 0.084 0.102

Lasso regression 0.194 0.080 0.065 0.389 0.081 0.090

Linear regression 0.403 0.069 0.064 0.199 0.092 0.108

Partial least squares 0.403 0.069 0.064 0.199 0.092 0.108

Ridge regression 0.408 0.069 0.064 0.355 0.083 0.101

CNN (gray) 0.764± 0.097 0.043± 0.010 0.036± 0.006 0.832± 0.099 0.041± 0.013 0.049± 0.019

CNN (color) 0.844± 0.056 0.035± 0.007 0.027± 0.006 0.855 ± 0.064 0.038± 0.010 0.041 ± 0.005

GNN (gcn) 0.782± 0.159 0.039± 0.014 0.034± 0.011 0.848± 0.127 0.037 ± 0.016 0.043± 0.016

GNN (gat) 0.752± 0.076 0.044± 0.007 0.039± 0.004 0.676± 0.059 0.059± 0.005 0.068± 0.003

GNN (gin) 0.869 ± 0.065 0.031 ± 0.007 0.026 ± 0.005 0.620± 0.244 0.060± 0.022 0.064± 0.020

Inlet velocity @ 0.01 & 0.05 m/s

Elastic net 0.926 0.056 0.071 0.868 0.058 0.105

Lasso regression 0.873 0.073 0.085 0.762 0.078 0.136

Linear regression 0.954 0.044 0.056 0.888 0.053 0.096

Partial least squares 0.954 0.044 0.057 0.886 0.054 0.095

Ridge regression 0.948 0.047 0.060 0.868 0.058 0.105

CNN (gray) 0.956± 0.001 0.043± 0.000 0.055± 0.002 0.878± 0.004 0.055± 0.001 0.093± 0.002

CNN (color) 0.957± 0.001 0.043± 0.000 0.055± 0.001 0.879± 0.001 0.055± 0.001 0.092± 0.003

GNN (gcn) 0.984± 0.005 0.026± 0.004 0.032± 0.006 0.968± 0.010 0.028± 0.005 0.046± 0.010

GNN (gat) 0.986± 0.005 0.024± 0.004 0.029± 0.007 0.966± 0.009 0.029± 0.004 0.045± 0.006

GNN (gin) 0.991 ± 0.003 0.019 ± 0.003 0.026 ± 0.004 0.971 ± 0.013 0.026 ± 0.006 0.044 ± 0.010

The evaluation encompasses three distinct datasets, each corresponding to different inlet velocities: 0.01 m/s, 0.05 m/s, and a combined dataset that integrates both velocities. For both CNNs

and GNNs, the performance metrics are summarized with their mean values and standard deviations, calculated across five different random initialization seeds. Bold values indicate the best

results for each metric across different evaluation conditions.

3.1 Statistical ML results

The statistical methods exhibit high prediction accuracy

when trained only on the 0.01 m/s inlet velocity data or

when trained on the combined velocities, and among these

methods, Elastic Net shows the strongest performance. In

contrast, when trained using only the higher inlet velocity

of 0.05 m/s, there is a marked drop in performance across

all metrics. This performance gap suggests that statistical

ML methods struggle to interpret the complex data resulting

from increased turbulence and complexity at higher

velocities. Comparing efficiency measures, the accuracy for
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FIGURE 2

Relationship between predicted (mean value across all seeds) and actual interfacial area (IA) values for various models and various inlet velocities (i.e.

0.01 m/s, 0.05 m/s, and combined). Blue dots represent training data, while orange dots represent test data. The blue and orange lines are linear

regression lines for blue and orange dots, respectively. The black dotted line indicates perfect prediction. Dots closer to this line and the alignment of

the regression lines with the dotted line reflect better model accuracy and generalization. (a) Inlet velocity = 0.01 m/s. (b) Inlet velocity = 0.05 m/s.

(c) Inlet velocity = 0.01 m/s and 0.05 m/s.
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FIGURE 3

Relationship between predicted (mean value across all seeds) and actual wetted area (WA) values for various models and various inlet velocities (i.e.

0.01 m/s, 0.05 m/s, and combined). Blue dots represent training data, while orange dots represent test data. The blue and orange lines are linear

regression lines for blue and orange dots, respectively. The black dotted line indicates perfect prediction. Dots closer to this line and the alignment of

the regression lines with the dotted line reflect better model accuracy and generalization. (a) Inlet velocity = 0.01 m/s. (b) Inlet velocity = 0.05 m/s.

(c) Inlet velocity = 0.01 m/s and 0.05 m/s.
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interfacial area is almost always higher than for wetted area

when the dataset includes the higher inlet velocity data.

This is likely because the interfacial area is more directly influenced

by primary flow dynamics and solvent-gas interactions, whereas

the wetted area involves more complex and variable factors, such

as the distribution and retention of the solvent on the packing

surfaces, which are highly sensitive to changes in turbulence and

flow conditions, making it harder to model accurately. These effects

become more pronounced at larger inlet velocities due to the

increased turbulence and chaotic flow patterns, which exacerbate

the variability in solvent distribution and retention, leading to

greater prediction challenges (Prosperetti and Tryggvason, 2009;

Panagakos and Shah, 2023).

Overall, the statistical ML methods can make accurate and

rapid estimates of efficiency metrics, particularly with low inlet

velocity data. However, they face challenges in predicting outcomes

when higher inlet velocity data is involved, falling short compared

to CNN- or GNN-based approaches. These advanced models

are better equipped to handle complex spatial and relational

data, leading to superior performance in predicting CO2-capture

metrics, which we discuss in detail in the following sections.

3.2 CNN-based prediction results

As shown in Table 1, CNN-based methods demonstrate higher

prediction accuracy with the higher inlet velocity model compared

to the lower inlet velocity model, in contrast to the trend observed

with statistical ML models. This improvement is attributed to the

CNN’s ability to effectively model data with greater complexity

and turbulence. When trained and tested on the combined velocity

dataset, the prediction accuracy improves over the single inlet

velocity cases. This can be attributed to the larger volume of

training data and the CNN’s ability to learn from a more diverse

set of flow conditions. Additionally, the difference in accuracy

between the two efficiency measures is small, suggesting that CNNs

effectively capture and interpret complex patterns in the data,

whether they arise from turbulence or chaotic flow conditions.

Notably, CNNs demonstrate superior prediction accuracy

for both efficiency metrics when trained and tested at the

high inlet velocity. This highlights the importance of selecting

appropriate data representations for our problem setting. Image-

based representations, which incorporate packing geometries and

even distinguish different physical components in the colored

images, provide crucial spatial and contextual details that enhance

the accuracy of predicting interfacial area and wetted area.

Furthermore, according to Table 1, the colored image model

outperforms the grayscale image model in datasets that include

the higher inlet velocity. This is also evident in Figures 2, 3,

where the efficiency measure predictions are closer to the ground

truth for the colored model. As data complexity increases, input

representations with richer details (i.e., colored images) enable

the model to extract more valuable information compared to the

simplified representations (i.e., grayscale images). This underscores

the benefits of using a three-channel input to differentiate various

boundaries and structures within the column, highlighting the

importance of choosing appropriate data representations.

In general, the performance of our CNN-based models

highlights the advantages of using richer data representations for

predicting CO2-capture efficiency metrics. Next, we discuss the

GNN-based model, which further improves prediction accuracy by

leveraging graph structures to represent the complex geometries

and interactions within the CO2-capture columns.

3.3 GNN-based prediction results

Compared to the previous methods, the GNN-based methods

achieve the highest prediction accuracy in most cases. Although

there is a slight drop in accuracy for wetted area predictions across

the three datasets, GNNs still maintain a high level of accuracy.

Additionally, similar to statistical ML and CNNs, GNNs show a

notable improvement in prediction accuracy when more data is

available (i.e., combined inlet velocities) compared to using less

data (i.e., single inlet velocity). This demonstrates that increasing

both the quantity and variability of the data has a consistently

positive effect across different learning-based models.

When comparing GNNs and CNNs, GNNs demonstrate

superior overall performance, particularly excelling over CNNs

when both velocity data sets are used for training. Such

observation indicates that GNNs can better capture and model

complex relationships, especially when more data is available.

This underscores the robustness and adaptability of GNNs in

handling diverse data complexities, making them a more reliable

and favorable choice over CNNs for tasks requiring consistent

accuracy across varying conditions. The superior generalizability

of graph-based representations compared to image-based ones

further enhances their effectiveness. Among three GNN models,

GIN stands out with the best performance across most scenarios,

while GCN demonstrates the most consistent results overall.

GAT, though still effective, tends to have the lowest performance

compared to GIN and GCN in most cases.

Overall, in addition to its high prediction accuracy, GNN-based

methods offer greater flexibility in adapting to different packing

geometries and scales due to its graph-based representation.

Consequently, the GNN-based methods enable the evaluation of a

broader range of designs and operational scenarios within a design

optimization pipeline for CCS.

4 Discussion

In this work, we applied various ML models, including

statistical ML methods, CNNs, and GNNs, to predict CO2-capture

efficiency metrics. While statistical ML methods made fast and

accurate estimates at lower inlet velocities, they struggled with

higher velocities due to increased turbulence and complexity.

Additionally, these models were limited to the 3-parameter

packed column designs and scale of the training dataset columns.

Conversely, CNN-based models, especially those using colored

images, demonstrated high prediction accuracy, highlighting the

importance of detailed data representations. However, the CNNs

required a fixed image size as input, limiting their generalizability

to different scales. In contrast, the GNN-based models consistently

outperformed other methods due to their ability to capture
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complex relationships within graph-structured data. GNNs excel

at learning structural and relational details, enabling them to

adapt effectively to novel CCS column configurations, a crucial

capability for real-world applications requiring modifications to

column designs or operational conditions.

In summary, our results demonstrate that we can use ML

models to estimate various CO2-capture efficiency measures

without the need for additional CFD simulations. However, our

approach still requires a large amount of data, and the CFD

data that we summarized into efficiency measures is not fully

utilized. An alternative approach would be to directly predict

CFD simulations using ML-based methods and then compute the

efficiency measures from those simulations. While this method

would maximize the use of available data and potentially enhance

prediction accuracy, it remains a challenging task due to the

complexity of accurately modeling detailed CFD simulations.

Future research may focus on overcoming these challenges to

develop more efficient and effective prediction models.
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