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Introduction: Application of Deep Learning (DL) methods is being increasingly

appreciated by researchers from the biomedical engineering domain in which

heart sound analysis is an important topic of study. Diversity in methodology,

results, and complexity causes uncertainties in obtaining a realistic picture of the

methodological performance from the reported methods.

Methods: This survey paper provides the results of a broad retrospective study on

the recent advances in heart sound analysis using DL methods. Representation

of the results is performed according to both methodological and applicative

taxonomies. The study method covers a wide span of related keywords using

well-known search engines. Implementation of the observed methods along

with the related results is pervasively represented and compared.

Results and discussion: It is observed that convolutional neural networks and

recurrent neural networks are the most commonly used ones for discriminating

abnormal heart sounds and localization of heart sounds with 67.97% and 33.33%

of the related papers, respectively. The convolutional neural network and the

autoencoder network show a perfect accuracy of 100% in the case studies

on the classification of abnormal from normal heart sounds. Nevertheless, this

superiority against other methods with lower accuracy is not conclusive due to

the inconsistency in evaluation.

KEYWORDS

phonocardiogram, intelligent phonocardiography, deep learning, heart sound, heart

sound segmentation, heart disease, end-to-end learning, heart sound classification

1 Introduction

The context of biomedical engineering has been considerably enhanced after the

development of Artificial Intelligence (AI) and Deep Learning (DL) methods. This

enhancement can be profoundly seen in different applications of AI-based methods

including automated cardiac disease diagnosis using a recording of heart sound signal,

called Phonocardiograph (PCG), as the input to theDLmethod. This domain of computing

methods has addressed various embodiment, from the traditional AI-based methods

(Sepehri et al., 2008), to the hybrid models (Gharehbaghi et al., 2015a,b), and ultimately DL

methods, over the previous decades (Gharehbaghi et al., 2019b, 2017b). The shift from the

traditional to the hybrid methods was not indeed as effective as the leap from the hybrid to

the DLmethod. Although Artificial Neural Networks (ANN) first emerged as an alternative

to the statistical methods, i.e., HiddenMarkovModel (HMM), the theoretical link between

these two alternatives was later understood by the researchers (Bourlard and Wellekens,

1990). Regardless of using ANN or HMM, feature extraction is a step with fundamental

importance, which has always tried to be elaborated to secure an acceptable performance

of the learning method. On the contrary, a DL method can be designed in a manner to
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learn appropriate features for reliable performance. Such

advancement was not seen in the former alternatives.

Application of DL methods has been expanded to PCG analysis

mainly in two different ways: classification of abnormal heart

conditions from the normal ones, and segmentation of PCG signal,

where the latter implies the process by which onset and endpoint of

the basic heart sounds are identified. It is worth noting that a heart

creates two sounds, resulting from the valvular closure, named

the first and second heart sound. These two sounds are known as

the basic heart sounds and the time intervals between basic heart

sounds carry important information about heart condition. The

importance of an expert system for cardiac disease diagnosis is

better understood if considering that cardiovascular disease is still

the main cause of human mortality.

Several architectures of deep learning methods have been

introduced for PCG analysis, either for classification or for

segmentation purposes, however, result discrepancy along with the

inconsistent training/validation circumstances make selection of a

reliable DL method a complicated task.

To put this point into a better perspective a number of the

challenges faced with the development of an expert system for

cardiac disease diagnosis based on PCG analysis, are listed as

follows:

• PCG signal by itself, is non-stationary, nonergodic, and cyclic

signal (Gharehbaghi et al., 2019b).

• A recorded PCGmay contain different contaminating sources

such as noises and artifacts (Deperlioglu et al., 2020; Baghel

et al., 2020).

• The frequency characteristics of the stethoscope can make

models to be biased toward the majority sources of training

data (Humayun et al., 2020).

It is, therefore, unrealistic to rely on the performance measures

of the DL methods without considering the training/validation

dataset. Such technical details can not be found in some of the

review papers, in which the application of DL methods in cardiac

disease diagnosis was highlighted (Fernando et al., 2021; Lakshmi

et al., 2021; Abdullah Aloyuni, 2021). A number of review papers

reported the power of deep learning methods for PCG classification

(Bizopoulos and Koutsouris, 2018; Chen W. et al., 2021; Li S. et al.,

2020). However, all the studies fail to provide sufficient details, in

terms of the taxonomy as well as the computational methodology,

for the researchers and engineers to select appropriate methods

for their research objectives. For example, a great majority of

the DL methods are applied to certain segments of PCG. This

necessitates another computational step, named the segmentation

process, since manual segmentation makes the method accurate,

and user-dependent. Such computational details cannot be found

in the review papers.

This paper represents the results of a comprehensive study

on DL methods that were employed for PCG analysis. The main

objective of the paper is to provide an overview of different DL

methods along with their applicability, restrictions, and criteria, in

light of PCG processing. The methodological taxonomy is based

on the processing objectives, e.g. classification and segmentation.

Results of each DL method in conjunction with the corresponding

training/validation dataset are represented for each study objective

separately. In addition to introducing technical contents of the

common DL methods used for PCG processing, detailed results

will be represented in tabular form to be used as a quick reference,

categorized based on the DL focus. Moreover, the complexity of

the DL methods as well as the corresponding performance will be

described separately.

The main contributions of the paper are:

• Introducing a novel taxonomy for heart sound analysis based

on the applicability of the published studies and performing

a pervasive review of the studies according to the introduced

taxonomy. The introduced taxonomy can help the researchers

and developers to find the existing methodologies that suit

their research questions.

• Presentation of the trend of the various DL methods for heart

sound analysis using a new representation. This can help the

researchers to understand the progress of various DL methods

in the domain.

• Presentation of the technical details of DL methods used for

PCG analysis, including the segmentation process.

• Pre metrics that exist within the related community. The

existing studies have mostly overlooked the importance of the

database in the learning process.

• Representing the survey results in terms of the applicative and

the methodological taxonomy.

• Conclusive representation of the most popular and the most

accurate DL methods based on the introduced taxonomy.

The paper provides a clear picture of the capabilities and

restrictions of the DL methods to be used as a reliable computing

method for PCG analysis. The DL methods are not studied

based on the performance only, and the validation databases

as well as the research questions are investigated. It is worth

noting that DL methods are always accompanied by classification

errors, and therefore, further medical measures might be eventually

needed to admit the methods to the clinical settings. Nevertheless,

representation of the method performance for a research question

can provide a baseline for the researchers to further investigate.

Moreover, the resulting computing method can be incorporated

into an Internet of Things structure to serve as an easy-to-use

decision support system for this demanding clinical application

(Gharehbaghi and Lindén, 2015; Gharehbaghi et al., 2019c).

2 Medical background

A heart normally encompasses 4 chambers, two smaller on the

top named atrium, and the larger ones named ventricle. A wall

named septum separates the two ventricles from each other, and so

do the atriums, however, the left/right atrium is separated from the

left/right ventricle by mitral/tricuspid valves. There are two other

valves between the left/right ventricle and the artery that carries

blood to the body/lungs, named the aortic pulmonary valve. The

heart walls are normally contracted and relaxed rhythmically, such

that more than 55% of the incoming blood is typically ejected into

the aortic root. A heart that is not capable of ejectingmore than 40%

of the blood is evidenced as the HEART FAILURE case. A normal

heart has a cyclic mechanical activity that creates an acoustical
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signal. A recording of this acoustical, or PCG, contains two basic

sounds, named the first heart sound (S1) and the second heart

sound (S2), which result from the closure of the mitral/tricuspid

and aortic/pulmonary valves, respectively. conditions such as an

obstructed valve, a shunt on any of the septum, or valvular

leakage results in blood turbulence, named murmur. Nevertheless,

a normal heart might initiate a murmur, named innocent murmur,

which is mostly heard in children. Discrimination between the

murmurs is a complicated task, especially considering the non-

stationary and ergodic properties of the PCG signal which makes

a high between-class similarity. Figure 1 demonstrates two cycles

of PCG for a case with a shunt in the ventricular septum (VSD),

an aortic obstruction (AS), an aortic leakage (AR), a pulmonary

obstruction (PS), an innocent murmur, and a normal (no murmur)

condition. The signals were selected from our previous data

acquisition in compliance with the codes of the World Medical

Association, whose details can be found in Sepehri et al. (2008).

3 Deep learning methods

3.1 Convolutional neural networks

CNN is a deep learning method designed to process multiple

arrays of data through back-propagation of the learning error

using several layers such as convolution layers, batch normalization

layers, pooling layers, and fully connected (FC) layers. The

convolutional layers perform feature extraction by applying kernels

(filters) to their inputs (LeCun et al., 2015; Meintjes et al., 2018;

Yamashita et al., 2018). Two principal advantages of using a

convolution layer instead of the fully connected layer are parameter

sharing and sparsity of connections (Yamashita et al., 2018). The

pooling layer down-samples the output of the middle layers to

reduce overfitting. The max-pooling and global average pooling

are considered two common operations of pooling (Meintjes et al.,

2018; Renna et al., 2019; Yamashita et al., 2018). The batch

normalization layer is responsible for developing a faster and more

stable network through the normalization of the activation of

each channel while, the fully connected layer is responsible for

classification in which the output of the last convolution or pooling

layer is unrolled into a vector and then connected to one or more

fully connected layers (Meintjes et al., 2018; Yamashita et al., 2018).

Rectified linear unit (ReLU) is an activation function used after each

convolutional layer and has advantages over a sigmoid activation

function in reducing the likelihood of vanishing gradient and

sparsity (Maknickas andMaknickas, 2017). The activation function

applied to the last fully connected layer is different for various

classification problems (Yamashita et al., 2018). An architecture

for the CNN used for the classification task is shown in Figure 2

(Meintjes et al., 2018). Table 1 shows a list of the learning and design

parameters, commonly employed by CNNs.

3.2 Recurrent neural networks

RNN is designed to process sequential data andmodel temporal

dependencies between sequential data (Messner et al., 2018). The

network has an input layer with no size limit, a hidden layer

(hidden state) that depends on all the previous hidden states, and an

output layer. Vanishing and exploding gradients are the two major

problems in RNN performance. Vanishing gradients occur when

gradients become very small, leading to slow learning and poor

performance on long-term dependencies. Conversely, exploding

gradients happen when gradients become very large, causing to

instability and failure to converge. Using gated architecture such

as Long Short-Term Memory (LSTM) or Gated Recurrent Units

(GRUs) can help to overcome these problems (Mikolov et al., 2010;

Latif et al., 2018). Figure 3A illustrates the RNN architecture.

Bidirectional Recurrent Neural Networks (BRNNs) have been

proposed to incorporate future contents of a sequential into the

learning process along with the past data points (Messner et al.,

2018). This change can be applied to any model that uses RNN,

GRU, or LSTM. It can make predictions anywhere in the sequence

by considering information from the entire sequence. Figure 3B

illustrates the BRNN architecture.

• Long Short-Term Memory (LSTM): LSTM is a modified

version of RNN that resolves a common bottleneck of RNNs:

vanishing and exploding gradients, by capturing long-term

time dependencies (Chung et al., 2014; Latif et al., 2018).

LSTM architecture consists of recurrent memory blocks. Each

memory block consists of three gates, input, output, and

forget gate to control its content (Messner et al., 2018). The

general structure of the LSTM network is the same as in

Figure 3A, except that instead of RNN units, the LSTM units.

are employed. Figure 4A illustrates the LSTM unit.

• Gated Recurrent Unit (GRU): GRU is a simplified structure

of LSTM with less computational cost. In GRU, the input

gate and the forgetting gate, are combined to form a new

gate, called the “update gate.” GRU also includes another gate

called the reset gate in its structure to cope with the vanishing

and exploding gradient efficiently. These gates adjust the

information flow in the unit (Chung et al., 2014; Latif et al.,

2018; Messner et al., 2018; Sujadevi et al., 2017). As mentioned

in the previous section, the general structure of a GRU

network is similar to the one in Figure 3A, except for the GRU

units which are employed instead of RNN units. Figure 4B

illustrates the GRU unit.

Table 1 shows a list of the learning and design parameters of an

RNN.

3.3 Recurrent convolutional neural
network

RCNN in the scope of our study refers to the combination of

RNN and CNN, often a cascade of RNN and CNN, to capture

long temporal context information and invariant spatial-temporal

contents, respectively.

3.4 Time growing neural networks

TGNN is a nonlinear deep learning method for learning

the frequency contents of a set of temporal windows. There

are three types of TGNN: forward, backward, and bilateral. In
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FIGURE 1

Illustrating di�erent heart diseases including: VSD, AS, AR(AI), PS, Innocent Murmur, Normal. Source: Sepehri et al. (2008).

each type, a starting point is fixed and the window length

grows in time until covering the entire learning segment of the

signal. The use of the growing windows is specifically valuable

for short-length signals, where the trade-off between temporal

and spectral resolution is problematic (Gharehbaghi et al., 2014,

2015c). Deep Time Growing Neural Network (DTGNN) is an
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FIGURE 2

Illustration of an architecture for Convolutional Neural Network (CNN) architecture.

TABLE 1 List of parameters and design parameters in CNN, RNN, and TGNNs.

Parameters Design parameters

CNN Weights of FC layer, Weights of kernels Number of kernels in convolutional layers, kernel size, stride, padding, activation

functions, Pooling method, filter size of pooling layers, stride, padding, Number

of units in FC layer, Learning rate, cost function, mini-batch size, number of

epochs, and regularization

RNN Weights Number of neurons in the hidden layer, number of hidden layers, number of

units in a dense layer, RNN model (LSTM, GRU, BiLSTM, BiGRU), activation

function, dropout, decay rate, momentum, Learning rate, cost function,

mini-batch size, number of epochs, regularization

TGNN Discriminative frequency bands, growing time scheme, and

learning weights

Number of neurons in the hidden layer, number of growing sectors, activation

function, Learning rate, cost function, mini-batch size, number of epochs, and

regularization

FIGURE 3

(A) Illustration of recurrent neural network (RNN) architecture. (B) Illustration of bidirectional recurrent neural network (BRNN) architecture.

architecture of deep learning that uses TGNN units as the core

of the learning process. DTGNN has three levels of learning that

include between classes, over classes, and classification. A DTGNN

at its deep level finds a set of discriminative frequency bands,

defined as the frequency bands whose spectral contents provide

an optimal separability between the classes. DTGNN introduced

a way of finding the optimal discriminative frequency bands,

by using the K-means method in conjunction with the Fisher

criterion. Then, spectral contents of the discriminative frequency

bands are considered as the input layer of the TGNN, and the

training is performed using the backpropagation error method. An

architecture for the TGNN used for the classification task is shown

in Figure 5.

Table 1 shows a list of parameters and design parameters in

TGNNs.

3.5 Deep belief networks

DBN is composed of multiple Boltzmann machines (RBMs)

layers which are ordered subsequently. Each RBM includes a visible

and hidden layer and is trained by the greedy learning algorithm

to represent features. In DBN architecture input data is fed to the

visible layer of the first RBM and then the hidden layer of the first

RBM is an input of the next RBM and this process is continued

until achieving a hidden layer of the final RBM. The top layer of
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FIGURE 4

Illustration of an LSTM and GRU unit. (A) An LSTM unit. (B) Illustration of a GRU unit.

FIGURE 5

A TGNN architecture.

FIGURE 6

Illustration of a DBN architecture.

DBN is the output layer (Irene et al., 2020; Hinton et al., 2006). An

architecture for the DBN is shown in Figure 6.

4 Database

Most of the articles use existing online databases to train the

proposed deep learning method and also test the performance of

their PCG analysis system. The most common public databases

used by the articles are:

Physionet PCG Dataset (PHSDB), The PASCAL Classifying

Heart Sounds Challenge (CHSC2011), The Heart Sounds Shenzhen

Database (HSSDB), The Michigan Heart Sound and Murmur

database (MHSDB), The Massachusetts Institute of Technology

heart sounds database (MITHSDB), Kaggle, UC Irvine Machine

Learning Repository (UCI), UoCmurmur, Cleveland, University of
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TABLE 2 List of databases.

Database Way to access Size of database

PHSDB http://physionet.org/content/challenge-2016/1.0.0/ The training set consists of five

databases (A through E) containing a

total of 3,126 heart sound recordings

CHSC2011

Kaggle

http://www.peterjbentley.com/heartchallenge/ Dataset A containing 176 recordings:

Normal, Murmur, Extra Heart Sound,

Artifact. Dataset B contains 656

recordings: Normal, Murmur, and

Extrasystole

MHSDB https://open.umich.edu/find/open-educational-resources/

medical/heart-sound-murmur-library

It consists of 23 heart sound recordings

HSSDB Containing 845 recordings. The

recordings were collected from patients

with coronary heart disease, arrhythmia,

valvular heart disease, congenital heart

disease, etc.

MITHSDB Can be found in PhysioNet 2016 Containing 409 recordings from 5

groups: normal, mitral valve prolapse

(MVP), innocent or benign murmurs,

aortic disease (AD), and other

miscellaneous pathological conditions

(MPC)

UoC murmur This database is proprietary and is not publicly available Containing 336 recordings from healthy

children with innocent murmurs and

various forms of CHD

The UC Irvine Machine Learning

Repository

http://archive.ics.uci.edu/ml/index.php Containing 622 data sets as a service to

the machine learning community

Cleveland Selected from the UCI machine learning repository Containing 303 recordings

University of Washington http://depts.washington.edu/physdx/heart/tech1.html

Yaseen http://github.com/yaseen21khan/Classification-of-Heart-Sound-

Signal-Using-Multiple-Features

Containing 1,000 recordings from 5

classes AS, MR, MS, MVP, and Normal

Washington, and Yaseen et al. (2018). These databases are listed in

Table 2.

5 Performance measures

A formulation for quantitatively evaluating the performance

of a classifier, based on the outcomes of the validation, is

known as the performance measure. The performance measures

which are commonly seen in the related publications reflect

an aspect of the classification performance. In this study, we

face binary classification, where the result of the classification

can be either normal or abnormal. The classifier output can

be either positive or negative, relying on abnormal or normal

conditions, respectively. The prediction value of a classifier

can be either true or false, for the correct and incorrect

classification, respectively. We may, therefore, face one of the

following situations:

True Positive (TP): The model predicts the positive class

correctly

True Negative (TN): The model predicts the negative class

correctly

False Positive (FP): The model predicts the positive class

incorrectly

False Negative (FN): The model predicts the negative class

incorrectly

Based on these definitions, the following performancemeasures

named: Accuracy, Sensitivity, Specificity, Recall, Precision, Positive

Predictive Value (PPV), Negative Predictive Value (NPV), G-mean,

and F1-Score are calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Accuracy is a performance measure that reflects the ability

of a classifier to segregate different classes. For example, in an

abnormal-normal heart sound classification problem, the accuracy

of a classifier shows how well the two classes are separated

by the classifier. This performance measure considers the two

classes equally.

Sensitivity =
TP

TP + FN
Specificity =

TN

TN + FP
(2)

The sensitivity of a classifier in the above example, is the

performance measure that indicates the capability of the classifier

in the correct classification of the abnormal class (low value of FN),

while the sensitivity is the capability in the correct classification of

the normal class (low FP).

Recall =
TP

TP + FN
Precision =

TP

TP + FP
(3)

The precision of a classifier indicates the capability of the

classifier in the correct classification of the normal class concerning
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the normal labels assigned by the classifier.

PPV =
TP

TP + FP
NPV =

TN

TN + FN
(4)

F1− Score = 2.
Precision.Recall

Precision+ Recall
(5)

UAR =

∑Nc
i=1 Recalli

Nc
, (Nc : thenumberofclasses) (6)

G−mean =

√

Sen.Spe (7)

The F1 − Score, NPV , and PPV of a classifier, altogether

indicate the capability of the classifier to provide a good balance

between correct classification of the normal and abnormal classes.

Unweighted Average Recall (UAR) and Geometric mean (G-mean)

are used to evaluate model performance, especially when the

learning dataset is imbalanced, such that a higher G-mean or UAR

indicates that the model performs well on both classes of a binary

case. These performancemeasures become important when a heavy

class imbalance is seen in the learning database, as the class with

the larger group size can overwhelm the minority class if accuracy

is employed as the performance measure only.

6 Research methodology

We performed a topical survey retrospectively using the

reachable reports, published in the technical, interdisciplinary,

and medical journals or conference proceedings between 2017

and 2023. The research method is composed of 3 steps: search,

screening, and eligibility.

6.1 Search

The three major search engines of the field are invoked to find

the publications: PubMed, ScienceDirect, and Google Schola. The

following keywords are employed as the keywords for the query:

• “Deep Learning” and (“Heart sound” or “Phonocardiogram”

or “Phonocardiography”)

• “Convolutional Neural Network” and (“Heart sound” or

“Phonocardiogram” or “Phonocardiography”)

• “Deep Machine Learning” and (“Heart sound” or

“Phonocardiogram” or “Phonocardiography”)

• “Time Growing Neural Network” and (“Heart sound” or

“Phonocardiogram” or “Phonocardiography”)

In this step, the title of the papers is explored to exclude

repetitive and irrelevant records. The identified papers are passed

to the next step for the screening.

6.2 Screening

The abstracts of the papers found in the Search are studied in

terms of both the technical contents and the application. Those

papers addressing irrelevant topics and the ones that are not

accessible by the mentioned search engines are excluded from the

study.

6.3 Eligibility

In this step, the papers passing through the previous two steps

are explored in terms of the availability of the full paper. Next,

the inclusion criteria are investigated followed by exploring the

exclusion criteria. The papers, passing through the whole filters will

be selected to be thoroughly studied.

6.3.1 Inclusion criteria
• The central focus of the publications was the development

or review of deep learning methods, applied to human heart

sound signal.

• The publication dates lay between 2017 and 2023.

6.4 Exclusion criteria

Those publications which meet at least one of the exclusion

criteria did not participate in the study:

• Incomplete reporting of the joint performance measures:

either accuracy-sensitivity or accuracy-specificity (In

biomedical studies, the balance between sensitivity and

specificity is an important factor, reflecting the performance

of the methods).

• Inaccessibility of the publication full-text.

• The paper is not a survey paper. The survey papers are studied

for the discussiona.

7 Taxonomy of the survey

The articles found by the survey, tackle one of the following

6 research questions: feature extraction, classification, end-to-end

learning (feature extraction + classification), and segmentation.

Disease detection, disease classification, and severity assessment

of cardiac disease are all considered as the applications of the

study, fitting well into the classification category. Consequently,

the survey taxonomy is based on the below-described research

questions according to our findings. The results of the study will

be presented in line with the taxonomy in the next section

7.1 Feature extraction problem

The extraction of concise and informative data content to

improve segregation between different data groups is known as

feature extraction. The effectiveness of the extracted should be

validated considering dependencies over the feature space. This

makes finding a feature set with an optimal discrimination power,

problematic. Table 3 lists these papers. We observed that using

deep learning techniques for feature extraction cannot noticeably
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TABLE 3 Categorizing DL networks based on the taxonomy of studied papers.

DL
method

Feature extraction Classification End-to-end learning Segmentation

CNN Li H. et al., 2020; Demir et al., 2019;

Humayun et al., 2018a, 2020;

Zhang and Han, 2017; Alaskar

et al., 2019; Bae et al., 2020; Colt

et al., 2021

Asmare et al., 2020; Chen et al.,

2020b; Dominguez-Morales et al.,

2017; Maknickas and Maknickas,

2017; Bozkurt et al., 2018; Rubin

et al., 2017; Kucharski et al., 2017;

Wibawa et al., 2018; Khan et al.,

2021; Li F. et al., 2020; Noman

et al., 2019; Li et al., 2019; Banerjee

and Majhi, 2020; Duggento et al.,

2020; Singh et al., 2020; Dhar et al.,

2021; Low and Choo, 2018;

Chakraborty et al., 2020; Malik

et al., 2020; Li et al., 2017;

Kucharski et al., 2019; Kang et al.,

2018; Han et al., 2018; Nogueira

et al., 2019; Wu et al., 2019; Cheng

et al., 2019; Ho et al., 2021; Tseng

et al., 2021; Bilal, 2021; Rizal et al.,

2020; Jeong et al., 2021;

Hettiarachchi et al., 2021;

Chowdhury M. et al., 2020; Lv

et al., 2021; Tiwari et al., 2021;

Takezaki and Kishida, 2021; Li T.

et al., 2021; Huai et al., 2021; Kui

et al., 2021; He et al., 2021; Tiwari

et al., 2020; Alqudah et al., 2020;

Koike et al., 2020; Banerjee and

Ghose, 2020; Sundaram et al., 2021;

Sugiyarto et al., 2021; Kesav et al.,

2021; Xu and Lin, 2021; Jyothi and

Pradeepini, 2021a; Duggento et al.,

2021; Yang et al., 2021; Boulares

et al., 2021

Krishnan et al., 2020; Baghel et al.,

2020; Kiranyaz et al., 2019;

Avanzato and Beritelli, 2020;

Shojaedini and Morabbi, 2020; Xu

et al., 2018; Kayikçı, 2019; Xiao

et al., 2019; Gjoreski et al., 2020;

Deperlioglu, 2019b; Chorba et al.,

2021; Deperlioglu, 2018; Humayun

et al., 2018b; Xiao et al., 2020; Joshi

et al., 2020; Samir et al., 2021; Oh

et al., 2020

Meintjes et al., 2018; Renna et al.,

2019; Xu et al., 2020; Yin et al.,

2020

RNN Zhang et al., 2019 Latif et al., 2018; Naveen et al.,

2021; Khan et al., 2020

Sujadevi et al., 2017 Chen et al., 2020a; Messner et al.,

2018; Fernando et al., 2019; Xu

et al., 2019; Oliveira et al., 2020

CNN-RNN Li P. et al., 2021 Deng et al., 2020; Alam et al., 2018;

Ali et al., 2020; Wang J.-K. et al.,

2020; Shinde and

Martinez-Ovando, 2021

Shuvo et al., 2021; Alkhodari and

Fraiwan, 2021; Megalmani et al.,

2021; Ali et al., 2021; Liu et al.,

2022; Chen et al., 2022; Ren et al.,

2022b; Al-Issa and Alqudah, 2022

Chen Y. et al., 2021

TGNN Gharehbaghi and Lindén, 2017;

Gharehbaghi et al., 2017a, 2018,

2019b,c,a,d, 2020, 2021

- - -

DBN - - Irene et al., 2020 -

MLP - Chowdhury T. H. et al., 2020;

Sotaquirá et al., 2018; Bondareva

et al., 2021; Ghosh et al., 2020

Deperlioglu et al., 2020; Kose et al.,

2021; Deperlioglu, 2021, 2019a

Mishra et al., 2018; Wang X. et al.,

2020; Babu and Ramkumar, 2020

improve the classification accuracy, unless dynamic contents of the

features, or a fusion of the deep and the hand-crafted features are

constructed.

7.2 Classification problem

Likewise, DLmethods have been dominantly used in many case

studies to perform classification. In most of the cases of heart sound

classification, discrimination between normal and abnormal heart

is the study objective (Chen et al., 2020b; Dominguez-Morales et al.,

2017; Bozkurt et al., 2018). However, the detection of a certain heart

abnormality versus other heart abnormalities along and/or normal

heart conditions is observed to be the main goal of some studies

(Li H. et al., 2020; Wang J.-K. et al., 2020). Segregation between

different classes of heart sound is also seen in a number of the

studies on heart sound signal classification (Li et al., 2017; Kang

et al., 2018; Boulares et al., 2021). Table 3 shows all these papers.

7.3 End-to-end learning

In the heart sound analysis domain, End-to-End learning

implies studies in which feature extraction and classification

are performed simultaneously. A considerable number of the
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FIGURE 7

The Prisma graph of the survey findings.

FIGURE 8

The best accuracy of each deep learning method for abnormalities classification (N/A: Normal/Abnormal).

reviewed papers used a DLmethod for end-to-end learning. Table 3

represents these papers.

7.4 Segmentation problem

In many studies, the heart sound signal is firstly pre-processed

and the cardiac cycles as well as the first heart sound and

the second heart sounds are fully localized on the heart sound

recordings before the rest of the learning process. DL methods

have been recently employed to perform this phase of the

heart sound signal analysis by many researchers. Table 3 shows

these papers.

8 Results

Figure 7 illustrates the results of the research methodology as

was described in Section 6. The query performed in the mentioned

search engines resulted in 10,716 records where most of the records

were either repetitive or irrelevant (see Section 6). The number

of records was 1,534 from which 222 recordings were observed

to be relevant according to the Title and the Abstract, and the

ultimate number of the papers to be studied was 140 papers. In

total, 14 survey articles were found, whose results will be compared

and described in the discussion, Section 9. Figure 7 illustrates

the findings of the survey. In order to provide an understanding

of the methodological superiority in terms of the experimental
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TABLE 4 A complete list of the CNN-based methods and their performance found by the study.

Application References Database Method Segmentation Performance

Feature
extraction

Classification

Rheumatic heart

disease detection

Asmare et al., 2020 Collected data Spectrogram CNNs - Acc: 96.7%, Sen: 95.2%,

Spe: 98.2%

Abnormal vs.

Normal

Krishnan et al.,

2020

PHSDB 1D-CNN - MAcc: 75.0%, Sen:

58.0%, Spe: 93.0%

Heart disease

detection

Baghel et al., 2020 Collected data by

Yaseen et al. (2018)

CNN - Acc: 98.6%

CAD detection Li H. et al., 2020 Collected data Fusion features:

Multi-domain feature,

(MFCC + CNN)

MLP LR-HSMM Acc: 90.43%, Sen:

93.67%, Spe: 83.36%,

G-mean: 88.19%

Abnormal vs.

normal

Chen et al., 2020b PHSDB Modified frequency slice

wavelet transform

Combined of two

CNNmodels

HMM MAcc: 93.91%, Sen:

95.04%, Spe: 92.79%

Normal, murmur,

extra heart sound,

artifact

Demir et al., 2019 PASCAL-

CHSC2011

Spectrogram-AlexNet +

Spectrogram-VGG16 +

Spectrogram-VGG19

SVM - Precision: normal: 59%,

murmur: 77%, extra

heart sound: 83%,

artifact: 100%

Abnormal vs.

Normal

Dominguez-

Morales et al.,

2017

PHSDB Gray-scale sonogram

image

Modified AlexNet - MAcc: 94.16%, Acc:

97.05%, Sen: 95.12%,

Spe:93.20%

Abnormal vs.

normal

Humayun et al.,

2018a

PHSDB CNNModel including a

learnable front end filter

bank

MLP LR-HSMM MAcc: 87.10%, Sen:

90.91%, Spe: 83.29%

Abnormal vs.

normal

Bozkurt et al., 2018 UoC-murmur,

PHSDB

Sub-band envelope CNN Period

asynchronous

segmentation

Acc: 81.5%, Sen: 84.5%,

Spe: 78.5%

Abnormal vs.

normal

Humayun et al.,

2020

PHSDB CNN MLP LR-HSMM MAcc: 80.91%, Sen:

90.58%, Spe: 71.23%, F1:

81.96%

Abnormal vs.

normal

Kiranyaz et al.,

2019

PHSDB 1D-CNN trained with a novel data

purification approach

Temporal beat

segmentation

Sen: 89.67%, Spe:

86.89%, Ppr: 69.70%

Abnormal vs.

normal

Rubin et al., 2017 PHSDB MFCC CNN LR-HSMM Sen: 72.78%, Spe:

95.21%, Overall: 83.99%

Abnormal vs.

normal

Kucharski et al.,

2017

The Aalborg

University

database from

PHSDB

Spectrogram CNN - Sen: 99.1%, Spe: 91.6%

Abnormal vs.

normal

Alaskar et al., 2019 PHSDB Scalogram + AlexNet SVM LR-HSMM Acc: 87.65%, Sen:

83.71%, Spe: 89.99%,

PPV: 83.22%, NPV:

90.30%, Positive

likelihood: 8.36, Negative

likelihood: 0.18

Abnormal vs.

normal

Wibawa et al., 2018 PASCAL-

CHSC2011

Spectrogram CNN - Acc: 82.83%

Heart disease

detection

Avanzato and

Beritelli, 2020

Collected data by

Yaseen et al. (2018)

CNN - Analysis window (2, 6):

sec: Acc: (96.6%, 100%),

Sen: (96.8%, 100%), Spe:

(96.8%, 100%), F1-Score:

(96.9%, 100%)

Abnormal vs.

normal

Shojaedini and

Morabbi, 2020

PASCAL-

CHSC2011 +

Kaggle

Spectrogram CNN - Acc: in the range of

93%–98% when the FPR

was 0% and in the range

of 96%–96.5% when the

TRP was 100%.

(Continued)
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TABLE 4 (Continued)

Application References Database Method Segmentation Performance

Feature
extraction

Classification

Abnormal vs.

normal

Khan et al., 2021 PASCAL-

CHSC2011

Spectrograms CNN - Acc: 96.8%, Sen: 95.8%,

Spe: 98%, Precision:

98.29%, F1-Score:

97.05%

Abnormal vs.

normal

Li F. et al., 2020 PHSDB Time and frequency

domains, Skewness and

Kurtosis, Cyclostationary

domain, Entropy

domain, Cepstrum

CNN LR-HSMM MAcc: 86.8%, Sen: 87%,

Spe: 86.6%, MCC: 72.1%

Abnormal vs.

normal

Noman et al., 2019 PHSDB Raw

(duration-normalized) +

MFCC

Ensemble CNN LR-HSMM Acc: 89.22% Sen: 89.94%

Spe: 86.35% MAcc:

88.15%

Abnormal vs.

normal

Li et al., 2019 Collected data +

PHSDB

Spectrogram + DAE

(Denoising auto encoder

1D-CNN - Acc: 99.01%, F1-Score:

99.10%

Abnormal vs.

normal

Banerjee and

Majhi, 2020

PASCAL-

CHSC2011

MFCC CNN - Overall Acc: 83%

Abnormal vs.

normal

Zhang and Han,

2017

PASCAL-

CHSC2011

Spectrogram + CNN SVM - Normalized total

precision: 71%

Abnormal vs.

normal

Low and Choo,

2018

MHSDB Intensity map CNN Peak detection Acc: 100%

Abnormal vs.

normal

Xu et al., 2018 PHSDB 1-D CNN (a block stacked style

architecture with clique blocks, and

in each clique block a bidirectional

connection)

- Acc: 93.21%, Sen:

85.81%, Spe: 95.12%,

Score: 90.46%

Abnormal vs.

normal

Kayikçı, 2019 PASCAL-

CHSC2011

CNN - Precision: Normal: 86%,

Murmur: 68%, Recall:

Normal: 46%, Murmur:

94%, F1-Score: Normal:

60%, Murmur: 79%

Abnormal vs.

normal

Duggento et al.,

2020

Collected data MFCC CNN + fully

connected DNN

Duration-

dependent

HMM

F1-Score: Normal: 67%,

Abnormal: 70%, AUC:

77%

Abnormal vs.

normal

Singh et al., 2020 PHSDB Scalogram CNN - Acc: 87.96%, Sen:

88.58%, Spe: 87.80%

Abnormal vs.

normal

Dhar et al., 2021 PHSDB Cross-wavelet transform AlexNet - Acc: 98%, Sen: 98%, Spe:

98%

Abnormal vs.

normal

Xiao et al., 2019 Collected data 1D-CNN - Acc: 93.56%, Sen:

85.29%, Spe: 95.73%,

Score: 90.51%

Abnormal vs.

normal

Maknickas and

Maknickas, 2017

PHSDB MFSC CNN LR-HSMM MAcc: 84.15%, Sen:

80.63%, Spe: 87.66%

Normal-abnormal Gjoreski et al.,

2020

PHSDB Random forest (features) +

Spectro-temporal ResNet

(end-to-end)

- Acc: 92.9%, Sen: 82.3%,

Spe: 96.2%

Abnormal vs.

normal

Chakraborty et al.,

2020

PHSDB Spectrogram CNN LR-HSMM Score: 86.57%, Sen:

89.78%, Spe: 83.37%

Abnormal vs.

normal

Malik et al., 2020 Open source

collected data

Scalogram CNN - Acc: 99.88%, Sen: 99.9%,

Spe: 99.79%

Normal, murmur,

extra heart sound,

artifact

Li et al., 2017 PASCAL-

CHSC2011

FFT CNN - Precision: normal: 96%,

murmur: 100%,

extrasystole: 98%,

artifact: 100%, total

precision: 98%

Abnormal vs.

normal

Deperlioglu, 2019b PHSDB CNN The resampled

energy method

Overall Score: 97.21%,

Sen: 94.78%, Spe: 99.65%

(Continued)
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TABLE 4 (Continued)

Application References Database Method Segmentation Performance

Feature
extraction

Classification

Abnormal vs.

normal

Chorba et al., 2021 Collected data ResNet - Sen: 76.3%, Spe: 91.4%

Normal, murmur,

extrasystole

Deperlioglu, 2018 PASCAL-

CHSC2011

CNN - Acc: 97.9%, Sen: 99.47%,

Spe: 98.42%

Abnormal vs.

normal

Humayun et al.,

2018b

HSSDB + PHSDB Hierarchical with fusion - Acc: 64.2%, UAR: 42.1%

Abnormal vs.

normal

Kucharski et al.,

2019

An open access

database

Spectrogram CNN - Sen: 91%, PP: 99%,

F1-Score: 94%

Normal, S3 , S4 ,

systolic & diastolic

murmur

Kang et al., 2018 Open databases Spectrogram CNN A robust method

based on music

beat tracking

Galaxy S5: Acc: 90%,

Sen: 94%, Spe: 86%, PPV:

88%, NPV: 92%

Abnormal vs.

normal

Xiao et al., 2020 PHSDB CNN (a block-stacked style

architecture with clique blocks, and

in each clique block a bidirectional

connection)

- Acc: 93%, Sen: 86%, Spe:

95%, Score: 91%

Abnormal vs.

normal

Han et al., 2018 PHSDB MFCC CNN LR-HSMM MAcc: 91.50%, Sen:

98.33%, Spe: 84.67%

Abnormal vs.

normal

Nogueira et al.,

2019

PHSDB Eight features in time

domain + MFCC

CNN LR-HSMM Overall Acc: 57.60%, Sen:

81.34%, Spe: 33.86%

Abnormal vs.

normal

Wu et al., 2019 PHSDB Spectrogram + Mel

spectrogram + MFCC

Ensemble CNN - MAcc: 89.81%, Sen:

91.73%, Spe: 87.90%

Abnormal vs.

normal

Cheng et al., 2019 PHSDB Spectrogram CNN - MAcc: 89.5%, Sen: 91%,

Spe: 88%

Abnormal vs.

normal

Ho et al., 2021 PHSDB Frequency sub-band CNN - Acc: 95.1%, Sen: 89.2%,

Spe: 95.3%

Abnormal vs.

normal

Tseng et al., 2021 PHSDB Homomorphic, Hilbert,

PSD envelope

Large kernel

network boosting

ECG MAcc: 92.48%, Sen:

96.34%, Spe: 86.62%

Normal-murmur-

extrasystole

Boulares et al.,

2021

PHSDB MFCC Fine-tuned

VGG19

Unbiased

autocorrelation

function +

Gaussian mixture

model

Bi-clustering

Acc: 97%, Sen: 94.6%,

Spe: 94.6%

Abnormal vs.

normal

Bilal, 2021 PHSDB (1D-local binary pattern

+ 1D-local ternary

pattern)

Relief-based feature

selection method

1D-CNN - Acc: 91.78%, Sen: 90.77%

Abnormal vs.

normal

Rizal et al., 2020 PHSDB Scalogram ResNet-50 - Sen: 93.4%, F1-Score:

93.3%, Precision: 93.7%

Abnormal vs.

normal

Jeong et al., 2021 PHSDB Spectrogram CNN - Acc: 91%, Sen: 93.32%,

Spe: 83%

Abnormal vs.

normal

Hettiarachchi

et al., 2021

PHSDB 2016, 2017 Scalogram Hybrid CNN - Acc: 90.41%, Sen:

94.74%, G-mean: 84.29%

Abnormal vs.

normal

Joshi et al., 2020 PASCAL-

CHSC2011

CNN - Acc: 91.5%, Sen: 92%,

Spe: 91%

Abnormal vs.

normal

Chowdhury M.

et al., 2020

PHSDB + MHSDB MFCC +Mel-scaled

power spectrogram

CNN Shannon energy

envelope

Overall Acc: 93.20%, Sen:

89.20%, Spe: 94.20%

Abnormal vs.

normal

Lv et al., 2021 Collected data Sub-band energies from

the time-frequency

images

CNN - Acc: 96%, Sen: 97%, Spe:

89%

Normal, murmur,

extra systole,

extrahls, artifact

Tiwari et al., 2021 PASCAL-

CHSC2011

Spectrograms generated

through Hybrid

Constant-Q Transform

CNN - Acc: 96.4%, Recall:

96.6%, Precision: 93.4%,

F1-Score: 94.8%

(Continued)
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TABLE 4 (Continued)

Application References Database Method Segmentation Performance

Feature
extraction

Classification

Abnormal vs.

normal

Takezaki and

Kishida, 2021

PHSDB Spectrogram CNN (ResNet18) - Acc: 92.5%, Sen: 86.3%,

Spe: 94%

Abnormal vs.

normal

Li T. et al., 2021 PHSDB STFT CNN - MAcc: 86%, Acc: 85%,

Sen: 87%, Spe: 85%

Abnormal vs.

normal

Huai et al., 2021 Collected data +

PHSDB

Spectrogram CNN - Acc: 94.8%, Sen: 94.29%,

Spe: 95.54%, F1-Score:

93.84%, Precision:

93.44%, AUC: 94.3%

Abnormal vs.

normal

Kui et al., 2021 Collected data MFSC CNN Duration-

dependent

HMM

Acc: 93.89%, Sen:

92.78%, Spe: 95%

Abnormal vs.

normal

He et al., 2021 PHSDB Homomorphic, hilbert,

wavelet and PSD

envelope

CNN U-net based on the

deep CNN

Classification: Acc:

87.3%, Sen: 96.4%, Spe:

78.1%

Segmentation: overall

Acc: 99.1%

Normal-

abnormal-artifact

Tiwari et al., 2020 PHSDB MFCC based on

proposed discrete cosine

transform

CNN - Precision: 95%,

F1-Score: 94%, Sen: 94%

Abnormal vs.

normal

Bae et al., 2020 Collected data Mel-spectrogram +

pretrained inception V3

model

MLP - Acc: 97.5%

Abnormal vs.

normal, heart

disease detection

Alqudah et al.,

2020

PHSDB Bispectrum full images CNN - Acc: 99.47%, Sen: 99.34%

Abnormal vs.

normal

Koike et al., 2020 PHSDB Log Mel spectrogram Pretrained CNN

(PANNs)

- F1-Score: 79.1%, Sen:

96.9%, Spe: 88.6%, UAR:

89.7%

Abnormal vs.

normal

Banerjee and

Ghose, 2020

MHSDB Spectrogram Variational

autoencoder based

on CNN

- MHSDB: Sen: 99%, Spe:

100%

Abnormal vs.

normal

Colt et al., 2021 PASCAL-

CHSC2011

1D-CNN encoder and

WaveNet decoder

SVM - Sen: 40%, Spe: 96%

Abnormal vs.

normal

Sundaram et al.,

2021

PASCAL-

CHSC2011

Spectrogram CNN (AlexNet) - Acc: 77%

Normal, AP, CHF,

HHD

Sugiyarto et al.,

2021

Recorded data Scalogram CNN - Acc: 85%, Sen: 80%, Spe:

100%

Abnormal vs.

normal

Samir et al., 2021 PHSDB + Kaggle CNN-jSO (jSO is an optimization algorithm) - Acc: 94.12%

LVDD diagnosis Yang et al., 2021 Collected data STFT CNN LR-HSMM Acc: 98.7%, Sen:98.6%,

Spe: 98.8%

Abnormal vs.

normal

Kesav et al., 2021 PHSDB Spectrogram CNN - Acc: 85%

Normal, abnormal,

extrasystole

Xu and Lin, 2021 PASCAL-

CHSC2011

MFCC CNN - Acc: 82.23%

Abnormal vs.

normal

Jyothi and

Pradeepini, 2021a

Collected data MFCC, Spectrogram CNN LR-HSMM Acc: N: 98%, A: 85%

Abnormal vs.

normal

Duggento et al.,

2021

PHSDB MFCC Multi-branch

CNN

Duration-

dependent Hidden

Markov Model

Acc: 74.6%, Sen: 97%

Heart disease

detection

Oh et al., 2020 Yaseen et al., 2018 WaveNet (a generative model that

consists of a residual block with

gated activation. It is similar to the

CNN model)

- High Acc: 97%, Sen:

92.5%, Spe: 98.1%

Acc, Accuracy; Sen, Sensitivity; Spe, Specificity; MAcc, Mean accuracy; AUC, Area Under Curve; UAR, Unweighted Average Recall; LR-HSMM, Logistic regression Hidden Semi MarkovModel;

DNN, Deep Network; MFSC, Mel-Frequency Spectral Coefficients; PSD, Power Spectral Density; STFT, Short Time Fourier Transform.
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TABLE 5 A complete list of the RNN-based methods and their performance found by the study.

Application References Database Method Segmentation Performance

Feature
extraction

Classification

Abnormal vs.

normal

Zhang et al., 2019 PHSDB Spectrogram +

average magnitude

difference function

(AMDF) + LSTM

Two-layer neural

network

- Sen: 94.22%, Spe:

90.48%, Overall

Score: 92.35%

Abnormal vs.

normal

Latif et al., 2018 PHSDB MFCC Bi-LSTM LR-HSMM Acc: 97.63%, Sen:

98.86%, Spe: 98.36%

Abnormal vs.

normal

Sujadevi et al., 2017 PASCAL-

CHSC2011

LSTM - Acc: 76.9%,

Precision: 83.3%,

Recall: 76.9%,

F-measure: 76.6%

Normal, murmur,

artifact, extra

systole

Naveen et al., 2021 Collected data MFCC LSTM - Acc: 94%, F1-Score:

94%, Recall: 93%,

Precision: 94%

Abnormal vs.

normal

Khan et al., 2020 PHSDB MFCC LSTM - Acc: 80.68%, Sen:

83.24%, Spe: 99.55%

results, the outperforming methods will be represented together

with the detailed results, according to the study taxonomy.

Figure 8 demonstrates the accuracy of the outperforming methods

according to the taxonomy.

The superior performance was found in the studies by Mishra

et al. (2018) on the classification problem, and by Deperlioglu

et al. (2020) on the segmentation problem, and by Avanzato and

Beritelli (2020) on the End-to-End learning. It is important to

note that providing a realistic comparison of the accuracy for

different learning methods requires clear information about the

validationmethod employed for accuracy estimation. This is tightly

linked to the training, validation, and testing databases and also the

classification question. Group size, class similarities, corresponding

to the cardiac disease conditions, and the data percentage used for

training/validation/testing as well as the data selection manner all

affect the estimated accuracy. Classification question is, yet, another

important point affecting the accuracy, as an abnormal/normal

case exhibits a different learning than a classification question

in which a single vs. all classes is the objective. Nevertheless,

this figure demonstrates appropriate pointers to the references

where the validation process is detailed. Tables 4–8, also represent

more details of the results found by this survey, including the

segmentation manner. Results of the outperforming methods along

with the implementation and the validation details are described in

the following sequels according to the study taxonomy.

8.1 Findings of the feature extraction
problem

A number of the studies rely on using a DL method for feature

extraction, in which the classification layer is independently trained

for a certain study objective. The discrepancy in the methodologies

and also in the study objectives, make the comparison problematic

(see Table 3). Some papers use pre-trained networks to extract

features, while others consider the classifier to be fixed and extract

various features to evaluate its effect on classification problems.

Thus the accuracy of feature extraction is reported as a measure.

The DL methods, CNN, RNN, CNN-RNN, and TGNN, were

differently employed by 19 studies, for feature extraction. Various

types of CNN models are dominantly observed in these studies.

As shown in Figure 8, a CNN model was reported to improve

abnormal vs normal classification accuracy up to 97.5%, where the

CNN was employed to extract discriminative features from mel-

spectrum two-dimensional graphs (Bae et al., 2020). The ultimate

classification was performed using an artificial neural network. In

another study, a CNNmodel was employed for extracting powerful

features from the colored images, resulting from applying the

Mel-Frequency Cepstrum Coefficients (MFCC) to PCG signals.

Detection of coronary artery diseases was the study objective,

and the accuracy was estimated to be 90.43% when a Multi-Layer

Perceptron (MLP) neural network was used for the classification.

Performance of the method was evaluated 5-fold using a dataset

of PCGs collected at the Shandong Provincial Qianfoshan Hospital

(see Table 4) (Li H. et al., 2020). TGNN served as a powerfulmethod

for feature extraction in different studies of PCG signal analysis.

In all the TGNN-based methods, the spectral features, obtained by

periodogram, were learned using different schemes of the growing

windows, i.e., forward, backward, and bilateral growing windows,

along with the discriminant analysis methods such as Fisher criteria

and k-means clustering. The main objective of the studies was

anomaly detection using either a support vector machine (SVM)

or MLP for binary classification. Several case studies including,

ASD vs. VSD, AS vs. BAV, and fourth heart sound detection were

performed based on this combination, and accuracy of 88.4%,

85.8%, and 88.3% was reported, respectively (Gharehbaghi et al.,

2020, 2021, 2019d) (see Table 6 for more details). In another study,

a hybridmodel composed of TGNN and hiddenMarkovModel was

proposed for extracting indicative features of PCG signal in light

of detecting cardiac ejection murmur, and the accuracy, sensitivity,

and specificity were estimated to be 88.1%, 85.1%, and 89.2%,

respectively (Gharehbaghi et al., 2017a).
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TABLE 6 A complete list of the TGNN-based methods and their performance found by the study.

Application References Database Method Segmentation Performance

Feature
extraction

Classification

Normal, mild

disease, critical

disease

Gharehbaghi et al.,

2019c

Collected data TGNN MLP - The estimated

negative error: 0%,

The positive error:

6.3%

ASD or VSD

detection

Gharehbaghi et al.,

2020

Collected data TGNN MLP A method based on

physiological effects

of respiration

Acc: 88.4%, Sen:

91.6%, classification

error: 9.89% using

the A-Test method

Abnormal vs.

normal

Gharehbaghi et al.,

2019b

Collected data Static TGNN +

Moving TGNN +

MLP

SVM Amethod based on

physiological effects

of respiration

Acc: 84.2%, Sen:

82.8%, Spe: 85.7%,

Classification error:

5.1%

Forth Heart Sound

Detection

Gharehbaghi et al.,

2019d

Collected data Backward TGNN +

MLP

SVM ECG Acc: 88.3%, Sen:

82.4%, Spe: 93.7%,

classification error:

18.3% using the

A-Test method

Stenosis and

Regurgitation

Murmurs

Classification

Gharehbaghi et al.,

2019a

Collected data TGNN +MLP SVM ECG Acc: 85%, Sen: 80%,

classification error:

17.4% using the

A-Test method

AS and BAV

Classification

Gharehbaghi et al.,

2021

Collected data TGNN MLP ECG Acc: 85.8%,

classification error:

14.2% using the

A-Test method

Cardiac Ejection

Murmurs Detection

Gharehbaghi et al.,

2017a

Collected data A hybrid model and

a TGNN

SVM ECG Confidence interval

of:

Acc: 87.2% - 88.8%,

Sen: 83.4% - 86.9%,

Spe: 88.3% - 90.0%

Abnormal vs.

normal

Gharehbaghi and

Lindén, 2017

Collected data DTGNN SVM TGNN Classification rate:

85.5%, Sen: 83.9%,

Spe: 86%

Normal-PDA Gharehbaghi et al.,

2018

Collected data DTGNN MLP ECG Acc: 86%, Sen: 85%,

Spe: 87%

8.2 Findings of the classification problem

Classification of abnormal versus normal heart conditions is the

major research question tackled by various DLmethods (Table 3). A

total of the 63 papers employedDLmethods for the classification, in

which different architectures of CNN, RNN, RCNN, and MLP are

observed. CNN-basedmethods are dominantly seen in themajority

of the papers, contributing in 67% of the studies (see Figure 9A),

where a perfect 100% accuracy was reported in one of the studies

(Low and Choo, 2018). Figure 9A demonstrates methodological

frequencies for the classification question. Although validation

inconsistencies are seen in the validation methods and database,

which make a fair comparison questionable, the versatility of CNN

in this research question is conclusive. Figure 8 shows the best

performance of each method. The methods with the superior

accuracy for the underlying case studies are described in this sequel,

and a complete list of all the studies together with the technical

details and the study objectives are separately tabulated for each

method in Tables 4–8.

A CNN with 2 convolutional layers, 2 max-pooling layers,

and a kernel size of 11 × 11 was employed to classify abnormal

PCGs from normal ones, using the intensity images obtained

from the segmented PCG energies as the inputs. A perfect 100%

accuracy was achieved by when the cross-validation with 80% 20%

of training/test data was employed (Low and Choo, 2018). They

used the MHSDB dataset for the validation and a dropout layer

to avoid overfitting. As described in Table 4 and Figure 8, another

study also reported a high accuracy of 98.7% for the CNN model

when the bispectrum images of PCGs were employed as the input

features (Alqudah et al., 2020). Classification of 5 heart diseases

was the study objective. Their method was validated using a 10-

fold method in conjunction with a dataset provided by Yaseen et al.

(2018).

A combination of CNN and RNN was also proposed for the

classification problem and results were compared to a parallel

structure of RNN and CNN, named PRCNN, using MFCC as the

input data (Deng et al., 2020). Proposed a method based on CRNNs

for abnormalities classification. Accuracy, Recall, Precision, and
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TABLE 7 A complete list of the CNN&RNN-based methods and their performance found by the study.

Application References Database Method Segmentation Performance

Feature
extraction

Classification

Abnormal vs.

normal

Deng et al., 2020 PHSDB MFCC CRNN - Acc: 98.34%, Sen:

98.66%, Spe: 98.01%

Abnormal vs.

normal

Alam et al., 2018 MHSDB +

PASCAL-

CHSC2011 +

PHSDB

Spectrogram +

MFCC

Parallel

combination of the

RNN based

BiLSTM & CNN

- Sen: 96.09%, Spe:

100%, Score:

98.01%

Abnormal vs.

normal

Ali et al., 2020 The Cleveland

dataset

Linear discriminant

analysis (LDA) +

principal

component analysis

(PCA)

CNN + GRU - Acc: 94.5%, Recall:

95%, Precession:

94%, F1-Score:

94%, AUC: 94.5%

VSD-normal

classification

Wang J.-K. et al.,

2020

Collected data STFT TAP-CRNN - Acc: 95.45%, Sen:

97.18%, Spe:

91.98%, PPV:

96.15%, NPV:

94.15%

Heart disease

detection

Shuvo et al., 2021 Collected by Yaseen

et al. (2018)

CNN + Bi-LSTM - Acc: 99.6%

CVD detection Li P. et al., 2021 PHSDB CNN-LSTM-PCG

and

CNN-LSTM-ECG

fused by Genetic

algorithm

SVM - Acc: 87.3%, Sen:

90.3%, Spe: 84.5%

Heart disease

detection

Alkhodari and

Fraiwan, 2021

Washington +

Texas + 3M +

Michigan

CNN-BiLSTM - Acc: 99.32%, Sen:

98.30%, Spe: 99.58%

Abnormal vs.

normal

Megalmani et al.,

2021

PHSDB Hybrid CNN and LSTM - Acc: 94.51%, Sen:

97.48%, F1-Score:

94.5%

Abnormal vs.

normal

Ali et al., 2021 Cleveland Hybrid CNN and LSTM - Acc: 93.7%

Abnormal vs.

normal

Shinde and

Martinez-Ovando,

2021

PASCAL-

CHSC2011

MFCC + STFT hybrid CNN and

LSTM

- Acc: 88.5%

ASD, VSD, PDA

and combined

CHD classification

Liu et al., 2022 Collected data Residual convolution recurrent

neural network (RCRnet)

- Acc:

94%%âĂŞ99.4%

Abnormal vs.

normal

Chen et al., 2022 PHSDB 1D-CNN + LSTM - MAcc: 86%, Sen:

87%, Spe: 82%

Abnormal vs.

normal, heart

disease detection

Al-Issa and

Alqudah, 2022

PHSDB, Yaseen

et al. (2018)

CNN + LSTM - PHSDB: Acc:

93.77%, Sen:

99.63%, Spe: 92.42%

Yaseen et al., 2018:

Acc:

99.87(Augmented),

Acc: 98.5%(non-

Augmented)

Abnormal vs.

normal

Ren et al., 2022b PHSDB Combining a 1D CNN-LSTM and

a 2D CNN by channel attention

mechanism

- Acc: 97.15, Sen:

97.17, Spe: 97.13

F1-Score of the CRNN and PRCNN were calculated. As shown

in Figure 8, the accuracy of the two methods was estimated to be

98.34% and 97.34%, respectively.

Temporal Attentive Pooling (TAP) was proposed for classifying

the systolic murmur caused by VSD from the normal PCG (Wang

J.-K. et al., 2020). Spectral features of PCGs were calculated

using short-time Fourier transformation, and employed by the

convolutional layers of a CNN-based architecture. The method

architecture incorporated recurrent layers along with the TAP

layers to learn the long-term dependencies of the convolutional

layers. The classification was performed by the dense layers as the

final layer. An accuracy of 95.45% was achieved when the 4-fold
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TABLE 8 A complete list of the MLP-based methods and their performance found by the study.

Application References Database Method Segmentation Performance

Feature
extraction

Classification

Abnormal vs.

normal

Deperlioglu et al.,

2020

PASCAL-

CHSC2011

AEN - Acc: 100%, Sen:

100%, Spe: 100%

Abnormal vs.

normal

Chowdhury T. H.

et al., 2020

PHSDB Mel-scaled power

spectrogram,

MFCC

A 5-layer

feed-forward DNN

Shannon energy

envelope and zero

crossing

Acc: 97.1%, Sen:

99.26%, Spe: 94.86%

Abnormal vs.

normal

Sotaquirá et al.,

2018

PHSDB time, frequency and

time-frequency

DNNs + the

weighted

probabilities

LR-HSMM Overall Acc: 92.6%,

Sen: 91.3%, Spe:

93.8%

Abnormal vs.

normal

Kose et al., 2021 The Cleveland

database

AEN - Acc: 99.13%, Sen:

97.90%, Spe:97.95%

Normal, murmur,

extra systole

Deperlioglu, 2021 PASCAL-

CHSC2011

Stacked autoencoder network Resampled energy

method

Acc: 99.8%, Sen:

100%, Spe: 100%

Abnormal vs.

normal

Bondareva et al.,

2021

PASCAL-

CHSC2011

The

INTERSPEECH

ComParE 2018

feature set +

Shannon energy

based features

6 layer MLP - Precision on

normal: 81%,

Precision on

murmur: 96%

Normal-

extrasystole-

murmur

Deperlioglu, 2019a PASCAL-

CHSC2011

Autoencoder neural network resampled energy

method

Acc:99.93%, Sen:

99.77%, Spe: 99.77%

Heart disease

detection

Ghosh et al., 2020 Yaseen et al., 2018 L1-norm + sample

entropy + and

permutation

entropy

Deep layer kernel

sparse

representation

network (DLKSRN)

- Acc: 99.24

validation along with a dataset of PCGs prepared at the National

Taiwan University Hospital was employed for the evaluation

showing a performance improvement as compared to the CNN and

the Convolutional Recurrent Neural Network (CRNN).

In another study, a CNN-based model was proposed using

rheumatic heart disease as the case study for the classification

(Asmare et al., 2020). Each PCG was divided into several temporal

frames with a fixed length of 1.2 second. The mel-spectral contents

were employed in their logarithmic form as the input features for

a CNN with 5 convolutional layers and linear activation function.

The method accuracy was estimated to be 96.7% using 80% 20%

of training/test split of the dataset as shown in Table 4. The

database for the evaluation was prepared at the Tikur Anbessa

Referral Teaching Hospital College of Health Sciences, Addis

Ababa University.

8.3 Findings of the end-to-end learning

End-to-End learning, implying learning heart sounds without

performing the segmentation process, was found in 31 of the

studies. Methods including, CNN, RNN, CNN-RNN, DBN, and

MLP, were used to this end.

The best accuracy was obtained by an Auto Encoder Network

(AEN) in two classification problems: a case with three classes,

normal, murmur, and extra-systoles, and a case with two classes

of normal and abnormal (Deperlioglu et al., 2020). An accuracy

of 100% and 99.8% in the former and the later case, respectively

when 80% 20% of training/test split was used for the validation,

outperforming other methods such as ANNs, SVM, CNN, and

DNN. Detail of the results can be found in Table 8.

An accuracy of 100% was also seen in another study for heart

disease classification, in which CNN was employed for the learning

process along with the recurrence filter with the temporal frames

of 6 and 34 second (Avanzato and Beritelli, 2020). Cross-validation

with 70%/30% of training/test data was employed in conjunction

with the dataset in Yaseen et al. (2018).

Deep Belief Network was also employed through a hybrid

method of fuzzy classifier, for the disease classification (Irene

et al., 2020). Performance of the model was estimated using 10-

fold validation, independently applied to three different datasets:

Hungary dataset, Swiss dataset, and Cleveland dataset, and the

accuracy was found to be 97.56%, 97.21%, and 97.62%, respectively.

8.4 Findings of the segmentation problem

Segmentation is by far less pronounced in the related studies

on DL for PCG signals, observed in 15 of the studies. Different

DL methods such as CNN, RNN, CNN-RNN and MLP were

proposed for this research question, from which RNN and CNN

are dominantly seen in the reports. As can be seen in Figure 9B,

the DL methods which invoked RNN and CNN, contributed to

38%, 31% of the studies. The performance of the segmentation is

evaluated by considering a window of 40 or 60 ms, where the

predicted position of each heart soundmust fall within this window
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TABLE 9 Results of deep learning methods for segmentation.

Application References Database Method Performance

Feature extraction Classification

S1 and S2

classification

Meintjes et al., 2018 PHSDB Scalograms CNN Acc: 86%, Sen:

87.4%, Spe: 86.7%,

AUC: 93.8%

Heart sound

segmentation

Renna et al., 2019 PHSDB The homomorphic, Hilbert,

wavelet and PSD envelope

CNN + HMM Acc: 93.7%, Sen:

95.7%, PPV: 95.7%

Heart sound

segmentation

Chen et al., 2020a MITHSDB The homomorphic, Hilbert,

Wavelet and PSD envelope

BiLSTM Sen: 96.36%, PPV:

95.88%, F1-Score

(S1): 96.28%,

F1-Score (S2):

95.98%, F1-Score:

96.11%

Heart sound

segmentation

Messner et al., 2018 PHSDB Spectrogram, MFCC,

envelope features:

homomorphic envelope,

Hilbert envelope, wavelet

envelope and PSD

BiGRNN Sen: 95.9%, PPV:

94.9%, F1-Score:

95.4%

S1 and S2

classification

Mishra et al., 2018 Online data 1D-CNN MLP Overall mean Acc:

99.8%

Heart sound

segmentation Fernando et al.

(2019)

M3-Hu MFCC Bi-LSTM with

attention

Acc: 97.1%, Sen:

96.7%, Spe: 96.7%,

F1-Score: 94.7%,

PPV: 93.1%

Heart sound

segmentation

Xu et al., 2019 PHSDB + the UCI

database +

University of

Washington dataset

+ medical online +

collected data

Simpler minimum gated unit (SMGU)-RNN Acc: 88.56%

Heart sound

segmentation

Oliveira et al., 2020 PHSDB The homomorphic, Hilbert,

wavelet and PSD envelope

Bi-LSTM Sen increases 2.4%

when compared to

the standard

approaches

S1 and S2

classifications

Xu et al., 2020 PHSDB Personalized GMM-DHMM

+MFCC

CNN The final

segmentation Acc:

92.92%

Heart sound

segmentation

Chen Y. et al., 2021 MITHSDB Convolutional long short-term memory (CLSTM) F1-Score: 96.18%

Heart sound

segmentation

Yin et al., 2020 MITHSDB The homomorphic, Hilbert,

wavelet and PSD envelope +

STFT + 1D-CNN

Temporal

convolutional

network combined

with Viterbi

algorithm

F-Score: 97.02%

Heart sound

segmentation

Wang X. et al., 2020 PHSDB The temporal-framing adaptive network

with an encoder-decoder architecture

Overall F1-score:

99.21%

S1 and S2

classification

Babu and

Ramkumar, 2020

Real time data +

PHSDB

The auto-correlation, Hilbert,

homomorphic and PSD

envelope extracted from

empirical wavelet transform

U-Net based DNN Acc: 91.17%

to be correctly predicted. For example, a true positive is counted

when the center of an S1 (S2) which occurs within the predicted

label is closer than 40 ms to the center of the corresponding S1

(S2) in the ground truth label. Although metrics such as sensitivity

and positive predictive have been used in some papers to evaluate

segmentation performance, accuracy has been reportedmore often.

Thus, we presented and compared the results based on their

accuracy, even though it might sound inappropriate. However,

there were 2 different DL methods that showed superiority over

the rest of the methods found by the survey (Mishra et al., 2018).

One of the methods was based on the one-dimensional CNN

for the feature extraction, in conjunction with an MLP for S1-S2

classification. The other method employs a stacked auto-encoder

for the classification which uses Mel-frequency cepstral coefficients
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as well as the related derivative as the input features. An accuracy

of 100% and 99.8% was achieved by the two methods, respectively.

Repeated random sub-sampling was used for the validation, and

the three public datasets from the University of Washington,

the University of Michigan, and Litman were invoked for the

validation. Development and validation details of the DL methods

for the segmentation found by the survey are included in Table 9.

9 Discussion

This paper considered all the scientific papers published in the

well-used search engines within 2017–2023 and represented the

results in the taxonomic order. Tables 4–8, listed all the methods

along with the implementation details such as segmentation

manner as well as validation database. The trend of the DL

methodologies shows a shift toward further use of CNN for various

applications of heart sound analysis (see Figure 10). It is seen

that the total number of papers on heart sound analysis which

were published within 2020–2021, is more than double the ones

published within 2017–2020, showing a strictly positive trend of

the research interest in this topic. This necessitates the need for

a comprehensive survey study, to avail the researchers of the

technical details along with the scope of the experimental results.

A perfect 100% of the classification accuracy was observed in

some of the DL-based studies (Deperlioglu et al., 2020; Low and

Choo, 2018), showing a noticeable enhancement compared to the

conventional methods (Rajamhoana et al., 2018). Nevertheless,

strict conclusions about the performance of DL methods in

this context demand further discussion, especially since the

previous review papers fail to scrutinize the observed studies

comprehensively.

A fair conclusion about the appropriate DL method for

a research question demands some considerations beyond the

performance measures. The method complexity including the

segmentation and feature extraction methods are two key points

requiring further attention when it comes to DL comparison.

For a research question, the validation database in conjunction

with the validation method should be considered in addition to

the performance measures while several DL methods are to be

compared.

9.1 Comparison to the other surveys

In total, 14 review or survey papers have been found in this

study. A review paper on DL methods for PCG classification

was the objective of one of the papers (Chen W. et al.,

2021), which failed to consider a pervasive taxonomic and

methodological study. Moreover, a number of the important CNN-

based studies with high accuracy, were not addressed, making the

methodological comparison crippled. The lack of objectivity and

comprehensiveness of the study are seen in the two other review

papers (Li S. et al., 2020; Rath et al., 2021b). Other studies, either

addressed the classification problems only (Rajamhoana et al., 2018;

Brites et al., 2021; Rath et al., 2021a; Vasantrao and Rangasamy,

2021; Fernando et al., 2021), or dealt with a narrow scope of the field

(El-Dahshan et al., 2021; Jyothi and Pradeepini, 2021b). Oppositely,

other review studies put different applications of DL methods

into a broad scope of health informatics and rendered the general

results without providing sufficient details of the learning and

the validation process for PCG analysis (Abdullah Aloyuni, 2021;

Bizopoulos and Koutsouris, 2018; Amin et al., 2021). Although

heart disease detection was regarded as a narrow application of

the DL method in some of the review studies, technical details of

the learning and validation along with the results of the important

papers with superior performance were overlooked (Lakshmi et al.,

2021; Vasantrao and Rangasamy, 2021).

To the best of our knowledge, this study uniquely provides

a pervasive knowledge about the state-of-the-art of DL methods

along with the corresponding results in PCG analysis, including

heart abnormalities classification, PCG segmentation, and

recovery. In addition to the methodological and taxonomic

contents, technical details of the validation methods, such as the

PCG databases, were consistently rendered for each method.

9.2 Methodological complexity

One of the negative aspects of DL methods in comparison

to conventional machine learning methods, is their high

methodological complexity. It mainly refers to the computational

power as well as the memory, required for learning and testing.

The reviewed studies failed to report the complexity of their

methods in a consistent manner. Nevertheless, a comparative

study was found in which the training time of a simpler minimum

gated unit (SMGU), MGU, LSTM, CNN, autoencoder, and RNN

was estimated to be 2,395, 2,436, 2,863, 10,583, 1,186, and 1,839

seconds, respectively (Xu et al., 2019). It was also observed that

for the classification problem, a CNN can demand more than 6 h

time for a 10-fold validation using an Intel Core-I7 PC with 16 GB

of memory when the bispectrum images employed as the inputs

(Alqudah et al., 2020). In another study, the average training and

testing time of a CRNN model that employed the MFCC input

features was reported to be 3 h and 2.5 seconds, respectively, on

a PC with a 3.5 GHz Intel core i5 CPU and 8 GB memory (Deng

et al., 2020).

9.3 Performance comparison

Providing a realistic comparison of the performance measures

over the reviewed papers is a big challenge due to the inconsistent

validation process in terms of the method and the database. For

example, in the classification problem, different values for the

accuracy were reported, even as high as 100%, were reported

(Low and Choo, 2018; Malik et al., 2020; Latif et al., 2018)

(see Figure 8). One of the studies which reported a perfect

100% of accuracy, performs the validation by using repeated

random sub-sampling and a database of 23 subjects only (Low

and Choo, 2018), while another study with 99.88% of accuracy

did so, using 5-fold validation method and a database of

1, 000 subjects with 5 different classes of PCGs (Malik et al.,

2020). In terms of reliability, the latter is obviously preferred

even though the accuracy is slightly degraded. Such validation
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FIGURE 9

(A) The contribution percentage of di�erent DL methods in the classification papers. (B) The contribution percentage of di�erent DL methods in the

segmentation papers.

FIGURE 10

The percentage contribution of di�erent deep learning methods in heart sound analysis for three recent years.

discrepancy was observed in two other studies with the same

objective, VSD detection, but the methodological difference: one

employed a TGNN (Gharehbaghi et al., 2020) and the other

one used a CNN-based method (Wang J.-K. et al., 2020).

The accuracy of the TGNN and the CNN was estimated to

be 88.4% and 97.1%, respectively. However, the reliability of

the former is privileged due to the realistic validation process

which employed repeated random sub-sampling method using a

dataset of 115 subjects with 6 classes of PCG, whereas the latter

one which employed an overlapping 2-fold validation (unclear

overlapping manner) using a dataset of 150 subjects with only

2 distinct classes. Another computational aspect, that can direct

the performance accuracy, is the segmentation manner employed

for the classification. Some of the studies, particularly one that

yielded a very high accuracy of 97.63% (Latif et al., 2018),

ignored to report of the segmentation method, making the method

reproducibility questionable.

9.4 Other methods

In addition to the above-describedmethods, a minority of other

DL methods were found for different applications of PCG analysis.

Bidirectional RNN and LSTM have been reported in a study for

the classification task using the Physionet dataset, however, a

significant improvement couldn’t be found compared to the CNN

(Sujadevi et al., 2019). Sharma and Dhar (2019) examined various

deep learning techniques to classify heart sounds into normal,

abnormal, and artifact. A combination of LSTM and CNN showed

an improvement in the classification problem compared to the

CNN (Netto and Abraham, 2021). It is also found that a deep

TGNN can outperform the conventional hidden Markov model

(Gharehbaghi and Babic, 2018).

One of the reviewed papers proposed a CNN-based method

using ECG and PCG signals, for a classification problem with 4

classes: normal, abnormal, others, and noisy (Balbin et al., 2021).
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Recent studies employed the attention mechanism to

improve the performance of a CNN and RNN, and an

enhancement in the performance was observed (Ren et al.,

2022a). In some other studies, various combinations of

CNN and Bidirectional LSTM with an attention block, have

been proposed for the classification problem (Tian et al.,

2022; Frimpong et al., 2022), as well as for the segmentation

problem (Monteiro et al., 2022; Guo et al., 2022). However,

these studies failed to meet the criteria for participation in

the study.

10 Conclusions

This paper presented the results of a pervasive survey on deep

learning methods for heart sound analysis, the topic that has

recently received special interest from researchers. The reviewed

papers were mainly focused either on disease classification from

the segmented heart sound signals or on the methodologies for

heart sound segmentation. To a lesser extent, applications such

as end-to-end learning, heart sound recovery, and denoising were

also observed. Among the different deep learning methods, the

CNN-based method was dominantly seen in the classification

problems, where a very high accuracy was reported by several

studies. For the segmentation problem, the majority of the studies

employed either a CNN-based or an RNN-basedmethod. Although

the complexity of CNN-based methods was by far higher than

the RNN-based ones, the privileges of CNN in this context are

conclusive. Regardless of the methodological complexities, much

attention should be paid both to the validation method and to the

learning database.
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