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The goal of achieving autonomous navigation for agricultural robots poses

significant challenges, mostly arising from the substantial natural variations in

crop row images as a result of weather conditions and the growth stages of

crops. The processing of the detection algorithm also must be significantly low

for real-time applications. In order to address the aforementioned requirements,

we propose a crop row detection algorithm that has the following features:

Firstly, a projective transformation is applied to transform the camera view and

a color-based segmentation is employed to distinguish crop and weed from the

background. Secondly, a clustering algorithm is used to di�erentiate between

the crop and weed pixels. Lastly, a robust line-fitting approach is implemented

to detect crop rows. The proposed algorithm is evaluated throughout a diverse

range of scenarios, and its e�cacy is assessed in comparison to four distinct

existing solutions. The algorithm achieves an overall intersection over union

(IOU) of 0.73 and exhibits robustness in challenging scenarios with high weed

growth. The experiments conducted on real-time video featuring challenging

scenarios show that our proposed algorithm exhibits a detection accuracy of

over 90% and is a viable option for real-time implementation. With the high

accuracy and low inference time, the proposed methodology o�ers a viable

solution for autonomous navigation of agricultural robots in a crop field without

damaging the crop and thus can serve as a foundation for future research.

KEYWORDS

crop row detection, precision farming, agricultural robot, unsupervised learning, real-

time application

1 Introduction

Autonomous navigation in agriculture has several advantages, such as reduced
operator fatigue, improved profit and efficiency, and enhanced operation safety. To support
autonomous navigation, a crucial task is to develop the capability of computer-vision based
detection of crop rows from image/video data. To address this, several methodologies
have already been proposed (Basso and de Freitas, 2019; Hough, 1962; Zhang et al., 2018;
Sainz-Costa et al., 2011); however, our analysis of these existing methodologies reveals
that their detection quality deteriorates significantly when the crop row image is complex.
Specifically, the complexity arises due to two reasons: first, discontinuity in a crop row due
to missing crops within a segment of a crop row, and second, considerable weed growth
in the area between the rows of crops. When a frame of a video feed contains both of
the aforementioned issues simultaneously, the distinction between crop rows and weeds
becomes highly challenging, and the majority of the existing approaches are unable to
achieve satisfactory performance in addressing the task of crop row detection.
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The prerequisites of a viable crop row detection method that
effectively operates in real-life deployment are as follows: (1) It
demonstrates the ability to detect crop rows even in the presence
of significant weed pressure; (2) It is suitable for implementation
in various types of crop fields; (3) It is capable of detecting crop
rows at different stages of crop growth; (4) It can accurately identify
both straight and moderately curved crop rows; and finally, (5) The
processing time required for detection on an off-the-shelf computer
meets the real-time requirements. In this work, we propose a
Clustering Algorithm based RObust LIne Fitting (CAROLIF) crop
row detection method which satisfies all the above requirements.

Different studies have been conducted for crop-row detection
using different methods. Basso and de Freitas (2019) used a filtered
Hough transform (Hough, 1962) method and achieved around 30
frames per second (FPS) for images with 320 × 240 resolution
on an RPi-3B embedded system. Although the study presented
comprehensive findings about the algorithm’s performance across
different image sizes and frame rates (the maximum speed used for
good detection: 2 m/s), no detailed calculation is shown about the
effect of weed pressure andmissing crop on row detection accuracy.
Zhang et al. (2018) proposed a double thresholding (combining
Otsu’s method with particle swarm optimization) on segmented
image with linear regression for line fitting. The authors said that
their system is capable of differentiating between weed and crop
rows through the use of double thresholding. However, they did
not provide details regarding the performance of their method in
conditions of heavy weed pressure. Also, least squares fitting is
highly affected by the presence of weed in the image. Sainz-Costa
et al. (2011) developed a strategy based on the analysis of video
sequences to detect crop rows. They used the lower half part of the
image for detection. The image processing experienced five steps:
segmentation, morphological opening, horizontal strips dividing,
vertical averaging, row centers extracting and crop rows finding.
The above approach can work well under low weed pressure. Chen
et al. (2021) constructed amethod to use UAV images to detect crop
rows. The authors experimented on cotton and wheat fields to test
their algorithm and found Crop row detection accuracy (CRDA) of
0.99–1.00 for cotton fields and 0.66–0.82 for wheat fields. But the
computations were done on orthomosaic images only and neither
curved crop rows nor weed presence was considered. Vidović et al.
(2016) applied the vanishing point principle to determine that
parallel crop rows (straight and curved) are preserving the inter-
crop row distances (regular patterns), which allows the application
of a matching technique to combine image evidence and prior
knowledge about the geometric structure. Optimization, based
on dynamic programming, was applied for straight and curved
crop row detection for different row crop. However, an image
with resolution of 640 × 480 needed around 5 s of processing
time. Li et al. (2022) followed a similar approach where they used
vanishing point and line-scanning method to detect hybrid rice
rows at pollination stage to get an Intersection over Union (IoU)
of 0.832 and an F1 score of 92.23%. But the authors did not
consider weed presence in their domain of study. García-Santillán
et al. (2018) proposed a method consisting of image processing by
Otsu thresholding, Hough Transform, Morphological operations
and regression analysis to detect crop rows. The method performs
well under different operating conditions, but required 7 s to

process one image, which makes it unsuitable for real-world
implementation. Rabab et al. (2020) used projective transformation
and segmentation with connected component analysis to connect
binary objects which are supposed to be crop rows. They used
a distance threshold value to determine which binary objects
belong to same crop row. Their algorithm shows better accuracy
than other state-of-the-art methods, but lacks viability of real-
time application due to its long processing time (0.7 s). Also
how the algorithm may perform in a dynamic environment with
challenging situations from continuous video is not discussed. Gai
et al. (2021) developed an under-canopy navigation system using
Time-of-Flight (ToF) camera to map and detect parallel crop rows.
They used a robotic ground vehicle specifically designed for an
agronomic row spacing of 0.76 m. Yang et al. (2022) proposed a
method based on color transformation, determination of multiple
Region of Interest (ROI), extraction of feature points and line fitting
using least-squares. The authors tested the algorithm on a maize
field during the tasseling stage and achieved an accuracy of 98.6%.
But a considerably high computation time of 0.3 s and reduction
of accuracy for different crop-row spacing makes the algorithm
less suitable for generalized application. Winterhalter et al. (2018)
used pattern hough transform where they determined a pattern
that is best supported by all data in contrast to (incrementally)
extracting single lines. Their method showed good results for tiny
sugar beet plants. But for plants with bigger leaves like Canola, their
success rate dropped drastically. Also how the presence of weed can
affect the algorithm is not discussed. Ota et al. (2022) used RGB-D
images taken from a cabbage field to remove plant area from depth
image and fitting the wave surface to detect crop rows. Although
their proposed method considers weed pressure, the study did
not mention any computation time or real-time implementation.
Pang et al. (2020) proposed an Region-based Convolutional Neural
Network (RCNN) algorithm and used UAV to capture images to
detect rows on a maize field and achieved a maximum accuracy of
95.8%, but the study did not consider the scenarios where weed can
be present on the field. Table 1 provides a comparative overview of
the discussed methods. Overall, more research is needed to develop
an algorithm which can show robust performance in difficult
scenarios (shadow, high weed pressure, missing crop row) and
viable for real-time application (low inference time).

The basic concept underlying our proposed methodology is
the utilization of an effective clustering technique to distinguish
between green weed pixels, which are considered noise points,
and green crop row pixels, which are identified as data clusters.
The primary aim of this study is to accurately classify each crop
row as a separate cluster in order to facilitate the fitting of a
regression line inside each cluster. This regression line will then
be returned as the identified crop row. In the first step, the input
image undergoes a series of operations. Firstly, the input image is
cropped, transformed to an image plane vertical to the crop rows,
segmented to separate the desired crop from the background, and
cleared from small noise or weed segments. At this point, the image
has two channels, black and white pixels. The black pixels represent
the background, while the white pixels correspond to crop and
weed. Now the goal is to differentiate weed pixels from crop pixels
with the purpose of afterwards fitting lines to the crop rows. A
clustering algorithm is implemented to cluster the pixels of each
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TABLE 1 Comparison of crop row detection methods.

References Method Crop types Performance metrics Considerations

Sainz-Costa et al. (2011) Video sequence analysis Not specified Avg dist: 20 px, Std dev: 28.5 px Less effective under high weed
pressure

Vidović et al. (2016) Vanishing point with dynamic
programming

Various crops 0.2 FPS (640x480) Processing time unsuitable for
real-time use

García-Santillán et al.
(2018)

Otsu thresholding, Hough
Transform, morphological
ops, regression

Maize 0.143 FPS Slow processing, not for
real-time use

Winterhalter et al. (2018) Pattern Hough Transform Canola, Corn, Leek,
Sugar Beet

11.2–24.4 FPS (varies by crop) Lower performance for plants
with larger leaves; weed
impact not discussed

Zhang et al. (2018) Double thresholding with
linear regression

Maize CRDA: 0.5◦ Affected by weed presence; no
details for heavy weed
pressure

Basso and de Freitas
(2019)

Filtered Hough Transform Maize 30 FPS (320× 240) No details on weed pressure
or missing crop impact

Pang et al. (2020) RCNN with UAV images Maize Accuracy: 95.8% Weed presence not
considered

Rabab et al. (2020) Projective transformation and
segmentation

Various crops 1.43 FPS Long processing time;
real-time suitability unclear

Chen et al. (2021) UAV images with least-square
method

Cotton, Wheat CRDA: 0.99–1.00 (cotton),
0.66–0.82 (wheat)

Based on orthomosaic images;
no consideration for curved
rows or weeds

Gai et al. (2021) ToF camera for crop row
mapping

Corn, Sorghum MAE: 3.4 cm (Corn), 3.6 cm
(Sorghum)

Optimized for specific row
spacing (0.76 m)

Li et al. (2022) Vanishing point and
line-scanning

Hybrid rice IoU: 0.832, F1 : 92.23% No weed consideration

Ota et al. (2022) RGB-D with wave surface
fitting

Cabbage CRDA: 1.15◦ (crop), 1.72◦ (weed);
F2 : 0.919 (crop), F0.5 : 0.999 (weed)

No computation time or
real-time details

Yang et al. (2022) Color transformation, ROI,
line fitting

Maize Accuracy: 98.6%, 3.33 FPS High computation time; lower
accuracy for varying row
spacing

crop row and distinguish weed pixels from the resulting clusters.
The presence of weed pixels within the crop row cluster has the
potential to impede the precision of the line-fitting algorithm. As a
result, a robust line-fitting algorithm is employed to fit a line onto
each cluster of crop rows, thereby eliminating the effects of outlier
points (weed or noise). Finally, the lines that have been fitted are
plotted on the image and returned as detected crop rows. All the
steps of the proposed algorithm are visually presented in Figure 1.

2 Data collection

To evaluate our algorithm and compare it with benchmark
methods, we used both an image dataset and video feeds.

2.1 Image dataset

We selected thirty distinct images from the CRBD dataset
to test the effectiveness of the proposed method. Two specific
scenarios were identified for analysis. "Easy scenarios" are
characterized by well-spaced crop rows with minimal or no weed
growth, where the rows are either straight or have moderate

curvature. "Challenging scenarios" involve sporadic or absent
crop growth in certain rows, a significant presence of weeds,
interconnection of crop rows due to weed overgrowth, and
pronounced curvature in the crop rows. Figure 2 illustrates
examples of both easy and challenging scenarios.

2.2 Video dataset

To assess the algorithm’s efficacy in a real-time setting, we
utilized a video dataset. The footage was captured with a GoPro
Hero8 camera, which offers 4K resolution and records video at
60 frames per second. Detailed specifications of the camera are
provided in Table 2. The camera was mounted at the front of
a tractor, angled at ∼35 degrees, while the tractor moved at a
speed of around 10 miles per hour. The video begins with the
tractor operating in an environment characterized by straight crop
rows and optimal detection conditions. About one minute into the
recording, the tractor makes a slight left turn. The final 30 s of
the video showcase a challenging environment, where crop row
detection is hindered by shadows, inconsistent crop growth, and
a substantial presence of weeds. The footage was recorded in May
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FIGURE 1

Steps of the proposed CAROLIF algorithm with images.

FIGURE 2

Example cases for easy and challenging scenario.

2020 in a cornfield located in Indianapolis, Indiana, under clear,
sunny weather conditions.

3 Methodology

3.1 Development of the algorithm

Below is described the process how the proposed
algorithm works.

3.1.1 Step 1: Pre-processing
First a region of interest (ROI) is selected with a minimum of

three crop rows. All the algorithmic methods are applied within
this ROI. There are three benefits to selecting this ROI. First,
green pixels near the horizon are congested and are challenging
to separate, resulting in increased false detection. By choosing this
ROI, the requirement to process the green pixels is eliminated.
Secondly, this ROI is approximately one-fourth of the dimensions
of the original image. Restricting operations to this section results
in a reduction in computational cost and processing time. And
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TABLE 2 Specification of video camera.

Parameter Value

Pixels 12 Megapixel

Aspect ratio 16:9

Vertical field of view 69.5◦

Horizontal field of view 118.2◦

Video capture rate 4K@60 FPS

third, curved rows within this limited ROI are reasonably straight.
Projective transformation is employed to convert the crop rows
converging at infinity into parallel lines. Consequently, fitting
straight lines to these crop rows yields satisfactory outcomes.

3.1.1.1 Projective transformation

The term “projective transformation" refers to the mapping
that associates a set of points from one image plane with a
corresponding set of points on another image plane. Planar
homography refers to the projective mapping from one plane
to another. Hartley and Zisserman (2003) provide a definition
of projective transformation as follows: “A planar projective
transformation is a linear transformation on homogeneous 3-
vectors represented by a non-singular 3-by-3 matrix."
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Or in short, x′ = H.x, where H is the homography matrix.
This homography matrix establishes a relationship between the
spatial coordinates of a point from the source image plane
(image plane 1 in Figures 3A, B) to a destination image plane
(image plane 2 in Figures 3A, B). (x′1.x

′

2, x
′

3)
T and (x1.x2, x3)T are

coordinates of a single point on two image planes. There are eight
independent ratios in H (h33 is a scaling factor) which implies that
a projective transformation has eight degrees of freedom (Hartley
and Zisserman, 2003). Here, homogeneous coordinates are used to
represent the points.

Let’s consider a pair of inhomogeneous matching points (x, y)
and (x′, y′) on image plane 1 and 2 respectively. We are considering
inhomogeneous coordinates because of their direct measurability
from the image plane (coordinates of points in pixels). From
Equation 1:

x′ =
x′1
x′3

=
h11x+ h12y+ h13

h31x+ h32y+ h33
(2)

y′ =
x′2
x′3

=
h21x+ h22y+ h23
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(3)

After rearranging:

x′(h31x+ h32y+ h33) = h11x+ h12y+ h13 (4)

y′(h31x+ h32y+ h33) = h21x+ h22y+ h23 (5)

where, x = x1/x3 and y = x2/x3. Eight linear equations can
be formed by using four points on each image plane. It is possible
to solve the tomography matrix H between two image planes using
only four points considering the condition is satisfied that no three
points can be colinear (Hartley and Zisserman, 2003). With scale
factor h33 = 1 and four sets of points on each image plane, the
following can be formed:
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In order to determine the H matrix, boundary points (red dots
in Figure 3C) are utilized. The aforementioned points are chosen by
us to ensure that the lines formed by the two red dots align parallel
to the crop rows. The concept entails that, upon the transformation
of the image from image plane 1 to image plane 2 (top view), the
crop rows will exhibit parallelism and will not exhibit convergence
toward infinity. This will facilitate the he ability to distinguish
between crop rows following the clustering process, hence allowing
for the imposition of precise straight-line boundary conditions on
each fitted line. After theHmatrix is computed, it is then utilized to
perform a transformation on the whole image plane 1 (Figure 3D)
resulting in the conversion to the image plane 2 (Figure 3E). From
Figure 3E, it is apparent that the crop rows demonstrate parallel
alignment rather than converging toward infinity.

3.1.1.2 Segmentation

When provided with an input image in the RGB color space,
the system separates each channel as follows:
R = red channel, range [0–255]
G = green channel, range [0–255]
B = blue channel, range [0–255]
After the channels have been divided, the subsequent normalization
procedure is implemented, which is widely utilized in agronomic
image segmentation (Gée et al., 2008):

r =
Rn

Rn+Gn+Bn

g =
Gn

Rn+Gn+Bn

b =
Bn

Rn+Gn+Bn

(7)

where Rn, Gn and Bn are the normalized RGB coordinates
ranging from 0 to 1 and are obtained as follows:

Rn = R/Rmax, Gn = G/Gmax, Bn = B/Bmax (8)

Here, Rmax, Gmax , and Bmax represent the maximum values
of R, G and B channels, respectively. To prevent division by
zero, a minute constant is added to the denominator during the
normalization process. The extraction of green color (representing
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FIGURE 3

(A) Projective transformation employed in the context of Agricultural robotics to convert the perspective of camera 1 view into the virtual perspective

of camera 2 view. (B) In the case of two camera planes, the relationship between image planes is described by projective transformation, provided

that all world points lie on the same plane. (C) The Original image captured from camera 1, displays boundary points. (D) Cropped image utilizing

boundary points. (E) Transformed cropped image from camera 1 view to camera 2 view.

vegetation) can be achieved by the utilization of the following
equation (Ribeiro et al., 2005):

Excess Green, ExG = 2g − r − b (9)

3.1.1.3 Noise reduction

The application of morphological opening and closing
operations on binary images is commonly employed to reduce
noise. Opening and closing operations are classical image
processing operations where opening removes small object (white
pixels) from the binary image and closing removes small holes
(black pixels in a white pixel blob) from the binary image
(Dougherty, 1992).

3.1.2 Step 2: cluster
An effective clustering technique for crop row detection must

exhibit two key characteristics: the ability to differentiate between
distinct crop row clusters within the region of interest (ROI)
without prior knowledge, and robust, intuitive tuning parameters
that allow the algorithm to adapt to a wide range of scenarios. Our
proposed method utilizes HDBSCAN (McInnes et al., 2017) as the
clustering technique.

The algorithm has been designed with preventive measures to
reduce incorrect clustering. If there are fewer than three clusters
within the region of interest (ROI), the algorithm assumes that
some of the clusters have merged due to a high amount of weed
(see Figure 1, step 2.2). It then iteratively deletes outliers (weeds)
to find crop row clusters. In certain instances, the presence of

excessive weed growth or intermittent crop growth may result in
the generation of several clusters using HDBSCAN for a single crop
row. The manipulation of the min cluster size parameter enables
control over this aspect. For the fixed min cluster size parameter,
crop row distance is used as a threshold parameter (Figure 1 step
2.3). If multiple clusters are in close proximity to one another,
(determined by the distance of crop rows), then the cluster with
smaller data points and smaller height will be deleted. In Figure 1,
the green-colored cluster (step 2.3) will be deleted.

3.1.3 Step 3: line fitting
Random Sample Consensus (RANSAC) (Fischler and Bolles,

1981) algorithm is employed for line fitting on individual clusters
owing to its straightforward implementation and robustness.
Since RANSAC iteratively determines the most suitable data
points for line fitting inside a cluster, it excludes the outliers
(possibly weed data points) and shows robustness when weeds
are present.

The algorithm for detecting crop rows is fully presented
in Algorithm 1. The next section discusses important tuning
parameters of the algorithm and their effects on crop row detection.

3.2 Pseudocode (CAROLIF)

The ProjectiveTransformation function accepts an RGB image
of full size, together with inputs specifying the size of the region
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INPUT: color image

OUTPUT: fitted lines over crop rows

Function ProjectiveTransformation (color image, ROI,

boundary points):

Use ROI to crop the input image

Use boundary points for projective transformation

return transformed image

Function SegmentAndClean (transformed image):

Binary segment image using ExG and Otsu

Noise reduction with morphological operations

return binary segmented clean image

Function ClusterImage (segmented image):

Cluster segmented image with HDBSCAN

Check if correct number of clusters present

If not, delete outliers and check again

return crop row clusters

Check if crop row cluster’s distances are correct

Delete incorrect clusters

Fit straight line on crop row clusters with RANSAC

Check if fitted lines are within slope threshold

Plot straight lines over crop rows and show

Algorithm 1. CAROLIF.

of interest (ROI) and the border points. The input image is cropped
utilizing “ROI size." Boundary points refer to the four corners of the
cropped image that serve as reference points for its transformation.
This function returns the projective transformed cropped image
where crop rows are parallel to each other. The SegmentAndClean

section of the algorithm use the cropped projective modified image
as its input. Initially, the binary picture is generated from the
color image using ExG and Otsu thresholding techniques, wherein
green pixels are assigned a value of 255, while all other pixels
are set to zero. Subsequently, morphological opening and closing
processes are employed to effectively eliminate noise artifacts from
the image. The ClusterImage phase of the algorithm accepts the
clean segmented image as its input. The use of HDBSCAN to
the segmented image enables the identification and delineation of
distinct clusters. Occasionally, the interconnection of numerous
crop rows might occur as a result of elevated weed pressure
or atypical crop development. The observed clusters exhibit a
significantly larger quantity of data points in comparison to
conventional crop row clusters. In the event that this particular
situation occurs, a process of iterated outliers deletion is initiated
and continues until the connected crop rows become separated.
The function returns the number of clusters, along with the
location of each cluster’s data point, that are considered to represent
crop rows. Subsequently, two assessments are conducted utilizing
geometric expertise pertaining to the arrangement of crop rows.
In the three-dimensional world, it is typical for crop rows to
maintain a consistent spatial separation. The distance is converted
into a pixel value on the camera image plane, and subsequent
evaluations are conducted to determine if two clusters are located
within this specified distance. If the answer is yes, it can be
inferred that one of the entities under consideration is a cluster
of weeds. The identification and removal of weed clusters is

determined by assessing their height and the quantity of data
points. Once the process of fitting straight lines through each
cluster is accomplished, the final check is conducted. Given that
projective transformation is being employed, it is expected that
each fitted line will exhibit a slope in close proximity to 90◦. The
angular orientation of the lines changes from 90◦ due to the turning
of the agricultural vehicles. In this investigation, a slope threshold
range of [70, 110] degrees is utilized. The lines that fall outside of
this range of slopes are excluded from the final result. Ultimately,
the plotted lines are superimposed into the identified crop rows.

3.3 Performance comparison

In this study, we compare the proposed method to four other
methods. The first one, Hough transform (Hough, 1962), is a
feature extraction technique in digital image processing. Following
the initial stage, the Canny edge detection technique (Canny,
1986) is employed to extract the edges from the binary image.
Through the process of coordinate transformation, the colinear
points located along the edges of the binary image are changed
into concurrent lines inside the parameter space by the use of
a voting mechanism. The Hough transform is a method used to
detect lines by accumulating votes. The primary tuning parameter
in this context is referred to as the “threshold," which represents
the minimal number of intersections required to identify a line.
However, it should be noted that this particular parameter lacks
intuitiveness. Moreover, a minor modification of the parameter
significantly alters the resulting outcome. In addition, the Hough
transform often produces a significant number of false positive
lines in the absence of any filtering mechanism. In this study,
we have applied a filtering process to exclude lines with low
slopes and lines that are in close proximity. However, the process
of choosing the appropriate threshold values for the slope and
determining which lines are considered adjacent lacks robustness.
The output exhibits significant variations depending on these
characteristics.

The second method is referred to as the Sliding-window
method. After step 1 (Figure 1), a window with dimensions of
20 by 20 slides over the ROI. During this process, the algorithm
determines the center coordinates of the white pixel clusters
contained within the window. By traversing the whole ROI, the
center points of the crop rows are derived. Next, a linear regression
model is used to fit a least-squares straight line to the center points
of the crop rows. Some variants of this method are available in
literature (García-Santillán et al., 2017; Zhang et al., 2018). One
of the primary constraints associated with this approach is the
determination of the precise location of the crop row initiation
point, as well as the identification of the distinct segments within
which each row is situated. Consequently, the presence of a
significant weed population greatly diminishes the precision of
this approach.

The third method is Template Matching followed by
Global Energy Minimization (TMGEM) (Vidović et al.,
2016). It uses dynamic programming in order to achieve
efficient global energy minimization. This methodology is
capable of functioning effectively without the need for any
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FIGURE 4

IOU between a ground truth bounding box (in green) and a detected

bounding box from algorithm (in red).

pre-existing knowledge regarding the number of crop rows.
Furthermore, it exhibits a reasonable level of insensitivity toward
weed presence and is compatible with various stages of crop
growth.

The fourth method is named Cluster-Least squares. After step
2 (Figure 1), the least squares straight line fitting is used. The
least squares method operates by minimizing the sum of squared
errors to achieve the smallest attainable value. Consequently, this
approach exhibits sensitivity toward outliers. The presence of
outliers, specifically in the form of weed, introduces bias in the
least squares method, hence diminishing the accuracy of crop row
detection.

The final method is named CAROLIF and is the proposed
method. Other than TMGEM, all the other methods are built and
implemented from scratch by us.

3.4 Performance metric

The accuracy of each method is quantitatively measured using
the intersect over union (IOU) metric. The evaluation of the
overlap between two bounding boxes is performed by IOU. In
order to perform the task, both a ground truth bounding box
and a forecasted bounding box are necessary. Subsequently, the
algorithm computes the proportion of the shared area between
two bounding boxes in relation to the overall combined area
of the bounding boxes. Figure 4 (Padilla et al., 2020) shows the
visual representation of IOU. Figure 5 illustrates the process of
generating bounding boxes for the specific scenario of crop row
detection. IOU is an intuitive parameter. A score of 1.0 signifies
that the predicted bounding box corresponds precisely with the
actual bounding box. A score of 0.0 indicates a complete absence
of overlap between the predicted bounding box and the true
bounding box.

To evaluate the accuracy and recall of the detections, we
counted the number of true positive and false positive crop
row detections. The overall accuracy was calculated based on
these true positive and false positive values. For recall, we
considered the number of false positive, false negative, and
true positive detections to provide a comprehensive assessment
of the algorithm’s ability to correctly identify crop rows while
minimizing errors.

FIGURE 5

Actual bounding boxes. The red lines represent the ground truth

detection of crop rows, while the blue lines represent the

algorithm’s detection of crop rows. The green bounding boxes help

to encapsulate the height and width of the ground truth lines. The

pink bounding boxes capture the height and width measurements

of algorithm detection lines.

4 Results

4.1 Qualitative comparison

To understand the proposed method’s clustering capability of
crop rows, we conducted a comparative analysis of four different
clustering techniques. Figure 6 shows the performance output of
Kmeans (Arthur and Vassilvitskii, 2006), Meanshift (Comaniciu
and Meer, 2002), Agglomerative (Pedregosa et al., 2011), and
HDBSCAN (McInnes et al., 2017) on crop row detection. Kmeans
(Arthur and Vassilvitskii, 2006) fails because of the anisotropic
nature of the crop row data which means they are elongated
along a specific axis. The Kmeans algorithm, because of its equal
treatment of all data points, does not effectively differentiate any
local variation within a cluster. The advantage of Meanshift over
Kmeans is that we don’t have to specify the number of clusters.
The Meanshift algorithm is predicated on the assumption of an
underlying probability density function for the given data and
it proceeds by locating centroids at the maxima of the density
function. The default parameter bandwidth which dictates the size
of the region to search through, shows wrong results. Additionally,
this approach exhibits significantly slower performance compared
to alternative methods that have been examined, rendering it
unsuitable for real-time applications. The agglomerative clustering
technique is a hierarchical approach that groups data into clusters
based on their similarity. The clustering process starts by initially
considering each individual data point as a distinct cluster.
Subsequently, the clusters are iteratively merged together until a
predetermined criterion is satisfied. However, in order for this
approach to be effective, it is necessary to have prior knowledge
of the “number of clusters." HDBSCAN is a density-based method
that extends DBSCAN (Ester et al., 1996) into a hierarchical
clustering algorithm. The only tuning parameter used ismin cluster

size and its effect is explained in the subsequent sections. From
Figure 6 it is clear that HDBSCAN successfully clustered the crop
rows. It also identifies the outliers (black pixels) which are then
omitted from output clusters.
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FIGURE 6

Comparison of Kmeans, MeanShift, Agglomerative and HDBSCAN clustering algorithm on crop row detection. The runtime is displayed in the top left

corner of each image. Distinct colors are used to represent separate clusters. The presence of black colors is indicative of outliers.

In Figure 7 (Row 1), it is difficult to discern the initial phases
of crop growth and the arrangement of crop rows with the naked
eye. The Hough transform and sliding window approaches exhibit
a failure in accurately detecting the third row inside the given
image. The TMGEM and the proposed approach exhibit superior
performance. In (Row 2), the connection between crop rows 2 and
3 can be attributed to the presence of high weed pressure and the
early growth stage of the crops. The difficulty in resolving this
issue arises from the high concentration of weeds, which poses a
challenge for any line fitting algorithm since it tends to fit a line
across the pixels representing the weeds. The Hough transform
and sliding-window approach are both methods that align with
this pattern. The CAROLIFmodel demonstrates the most favorable
outcome in this particular situation. In (Row 3), there is an
occurrence of weeds that exhibit abnormally large dimensions.
Most conventional row detection algorithms are ineffective in
accurately detecting rows and tend to erroneously fit lines across
weed pixels due to the abnormally high concentration of weeds.
This is the sequence of events that occurred for all the other
techniques. The CAROLIF algorithm addresses this limitation by
utilizing the RANSAC method, which iteratively identifies two
points with a 99% likelihood of being inliers within a cluster
and then fits lines based on these two points. Choi et al. (1997).
In (Row 4), the upper portion of the crop row is absent in the
initial row. Additionally, in the upper left corner, there are green
pixels originating from a neighboring crop row. The clustering
algorithm based on least squares is ineffective due to its lack
of robustness against outliers. The issue is resolved with the
implementation of CAROLIF. The second crop row in (Row 5)
CAROLIF exhibits inferior outcomes. This phenomenon occurs
due to the significant disparity in growth rates between crop rows

and weeds. Consequently, the clustering method eliminates the
crop row segment as an outlier. One possible approach to address
this issue is to adjust the value of the min cluster size parameter in
the HDBSCAN algorithm, namely by reducing its magnitude.

4.2 Quantitative comparison

A total of fifteen examples are investigated for each scenario
(easy and challenging). In each instance, the IOU value is
determined by selecting only three rows, ensuring accurate
comparison with TMGEM outcomes. (the authors of TMGEM
had used three detected lines). Figure 8 shows the performance
comparison of different algorithms under easy and challenging
scenarios. In regard to all algorithms, it is seen that the IOU
value is greater for easy scenarios as opposed to challenging
scenarios. This finding suggests that the accuracy of all algorithms
is negatively affected by the presence of weeds. The greatest
median Intersection over Union (IOU) values for both easy and
tough scenarios are observed in TMGEM, with CAROLIF closely
following suit. In simplified settings, the TMGEM algorithm
exhibits the minimal spread of IOU, indicating its superior
consistency in accurately detecting crop rows. In situations that
present difficulties, CAROLIF exhibits the narrowest spread and
the highest minimum IOU value, indicating that it outperforms
other algorithms in harsh conditions with greater consistency.
In general, the performance of the Hough transform and sliding
window techniques is notably inferior when compared to the
other three algorithms. The algorithms TMGEM, cluster-least
squares, and CAROLIF exhibit similar performance, with TMGEM
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FIGURE 7

Performance comparison of crop row detection in challenging scenarios for Hough transform, Sliding window, TMGEM, Cluster-Least square and

CAROLIF (proposed) methods with ground truth results. (Row 1) intermittent, very early crop growth, no weed. (Row 2) early crop growth stage,

significant presence of weed, resulting in the interconnection of crop rows. In this case, crop rows and weeds are not di�erentiable. (Row 3) early

crop growth stage, unusually large intermittent weeds, causing the crop rows to take on curved shapes. (Row 4) moderate level of crop growth, crop

absent from certain rows, no weed. (Row 5) early crop growth stage—intermittent, concentrated weed growth.

FIGURE 8

Box plot comparison of IOU values for di�erent methods under easy

and challenging scenarios.

demonstrating a little superiority over the other two methods. The
mean Intersection over Union (IOU) value for each scenario and
the average IOU for all algorithms are presented in Table 3.

The relatively lower performance of the CAROLIF technique,
as well as other color-based segmentation methods, might be
attributed to the ground truth values of the CRBD dataset. An

TABLE 3 IOU value for di�erent algorithms.

Algorithm Mean IOU
(easy)

Mean IOU
(challenging)

Avg. IOU

Hough transform 0.64 0.53 0.58

Sliding window 0.66 0.55 0.61

Cluster-least sq. 0.72 0.67 0.7

CAROLIF 0.76 0.69 0.73

TMGEM 0.79 0.71 0.75

illustration of a specific example is depicted in Figure 9. The
detected ground truth lines (red lines) for the left and center
rows are not precisely centered. The ground truth value of the
left row exhibits a bias toward the left, while the ground truth
value of the center row demonstrates a bias toward the right.
A segmentation method based on color is employed to separate
the pixels with a green hue from the pixels representing the
background. Subsequently, the identified green pixels are utilized
to generate the best-fit lines, which are then plotted as rows.
Consequently, the regression lines that provide the best-fit pass
through the central points of the identified crop rows. In cases
where the ground truth value is not located at the center of the
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FIGURE 9

(Left side) Ground truth value and boundary boxes from CRBD dataset. (Right side) CAROLIF detection and boundary boxes.

crop rows, the IOU value may be reduced, despite the algorithm
producing the best-fit line. In Figure 9, it can be argued that the
identified lines by CAROLIF exhibit higher accuracy compared to
the ground truth value for the left and center rows. The deviation
of ground truth values of the CRBD dataset can be one of the main
reasons behind the overall inferior IOU value. In the context of
comparing color-based segmentation algorithms, it may be stated
that selecting the algorithm with the highest IOU value would be
the preferable decision.

To compensate for the possible bias of CRBD dataset, we also
calculate the accuracy of the methods on the CRBD dataset. We
count the number of true positive and false positive detection of
crop rows. From those true positive and false positive values, we
calculate the overall accuracy. IOU shows us, when crop rows are
detected, what percentage of detected crop row pixels overlap with
ground truth values. With accuracy, we just calculate how many
crop rows are detected correctly. Ground truth values from the
CRBD dataset are not needed because human operator can judge
which crop row is detected correctly. Table 4 shows the accuracy of
different algorithms on CRBD dataset. The accuracy of CAROLIF
and TMGEM is significantly better than all other algorithms in
both scenarios. Moreover, CAROLIF has 100% accuracy in easy
scenarios and the highest accuracy in challenging scenarios.

4.3 Processing time

Figure 10 shows the processing time for each step of CAROLIF
crop row detection algorithm. With the development of very
powerful embedded hardware like the Jetson TX2 which has
built-in video processing capabilities, the proposed algorithm
demonstrates the ability to provide real-time performance, even
when applied to high-speed vehicles.

Table 5 presents a comparative analysis of processing time.
It is important to reiterate that the current implementation
does not utilize parallel-processing or multi-threading techniques,
which have the potential to dramatically decrease processing time.
Clustering algorithms exhibit much longer computational time in
comparison to the Hough transform or Sliding window techniques.

TABLE 4 Accuracy of di�erent algorithms in easy and challenging

scenarios.

Algorithm Accuracy (easy) Accuracy
(challenging)

Hough transform 91.1% 77.7%

Sliding window 84.6% 73.9%

Cluster-least sq. 93.7% 82.2%

CAROLIF 100% 95.7%

TMGEM 100% 95.2%

FIGURE 10

Processing time of each step of CAROLIF crop row detection

algorithm. ROI size (120 by 80) pixels.

The TMGEM algorithm requires significantly more time to execute
compared to clustering approaches, rendering it impractical for
real-time crop row recognition applications.

4.4 Performance on video input

The performance of the CAROLIF algorithm in detecting crop
rows on real-time video collected from an agricultural vehicle
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is seen in Figure 11. The time step t = 5 indicates that this
frame is extracted from a video at a time of 2.5 s. The notation
t = 10 indicates that this particular frame is extracted from
a movie at the time interval of 5 s. During the time interval
from t = 5 to t = 20, the crop rows are well-lit by the
sun, resulting in minimum proliferation of weeds. The CAROLIF
system demonstrates robust performance and accurately identifies
all crop rows. At time point t = 22, there is observable weed
growth occurring between the two leftmost rows, accompanied
by the presence of shadow. Consequently, the detection of the
left row exhibits a certain degree of inaccuracy. However, at time

TABLE 5 Processing time for di�erent algorithms.

Algorithm Processing time
(ms)

Avg. FPS

Hough transform∗ 2.02 495

Sliding window∗ 2.88 347

Cluster-least sq.∗ 100.12 9.9

CAROLIF∗ 108.52 9.2

TMGEM∗∗ 1750 0.5

∗Core i5 dual-core 1.4GHz processor. (120 by 80) ROI size.
∗∗Core i5 quad-core 3.3GHz processor. (320 by 240) ROI size.

t = 30, upon transitioning to the well-illuminated region, accurate
detection of all crop rows is achieved. The scenarios characterized
by t = 35 and t = 38 present additional challenges, namely the
presence of strong weed growth where the height of the weeds is
nearly equivalent to that of the crop, as well as the interference
caused by shadows. However, the accuracy of crop row detection
is consistent across all scenarios. During the time interval from
t = 40 to t = 60, there is a noticeable presence of sparse
shadows and weed growth. However, CAROLIF demonstrates
strong performance in these somewhat tough settings, accurately
detecting all crop rows. At time point t = 67, the tractor
undergoes a left turn, causing the left crop row to exceed the
slope threshold [(70,100) degrees] and so be excluded from the
result. One potential solution to this issue is to adjust the slope
threshold. However, the remaining three crop crows are accurately
identified. One of the most demanding cases that a crop row
detection system can encounter at t = 73 and t = 77. The
presence of shadows and sunlight is observed, accompanied by a
significant proliferation of weed growth and a limited and sparse
development of crops. In these settings, accurately detecting crop
rows is a challenging task even for human visual perception.
Consequently, the performance of CAROLIF experiences a decline.
However, when reaching a somewhat improved state at time t = 79,
CAROLIF demonstrates the capability to accurately recognize all
four crop rows.

FIGURE 11

Performance of CAROLIF algorithm on real-time video footage obtained from an agricultural vehicle.
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FIGURE 12

Comparison of crop row detection results with and without projective transformation. Four di�erent scenarios are chosen. (T1) and (T2): sunny, no

weed, no shadow, intermittent crop growth. (T3): sunny, no weed, shadow present. (T4): high weed pressure, shadow, intermittent crop growth.

4.5 E�ectiveness of projective
transformation

Figure 12 illustrates the efficacy of projective transformation in
mitigating false positive crop row detection in intricate scenarios.

Four distinct frames, each corresponding to a different condition,
have been chosen for the purpose of comparison. During time

periods T1 and T2, the prevailing weather conditions are favorable
with intermittent crop growth. The utilization of projective

transformation results in the parallel alignment of clusters,
hence facilitating their differentiation. In contrast, the absence

of projective transformation results in the random dispersion of
clusters, making it challenging to differentiate them based on crop

row distance and a rigid straight line threshold. Consequently, in

the absence of projective transformation, the CAROLIF algorithm
inaccurately assigns lines to clusters. The cases involving T3 and T4

exhibit increased complexity due to the presence of darkness, severe
weed pressure, and intermittent crop development. Based on the

analysis of the cluster output, it is evident that a significant number
of cluster cores remain after the removal of outliers. The application
of projective transformation, employing rigorous thresholds,
facilitates the elimination of inaccurate cluster cores and enables
the fitting of exclusively accurate lines. Particularly at T4, it presents
a challenge for unaided human vision to accurately perceive
the alignment of crop rows. However, CAROLIF demonstrates
success in detecting three out of four crop rows. Furthermore,
the system only displays the lines that are deemed appropriate
and omits those that may not be suitable, hence minimizing

TABLE 6 Performance of CAROLIF on video data.

With projective
transformation

Without
projective

transformation

Accuracy 90.5% 77.1%

Precision 96.6% 84.5%

Recall 93.3% 89.8%

the occurrence of false positive detection. The performance of
CAROLIF is assessed by measuring its effectiveness on both the
video with and without projective transformation. In the absence
of projective transformation, a number of frames exhibit a lack of
significant detection, leading us to exclude these frames from our
calculations. The quantification of false positive, false negative, and
true positive crop row detections is conducted by video analysis.
Subsequently, accuracy, precision, and recall are computed based
on these measurements. The information is presented in Table 6.
The CAROLIF model demonstrates a high level of accuracy, over
90%, when applied to real-time video analysis involving intricate
conditions such as shade presence, intermittent crop growth, and
significant weed pressure. The results indicate that the performance
of CAROLIF is deemed satisfactory for real-time applications.
Additionally, it demonstrates the enhancement of CAROLIF’s
performance in all aspects through the utilization of projective
transformation.

The capability of CAROLIF to accurately identify crop rows in
real-time, even in fairly demanding settings, is evident. In instances
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where the human eye alone may struggle to accurately identify
crop rows, the precision of detection diminishes. However, the
incorporation of distance threshold and slope threshold effectively
mitigates the occurrence of false positive detections of crop
rows, even in very demanding settings. In the context of real-
time applications, there are two potential avenues to enhance
performance. Initially, it is possible to rely solely on the GPS signal
until the tractor reaches a specific location where accurate detection
is achieved for all four rows. Additionally, the implementation of
a tracking algorithm might be considered as a potential solution
to address the issue of deteriorating sensor output or detection
accuracy in highly tough settings. This algorithm would aim to
monitor the centers of crop rows, so providing a means to mitigate
the impact of these challenging conditions. When included into
the autonomous navigation framework of an agricultural robot, the
aforementioned fail-safes can be implemented into CAROLIF in
order to enhance its robustness.

5 Discussion

The proposed CAROLIF algorithm demonstrates robust crop
row detection capabilities across a diverse range of scenarios. Our
comparative analysis of various clustering methods revealed that
HDBSCAN is particularly effective for clustering crop rows, which
is a key component of the CAROLIF algorithm. This method’s
ability to handle varying densities and its robustness against outliers
contributed significantly to the reliable performance of CAROLIF.
Furthermore, we evaluated the performance of CAROLIF along
with four benchmark algorithms: Hough Transform, Sliding
Window, TMGEM, and Cluster-Least Square method in different
challenging scenarios. CAROLIF exhibits consistent performance
in these scenarios, whereas some of the other algorithms fail
in some cases. The quantitative comparison further highlighted
CAROLIF’s strengths, as it exhibited the lowest variation in
Intersection over Union (IOU) during testing on the samples of
the CRBD dataset. This consistency is a crucial factor for reliable
performance in real-time applications. While the average IOU for
the Cluster-Least Square, TMGEM, and CAROLIF methods were
comparable—0.70, 0.75, and 0.73 respectively—CAROLIF stands
out due to its higher overall accuracy and lower image processing
time. These attributes make it particularly well-suited for real-time
implementation, where speed and precision are critical. Moreover,
in tests using video feeds, CAROLIF successfully detected crop
rows within its region of interest (ROI) for the majority of time
frames. This performance underscores the algorithm’s reliability in
dynamic, real-world conditions. The incorporation of projective
transformation in CAROLIF was instrumental in reducing false
positives and improving accuracy, particularly in scenarios with
significant perspective distortions. By aligning clusters along the
correct axis, projective transformation enhanced the precision and
recall of detected rows, thereby increasing the overall robustness of
the algorithm.

6 Conclusion and future work

This study introduces a new approach for crop row detection
that utilizes clustering techniques. The algorithm is subsequently

evaluated using both static and video datasets. The method under
consideration utilizes a clustering technique and incorporates
prior knowledge regarding the geometric arrangement of crop
rows in order to distinguish between weeds and crop rows. By
implementing a smaller region of interest (ROI), the processing
time is reduced and enables more precise fitting of straight lines to
moderately curved crop rows. In addition, the method incorporates
the utilization of RANSAC, a robust line fitting technique, in order
to enhance the mitigation of weed interference on the detection
of crop rows. The algorithm under consideration demonstrates
suitability for real-time implementation on low-specification
hardware, namely those lacking a GPU. Furthermore, it exhibits
commendable accuracy in detecting crop rows, even in extremely
challenging situations. When comparing the performance of other
algorithms, CAROLIF demonstrates superior results (IOU 0.73) in
comparison to the Hough transform (IOU 0.58), sliding window
(IOU 0.61), and cluster-least sq. (IOU 0.7). Furthermore, in
both easy and challenging scenarios, CAROLIF demonstrates
a high level of efficacy in accurately detecting all crop rows.
Conversely, the other approaches exhibit a complete failure in
certain scenarios. Accuracy data of different algorithms on CRBD
dataset shows that CAROLIF has 100% accuracy in easy scenarios
and the highest accuracy in challenging scenarios. Good accuracy
on diverse scenarios and low computation time (108 ms) make
CAROLIF a good choice for real-time application. The examination
conducted on video data obtained from an agricultural vehicle has
yielded encouraging outcomes, indicating its potential for real-time
implementation. In our study, we were able to attain an accuracy
rate of 90.5%, precision rate of 96.6%, and recall rate of 93.3%
when analyzing a video that presented intricate scenarios involving
shadow, intermittent crop development, and heavy weed pressure.
The ultimate objective of this study is to deploy the algorithm on
a commercially available single-board computer (Jetson TX2) in
order to achieve real-time detection of crop rows from video input.

The proposed algorithm was validated through testing in a
cornfield across various scenarios. For future work, it can be
evaluated on different types of crop fields with varying row spacing
and weed types to assess its generalization capability. Additionally,
testing the algorithm under diverse weather conditions, such as
cloudy, rainy, and windy environments, would provide insight into
its performance under different lighting and dynamic conditions.
Further research could focus on fine-tuning the algorithm’s
parameters and exploring techniques to reduce computation time.
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