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Software engineering education
in the era of conversational AI:
current trends and future
directions

Cigdem Sengul*, Rumyana Neykova and Giuseppe Destefanis

Computer Science Department, Brunel University London, Uxbridge, United Kingdom

The developments in conversational AI raised urgent questions about the future

direction of many aspects of society, including computing education. The first

reactions to the fast-paced evolution of conversational agentswere varied: Some

announced “the end of programming,” while others considered this “premature

obituary of programming.” Some adopted a defensive approach to detecting

the use of conversational AI and avoiding an increase in plagiarism, while

others questioned, “So what if ChatGPT wrote it?” Nevertheless, questions arise

about whether computing education in its current form will still be relevant

and fit for purpose in the era of conversational AI. Recognizing these diverse

reactions to the advent of conversational AI, this paper aims to contribute to

the ongoing discourse by exploring the current state through three perspectives

in a dedicated literature review: adoption of conversational AI in (1) software

engineering education specifically and (2) computing education in general, and

(3) a comparison with software engineering practice. Our results show a gap

between software engineering practice and higher education in the pace of

adoption and the areas of use and generally identify preliminary research on

student experience, teaching, and learning tools for software engineering.
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1 Introduction

With the advances in Large Language Models (LLMs), Generative AI (GenAI), and

Conversational Agents (CAs), a wider discussion has started among computer scientists

and educators, some urging for the necessity of “a major upheaval” in the field (Welsh,

2022), arguing the idea of writing computer programs and consequently, educating people

for this purpose, “is headed for extinction.”

We are indeed at a transformative phase in artificial intelligence (AI) with

Conversational AI (CAI), which, in this paper, is used to describe AI systems that interact

with users in natural language, either through text or voice. This includes chatbots,

virtual assistants, and AI-powered tools that understand and respond to queries, provide

recommendations, or assist with tasks. We focus specifically on large language models

(LLMs) and generative AI systems that produce human-like responses and content, such as

OpenAI’s ChatGPT (OpenAI, 2024), Google’s Bard,1 and GitHub’s Copilot (GitHub, 2024).

1 Google (2023). Gemini. Available online at: https://gemini.google.com/.
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While CAI covers a wide range of applications, our analysis

focuses on those relevant to software engineering practices and

education.Welsh (2022) presents a provocative vision of the future,

arguing that ‘most software, as we know it, will be replaced by

AI systems that are trained rather than programmed.’ While this

perspective is debatable, it aligns with the current research trends

observed in our study, where a significant portion of the literature

examines the coding capabilities of CAI tools like ChatGPT.

Similarly, computer science educators are exploring how these AI

tools perform on course assignments and basic programming tasks.

However, it is important to note that the field is still evolving, and

the exact role of AI in future software development remains a topic

of ongoing debate and research.

The paper aims to move beyond the current focus on

introductory programming in the literature to software engineering

education. Our goal is both to put into perspective the promising

directions this new technology offers for improving the training

of future software engineers, as well as the changes required to

make the software engineering curriculum relevant to a software

industry that is increasingly making use of these conversational

tools. To this end, in this article, we seek to answer the following

research questions:

RQ1: How is conversational AI currently influencing the software

engineering industry?

RQ2:How is conversational AI impacting computing education?

RQ3: What do early experiences show in terms of promising

improvements in educating future software engineers?

To answer these research questions, this paper reviewed the

current status of CAI in computing and, more specifically, in

software engineering education since 2018. The time span from

2018 to 2024 was selected to encompass a broad spectrum of

work, ranging from the early stages of conversational agents

to the recent developments in GenAI technology. Our paper

confirms the scarcity of research on the impact of AI and LLMs in

software engineering education in contrast to relatively extensive

discussion on the general impact of GenAI, LLMs, and CAI in

higher education (Finnie-Ansley et al., 2022; Yan et al., 2024).

Therefore, there is a critical need for targeted research to explore

how CAI can influence software engineering educational practices

and ensure they keep pace with technological advancements.

By identifying the key trends and open challenges in using

CAIs in software requirement elicitation, design, development,

testing, maintenance, and management activities, we highlight

opportunities for aligning software engineering curricula and

pedagogical approaches with the emerging needs of the AI-driven

software industry.

The remainder of this article is structured as follows. Section 2

gives a brief overview of the existing reviews that consider the

use of CAI agents in higher education and computing. Section

3 details the review and analysis methodology employed in the

paper. Section 4 presents a quantitative analysis of the paper

corpus, including a volume of publications, affiliated countries,

collaborations, author networks, and research trends. Section 5

details the thematic analysis conducted to address the research

questions posed in this study. Section 6 presents a discussion on

the main findings and future directions, and Section 7 concludes

the paper.

2 Background

Conversational agents, or chatbots, traditionally use Natural

Language Processing (NLP) to respond to user queries in a dialog,

mapping them to the best possible responses programmed into the

system. Following the advances in AI, chatbots have increasingly

adopted language models and deep learning, attempting to predict

the likelihood of a sequence of words in a typical human

interaction. The launch of OpenAI’s ChatGPT (OpenAI, 2024) in

2022 demonstrated significant expansion to chatbot capabilities

based on generative AI (GenAI). One of the most striking features

of GenAI platforms and their use in conversational AI (CAI) is the

adoption rate in a short period of time: launched on November

30, 2022, ChatGPT has been used by 1 million users in the first

5 days after its launch and reached 100 million users in its first

2 months (Dwivedi et al., 2023). Since then, the development of

LLMs has accelerated significantly, especially with the release of

commercial products from major tech companies. For instance,

Google released Gemini (see text footnote1), Meta rolled out

LLaMA (Touvron et al., 2023), and Anthropic introduced Claude.2

Many other specialized models designed for specific tasks have

emerged, showcasing a variety of architectures and functionalities

in diverse domains (Hou et al., 2023).

The literature on the use of CAI in higher education

predominantly focuses on general education rather than specific

applications within software engineering. Okonkwo and Ade-

Ibijola (2021) present a systematic review of the use of chatbots

in education prior to the release of ChatGPT, which highlights

their ability to provide personalized help quickly and identifies

integration challenges and opportunities. Memarian and Doleck

(2023) explore the use of ChatGPT in education, providing a

thematic analysis that reveals its potential for personalized learning

and complex teaching activities but also notes significant issues

such as plagiarism and the need for safeguards to protect academic

integrity.

Jürgen Rudolph and Samson (2023) and Baidoo-Anu and

Owusu Ansah (2023) explore the implications of ChatGPT

integration in terms of assessment and learning. The former

discusses how the evolution from a non-profit to a commercial

model by OpenAI affects the deployment and development of such

AI technologies. The conclusion from the articles is that while

ChatGPT offers extensive benefits such as improved engagement

and personalized learning experiences, it also necessitates careful

consideration of ethical standards, privacy issues, and potential

biases in AI training. Furthering this discussion, Yan et al. (2024)

conduct a systematic scoping review and highlight the ethical

and practical challenges in employing LLMs for educational tasks

such as feedback provision and content generation, recommending

strategies for ethical integration and the adoption of human-

centered approaches in the development of AI educational tools.

Several studies, such as those by Chen S. et al. (2023) and

Lo (2023), examine the roles and impact of ChatGPT’s potential

to revolutionize virtual teaching assistants and intelligent tutoring

2 Anthropic (2023). Claude. Available online at: https://www.anthropic.

com/claude.
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systems. They emphasize the need for educators to understand

the implications of this technology and adapt their teaching

practices accordingly.

In the field of computing education, only a few papers have

surveyed the literature on LLMs and their implications for software

engineering education. Neumann et al. (2023) conduct a rapid

gray literature review of papers published up to January 2023 and

present challenges and opportunities that emerge from the release

of ChatGPT. However, their review is limited in scope, with only

a few papers discussed. On the other hand, Finnie-Ansley et al.

(2022) present a working group report on GenAI in computing

education. The report includes a comprehensive literature review,

with a corpus of papers up to August 2023. The authors also

incorporate survey findings, insights from interviews with students

and teachers, and ethical considerations related to the use of

GenAI in computing education. Furthermore, they benchmark

the performance of current GenAI models and tools on various

computing education datasets, offering a practical assessment of

their capabilities.

All of the above works highlight the transformative potential of

ChatGPT in reshaping teaching, learning, and assessment practices.

However, they largely omit detailed discussions on the unique

requirements of and impact on software engineering education.

The only exception is Finnie-Ansley et al. (2022), which argues

for the effective integration of LLM technologies in computing

education, yet they stop short of going deeper into software

engineering specifics and primarily consider coding-related tasks.

In contrast, there is a growing body of research assessing

the capabilities and limitations of LLMs for various tasks across

the software development lifecycle (SDLC). Among these are

several survey papers on GenAI in software engineering, which

span a wide range of depth, scope, and methodology. Hou

et al. (2023) conduct a systematic literature review, analyzing 395

research papers from January 2017 to January 2024, to categorize

LLM applications in Software Engineering (SE), examine data

methodologies, and evaluate performance optimization strategies

and effectiveness across SE tasks. Santhanam et al. (2022) conduct a

systematic mapping study, reviewing research articles to categorize

the applications of AI bots in SE. Del Carpio and Angarita

(2023) present a systematic analysis of different assistant solutions,

including recommendation systems and chatbots for SE tasks.

Liang et al. (2024) present insights from 410 developers to

examine the usability of AI programming assistants like GitHub

Copilot (GitHub, 2024), identifying key motivators and barriers

in their adoption. Fan et al. (2023) and Belzner et al. (2024)

provide comprehensive reviews and case studies on the role of

LLMs across the entire SE process, emphasizing the need for

hybrid techniques that combine traditional SE methods with AI-

driven approaches.

These studies highlight the increased interest and ongoing

challenges in integrating AI into software engineering. However,

their primary focus is on synthesizing findings and implications

for the software engineering industry, not necessarily for software

engineering education. This paper aims to bridge this gap

by analyzing the literature on practice and education-oriented

papers through the lens of their implications for software

engineering education.

3 Methodology

3.1 Review methodology

A rapid review approach was used, and a PRISMA-guided

(Preferred Reporting Items for Systematic Reviews and Meta-

Analysis; Moher et al., 2009) process was followed to select studies

for inclusion in the review. The diagram of the search strategy is

depicted in Figure 1. The search process used three main sources:

IEEE Explorer, ACM Digital Library, and ScienceDirect. Google

Scholar was used as an additional complementary resource that

mainly helped capture recent contributions published in arXiv. All

arXiv research that was later published as a peer-reviewed article

was included in this review, but the rest was not included. The

only exceptional addition is Chen E. et al. (2023), which is an

open-source tool hosted elsewhere.

Search string: The keywords used in the search string include:

Conversational OR Conversational AI OR

prompt engineering OR code assistance

OR pair program OR coPilot OR chatGPT

OR Bard

AND

Software Systems OR Software Engineering

OR Systems Development OR Computer

Science Education OR Engineering

Education

The search strategy included two main components. The first

subset aims to capture work related to conversational AI agents,

and after a few tries, we decided to include specific examples like

ChatGPT, Bard, and coPilot to ensure good coverage. The second

subset limits our search to either software engineering practice or

education or computing education papers.

Themeta-data extracted from the search include the source and

full reference, which includes the authors and their institutions, the

country where it is situated, author keywords, and the abstract.

Inclusion and exclusion criteria: For screening and eligibility

checks, we have established inclusion and exclusion criteria. The

articles that mainly report on methods to improve a particular

conversational agent technology were excluded.

Papers that are not written in English and do not present

research findings, e.g., 1–2 page abstracts, workshop proposals, and

pure opinion papers, were also excluded.

The research aimed to explore research articles on the

contributions of conversational agents to software engineering

and its education. After excluding papers based on the exclusion

criteria, papers focusing on experiences, trials, and solutions that

utilize conversational agents in the following three categories were

included in the study:

• Software engineering in practice, denoted as SE_I

• Computer science higher education, denoted as CS_HE

• Software engineering in higher education, denoted as SE_HE

It must be noted that studies emphasizing solely the coding

aspect of software engineering were excluded from SE_HE

category. This decision stems from the recognition that software
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FIGURE 1

A PRISMA-guided process was followed for selecting studies for inclusion in the review. The primary sources were ACM, IEEE, and Science Direct

databases, and as a secondary source, Google Scholar was used. The initial number of records identified was 426, and 377 when duplicates were

removed. After screening the paper titles and abstracts based on the exclusion criteria, 183 papers were included in the study and categorized into

three categories: HE_SE, CS_HE, and SE_I. For SE_HE, 16 were selected based on full text. For CS_HE and SE_I, 52 and 115 article abstracts were

included at the end in the qualitative and quantitative analysis.

engineering has a broader scope and involves not only coding but

other aspects, such as software requirements, design, development,

testing, and management. These studies were considered part of

CS_HE category. CS_HE excludes purely opinion papers if they do

not report on actual experiences, trials, and solutions that utilize

conversational agents in a computing education setting.

Paper selection: In the preliminary selection process, the first

author evaluated all papers returned based on the title and the

abstract and classified them as included or excluded based on the

inclusion and exclusion criteria. Then, the second and third authors

verified the excluded papers and justifications and the included

papers and their extractions.

The initial number of records identified was 426, and 377

when duplicates were removed. After screening the paper titles and

abstracts based on the exclusion criteria, 183 papers were included

in the study and categorized into three distinct categories: SE_HE,

CS_HE, an SE_I. For SE_HE, 16 were selected based on full text.

For CS_HE and SE_I, 52 and 115 article abstracts were included at

the end in the quantitative and qualitative analysis.

3.2 Thematic analysis methodology

We have used a mixed methodology as the number of papers

in each category was significantly different. We also aimed for

a deeper analysis for SE_HE category and reviewed full papers,

while for SE_I and CS_HE, we only reviewed titles, keywords,

and abstracts.

For the papers in SE_I, we conducted a deductive thematic

analysis using Claude3 (see text footnote2). We provided the

title, abstract, and author keywords to Claude3 and tasked it

with classifying the papers and assigning them to categories

and subcategories. We have categorized the papers following

the six phases of the Software Development Life Cycle (i.e.,

requirements engineering, software design, software development,

software quality assurance, software maintenance, and software

management). For this study, including author keywords was

essential. As experts in their respective fields, the authors

have the most comprehensive understanding of their work’s

main topics and themes, so this expert input was considered

valuable for a meaningful thematic analysis. To ensure the

reliability of classifications, two authors independently reviewed

the results provided by Claude3, compared their classifications,

and discussed any discrepancies to reach a consensus on the

final categorization. While no factual inaccuracies were found,

in a few cases, additional information was added when the

summary was too generic and had not captured essential

details from the abstract. This process helped refine the

automated classifications and ensure they accurately reflected the

abstracts’ content. The results of this analysis are presented in

Section 5.1.
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For the papers in CS_HE category, we conducted a reflexive

thematic analysis (RTA; Braun and Clarke, 2023) of the abstracts

with ChatGPT4.0 acting as the pair coder. It must be noted that

we have not tried to achieve consistency in the use of Claude3

and ChatGPT4.0, as we have used these tools mainly for guidance

and manually reviewed and refined outputs. Our ability to identify

what we saw in the data was informed by existing concepts, our

own knowledge of the literature, and the convention of academic

abstracts. Hence, while the analysis was dominantly inductive, a

degree of deductive analysis was employed to ensure that the open

coding produced themes that were meaningful to the research

questions.

More specifically, the analysis was carried out following the six

phases of RTA:

• Familiarization: We began by thoroughly reading all the

abstracts to familiarize ourselves with their content and

context.

• Generation of initial codes: To perform the initial coding

of the abstracts, we asked ChatGPT4.0 to perform a thematic

analysis in addition to manually generated codes. One author

refined all produced themes and codes, and all authors

sense-checked ideas by exploring multiple assumptions,

interpretations, and meanings of the data, following a

collaborative and reflexive approach.

• Generating themes: From these initial codes, we developed

themes that represented themajor concepts and ideas found in

the data. This involved identifying patterns and relationships

among the codes to form coherent themes.

• Review of themes: All authors participated in reviewing the

themes to ensure they were consistent and relevant. This

iterative process allowed us to refine the themes and ensure

they accurately represented the data.

• Definition of themes: The definitions and names for each

theme were established, reflecting the underlying data and

authors’ interpretations.

• Reporting: Section 5.2 presents the detailed results of

this analysis, outlining our findings and the thematic map

developed from the abstracts.

By using RTA with LLM-based tools and a detailed manual

review process, we ensured a reliable examination of the abstracts.

The reflexive approach helped us revisit our assumptions and

interpretations, making sure the identified themes truly reflected

the data and were relevant to our research questions.

Finally, for the papers that fall under SE_HE, we have read

the full papers and categorized the work based on the Software

Development Lifecycle and the Guide to the Software Engineering

Body of Knowledge (SWEBOK; Bourque and Fairley, 2014),

which describes generally accepted knowledge about software

engineering. We have also, as part of the analysis, extracted a

summary, including the main research questions, methodology,

and findings guided by the questions below:

• Which sub-area of software engineering, if any, does the

paper focus on?—Answers vary from paper to paper and

may include software development, software testing, and

requirements engineering, among others.

• Does the study target a specific group of people? Which

groups?—Possible answers are (a) No specific group, (b)

educators, (c) students, and (d) professional developers.

• Which conversational agent technology is used in the study?

What is the role of the conversational agent?—Answers vary

from paper to paper and include new technology created for

the paper or more recent AI-based conversational agents like

ChatGPT, Bard, and the like. Conversational agents may be

used for code generation, providing explanations, or merely

for comparison to student-generated work.

• What is the study method used?—Answers vary from paper

to paper. The goal is to extract the attributes of each method,

e.g., experimentation with a conversational agent, a user study

involving a questionnaire, interview, or prototype controlled

experiments, among others.

The findings of this analysis are presented in Section 5.3.

4 Corpus analysis

4.1 Publication years and countries

Extracted papers were published between the years 2018 and

2024 (January). Figure 2 illustrates a sharp increase in the number

of publications from 2018 to 2023 for each category: (1) SE_I

(Software Engineering Industry), (2) CS_HE (Computer Science

Higher Education), and (3) SE_HE (Software Engineering in

Higher Education). However, the increase is most prominent in

SE_I, and the number of publications for SE_HE is still low

compared to the rest.We expect the same trend to continue in 2024.

Figure 3A shows most publications are by authors affiliated

with an institution in the USA. Canada, Germany, and China

also have a strong presence. Nevertheless, research in this area

spans many countries in Europe, Asia, North America, and South

FIGURE 2

The number of publications per year showing an exponential

increase in conversational agents research in (1) SE education in HE,

(2) CS education in HE, and (3) SE practice, albeit prominently in the

3rd category.
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FIGURE 3

Which countries publish most in this area, and how do they collaborate with other countries? (a) Country distribution of publications in all categories.

(b) Countries in collaboration.

America, showing a high diversity of studies, including evaluating

CAI in languages other than English.

The authors from different countries are also in close

collaboration; Figure 3B shows strong links between the USA and

Canada, China and Australia, Germany and Netherlands, and

collaborations among New Zealand, Ireland, Finland, and the USA.

These results confirm the existence of already robust international

collaborative networks in this area.
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FIGURE 4

Author clusters generated by Force Atlas2 algorithm using the Gephi software. The connected components vary in size. The weighted edges indicate

the number of collaborations between authors, i.e., the thicker the edges, the more the two authors collaborated.

4.2 Author networks

To further understand collaboration communities, we analyzed

the co-author networks, where each node is an author, and each

edge between two nodes indicates a collaboration on a paper.

Figure 4 presents the resulting network, laid out according to

the Force Atlas 2 algorithm in the Gephi Visualization Software

(Bastian et al., 2009). Key authors, or those central to the

network with many connections, can be seen as larger nodes,

often positioned toward the center of the network clusters. The

edge weight highlights the number of common publications for

each author pair. The figure shows a number of key authors

(larger nodes) and a few large communities of collaborations

but a significant number of smaller, isolated groups or pairs of

collaborators, indicating a growing interest in the area.

4.3 Research trends

To spot rising or declining trends in research topics over time,

we used the author keywords derived from the corpus of the 183

publications in all categories. When author keywords were absent,

we used the publisher keywords, with the limitation that these

words were sometimes too generic, e.g., “codes” and “visualization.”

Finally, in rare cases when neither author nor publisher keywords

were present, we tokenized the title to create the author keywords.

As this exercise resulted in many keywords, we have grouped

the majority of the keywords as shown in Appendix Table 1 and

eliminated the ones that did not fit in any group and had low

occurrence.

Figure 5 tracks the yearly frequency of these term groups

from Appendix Table 1 such as “AI assistants and chatbots,”

“education and pedagogy,” and “software and its engineering.” Each

line indicates how the prominence of these topics has changed,

highlighting the focus on “AI, ML, LLM,” and emerging interest in

“prompt engineering,” and the growing research emphasis on using

this technology in “education and pedagogy,” and “introductory

and intermediate programming.”

To dig deeper and identify clusters of research topics and

their interconnections within the categories, we next carried out a

term co-occurrence analysis using the author keywords. The co-

occurrence network graph presents the interconnectedness and

relative frequency of terms extracted from author keywords in our

corpus. Each node symbolizes a unique term, and larger nodes
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FIGURE 5

The yearly frequency of terms in Appendix Table 1. Each line indicates how the prominence of these topics has changed, highlighting the prominent

focus on “AI, ML, LLM,” and emerging interest in “prompt engineering,” emphasizing the growing research emphasis on using this technology in

“education and pedagogy,” and “introductory and intermediate programming.”

indicate higher occurrence frequencies. The node’s color indicates

the number of connections, i.e., its degree.

In all categories, expectedly, themost visible clusters are around

“LLM,” “artificial intelligence (AI),” “chatbots,” “software,” and

“software engineering.” Figure 6 depicts the term co-occurrence

map for SE_I category based on 115 peer-reviewed articles. To

see the prominent clusters more clearly, the original co-occurrence

graph was filtered to omit all edges that have an edge weight

of less than two (i.e., the co-occurrence needs to exist in more

than one publication). Notable clusters are around “ChatGPT”

and “Github Copilot;” however, there are more notable smaller

clusters, especially around “prompt engineering” and “maintenance

engineering.”

Figure 7 shows the term co-occurrence map for HE_CS

category based on 52 peer-reviewed articles in this category.

Again, to see the prominent clusters more clearly, the graph

is reduced to omit all edges that have an edge weight of

less than two (i.e., the co-occurrence needs to exist in more

than one publication). Notable clusters are around the current

generative AI conversational agents e.g., “ChatGPT,” “OpenAI

Codex,” “GPT-3,” showing the community is mainly focused

on testing the utility of these tools. Other main areas of

current interest are “CS1/introductory/novice programming,” and

“academic integrity.” Current integration efforts are channeled

understandably on introductory programming, which is aligned

with the level of complexity the current GenAI tools are able to

handle. The focus on academic integrity underlines the reactionary

reception of these tools in computer science education.

Finally, Figure 8 presents the term co-occurrence map for the

HE_SE category extracted from 16 articles in HE_SE category.

While this figure is more sparse than other categories, “software

development management,” “agile,” “educational design,” and

“software architecture,” and “programming profession” appear as

the main software engineering areas besides the aforementioned

clusters. In addition, “ChatGPT” and “training” have emerged as

focal areas of recent research.

In the next section, we explore these trends more deeply

by conducting a thematic analysis of each category, with

the goal of answering the research questions we set out in

the introduction.

5 Thematic analysis findings on GenAI
in software industry and education

5.1 RQ1—how is AI shaping the software
industry?

In categorizing papers within the Software Engineering (SE_I)

category, we have adopted a framework based on the six phases of

the Software Development Life Cycle (SDLC). Our categorization

encompasses the following phases: requirements engineering,

software design, software development, software quality assurance,

software maintenance, and software management. This approach

aligns with and expands upon the activities in software processes

as described by Sommerville (2015) and the core knowledge

areas defined in SWEBOK (Bourque and Fairley, 2014). While

our categorization closely mirrors these established frameworks,

we have made slight adjustments in terminology and scope to
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FIGURE 6

Term Co-occurrence Map for HE_I category based on 115 peer-reviewed articles in this category. To see the prominent clusters more clearly, the

graph is reduced to omit all edges (nodes) that have an edge weight of less than two (i.e., the co-occurrence needs to exist in more than one

publication). Notable clusters are around the current generative AI conversational agents, e.g., “ChatGPT,” and “Github Copilot.” While there is a focus

on “software development,” the emphasis on “prompt engineering” and “maintenance engineering” is also apparent.

better reflect the integration of AI-assisted techniques and current

industry practices in software engineering.

Figure 9 illustrates the distribution of research papers across

the different SE categories, with software development having the

largest share at 48.7%, followed by software quality assurance

at 22.6%. Figure 10 shows the trend of papers published in

each SE category over the years, indicating a rapid growth

in applications across all areas, but especially in software

development and software quality assurance. Within each category,

we have identified specific subcategories, i.e., the specific SE

tasks that have been the focus of Conversational AI research.

Table 13 lists the identified subcategories and the respective

number of papers for each subcategory. It is important to

acknowledge that the boundaries between software engineering

tasks are often blurred, and many studies assess or cover

multiple aspects concurrently. For instance, the research on

3 See Appendix Table 2 for the full table with references.

program synthesis, evaluating code quality, performance analysis,

and bug detection can be considered relevant to both software

development and software quality assurance. In such cases,

we reviewed the article to reach a consensus on the assigned

subcategory.

Conversational AI technology is still in its infancy, but its

broad implications in software engineering are evident. While

many studies focus on code generation and repair, where LLMs

have outperformed novice developers and accelerated routine tasks

for experts, research now extends to less explored areas such

as team training, expert recommendations, documentation, and

maintenance. The benefits of applying LLMs vary across different

areas of the SDLC, but the prevailing trend involves integrating

AI at varying levels while maintaining human oversight to address

limitations.

The following subsections lay out the key trends, promising

results, and challenges for each software engineering category based

on the findings from the surveyed papers.
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FIGURE 7

Term Co-occurrence Map for HE_CS category based on 52 peer-reviewed articles in this category. To see the prominent clusters more clearly, the

graph is reduced to omit all edges (nodes) that have an edge weight of less than two (i.e., the co-occurrence needs to exist in more than one

publication). Notable clusters are around the current generative AI conversational agents e.g., “ChatGPT”, “OpenAI Codex,” “GPT-3”, showing the

community is mainly focused on testing the utility of these tools. Other main areas of current interest are “CS1/introductory/novice programming,”

and “academic integrity.”

Requirements engineering covers the elicitation, analysis,

specification, and validation of software requirements and the

management of these requirements during the software product

lifecycle (Bourque and Fairley, 2014). Recent research reveals

several key insights into the application of AI technologies

in RE processes. Conversational agents can effectively assist in

requirements elicitation, capturing diverse stakeholder needs, as

evidenced by studies on systems like LadderBot (Rietz, 2019;

Rietz and Maedche, 2019). LLMs demonstrate potential for

automatically extracting domain models from natural language

requirements documents (Arulmohan et al., 2023). AI-generated

user stories can also facilitate the integration of human values

into requirements, serving as creative prompts for stakeholders

(Marczak-Czajka and Cleland-Huang, 2023). Regarding the

quality of AI-generated requirements, Ronanki et al. (2023)

found ChatGPT-generated requirements to be highly abstract,

atomic, consistent, correct, and understandable. The same

researchers, however, also emphasized the need for AI-centric

Requirements Engineering (RE) frameworks that incorporate

ethics and trustworthiness. Collectively, these studies demonstrate

AI’s potential in enhancing RE processes while highlighting the

continued importance of human expertise for ensuring the validity

and applicability of generated requirements.

Software design refers to creating detailed specifications and

blueprints for the software system, defining its architecture,

components, interfaces, and data flow, which serve as a

guide for the development and implementation stages. AI is

showing significant potential in generating software designs from

requirements. Interactive dialogues with LLMs, help elaborate

design goals and constraints, suggesting design artifacts ranging

from UML (Unified Modeling Language) models to user interface

layouts, enhancing both productivity and design quality (Ahmad

et al., 2023; De Vito et al., 2023). However, ensuring the consistency

and completeness of these machine-generated designs remains a
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FIGURE 8

Term Co-occurrence Map for HE_SE category. This map presents the interconnectedness and relative frequency of terms extracted from a corpus of

over 16 peer-reviewed articles in HE_SE category. Each node symbolizes a unique term, where larger nodes indicate higher occurrence frequencies.

Compared to previous co-occurrence graphs, this graph hasn’t been reduced due to its smaller size. Notable smaller clusters are around “software

development management”, “agile,” “educational design,” and “software architecture,” and “programming profession”, which highlight key focal areas

of recent research.

challenge particularly when integrating design information across

different notations and abstraction levels (Cámara et al., 2023; Chen

K. et al., 2023). AI design assistants offer promising advancements

(Ahmad et al., 2023; Brie et al., 2023); however, they also require

a deep understanding of their capabilities and limitations from

designers. Human input remains crucial for evaluating and refining

generated designs. An emerging trend is the importance of prompt

engineering techniques, becoming essential for guiding AI toward

more relevant and coherent results, improving the integration and

usability of AI tools in design processes (De Vito et al., 2023).

Software development, which encompasses the

implementation activities of SDLC, has seen the most rapid

adoption of AI coding assistants. Models like Codex and

Copilot can generate code from natural language descriptions,

autocomplete partial programs, and even explain and translate

code. AI assistants help developers handle routine coding tasks

and offer relevant on-demand suggestions (Storey and Zagalsky,

2016). Studies show these tools can significantly boost developer

productivity, especially for less experienced programmers (Moroz

et al., 2022; Nguyen and Nadi, 2022). However, the generated

code still falls short of expert human-written code in terms of best

coding practices, robustness, and maintainability (Nguyen and

Nadi, 2022; Moradi Dakhel et al., 2023).

Researchers have identified several challenges in the integration

of generative AI in software development. These include the need

to customize AI models to individual developers’ knowledge and

project contexts for more relevant suggestions (Moroz et al.,

2022), the importance of developers acquiring skills in prompt

engineering and code inspection (Sun et al., 2022), and the

ongoing challenge of integrating AI assistants into existing software

engineering workflows and development environments (Barke

et al., 2023). These challenges highlight the complex interplay

between AI capabilities and human expertise in the evolving

landscape of software development.

Software quality assurance refers to the systematic

processes and activities designed to ensure that software meets

specified requirements and quality standards. This involves the

implementation of various practices such as code reviews, testing,
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and audits to identify defects and ensure the reliability, efficiency,

and security of the software. In quality assurance, AI is being

applied to generate test cases (Guilherme and Vincenzi, 2023),

reproduce bug reports (Kang et al., 2023), localize faults (Li H.

et al., 2023), and suggest code patches (Xia et al., 2023). LLMs

can use requirements specifications and code context to generate

relevant test scenarios and oracles (Okanović et al., 2020; Brie et al.,

2023). By analyzing bug reports and comparing code versions,

they can often pinpoint the root cause of errors and even suggest

fixes (Tony et al., 2022; Dantas et al., 2023). AI-based static code

analyzers are also improving in their ability to pinpoint style issues

and spot potential bugs and security flaws (Pan and Lyu, 2023; Xia

et al., 2023).

While promising, the reliability and maintainability of

machine-generated tests and debugging strategies need further

improvement (Ribeiro et al., 2023; Wei et al., 2023). Generating

tests that reveal edge cases and complex scenarios is an open

challenge, and developers will need techniques to validate and

refine the generated tests and fixes.

Software maintenance and evolution phase involves

modifying and updating software after its initial release. Research

indicates AI’s potential to revolutionize this area by automating

documentation updates (Khan and Uddin, 2022), identifying

refactoring opportunities (Rodriguez et al., 2023), and aiding

system migration (Su et al., 2023). AI analysis of code repositories

could transform maintenance planning and risk assessment

by revealing important trends, anomalies, and undocumented

dependencies (Le and Zhang, 2023). However, AI’s effectiveness

often depends on precise input prompts (Le and Zhang, 2023;

Rodriguez et al., 2023), and consistent performance across

different software environments remains challenging (Su et al.,

2023). Advances in AI knowledge representations and reasoning

capabilities are essential if AI is to play a larger role in guiding

software evolution (Rodriguez et al., 2023).

Software management phase is concerned with activities

related to overseeing and coordinating the entire development

process, including planning, resource allocation, scheduling,

and ensuring that a software project meets its goals and

deadlines. Research indicates that AI has significant potential to

transform software management practices. AI can enhance critical

management activities such as project planning (Dam et al., 2019),

effort estimation (Hefny et al., 2021), risk assessment, and team

coordination (Matthies et al., 2019), potentially leading to more

efficient and data-driven decision-making processes. The analysis

of project repositories and development metrics by AI systems

could provide unprecedented insights into project dynamics and

team performance (Voria et al., 2022). Conversational AI agents

show promise as virtual project assistants, offering real-time

project updates and early issue detection (Matthies et al., 2019).

AI-driven task assignment and scheduling based on developer

expertise and workloads could optimize resource allocation (Dam

et al., 2019). Importantly, the effectiveness of AI in software

management hinges on its ability to model complex human

factors such as team dynamics, personalities, and sentiment

(Voria et al., 2022). The successful integration of AI management

assistants is highly dependent on their adaptation to specific

organizational cultures and contexts, as evidenced by research into

FIGURE 9

Distribution of papers per SE domain.

FIGURE 10

Papers per SE domain over the years.

chatbots designed for software engineering teams (Hefny et al.,

2021).

Cross-cutting themes include the need for high-quality,

representative training datasets, human-centered interaction

techniques, feedback loops where LLMs learn from developer

actions, and the potential to enhance LLM reasoning with

domain-specific knowledge bases and program analyzes. The

ethical implications of LLMs also deserve careful attention as they

increasingly influence the future of software engineering work,

education, and research.

5.2 RQ2—conversational AI in computing
education

The analysis of 52 papers under the CS_HE category revealed

five key themes: (1) challenges to conventional instruction, (2)

testing CAI capabilities, (3) GenAI-based innovative tools, (4)

good performance with limitations, and (5) mixed instructional
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TABLE 1 Distribution of the number of papers from SE_I category across the six phases of software development lifecycle.

SE activity SE task

Requirements engineering (11) Ethics (1) Goal-oriented modeling (1)

Requirements analysis (3) Requirements elicitation (4)

User stories (1) Requirements classification (1)

Software development (56) Program synthesis (26) Api recommendations(1)

Code completion (2) Code transpilation (1)

Human aspects (3) Code understanding (4)

Digital coworker (4) Software process (1)

Explainability (1) Digital mentor (2)

Program repair (1) Pair programming (1)

Other (2) Development tools (6)

Dataset (1)

Software quality assurance (26) Code efficiency (1) Dataset (1)

Code reviews and documentation (1) Vulnerabilities detection (3)

Load testing (1) Program repair (8)

Security & reliability (4) Testing automation (7)

Software design (6) Gui (1) Model-driven engineering (1)

Use cases (1) System architecture (1)

Modeling (2)

Software maintenance (6) Code reviews (1) Q&A bots (2)

Log parsing (1) Code summarization (1)

Traceability (1)

Software management (5) Community smell (1) Agile project management (1)

Expert recommendation (1) Effort estimation (1)

Software process improvement (1)

Survey (5) Systematic review (1) Mapping study (1)

Other (3)

implications, as shown in the Thematic Map in Figure 11.

Appendix Table 3 presents the themes, sub-themes, codes,

and examples from the abstracts. The first theme, challenges

to conventional instruction, characterizes the main research

motivation for selected abstracts. As a result, the research either

explored testing Conversational AI capabilities or creating GenAI-

based innovative tools. The experiments with current tools (e.g.,

ChatGPT) generally reported good performance with limitations.

These assessments typically led to mixed instructional implications.

Collectively, these themes paint a picture of the way how GenAI

tools are received in education environments, highlighting their

potential as well as limitations.

Challenges to conventional instruction: Challenges to

conventional instruction served expectedly as a key motivator for

current research on GenAI-based instruction. These challenges

stemmed from the difficulty in “communicating about code” and

“addressing diverse needs,” which also overlaps with the challenge

of “scalability of creating practice opportunities and feedback”

(see Appendix Table 4) Communication about code is found

challenging for both the instructors and students as they struggle

with providing code explanations (Oney et al., 2018; Leinonen

et al., 2023a,b). While instructors acknowledge the benefits of

providing more practice opportunities, having to create and update

them constantly is considered time-intensive (Nguyen et al., 2022;

Jury et al., 2024). Diverse student needs (Shaka et al., 2023),

and large classes are also significant barriers, e.g., to effectively

closing the feedback loop (Wang T. et al., 2023) and providing

personalized assistance (Sheese et al., 2024).

Testing conversational AI capabilities: In our research, we

observe a general curiosity about the capabilities of widely popular

and available conversational AI like ChatGPT or CoPilot. Most

research aims to understand the capabilities of these tools to solve

programming examples and their variations (Finnie-Ansley et al.,

2022; Berrezueta-Guzman and Krusche, 2023; Wermelinger, 2023).

User studies with students, e.g., surveys (Budhiraja et al., 2024)

or observations of student use (Prasad et al., 2023; Prather et al.,

2023b; Kazemitabaar et al., 2024), aimed to understand how current

tools may help student learning or tutor students. These tools

were also found helpful for instructors, e.g., in preparing course

materials, grading, and feedback (Balse et al., 2023; MacNeil et al.,
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FIGURE 11

Thematic map, which resulted from reflexive analysis based on CS_HE abstracts.

2023; Speth et al., 2023; Doughty et al., 2024). Our analysis shows

that while not explored by many, the research started looking into

the capabilities of these tools in instructing or aiding learning

subjects other than introductory programming (Nguyen et al.,

2022; Lauren andWatta, 2023) and in languages other than English

(Cipriano and Alves, 2023). However, there is also a significant

concern of misuse and plagiarism, which in turn led to questioning

the reliability and validity of current assessment approaches, e.g.,

testing whether ChatGPT can pass assessments or exams (Dobslaw

and Bergh, 2023; Finnie-Ansley et al., 2023; Savelka et al., 2023).

GenAI-based innovative tools: One of the key differences

between academia and industry is that GenAI is not considered

just as a productivity tool for students but also as a pedagogical

one (Johnson, 2024). Learning opportunities are expected to

improve through personalized support (Shaka et al., 2023) and

feedback for students just-in-time (Roest et al., 2024) and 24/7

through virtual one-to-one human-like tutoring (Jell et al., 2023).

Personalized support is possible for tracking and summarizing

code edits (Oney et al., 2018), detecting misconceptions (Jell et al.,

2023), generating next-step suggestions (Roest et al., 2024). Self-

sufficiency can further be encouraged by a new concept of prompt

problems (Denny et al., 2024). While most of these innovations are

centered around improving students’ learning experience, there is

also potential for improving instructor experience: Jury et al. (2024)

explores the use of LLMS for creating interactive worked examples

as a way to help instructors scale to large classes.

Good performance with limitations: GenAI performance has

so far been impressive: solving problems at the first attempt, or

with some changes (Denny et al., 2023) and the conversational

AI doing well in exams and outperforming most students (Finnie-

Ansley et al., 2022). Users also report positive experiences finding

the current tools easy to use (Sarsa et al., 2022) even though they

may lack prompting experience (Hanifi et al., 2023). Students using

the conversational AI tools also perform better (Qureshi, 2023).

However, limitations have also been identified in handling complex

input and reasoning when the tools are presented with non-textual

descriptions or directly program files (Ouh et al., 2023) or are

required to handle exercises with a complex chain of reasoning

(Savelka et al., 2023). However, with the pace these tools have been

evolving, it is not clear how long these limitations will continue to

exist.

Mixed instructional implications: Regardless of the

impressive performance of GenAI-based tools, their reception

in educational environments is somewhat mixed (Lau and Guo,

2023). While there is optimism around benefitting students and

instructors in providing personalized learning (Mirhosseini et al.,

2023; Qadir, 2023; Roest et al., 2024) and timely interventions

to smooth the learning journey (Shaka et al., 2023; Sheese et al.,

2024), there are significant concerns around ethical use (Prather

et al., 2023a; Qadir, 2023), and especially plagiarism and academic

dishonesty (Morsy et al., 2023; Rajabi et al., 2023; Richards et al.,

2024). While tools to detect AI-generated work may serve as a

countermeasure (Morsy et al., 2023), there is a deeper need to

rethink teaching and assessment more fundamentally (Dobslaw

and Bergh, 2023; Graven and MacKinnon, 2023; Jacques, 2023).

There is also a growing concern of over-reliance (Kazemitabaar

et al., 2023; Randall et al., 2023), e.g., when conversational agents

lack current training data and, hence, cannot answer queries, and
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may mislead students (Balse et al., 2023; Hanifi et al., 2023; Roest

et al., 2024). Therefore, oversight is needed to ensure quality (Sarsa

et al., 2022; Speth et al., 2023). Furthermore, more specialized

solutions may be needed for computing subjects other than

introductory programming (Ahmed and Hasnine, 2023). Despite

these concerns, the way forward is working toward a better-guided

integration to computing classrooms (Chen E. et al., 2023; Graven

and MacKinnon, 2023; Liu, 2023; Rajabi et al., 2023; Randall et al.,

2023).

5.3 RQ3—early experience and promising
improvements in software engineering
education

Finally, in this section, we have sought to understand the ways

and processes of introducing LLM-based conversational agents

specifically in software engineering curricula, expanding on what

we learned from the previous sections. The analysis in this section

was based on the full text of 16 papers. The Table 2 summarizes each

paper, showing studies covered a range of software engineering

topics (detailed below) and varying levels of maturity ranging from

basic experimentation with a CAI to a proof-of-concept to pilot

studies run with 10–100 students.

The rest of the section discusses findings based on the

following SE areas: Requirements engineering, software design,

software management, software quality assurance, and software

security. Unlike the software engineering practice analysis in

Section 5.1, the software maintenance and evolution area is

not represented. On the other hand, software development-

related work is mostly concerned with introductory and seldom

intermediate programming and is presented in 5.2; however, we

included one paper on secure software development.

Requirements engineering: One of the most used techniques

for requirements extraction is interviewing stakeholders, and

the papers included in our study describe ways to support

the training of software engineering students in this area.

In 2018, Paschoal et al. (2018) explored the development

and evaluation of a context-sensitive chatterbot named Ubibot,

designed to enhance software engineering education by focusing

on requirements extraction and assisting students in creating

requirements documentation. By adapting to the user’s knowledge

level and performance, Ubibot offered tailored support, aiming

to bridge the gap in practical skills among computing students.

Through a pilot study with undergraduate students and an

experimental comparison with a non-context-sensitive version,

the authors found that Ubibot effectively supports learning by

providing personalized interactions and simulating real-world

stakeholder scenarios.

In 2023, Gorer and Aydemir (2023)’s study questions whether

such requirements engineering support is also possible with

the current generative AI tools, i.e., not specifically built on a

knowledge base like the Ubibot (Paschoal et al., 2018). Hence,

the authors apply prompt engineering to GPT-3.5 and Bard to

generate interview scripts incorporating typical analyst mistakes

as educational material for interview training. The preliminary

evaluation focuses on three different products, each in distinct

business domains: call center software, digital health platform,

and project management software. Employing a batch generation

approach, four interview scripts for each case were produced—

three containing intentional mistakes and one error-free. Then,

the authors considered the iterative generation, and the initial

few turns of a complete interview script were used to generate

subsequent turns with intended mistakes. The authors faced

challenges in achieving satisfactory performance for generating

certain mistake types, such as “Not asking for existing system,”

“Ignoring other stakeholders,” and “Asking long questions.”

ChatGPT outperformed Bard in terms of generatingmore complete

and coherent interview scripts for the given product features in the

case of batch generation. However, Bard excelled in the iterative

generation, generating more accurate interview turns for specific

mistake types and providing more formal explanations of how

the mistakes were incorporated into the analyst’s question. The

study concludes LLMs require domain-specific training to improve

quality. There is much to explore, as the generated interviews were

not evaluated by experts in terms of quality, and they have not been

tested with instructors and students in terms of their utility as a

training tool.

Similarly, Abdelfattah et al. (2023) consider instructing

students on the requirements of engineering principles via

interactive exercises and hands-on examples through ChatGPT.

The paper proposes a student-ChatGPT conversation flow to

generate various software engineering artifacts, starting from user

stories, escalating to use case diagrams and class diagrams, and

culminating with sequence diagrams, which go into software design

and are discussed in the next section. However, while this work

imagines how ChatGPT could be helpful in teaching software

engineering concepts to students, one question that arises is

whether the students would need to be already well-versed in

software engineering to be able to prompt ChatGPT as described

in this work, creating a “Chicken-Egg problem.”

Software design andmodeling:UML use cases, class diagrams,

and sequence diagrams are valuable yet challenging concepts for

students. These topics are often introduced early in the curriculum

when students may not have fully developed their coding skills.

Several studies in software engineering practice have explored the

use of LLMs to support various aspects of the software design

process, such as enhancing the quality of UML use case scenarios,

automating domain modeling, and assisting in UML diagram

generation (Cámara et al., 2023; Cámara et al., 2024; Chen K. et al.,

2023; De Vito et al., 2023).

In software engineering education, Ren et al. (2023) presents

a study on the effectiveness of the SOCIO chatbot in facilitating

UML modeling tasks compared to a conventional online web

tool, Creately.4 Conducted in an academic setting, this research is

centered around evaluating the usability of SOCIO by comparing

its efficiency, effectiveness, satisfaction levels among students, and

the quality of class diagrams produced with those created using

Creately. Through a series of controlled experiments, the study

finds that students were generally faster at building class diagrams

and more satisfied with their experience when using the SOCIO

chatbot. Although the diagrams produced via SOCIO tended to

4 https://creately.com/
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TABLE 2 Analysis results of papers that focus on conversational agents in software engineering education.

References SE area Target group Conversational agent Study type

Dehbozorgi and

Norkham (2021)

Modeling Instructors Conversational recommender system for

recommending design patterns

Proof-of-concept

Paschoal et al.

(2018)

Requirements UG students in SE A CA, Ubibot, provides personalized interactions and

simulates real-world stakeholder scenarios

Pilot study with 15–30

students

Gorer and Aydemir

(2023)

Requirements Educators GPT-3.5 and Bard to generate requirements interviews

with typical analysts mistakes for interview training

Proof-of-concept

Abdelfattah et al.

(2023)

Requirements

Modeling

Students in SE ChatGPT in dialog to generate e.g., user stories, use

case diagrams, class diagrams, and sequence diagrams

Proof-of-concept

Ren et al. (2023) Modeling CS and ES students A CA, SOCIO, for UML modeling tasks Controlled experiments with

132 students in 44 teams

Ciupe et al. (2019) Agile (Scrum) UG students in

Applied Informatics

A CA with structured knowledgebase Pilot study with 200 students

González et al.

(2022)

Agile UG students A custom CA for providing support in SE Capstone

projects

Controlled experiment with

131 students

Valový and

Buchalcevova

(2023)

Agile (Pair

Programming)

No specific group ChatGPT and Github CoPilot Controlled experiments with

38 students; interviews with 5

Manfredi et al.

(2023)

Agile (Pair

programming)

UG Computing

students

MR application using HoloLens and a conversational

virtual avatar, interacting with users through an

integrated CA

Controlled experiments with

students; post-assessment

survey

Jalil et al. (2023) Testing Students and

instructors

ChatGPT tested on first five chapters of a software

testing textbook by Ammann and Offutt (CITE)

Experiment with CAI

Paschoal et al.

(2023)

Testing UG students in

Information

Systems

A custom CA, TOB-STT, for providing educational

support in software testing

Controlled experiment with

38 students

Farah et al. (2022a) Code Reviews Students in SE

tertiary education

A dialog-based CA, based on a code review application

designed to teach programming best practices

Proof-of-concept

Farah et al. (2022b) Code Reviews UG Students in SE Instructors impersonate a CA, LintBot, embedded in an

online learning application that simulates the code

review features of social coding platforms

Controlled in-class

experiment with 30 students

Bull and Kharrufa

(2023)

Code Reviews Instructors GenAI in general including Github CoPilot and

ChatGPT

Interviews with 5 professional

developers

Li J. et al. (2023) Security UG students GPT-4 tested on a security coursework Experiment with CAI

Reynolds et al.

(2023)

General Educators ChatGPT, BERT used to link assessment to learning

outcomes in SE

Experiment with CAI

be more concise, they were slightly less complete compared to

those generated with Creately. Nevertheless, the findings suggest

that chatbots like SOCIO can be valuable tools for UML modeling.

Future research should aim to enhance LLM capabilities in

understanding domain semantics, generating more complete and

consistent models, adhering to established modeling practices, and

effectively supporting student learning to maximize their potential

as tools in software engineering education.

Secure software development: While more basic software

development work was covered in Section 5.2, we have included

one paper that explored the potential of ChatGPT-4 in enhancing

secure software development education in an undergraduate

software security course (Li J. et al., 2023). Teaching assistants

evaluated the model’s performance on exercises involving code

from a web application used by 200 students, specifically testing

its ability to detect vulnerabilities, suggest penetration testing

strategies, and propose fixes. The results were promising, with

ChatGPT-4 identifying 20 out of 28 vulnerabilities while also

reporting three false positives and detecting four additional

vulnerabilities not originally identified. This indicates not only the

capability of LLMs like ChatGPT-4 to assist in educational settings

but also the need to update course exercise design and grading

systems in the era of LLMs.

Software management: The papers in this category mainly

focus on Agile Methods. Agile methods were born in the 1990’s

from the need to reduce the overhead of heavyweight, plan-

based methods used in large-scale software development projects

(Bourque and Fairley, 2014). In 2019, Ciupe et al. (2019) created

a structured knowledge base for a chatbot to facilitate learning

of Agile Scrum concepts. The chatbot system integrated learning

analytics to monitor and analyze student interactions. In an

experimental assessment with 200 students, the students interacted

with two versions of the chatbot, one providing guidance through

clues and another without, to explore the chatbot’s effectiveness.

The authors tracked the complexity of the questions asked, the

interaction patterns, and the progression through the learning
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material to assess the chatbot’s impact on the students’ learning

experience. They observed that students engaged more deeply with

the material and reached higher complexity levels of understanding

when interacting with the chatbot version that provided clues

and guided learning. The results indicate the importance of

personalizing the learning experience by adapting the chatbot

interactions to the learner’s progress and preferences. The study

considered the chatbot as an effective complement to traditional

teaching methods or within a flipped classroom model. González

et al. (2022)’s work also confirms the utility of virtual assistants.

By training a virtual assistant based on the lessons learned by

past students, the students were able to better understand the

management of their software engineering capstone projects.

Valový and Buchalcevova (2023) focused on AI-assisted

pair programming, a method frequently used in Agile software

development (Bourque and Fairley, 2014). The authors ran seven

experimental programming sessions on an undergraduate student

sample (38 students from two classrooms) in applied informatics

courses, subjecting them to solo, pair, AI-assisted settings using

ChatGPT and Github CoPilot. They also ran a qualitative study

based on five semi-structured interviews with participants, and

five with professionals who have five or more years of experience

and had exposure to AI tools in their jobs. The interview

explored familiarity with AI, the applicability of AI in various

tasks, AI’s personality and emotions, psychological aspects of

AI, effectiveness and efficiency, and future prospects. In their

study, both professionals and students find AI tools beneficial

for improving effectiveness and efficiency in programming tasks,

resulting in faster development, better quality of work, and fewer

bugs. These participants were also abandoning tools like Google

Search or Stack Overflow and used AI to take care of mundane tasks

like writing tests and documenting code. This move away from

Stack Overflow was also reported in Burtch et al. (2024); however,

repeating their analysis on Reddit communities that focus on the

same sets of technology topics, virtually no evidence of any decline

in participation following ChatGPT’s emergence was found. So, “a

robust social fabric” may assure the health and sustainability of

online knowledge communities going forward.

In Valový and Buchalcevova (2023), participants would prefer

a human to pair with, with the exception of self-described

“introverts.” Perhaps unsurprisingly, in this study, participants

also attributed all success to themselves and all failures to AI,

i.e., without them, AI would be “useless.” They also found AI

too apologetic. These perceptions are somewhat in contrast to the

reception of the mixed-reality virtual assistant, created using the

HoloLens device that incorporates a conversational virtual avatar

(Manfredi et al., 2023). The avatar interacts with the user and

provides suggestions as students code in two modes—a driver (CAI

generates code) or a navigator (CAI suggests code improvements).

The preliminary evaluation in a real teaching scenario with students

showed that students using the virtual assistant had statistically

significant improvements in coding skills compared to the control

group in a traditional pair-programming setting. The surveys

indicated a high user satisfaction with the features, usability, and

effectiveness of the virtual assistant in addressing the challenges of

finding and collaborating with a human partner.

AI is indeed causing a programming paradigm shift from

descriptive to declarative, learning software engineering by reverse

engineering code. “The Chicken-Egg Problem” is also apparent

here as students in Valový and Buchalcevova (2023) struggled

with explaining themselves to AI and wished “AI could read their

minds.” Students in these studies often expressed that the basics

of software engineering must be taught without AI and before AI-

assisted programming. On the other hand, professionals in their

study were comfortable with expressing themselves clearly to AI.

Software quality: Some preliminary efforts to integrate

chatbots in the area of software quality focus on software testing

and code reviews. In the area of software testing, Paschoal et al.

(2023) evaluate the capabilities of a custom conversational agent,

TOB-STT, to support testing activities and measures students’

capabilities for bug identification with and without using the tool.

The study showed no significant improvement in students’ defect

identification skills, likely due to the inadequate capabilities of the

custom CA. Jalil et al. (2023) examine the effectiveness of ChatGPT

in answering practice questions from standard software testing

curricula. This study demonstrated that ChatGPT, when engaged in

a shared conversational context, more frequently provided correct

or partially correct responses compared to separate conversational

contexts. ChatGPT’s self-reported confidence did not correlate

strongly with the accuracy of its answers, indicating a need for

calibration improvements. Despite these challenges, LLMs are

found to have the potential to clarify complex topics in software

testing education.

In the area of code reviews, Farah et al. (2022b) designed

a code review application to teach programming best practices,

aiming to provide a blueprint of interactions between a student

and a conventional chatbot. The authors show how a student can

interact with a chatbot, which, in their example, mainly provides

code formatting and variable naming suggestions. In Farah et al.

(2022a), an online learning application was proposed to simulate

the code review features available on social coding platforms

and allow instructors to interact with students using a chatbot

identity, LintBot. The goal of this application is to increase student

engagement during code review exercises while also reducing

instructors’ workloads with respect to the guidance required during

these exercises. The controlled in-class experiment comprising

30 undergraduate software engineering students evaluated two

treatments: (i) providing explanations as the course instructor

within the code review application (instructor condition) and

(ii) providing explanations within the code review application

through a chatbot that the course instructor impersonated (chatbot

condition). Here, LintBot was simply an identity and did not have

any agency or script to reply automatically to student comments,

and students assigned to this condition were unaware that the

instructor impersonated the chatbot. While the high SUS (System

Usability Scale) scores for the application were promising, the

authors found no significant differences across the different groups

in terms of learning, while engagement was higher with the

instructor, even though not significantly. The lack of difference was

attributed to the repetitiveness of examples, and they considered

the mere use of identities (human or chatbot), to present static

information, to add very little to the learning experience.
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Current LLM-based tools can easily replace these early studies.

For example, we have run the same experiment (Figure 5; Farah

et al., 2022b) with ChatGPT-GPT4o to see how much LLM-based

agents provide this functionality out of the box. We received more

advanced feedback about variable naming and the use of data

structures, and ChatGPT also provided an alternate, cleaner version

of the code. When asked to tune the response for a person new to

programming, ChatGPT also modified the response to provide a

simplified version, a step-by-step explanation, and a highlight of

concepts for beginners.

Bull and Kharrufa (2023) considered current GenAI tools

as promising to include “code reviews” as a common practice

early on in software engineering education. Nevertheless, there

is still further research needed to explore the impact of

instructor-generated feedback vs automated feedback on code-

review exercises.

6 Discussion and future directions

We started this study with the goal of examining the current

state and future directions of conversational AI in software

engineering. Using a rapid review approach guided by the PRISMA

method, we selected 183 relevant peer-reviewed articles. The

quantitative analysis revealed a significant increase in publications

on conversational AI in software engineering and computing

education from 2018 to 2023, spanning numerous countries with

a few large collaborative communities and many smaller, isolated

groups, all indicating a growing interest in this area.

We aimed to answer three main research questions through a

qualitative analysis of the papers included in this study:

• RQ1: How is conversational AI currently influencing the

software engineering industry?

Conversational AI has the potential to disrupt various

phases of the software development lifecycle (SDLC). While

much of the current research focuses on code generation

and repair, conversational AI is also being integrated into

team training, expert recommendations, documentation, and

maintenance tasks. The proficiency of applying conversational

AI varies across different SDLC areas, but the general trend

is toward integrating AI while maintaining human oversight

to mitigate limitations. The key challenge lies in increasing

developers’ awareness of both the potential and limitations of

conversational AI tools, as the technology is still evolving, and

its usage is not fully understood.

• RQ2: How is conversational AI impacting computing

education?

Conversational AI is transforming computing education

by providing automated feedback, personalized learning

experiences, and interactive worked examples. The adoption

of AI-driven tools in education has shown promise,

particularly in introductory programming courses, but

there are also significant challenges, such as academic

integrity concerns and the need for effective assessment

methods. Empirical studies indicate that while AI tools can

enhance learning, provide real-time feedback and support,

helping students understand complex concepts and complete

assignments more efficiently, their limitations in handling

complex reasoning and non-textual descriptions must be

addressed.

• RQ3:What do early experiences show in terms of promising

improvements in educating future software engineers?

Early experiences suggest that integrating conversational

AI into software engineering education can improve

student engagement and learning experience. However,

the work is very preliminary, and there is a need for

more specialized CAI and further empirical studies to

evaluate the long-term impact of these tools on student

performance and to develop best practices for their use.

Additionally, addressing the “Chicken-Egg” problem, where

effective use of AI tools requires pre-existing software

engineering knowledge, is crucial for maximizing their

educational benefits.

Based on these findings, future research should focus on

creating AI-driven educational tools and teaching methods

evolving from current basic programming to support the learning

of more advanced concepts. In software engineering practice,

the emphasis on prompt engineering shows the need for clear

guidelines and best practices for using conversational AI in various

tasks. Researchers and industry professionals should collaborate to

develop and standardize effective prompts across different areas of

software engineering.

However, there is a risk that students might over-trust these

tools and use them without critical evaluation. Such reliance can

result in a superficial grasp of concepts and inadequate problem-

solving skills. To mitigate this risk, educators must highlight the

importance of using conversational AI as an aid rather than

a replacement, i.e., “coPilot, not auto-pilot.” While the lack of

originality might be insignificant for routine code generation, it is

fundamental for creative problem-solving in software engineering.

The challenge is to turn conversational AI into a partner in software

innovation and product creation, particularly as hybrid teams of

humans and AI become more common. Educators should focus

on integrating AI in a way that promotes critical thinking and a

deeper understanding of the material, ensuring that AI supports

rather than supplants student effort. This approach will help ensure

that the use of AI in education promotes genuine learning and the

development of essential skills.

The adoption of ChatGPT and similar tools also carries

certain risks related to the propagation of incorrect information

and issues related to academic integrity. To mitigate these risks,

the use of AI tools should be considered within the framework

of the Artificial Intelligence Risk Management Framework

(AI RMF 1.0; Tabassi, 2023), which provides guidelines for

assessing and managing the risks associated with AI technologies,

ensuring their safe and ethical use. The AI RMF emphasizes

the importance of transparency, accountability, and fairness

in AI deployment. Applying this framework in educational

contexts involves implementing measures to ensure that AI

tools are used responsibly. This includes training educators and

students on the appropriate use of AI, establishing protocols for

verifying the accuracy of AI-provided information and developing

strategies to detect and prevent academic misconduct facilitated

by AI.
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While we identify several promising areas for integrating

conversational AI in software engineering education, such

as requirements elicitation, software modeling, software

management, and software quality, more empirical studies

are needed to assess the impact of these interventions on student

learning. Personalized learning can tailor educational experiences

to individual student needs, potentially increasing motivation and

improving comprehension. However, the effectiveness of these

AI-driven educational tools must be rigorously evaluated. It is

vital to conduct empirical studies to understand how these tools

influence various aspects of learning, such as knowledge retention,

problem-solving skills, and student satisfaction.

In this context, several open questions require further

investigation:

• What are the implications of reversing the learning process—

producing software to understand concepts rather than

understanding concepts to produce software—on creativity,

problem-solving abilities, and decision-making?

• How do different student populations, including those from

diverse educational backgrounds and varying levels of prior

knowledge, benefit from CAI? How can we address issues of

access and equity in education concerning AI-driven learning

tools?

• Is social interaction still crucial, or can conversational agents

replace group work in computer science education? How

will AI-human interaction change human-human interaction

within software teams?

• How are tasks allocated between humans and AI in such

partnerships? Will human participants feel the same sense of

achievement?

In summary, future research directions should focus on

the long-term effects of conversational AI on student learning,

the development of AI-driven tools for collaborative software

engineering, and the ethical implications of AI in software

development and education.

7 Conclusions

With COVID-19, the education sector has already seen

significant disruption and permanent changes to learning, teaching,

and assessment, and the technological shift will continue with

generative AI platforms. However, it is still too early to assess

the impact of conversational AI technologies when public opinion

on inaccurate content and sources and lack of originality shapes.

Weighing pros and cons, experts still question the use of generative

AI, especially in education and research—“a flawed technology in

a flawed society” (Dwivedi et al., 2023). Nevertheless, the studies in

our review almost unanimously agree that students and educators

must learn to work with conversational AI to help prepare for the

future.

Specifically within Software Engineering, the increasing

capabilities of AI, particularly LLMs, are beginning to transform

tools and practices across the software development lifecycle.

From engaging with stakeholders to generating code and tests

to providing maintenance recommendations, AI assistants are

demonstrating the potential to significantly boost the productivity

of software engineers. However, fully realizing this potential

requires further advances in the reliability, interpretability,

and adaptability of AI models. Even with these advances,

human judgment and creativity will remain vital, and AI is best

viewed as an augmentation to human developers rather than

a replacement.

Given the speed at which automated software engineering is

evolving and improving and how rapidly software engineering

roles are changing in the industry, there is an urgency for

higher education to evolve quickly (Johnson, 2024). In

the fast-paced technology landscape, software engineering

education should focus on teaching students to keep up with

the changes, developing a growth mindset, and using AI

assistants while being critical of their limitations—building

the skills to effectively guide, interpret, and validate their

outputs. Software engineering students need to understand that

software projects are not always easy to specify, and software

requirements may change over time, as software creation is

a more “social endeavor” that evolves with the interactions

among the development team, customers, and other stakeholders

(Yellin, 2023). Hence, as AI matures, finding the right balance

and interface between human and artificial intelligence in the

software development process will be key to maximizing their

combined potential.
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