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Vision-language models for
medical report generation and
visual question answering: a
review

Iryna Hartsock* and Ghulam Rasool

Department of Machine Learning, H. Lee Mo�tt Cancer Center and Research Institute, Tampa, FL,

United States

Medical vision-language models (VLMs) combine computer vision (CV) and

natural language processing (NLP) to analyze visual and textual medical data.

Our paper reviews recent advancements in developing VLMs specialized for

healthcare, focusing on publicly available models designed for medical report

generation and visual question answering (VQA). We provide background on

NLP and CV, explaining how techniques from both fields are integrated into

VLMs, with visual and language data often fused using Transformer-based architectures

to enable effective learning from multimodal data. Key areas we address include

the exploration of 18 public medical vision-language datasets, in-depth analyses

of the architectures and pre-training strategies of 16 recent noteworthy medical

VLMs, and comprehensive discussion on evaluation metrics for assessing

VLMs’ performance in medical report generation and VQA. We also highlight

current challenges facing medical VLM development, including limited data availability,

concerns with data privacy, and lack of proper evaluation metrics, among others, while also

proposing future directions to address these obstacles. Overall, our review summarizes

the recent progress in developing VLMs to harness multimodal medical data for

improved healthcare applications.
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1 Introduction

The last decade has seen significant progress in artificial intelligence (AI) and machine

learning (ML), including the development of foundation models (FMs), large language

models (LLMs), and vision-language models (VLMs). These AI/ML developments have

started transforming several aspects of our daily lives, including healthcare. AI/ML can

potentially transform the healthcare continuum by significantly optimizing and improving

disease screening, diagnostics, treatment planning, and post-treatment care (Bajwa et al.,

2021). Various computer vision (CV) and natural language processing (NLP) models,

particularly LLMs, have been instrumental in driving this transformative trend (He et al.,

2023b; Zhou et al., 2023b). CV models have been trained and validated for various

screening and diagnosis use cases leveraging radiology data from X-rays, mammograms,

magnetic resonance imaging (MRI), computed tomography (CT), and others. Recently,

AI models focused on digital pathology using histopathology and immunohistochemistry

data have also shown significant advances in accurate disease diagnosis, prognosis, and

biomarker identification (Waqas et al., 2023, 2024a). On the other hand, by trainingmodels

using large datasets of medical literature, clinical notes, and other healthcare-related text,
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LLMs can extract insights from electronic health records

(EHR) efficiently, assist healthcare professionals in generating

concise summary reports, and facilitate the interpretation of

patient information. Noteworthy examples of such LLMs include

GatorTron (Yang et al., 2022), ChatDoctor (Li et al., 2023c), Med-

PaLM (Medical Pathways Language Model; Singhal et al., 2023),

andMed-Alpaca (Han et al., 2023).

The healthcare data is inherently multimodal, and

consequently, the AI/ML models often need to be trained

using multiple data modalities, including text (e.g., clinical notes,

radiology reports, surgical pathology reports, etc.), imaging (e.g.,

radiology scans, digitized histopathology slides, etc.), and tabular

data (e.g., numerical data such as vitals or labs and categorical

data such as race, gender, and others; Acosta et al., 2022; Shrestha

et al., 2023; Waqas et al., 2024b; Tripathi et al., 2024a; Mohsan

et al., 2023; Waqas et al., 2024c,a; Tripathi et al., 2024b). In routine

clinical practice, healthcare professionals utilize a combination

of these data modalities for diagnosing and treating various

conditions. Integrating information from diverse data modalities

enhances the precision and thoroughness of disease assessments,

diagnoses, treatment planning, and post-treatment surveillance.

The need for AI/ML models to ingest, integrate, and learn from

information stemming from varied data sources is the driving force

formultimodal learning (Huang et al., 2021; Waqas et al., 2024b).

The recent progress in multimodal learning has been driven

by the development of VLMs (Gan et al., 2022; Chen et al., 2023;

Mohsan et al., 2023). These models analyze, interpret, and derive

insights from both visual and textual data. In the medical domain,

these models contribute to a holistic understanding of patient

information and improve ML model performance in clinical tasks.

Many of these models, like CLIP (Contrastive Language—Image

Pre-training; Radford et al., 2021), LLaVa (Large Language and

Vision Assistant; Liu et al., 2023c), and Flamingo (Alayrac et al.,

2022) are tailored to healthcare domain through training on

extensive medical datasets. Adapting VLMs for medical visual

question-answering (VQA; Lin et al., 2023b) enables healthcare

professionals to query medical images such as CT scans, MRIs,

mammograms, ultrasounds, X-rays, and more. The question-

answering capability elevates the interactive nature of the AI/ML

models in healthcare, facilitating dynamic exchanges between

healthcare providers and the AI system. Furthermore, adapting

VLMs for medical report generation enables them to amalgamate

information from visual and textual sources, producing detailed

and contextually relevant reports. This enhances healthcare

workflow efficiency by ensuring comprehensive and accurate

reports.

In contrast to previous related surveys (Lin et al., 2023b; Ting

et al., 2023; Shrestha et al., 2023), this review aims to provide a

comprehensive update on how methods from CV and NLP are

integrated to develop VLMs specifically designed formedical report

generation and VQA. The specific objectives of this review are as

follows:

• Provide essential background on artificial neural networks,

CV, and NLP, to ensure the accessibility of this review for

readers from medical fields and promote collaboration and

knowledge exchange between the AI/ML community and the

medical professionals (see Section 2).

• Explore the integration of CV and NLP in VLMs, including

model architectures, training strategies, and downstream tasks

(see Section 3).

• Analyze recent advances in VLMs, datasets, and evaluation

metrics relevant to medical report generation and VQA (see

Section 4). Specifically:

– Describe 18 publicly available vision-language datasets that

encompass medical image-text pairs or question-answer

pairs related to medical images (see Section 4.1).

– Outline over 10 metrics employed for evaluating VLMs in

the context of report generation and VQA tasks (see Section

4.2).

– Thoroughly review 16 recent medical VLMs, 15 of which

are publicly available, with most models not previously

covered in other surveys (see Section 4.2).

• Discuss the current challenges within the field of medical

VLMs, offering insights into potential research directions that

could profoundly influence their future development (see

Section 5).

The overall structure of this review is shown in Figure 1. The

list of medical VLMs and datasets can also be found on: GitHub.

2 Machine learning—a brief review

Deep learning (DL), a subfield of ML, involves algorithms

that learn to recognize patterns and make decisions by analyzing

large amounts of data. In this section, we review the fundamental

principles of DL and explore two main areas of DL relevant to

medical VLMs: CV andNLP. Formore detailed information onDL,

we refer the reader to LeCun et al. (2015), Goodfellow et al. (2016),

and Baldi (2021).

2.1 Principles of deep learning

ML and AI originated in the 1940–1950’s, with neural networks

(NNs) emerging as classical models. The fundamental building

block of an NN is an artificial neuron, which receives multiple

inputs, aggregates them, applies nonlinear operations, and outputs

a single scalar value. NNs consist of layers of interconnected

artificial neurons, including input, output, and hidden layers. In

feedforward NNs, connections are structured so that a connection

from neuron i to neuron j exists only if i < j (Baldi, 2021).

In any NN, the connections between artificial neurons carry

weight, and neurons utilize “activation functions” on their inputs to

introduce non-linearity. An activation function is a mathematical

operation that transforms the weighted sum of inputs into an

output, enabling the network to model complex patterns. Common

activation functions include the sigmoid, hyperbolic tangent (tanh),

and Rectified Linear Unit (ReLU).

A loss function quantifies the disparity between predicted

and actual outputs, with the goal of minimizing this scalar value

during training. DL leverages NNs but extends them into deeper

architectures with many hidden layers. Backpropagation, short for
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FIGURE 1

Organization of the review paper. The structure begins with an introduction, followed by a foundational review of ML and background on VLMs. It

then delves into medical vision-language datasets, evaluation metrics, and recent medical VLMs. Next, the paper addresses the current challenges of

medical VLMs and proposes possible future research directions. It ends with a conclusion summarizing key insights and findings.

backward propagation of errors, is essential for training deep NNs.

It involves calculating the gradient of the loss function with respect

to the weights, using the chain rule for derivatives (Baldi, 2021).

This gradient information updates the weights to minimize the

loss. Common optimization methods include gradient descent,

stochastic gradient descent (SGD; Robbins, 1951), and Adam

(Adaptive Moment Estimation; Kingma and Ba, 2014). These

methods iteratively update the weights to improve the model’s

performance during training.

2.2 Natural language processing

NLP is the analysis of linguistic data, most commonly in

the form of textual data such as documents or publications,

using computational methods (Verspoor and Cohen, 2013).

NLP encompasses a variety of tasks aimed at understanding,

processing, and generating human language. The common NLP

tasks include machine translation, named entity recognition, text

summarization, etc. In the following, we introduce terminology
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and fundamental concepts that will help the reader in the coming

sections on modern NLP and medical VLMs.

2.2.1 Markov chain model
The Markov chain model has historically been significant

in NLP, particularly for tasks involving sequence prediction and

probabilistic modeling of text data (Nadkarni et al., 2011). A

Markov chain is a stochastic process that transitions from one

state to another based on specific probabilistic rules, with the

fundamental property that the future state depends only on the

current state and not on the sequence of events that preceded it.

This property, known as the Markov property, allowed Markov

chains to model the likelihood of sequences of words or characters

by capturing statistical dependencies between adjacent elements.

They facilitated tasks such as text generation, next-element

prediction, and part-of-speech tagging in early NLP research and

applications, providing a foundational framework for subsequent

advanced techniques (Nadkarni et al., 2011).

2.2.2 Tokenization
In contemporary NLP, tokenization is the initial step involving

the splitting of sentences and words into their smallest morphemes,

known as tokens (Rai and Borah, 2021). Subword tokenization

methods are often preferred in many NLP applications due to

their effectiveness in handling out-of-vocabulary words.WordPiece

(Wu et al., 2016) starts by treating each character as a token,

forming an initial vocabulary. Using a flexible merging strategy,

WordPiece considers adjacent characters or subword units that

enhance the overall likelihood of the training data, aiming to

accurately represent it given the model’s current state. Byte-Pair

Encoding (BPE; Sennrich et al., 2016) shares similarities with

WordPiece but follows a more deterministic merging strategy. BPE

merges the most frequent pair of adjacent characters or subword

units in each iteration, progressing toward a predefined vocabulary

size. Byte-level BPE (Wang et al., 2020) operates at an even finer

granularity, considering individual bytes instead of characters. This

extension allows it to capture more nuanced patterns at the byte

level.

2.2.3 Token embeddings
Tokens are often transformed into numerical vectors that

capture semantic relationships between tokens, called word or

token embeddings. Word2Vec (Mikolov et al., 2013b) is a widely

used word embedding technique employing two models: Skip-

Gram (Mikolov et al., 2013b) and Continuous Bag of Words

(CBOW; Mikolov et al., 2013a). Skip-Gram predicts context words

given a target word, capturing semantic associations, while CBOW

predicts the target word based on context, emphasizing syntactic

structures. Word2Vec is computationally efficient, making it

suitable for large datasets and general-purpose applications. Global

Vectors (GloVe; Pennington et al., 2014) focuses on capturing

global semantic relationships by analyzing word pair statistics

across the entire corpus. It generates word vectors reflecting

co-occurrence probabilities, which is ideal for tasks requiring a

holistic understanding of word connections. FastText (Bojanowski

et al., 2017) is effective for handling out-of-vocabulary words and

morphologically rich languages. It adopts a sub-word approach,

breaking words into n-grams, and uses a skip-gram training

method similar to Word2Vec to learn embeddings for these sub-

word units.

Specialized embeddings are available for biomedical and

clinical terms. BioWordVec (Zhang et al., 2019) incorporates

MeSH terms and text from PubMed abstracts to learn improved

biomedical word embeddings. Cui2vec (Beam et al., 2020) utilizes

multi-modal data from medical publications and clinical notes,

mapping terms onto a common Concept Unique Identifier (CUI)

space. Additionally, positional encodings, often based on sinusoidal

functions, are commonly added to capture the order of tokens in

a sequence. These vectors systematically encode token positions,

enriching embeddings with positional information for tailoredNLP

tasks (Ahmed et al., 2023).

2.2.4 Recurrent neural networks
RNNs are widely employed for pattern detection in sequential

data like genomic sequences, text, or numerical time series

(Schmidt, 2019). Operating on the principle of preserving a form of

memory, RNNs incorporate a cyclic structure by looping the output

of a specific layer back to the input, facilitating the prediction

of subsequent layer outputs. This mechanism empowers RNNs to

adeptly model sequential and temporal dependencies, capturing

information from preceding time steps within hidden states.

However, they face challenges in retaining long-term dependencies

due to the vanishing gradient problem. To address this, variants like

Long Short-Term Memory (LSTM; Hochreiter and Schmidhuber,

1997) and Gated Recurrent Unit (GRU; Cho et al., 2014) have been

developed to better capture and utilize long-range dependencies in

sequential data (Ahmed et al., 2023).

2.2.5 Transformers
In recent years, there has been a remarkable advancement in

NLP mainly due to the development of the Transformer models

(Vaswani et al., 2017). Beyond incorporating embeddings and

positional encodings, the Transformer architecture consists of

an encoder that processes input data, represented by vectors

obtained from embedded and positionally encoded tokens.

The encoder-generated representation then serves as the

input for the subsequent decoder, transforming these vector

representations into a relevant output tailored to the specific task.

A defining characteristic of the Transformer lies in its self-attention

mechanism, particularly the scaled dot-product attention, which

proves instrumental in capturing intricate dependencies within

sequences.

The synergy between enhanced computational power provided

by Graphical Processing Units (GPUs) and advancements in

attention mechanisms has been pivotal in developing large

languagemodels (LLMs). Thesemodels aremeticulously trained on

vast datasets with many parameters. BERT (Bidirectional Encoder

Representations fromTransformers; Devlin et al., 2019)marked the

inception of LLMs. The era of even larger LLMs began in 2020 with

the introduction of models like GPT-3 (the 3rd generation of the

Generative Pre-trained Transformer model; Brown et al., 2020) and
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PaLM (Pathways Language Model; Chowdhery et al., 2022). Some

recent LLMs include LLaMA (Large Language Model Meta AI;

Touvron et al., 2023a,b), Vicuna (Chiang et al., 2023), and Mistral

(Jiang et al., 2023).

2.3 Computer vision

CV involves interpreting and understanding the world from

their images or videos (Ji, 2020). Data in CV is encoded as

numerical values representing the intensity or brightness of pixels.

The extraction of visual patterns like edges, textures, and objects

in images or video frames serves as building blocks for various

CV tasks like image classification, object detection, and semantic

segmentation. In the following, we introduce fundamental concepts

and terms essential for understanding VLMs presented in the later

parts of the paper.

2.3.1 Convolutional neural networks
CNNs represent a significant advancement in CV (Yamashita

et al., 2018). Besides pooling and fully connected layers, CNNs

also have convolution layers, which apply convolution operations

to input data. A small filter or kernel slides over the input

data during a convolution operation, performing element-wise

multiplications with local regions of the input at each position. The

results are summed to create a new value in the output feature

map. This process is repeated across the entire input, capturing

patterns and features at different spatial locations. The well-known

CNNs include Residual Network (ResNet; He et al., 2016), Dense

Convolutional Network (DenseNet; Huang et al., 2022), Efficient

Network (EfficientNet; Tan and Le, 2020), and others.

2.3.2 Vision transformers
Transformer models, originally proposed for NLP tasks, have

also found valuable applications in CV. For instance, the ViT

model (Dosovitskiy et al., 2021) can capture intricate relationships

and dependencies across the entire image. This is achieved

by leveraging the Transformer architecture and treating images

as sequences of smaller patches. Each image patch undergoes

flattening into a vector, followed by passage through an embedding

layer, enriching the patches for a more expressive representation.

Positional encodings are then incorporated to convey spatial

arrangement information. ViTs also introduce a special token

capturing global image information, represented by a learnable

token embedding with unique parameters. ViTs have excelled in

semantic segmentation (Ranftl et al., 2021), anomaly detection

(Mishra et al., 2021), medical image classification (Manzari et al.,

2023; Barhoumi et al., 2023), and even outperformedCNNs in some

cases (Tyagi et al., 2021; Xin et al., 2022).

3 Vision-language models

Many real-world scenarios inherently involve multiple data

modalities, prompting the development of VLMs capable of

simultaneously handling and understanding both NLP and CV

data. In this section, we build on the basic concepts described

earlier and present VLMs, their architectures, training and fine-

tuning methods, and various downstream tasks facilitated by these

multimodal models.

3.1 Model architecture

3.1.1 Single-stream vs. dual-stream VLMs
Based on how different data modalities are fused together

in VLMs, they are generally categorized into two groups (Chen

et al., 2023): (1) single-stream (e.g., VisualBERT; Li et al., 2019 and

UNITER or UNiversal Image-TExt Representation Learning; Chen

et al., 2020b), and (2) dual-streammodels (e.g., ViLBERT or Vision-

and-Language BERT; Lu et al., 2019 and CLIP or Contrastive

Language-Image Pre-training; Radford et al., 2021).

A single-stream VLM adopts an efficient architecture for

processing visual and textual information within a unified module

(see Figure 2A and Figure 3A). This architecture incorporates an

early fusion of distinct data modalities, concatenating feature

vectors from various data sources into a single vector (e.g.,

MedViLL; Moon et al., 2022). Subsequently, this combined

representation is fed into a single stream. One notable advantage

of the single-stream design is its parameter efficiency, achieved

by employing the same set of parameters for all modalities. This

simplifies the model and contributes to computational efficiency

during training and inference phases (Chen et al., 2023).

A dual-streamVLM extracts visual and textual representations

separately in parallel streams without parameter sharing (see

Figure 2B and Figure 3B). This architecture typically exhibits

higher computational complexity than single-stream architectures.

Visual features are generated from pre-trained vision encoders, such

as CNNs or ViTs, and textual features are obtained from pre-

trained text encoders, usually based on the Transformer architecture

(e.g., PubMedCLIP; Eslami et al., 2023). These features are then

integrated using a multimodal fusion module, often leveraging

attention mechanisms, to capture cross-modal dependencies.

3.1.2 Encoder vs. encoder-decoder VLMs
The learned cross-modal representations can be optionally

processed by a decoder before producing the final output.

Consequently, VLMs are classified into two groups: (1)

encoder-only [e.g., ALIGN (A Large-scale ImaGe and Noisy-

text embedding; Jia et al., 2021)] and (2) encoder-decoder models

[e.g., SimVLM (Simple Visual Language Model; Wang et al.,

2022c)].

Encoder-only VLMs are advantageous in scenarios where

the primary objective is efficient representation learning. They

often exhibit streamlined processing and reduced computational

complexity, making them suitable for tasks requiring compact and

informative representations. However, these models might lack the

capability to generate intricate and detailed outputs, limiting their

use in tasks demanding nuanced responses or creative generation.

Encoder-decoder VLMs offer the flexibility to generate

complex and diverse outputs, making them well-suited for tasks

like image captioning, translation, or any application requiring
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creative responses. The decoding step allows for the transformation

of joint representations into meaningful outputs. However, this

versatility comes at the cost of increased computational demand

and complexity.

3.2 Model training

3.2.1 Transfer learning
A widely used strategy in ML is transfer learning, where pre-

trained models are customized for specific downstream tasks. This

involves fine-tuning the model’s parameters using smaller task-

specific datasets to address the intricacies of the target task rather

than starting with random initialization (Bommasani et al., 2022).

Transfer learning often entails modifying the original model’s

architecture, such as adjusting final layers or introducing new

ones, like classification or regression layers, to align with the task

requirements (Bommasani et al., 2022). The goal is to adapt the

pre-trained model to the new task while leveraging the knowledge

it gained during initial pre-training. Almost all VLMs use transfer

learning during training in one way or another.

3.2.2 Curriculum learning
Curriculum learning offers a novel approach for tasks or

data with inherent progressions or hierarchies. It strategically

presents training examples or tasks in a designed order, often

based on difficulty or complexity measures (Soviany et al., 2021).

For instance, LLaVa-Med, a recent medical VLM (Li et al.,

2023a), employs curriculum learning during training. This gradual

learning approach starts with simpler examples and progresses

to more complex ones, enhancing the model’s adaptability and

performance.

3.2.3 Self-supervised learning
SSL provides a potent alternative to traditional supervised

learning by enabling models to generate their own labels from

data (Rani et al., 2023). This approach is especially advantageous

when acquiring labeled data is difficult or costly. In self-supervised

learning for VLMs, models formulate tasks that leverage inherent

data structures, allowing them to learn meaningful representations

across modalities without external labels. Examples of such tasks

include contrastive learning, masked language modeling, and

masked image modeling (further detailed in the subsequent sub-

section).

3.2.4 Pre-training process and tasks
The pre-training process is crucial for providing VLMs

with a foundational understanding of the complex relationship

between visual and textual data. A common approach involves

extensive pre-training on datasets pairing images/videos with their

corresponding textual descriptions. Throughout pre-training, the

model engages in various tasks to acquire versatile representations

for downstream applications. The following paragraphs describe

commonly used pre-training techniques.

Contrastive learning (CL) trains the model to distinguish

positive pairs from negative pairs of visual and textual data (Li

et al., 2021). Positive pairs contain related visual and textual

content, like an image with its corresponding description. Negative

pairs contain unrelated content, such as an image paired with a

randomly chosen description. The goal is to bring positive pairs

closer and push negative pairs apart in a shared embedding space.

Various contrastive loss functions are used, with InfoNCE (Noise-

Contrastive Estimation) loss (van den Oord et al., 2019) being a

common choice. CLIP (Radford et al., 2021) employs InfoNCEwith

cosine similarity, while ALIGN (Jia et al., 2021) uses normalized

softmax loss to enhance positive similarity and reduce negative

similarities.

Masked language modeling (MLM) is an NLP task (Taylor,

1953) first utilized in BERT (Devlin et al., 2019). MLM randomly

replaces a percentage of tokens in textual data with a special

token, usually denoted as MASK. The model then predicts these

masked tokens, considering the context on both sides, enabling it

to capture detailed contextual information. VLMs like UNITER

(Chen et al., 2020b) and VisualBERT (Li et al., 2019) utilize MLM

during pre-training.

Masked image modeling (MIM), extending the idea of MLM

to images, emerged as a novel approach (Xie et al., 2022). In

MIM, certain patches are masked, prompting the model to predict

the contents of masked regions. This process enables the model

to draw context from the entirety of the image, encouraging the

integration of both local and global visual features. VLMs like

UNITER (Chen et al., 2020b) and ViLBERT (Lu et al., 2019)

leverage MIM for enhanced performance. The cross-entropy loss

is employed in MLM and MIM tasks to measure the difference

between predicted and actual probability distributions for the

masked elements. Additionally, MLM can be combined with MIM,

allowing the reconstruction of the masked signal in one modality

with support from another modality (Kwon et al., 2023).

Image-text matching (ITM) is another common vision-

language pre-training task. Throughout the training, the model

learns to map images and corresponding textual descriptions into

a shared semantic space, where closely aligned vectors represent

similar content in both modalities. In single-stream VLMs, the

special token [CLS] represents the joint representation for both

modalities. In contrast, in dual-stream VLMs, the visual and

textual representations of [CLS]V and [CLS]T are concatenated.

This joint representation is fed into a fully-connected layer

followed by the sigmoid function, predicting a score indicating

match or mismatch (Chen et al., 2023). Models like CLIP

(Radford et al., 2021) and ALBEF (ALign the image and text

representations BEfore Fusing; Li et al., 2021) leverage ITM during

pre-training.

In VLM pre-training, multiple tasks are often combined to

enable models to understand nuanced contextual information

across modalities. Tasks like contrastive loss, cross-entropy loss

for masked token prediction, and others can be integrated into

the final loss function. This approach equips VLMs with versatile

representations for diverse downstream tasks. For instance, ALBEF

(Li et al., 2021) adopts a pre-training objective involving CL, MLM,

and ITM tasks, with the overall loss computed as the sum of

these components.
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FIGURE 2

Two main types of VLM architectures, single-steam and dual-stream, are presented. The model inputs and outputs are indicated. The rectangular

boxes inside the gray areas indicate the components of the VLM that typically undergo pre-training and fine-tuning, i.e., the model parameters are

updated using labeled or unlabeled data. The top row (A) shows the single-stream VLM architecture, and the bottom row shows the (B) dual-stream.

Each block indicated in these architectures can be designed using di�erent AI/ML models as indicated in these blocks.

3.2.5 Fine-tuning techniques
Following the training, a common practice involves fine-tuning

VLMs on smaller datasets tailored to specific downstream tasks. In

the following, we present well-known techniques for fine-tuning

VLMs.

Supervised fine-tuning (SFT) involves meticulous fine-

tuning of a model on a dataset curated to match the nuances

of the targeted application. However, before engaging in SFT,

the VLM undergoes pre-training on an extensive image-

text dataset to establish a foundational understanding of

visual-textual relationships. This dual-phase strategy enables

the model to generalize broadly while adapting to specific

applications (Ouyang et al., 2022).

Reinforcement learning from human feedback (RLHF) is a

distinct fine-tuning approach employed to enhance VLMs through

the incorporation of human preferences during fine-tuning

(Ouyang et al., 2022; Lambert et al., 2022; Ziegler et al., 2020). RLHF

initiates with an initial model, incorporating human-generated

rankings of its outputs to construct a detailed reward model.

In contrast to traditional reinforcement learning (RL; Sutton

and Barto, 1998; Coronato et al., 2020), which relies solely on

environmental interactions, RLHF strategically integrates human

feedback. This human-in-the-loop approach provides a more

nuanced and expert-informed methodology, allowing for fine-

tuning in alignment with human preferences, ultimately improving

model outcomes.

Instruction fine-tuning (IFT) refers to refining a pre-trained

language model by providing specific instructions or guidance

tailored to a particular task or application (Ren et al., 2024).

This process typically involves exposing the model to examples

or prompts related to the desired instructions and updating its

parameters based on the feedback received during this task-specific

training phase. Medical VLM, RaDialog (Pellegrini et al., 2023),

employs this fine-tuning technique.

3.3 Parameter-e�cient fine-tuning

This section explores strategies for adapting VLMs while

keeping the model’s parameters frozen and only updating newly

added layers. PEFT has emerged as a prominent approach, focusing

on optimizing parameter utilization, especially in scenarios with

limited labeled data for the target task. PEFT integrates task-

specific parameters, called adapters, into a pre-trained model while

retaining its original parameters. Adapter modules typically feature

a bottleneck structure, projecting original features into a reduced

dimension, applying non-linearity, and then projecting back to the

original dimension. This design ensures parameter efficiency by

minimizing the number of added parameters per task. Adapter

modules, placed after each layer of the pre-trained model, capture

task-specific details while preserving shared parameters, enabling
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FIGURE 3

Comparison of (A) single-stream and (B) dual-stream VLMs in terms of their advantages, disadvantages, and healthcare applications, to guide the

selection of the appropriate architecture for various medical scenarios. In some cases, the optimal choice between architectures remains uncertain

and may depend on specific task requirements.

seamless extension to new tasks without significant interference

with previously acquired knowledge.

3.3.1 Low-rank adaptation
LoRA is a common adapter-based method (Hu et al., 2022).

The adaptation process involves fine-tuning two smaller low-rank

matrices that are decompositions of the larger weight matrix of

the pre-trained model. These smaller matrices constitute the LoRA

adapter modules, and the approach focuses on making low-rank

modifications to adapt the model for specific tasks efficiently. Pre-

trained LLMs that are part of medical VLMs architecture are often

fine-tuned using LoRA (e.g., Visual Med-Alpaca (Shu et al., 2023)

and RaDialog (Pellegrini et al., 2023)).

3.3.2 Prompt tuning
Prompt tuning involves creating continuous vector

representations as input hints (Lester et al., 2021), enabling

the model to dynamically create effective prompts during training.

This iterative process significantly enhances the model’s ability to

generate contextually relevant responses and adapt its behavior

based on an evolving task. VLMs like Qwen-VL and InstructBLIP

used prompt tuning (Bai et al., 2023a; Dai et al., 2023).

3.3.3 Prefix token tuning
Prefix token tuning adds task-specific vectors to the input,

specifically to the initial tokens known as prefix tokens, to guide the

model’s behavior for a given task (Li and Liang, 2021). For instance,

VL-T5 utilized different prefixes for questions from various datasets

(Cho et al., 2021). These vectors can be trained and updated

independently while the remaining pre-trained model parameters

are frozen. Prefix token tuning allows task-specific adaptation

without compromising the pre-trained knowledge encoded in most

model parameters.

3.4 In-context learning

In this section, we explore strategies for adapting VLMs using

the context only, keeping the model’s parameters (and PEFT/LoRA

adapters, if any) frozen. In our settings, in-context learning may be

considered using LLMs or VLMs for inference only.

3.4.1 Prompt engineering
Prompt engineering involves guiding a trained model with

task-specific instructions, known as prompts, to tailor its output

for specific tasks (Gu et al., 2023). Examples include instructing

the model to generate a radiology report for a specific image
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(e.g., RAMM; Pellegrini et al., 2023). Prompt engineering can also

expose the VLM to interconnected examples or prompts, guiding

it to a desired output. Another approach incorporates progressively

structured instructions or questions, refining focus and enhancing

the model’s ability to generate coherent and contextually relevant

responses (Gu et al., 2023).

3.4.2 Retrieval augmented generation
RAG is a form of prompt engineering that involves strategically

crafting prompts for both retrieval and generation phases, allowing

for an adaptive and efficient process that leverages external

knowledge sources to enhance generative tasks. While the original

concept of RAG was developed in the context of NLP (Lewis

et al., 2020), the principles behind retrieval and generation can

be extended to multimodal learning (Zhao et al., 2023), including

VLMs. RAG has been used in medical VLMs for tasks like VQA

(e.g., RAMM; Yuan et al., 2023) and RG (e.g., CXR-RePaiR-Gen;

Ranjit et al., 2023). RAG begins with a retrieval component,

usually a pre-trained model designed for information retrieval.

This versatile component excels in extracting pertinent information

from extensive datasets, catering to various modalities such as

images, text, codes, video, or audio when presented with diverse

inputs (Zhao et al., 2023). Following the retrieval phase, the model

returns a set of contexts related to the given input. The second

component is a generative LLM. This component takes the input

and the retrieved context and generates the final output. The

generated output is conditioned on the input and the information

extracted from the retrieved context. An intrinsic advantage of

RAG lies in its capacity to reduce the reliance on extensive labeled

datasets.While the basemodel is typically frozen during RAG, there

are instances, as seen in RAMM (Yuan et al., 2023), where model

parameters are updated in the process.

3.5 Downstream tasks

Multimodal downstream tasks leverage the acquired knowledge

from pre-training VLMs to excel in diverse applications that require

a joint understanding of visual and textual data.

3.5.1 Report generation
RG is a prominent example of a typical medical VLM task,

which centers on creating a comprehensive summary report of

visual data. RG plays a crucial role in automatically summarizing

diagnostic imaging results and reducing the workload of report

writing (Monshi et al., 2020; Ting et al., 2023; Mohsan et al.,

2023). For instance, in radiology, a report generation system

could analyze a set of medical images such as X-rays, CT

scans, or MRIs and generate a detailed report summarizing the

observed abnormalities, their locations, and potential implications

for diagnosis or treatment (Liu et al., 2023b). A radiology report

usually has several sections: (1) Examination (type of exam), (2)

Indication (reasons for the examination), (3) Comparison (prior

exams), (4) Technique (scanning method) (5) Findings (detailed

observations made by a radiologist), and (6) Impression (summary

of the major findings; Mabotuwana et al., 2020). In the context of

RG, VLMs are usually designed to generate Findings and Impression

sections (Thawkar et al., 2023).

Traditional methods of RG in radiology, such as handwriting,

telephone dictation, transcriptionist-oriented systems, speech

recognition, and structured data entry, face several challenges,

including medical errors, cognitive overload, and inefficient

decision-making. Handwriting and telephone dictation are

particularly vulnerable to mistakes, as they can suffer from issues

like illegible handwriting and miscommunication, leading to

misinterpretations. Structured data entry, although designed to

standardize and streamline reporting, often places a significant

cognitive burden on radiologists, who must meticulously input

detailed information, potentially leading to fatigue and errors.

While technological advancements like electronic health records

(EHRs), improved speech recognition software, standardized

reporting templates, and automated error detection have been

developed to mitigate these challenges, they have limitations. For

example, EHRs and speech recognition still require substantial

manual input and proofreading, which can be time-consuming

and prone to error. Standardized reporting templates are helpful

in ensuring consistency, but they can be inflexible and may not

always capture the nuanced details of individual cases. Automated

error detection systems are also not foolproof, often requiring

human oversight to verify and correct flagged issues. Despite these

improvements, the need for manual effort and the potential for

human error remain significant concerns.

The evolution of RG methods parallels the advancements in

image captioning. Early methods in image captioning included

retrieval-based approaches, where captions were generated by

retrieving existing phrases from a database, and template-based

approaches, where predefined sentence templates were filled with

identified image elements, such as objects, actions, or locations

(Bai and An, 2018). However, these approaches struggled with

generating captions for unseen images. This limitation motivated

the emergence of DL methods for RG. Initial DL approaches

utilized CNNs to extract visual features from images, which were

then processed by RNNs to generate text descriptions (Ting et al.,

2023). While this CNN-RNN approach improved the flexibility

of captioning, it still faced challenges in capturing complex

relationships between images and text outputs, and it struggled with

generating longer, more comprehensive reports, often required in

the medical field. These challenges gradually led to the adoption of

VLMs in medical RG.

VLMs represent a transformative leap in medical RG

by addressing the shortcomings of previous methods. By

simultaneously integrating imaging and textual data, VLMs are

able to generate more comprehensive and coherent reports. They

also significantly reduce cognitive load by automating the creation

of comprehensive reports, thereby liberating clinicians from the

repetitive and time-consuming task of manual report writing.

Furthermore, VLMs provide consistent interpretations of imaging

data, which helps minimize the risk of errors associated with

clinician fatigue or oversight. Their capability to process large

volumes of data efficiently streamlines the reporting process,

enhancing the overall effectiveness of medical practice and

contributing to more accurate diagnoses. Currently, VLMs tailored

for RG are predominantly utilized for radiology images, with lesser

application in other medical imaging domains such as pathology
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(Sengupta and Brown, 2023), robotic surgery (Xu et al., 2021), and

ophthalmology (Li et al., 2022).

3.5.2 Visual question answering
VQA is another important visual-language understanding task,

where the model needs to comprehend images or videos and the

posed question to provide a relevant and accurate response (Antol

et al., 2015). The spectrum of questions encountered in VQA

is broad, encompassing inquiries about the presence of specific

objects, their locations, or distinctive properties within the image.

In themedical context (Lin et al., 2023b), thismay involve questions

regarding the presence ofmedical conditions or abnormalities, such

as “What abnormality is seen in the image?” (Ionescu et al., 2021)

or “Is there gastric fullness?” (Lau et al., 2018). Other queries may

delve into details like the imaging method used (Abacha et al.,

2019), the organ system involved (Lau et al., 2018), or the presence

of specific anatomical structures (Liu et al., 2021a).

Questions in VQA fall into two categories. Open-ended

questions elicit responses in the form of phrases or sentences,

fostering detailed and nuanced answers (Thawkar et al., 2023).

On the other hand, closed-ended questions are designed to prompt

limited responses, often with predetermined options, such as a

short list of multiple choices, a yes/no response, or a numeric rating

(Bazi et al., 2023). The task of VQA is commonly approached as

either a classification task, a generation task, or both (Lin et al.,

2023b). In the classification approach, models select the correct

answer from a predefined set, while in the generation task, models

produce free-form textual responses unconstrained by predefined

options.

3.5.3 Other tasks
Beyond VQA and RG, a spectrum of VLM tasks exist for the

vision-language understanding (Chen et al., 2023). For instance,

referring expression comprehension entails a model locating the

specific area or object in an image that the given phrase or sentence

refers to (Zhang et al., 2018). Visual commonsense reasoning

involves answering questions about an image, typically presented

in a multiple-choice format, and justifying the answer based on the

model’s understanding of the image and common sense knowledge

(Zellers et al., 2019). Vision-language retrieval focuses on either

generating or retrieving relevant information from images using

textual data, or vice versa, obtaining information from text using

visual data (Zhen et al., 2019). In the context of visual captioning,

the model’s role is to generate a concise, text-based description of

either an image (Sharma et al., 2023). It is worth highlighting that

some of these tasks can seamlessly transition from images to videos,

showcasing the adaptability and versatility of VLMs across diverse

visual contexts (Gan et al., 2022).

4 Medical VLMs

4.1 Medical datasets for VLMs

The adaptation of VLMs to various medical tasks is achieved

through their pre-training and fine-tuning using specialized task-

specific datasets. Below is the list of vision-language datasets

available in the public domain that contain medical image-text

pairs or question-answer (QA) pairs. Most of them are employed

by medical VLMs described in Section 4.3 for pre-training, fine-

tuning, and evaluating VQA and RG tasks. The comparative

analysis of these datasets is presented in Table 1. Note that

determining which dataset is best suited for a particular task can be

challenging, as each medical application presents its own nuances

and requirements. Factors such as the context in which images are

acquired and the types of annotations provided can significantly

influence a dataset’s effectiveness for specific tasks. In some cases,

it may be necessary to enhance existing datasets by adding relevant

image-text pairs or QA pairs, or even to create entirely new datasets

tailored to specific research questions or clinical scenarios.

4.1.1 Radiology objects in context
ROCO is a dataset composed of image-caption pairs extracted

from the open-access biomedical literature database PubMed

Central (PMC; Pelka et al., 2018). ROCO is stratified into two

categories: radiology and out-of-class. The radiology group

includes 81, 825 radiology images, including CT, ultrasound,

x-ray, fluoroscopy, positron emission tomography (PET),

mammography, MRI, angiography, and PET-CT. The out-of-class

group has 6, 127 images, including synthetic radiology images,

clinical photos, portraits, compound radiology images, and digital

art. To facilitate model training, the dataset is randomly split into

a training set (65, 460 radiology and 4, 902 out-of-class images), a

validation set (8, 183 radiology and 612 out-of-class images), and

a test set (8, 182 radiology and 613 out-of-class images) using an

80/10/10 split ratio, respectively.

4.1.2 Medical information mart for intensive
care—chest X-ray

MIMIC-CXR collection encompasses 377, 110 chest X-rays

paired with 227, 835 associated free-text radiology reports (Johnson

et al., 2019a). The dataset is derived from de-identified radiographic

studies conducted at the Beth Israel Deaconess Medical Center in

Boston, MA. Each imaging study within the MIMIC-CXR dataset

consists of one or more images, typically featuring lateral and from

back-to-front (posteroanterior, PA) views in Digital Imaging and

Communications in Medicine (DICOM) format.

4.1.3 MIMIC-CXR-JPG
MIMIC-CXR-JPG (Johnson et al., 2019b) is a pre-processed

variant of the MIMIC-CXR dataset (Johnson et al., 2019a). In this

version, the original 377, 110 images are converted into compressed

JPG format. The 227, 827 reports associated with these images are

enriched with labels for various common pathologies. The labels

are derived from the analysis of the impression, findings, or final

sections of the radiology reports, facilitated by the use of NegBio

(Peng et al., 2017) and CheXpert (Chest eXpert; Irvin et al., 2019)

tools.

4.1.4 MIMIC-NLE
MIMIC-NLE dataset is specifically designed for the task

of generating natural language explanations (NLEs) to justify
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TABLE 1 A list of datasets used for developing medical VLMs.

Dataset # image-text
pairs

# QA pairs Other components Link

ROCO Pelka et al. (2018) 81, 825 – – GH

MIMIC-CXR Johnson et al. (2019a) 377, 110 – – PN

MIMIC-CXR-JPG Johnson et al. (2019b) 377, 110 – pathology labels PN

MIMIC-NLE Kayser et al. (2022) 38, 003 – diagnosis labels, evidence labels GH

CXR-PRO Ramesh et al. (2022) – – 374, 139 radiographs and 374, 139
reports but not paired

PN

MS-CXR Boecking et al. (2022) 1, 162 – bounding box annotations PN

IU-Xray or Open-I Demner-Fushman et al. (2015) 7, 470 – labels Web

MedICaT Subramanian et al. (2020) 224, 567 – annotations; inline references to ROCO
figures

GH

PMC-OA Lin et al. (2023a) 1, 650, 000 – – HF

SLAKE Liu et al. (2021a) – 14, 028 642 annotated images, 5, 232 medical
triplets

Web

VQA-RAD Lau et al. (2018) – 3, 515 315 radiology images Web

PathVQAHe et al. (2020) – 32, 799 4, 998 pathology images GH

VQA-Med 2019 Abacha et al. (2019) – 15, 292 4, 200 radiology images GH

VQA-Med 2020 Abacha et al. (2020) – 5, 000 5, 000 radiology images for VQA;
images and questions for VQG

GH

VQA-Med 2021 Ionescu et al. (2021) – 5, 500 5, 500 radiology images for VQA;
images and questions for VQG

GH

EndoVis 2017 Allan et al. (2019) – 472 bounding box annotations; 97 frames GH

EndoVis 2018 Allan et al. (2020) – 11, 783 bounding box annotations; 2,007 frames GH +Web

PathQABench-Public Lu et al. (2024b) – 312 52 ROIs fromWSIs GH

GH, GitHub; HF, Hugging Face; PN, PhysioNet.

Datasets with image-text pairs are typically employed for trainingmedical VLMs, as well as for fine-tuning and evaluating models on RG tasks. Additionally, datasets containing question-answer

(QA) pairs are specifically designed for fine-tuning and evaluating models in VQA tasks. GH - GitHub, HF - Hugging Face, and PN - PhysioNet.

predictions made on medical images, particularly in the context

of thoracic pathologies and chest X-ray findings Kayser et al.

(2022). The dataset consists of 38, 003 image-NLE pairs or 44, 935

image-diagnosis-NLE triplets, acknowledging instances where a

single NLE may explain multiple diagnoses. NLEs are extracted

from MIMIC-CXR Johnson et al. (2019a) radiology reports.

The dataset exclusively considers X-ray views from front-to-back

(anteroposterior, AP) and back-to-front (posteroanterior, PA). All

NLEs come with diagnosis and evidence (for a diagnosis) labels.

The dataset is split into the training set with 37, 016 images, a test

set with 273 images, and a validation set with 714 images.

4.1.5 CXR with prior references omitted
CXR-PRO dataset is derived from MIMIC-CXR (Johnson

et al., 2019a). The dataset consists of 374, 139 free-text radiology

reports containing only the impression sections (Ramesh et al.,

2022). It also incorporates associated chest radiographs; however,

the radiology reports and chest X-rays are not paired. This

dataset is designed to mitigate the problem of hallucinated

references to prior reports often generated by radiology report

generation ML models. The omission of prior references in this

dataset aims to provide a cleaner and more reliable dataset for

radiology RG.

4.1.6 Indiana University chest X-rays
IU-Xray dataset, also known as the Open-I dataset, is accessible

through the National Library of Medicine’s Open-i service

(Demner-Fushman et al., 2015). The dataset originates from two

hospital systems within the Indiana Network for Patient Care

database. This dataset comprises 7, 470 DICOM chest X-rays paired

with 3, 955 associated radiology reports. Indication, finding, and

impression sections are manually annotated using MeSH and

RadLex (Radiology Lexicon) codes to represent clinical findings

and diagnoses. Throughout this review, we will refer to the dataset

interchangeably as IU-Xray and Open-I, maintaining consistency

with the nomenclature used in related literature.

4.1.7 Medical images, captions, and textual
references

MedICaT dataset contains 217, 060 figures from 131, 410 open-

access PMC papers focused on radiology images and other medical
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imagery types (Subramanian et al., 2020). Excluding figures from

ROCO (Pelka et al., 2018), the dataset integrates inline references

from the S2ORC (Semantic Scholar Open Research Corpus; Lo

et al., 2020) corpus, establishing connections between references

and corresponding figures. Additionally, the inline references to

ROCO figures are provided separately. MedICaT also contains

7, 507 subcaption-subfigure pairs with annotations derived from

2, 069 compound figures.

4.1.8 PubMedCentral’s OpenAccess
PMC-OA dataset comprises 1.65 M image-caption pairs,

derived from PMC papers (Lin et al., 2023a). It encompasses a

variety of diagnostic procedures, including common ones such

as ultrasound, MRI, PET, and radioisotope, and rarer procedures

like mitotic and fMRI. Additionally, the dataset covers a broad

spectrum of diseases, with induced cataracts, ear diseases, and low

vision being among the most frequently represented conditions.

4.1.9 MS-CXR
MS-CXR dataset contains image bounding box labels paired

with radiology findings, annotated and verified by two board-

certified radiologists (Boecking et al., 2022). The dataset consists of

1, 162 image-text pairs of bounding boxes and corresponding text

descriptions. The annotations cover 8 different cardiopulmonary

radiological findings and are extracted fromMIMIC-CXR (Johnson

et al., 2019a) and REFLACX (Reports and Eye-tracking data For

Localization of Abnormalities in Chest X-rays; Bigolin Lanfredi

et al., 2022; based on MIMIC-CXR) datasets. The findings include

atelectasis, cardiomegaly, consolidation, edema, lung opacity,

pleural effusion, pneumonia, and pneumothorax.

4.1.10 Semantically-labeled
knowledge-enhanced

SLAKE is an English-Chinese bilingual dataset (Liu et al.,

2021a). It contains 642 images, including 12 diseases and 39 organs

of the whole body. Each image is annotated with two types of visual

information: masks for semantic segmentation and bounding boxes

for object detection. The dataset includes a total of 14, 028QA pairs,

categorized into vision-only or knowledge-based types and labeled

accordingly, encompassing both open- and closed-ended questions.

Moreover, SLAKE incorporates 5, 232 medical knowledge triplets

in the form of < head, relation, tail >, where head and tail denote

entities (e.g., organ, disease), and relation signifies the relationship

between these entities (e.g., function, treatment). An illustrative

example of such a triplet is <pneumonia, location, lung>.

4.1.11 VQA-RAD
VQA-RAD dataset contains 104 head axial single-slice CTs

or MRIs, 107 chest x-rays, and 104 abdominal axial CTs (Lau

et al., 2018). The images are meticulously chosen from MedPix,

an open-access online medical image database, ensuring each

image corresponds to a unique patient. Furthermore, every selected

image has an associated caption and is deliberately devoid of

any radiology markings. Every caption provides details about the

imaging plane, modality, and findings generated and reviewed by

expert radiologists. Also, VQA-RAD contains 3, 515 QA pairs, with

an average of 10 questions per image. Among them, 1, 515 are

free-form questions and answers, allowing for unrestricted inquiry.

Additionally, 733 pairs involve rephrased questions and answers,

introducing linguistic diversity. Another 1, 267 pairs are framed,

featuring questions presented in a structured format, offering

consistency and systematic evaluation. Additionally, QA pairs are

split into 637 open-ended and 878 closed-ended types. Within the

closed-ended group, a predominant focus is on yes/no questions.

4.1.12 PathVQA
PathVQA is a dataset that encompasses 4, 998 pathology images

accompanied by a total of 32, 799 QA pairs derived from these

images (He et al., 2020). The images are sourced from pathology

books: “Textbook of Pathology” and “Basic Pathology,” and the

digital library “Pathology Education Informational Resource”. Out

of all QA pairs, 16, 465 are of the open-ended type, while the

remaining pairs are of the closed-ended yes/no type. On average,

each image is associated with 6.6 questions, which cover a broad

spectrum of visual contents, encompassing aspects such as color,

location, appearance, shape, etc.

4.1.13 VQA-Med 2019
VQA-Med 2019 dataset contains 4, 200 radiology images

obtained from MedPix, an open-access online medical image

database, and 15, 292 QA pairs (Abacha et al., 2019). The training

set consists of 3, 200 images and 12, 792 QA pairs, with each image

having 3 to 4 associated questions. The validation set includes

500 images and 2, 000 QA pairs, and the test set comprises 500

images and 500 QA pairs. The questions are mainly about modality,

imaging plane, organ system, and abnormality.

4.1.14 VQA-Med 2020
VQA-Med 2020 dataset contains 5, 000 radiology images

obtained from MedPix, an open-access online medical image

database, and 5, 000 QA pairs (Abacha et al., 2020). The training

set consists of 4, 000 images and 4, 000 QA pairs. The validation

set comprises 500 images and 500 QA pairs, and the test set

includes 500 images and 500 QA pairs. The questions are focused

on abnormalities present in the images. Additionally, the dataset

contains radiology images and questions for the Visual Question

Generation (VQG) task. The training set consists of 780 images

and 2, 156 associated questions. The validation set comprises 141

images with 164 questions, and the test set includes 80 images.

4.1.15 VQA-Med 2021
VQA-Med 2021 dataset contains 5, 500 radiology images

obtained from MedPix, an open-access online medical image

database, and 5, 500 QA pairs (Ionescu et al., 2021). The training

set consists of 4, 500 images and 4, 5000 QA pairs. The validation

set comprises 500 images and 500 QA pairs, and the test set

includes 500 images and 500 QA pairs. The questions are focused

on abnormalities present in the images. Similarly to VQA-Med
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2019, the dataset also contains radiology images and questions for

the VQG task. The validation set comprises 85 images with 200

questions, and the test set includes 100 images.

4.1.16 Endoscopic vision 2017
EndoVis 2017 dataset contains 5 robotic surgery videos (two

videos with 8 frames each, one with 18, one with 14, and one

with 39 frames) from the MICCAI (Medical Image Computing

and Computer Assisted Interventions) Endoscopic Vision 2017

Challenge (Allan et al., 2019). It also includes 472 QA pairs with

bounding box annotations. These QA pairs are carefully crafted

to involve specific inquiries related to the surgical procedure.

Examples of questions include queries such as “What is the state of

prograsp forceps?” and “Where is the large needle driver located?”

The inclusion of bounding box annotations enhances the dataset’s

utility for tasks such as object detection or answer localization.

4.1.17 EndoVis 2018
EndoVis 2018 dataset contains 14 robotic surgery videos

(2, 007 frames in total) from the MICCAI Endoscopic Vision 2018

Challenge (Allan et al., 2020). It also includes 11, 783 QA pairs

regarding organs, surgical tools, and organ-tool interactions. When

the question is about organ-tool interactions, the bounding box will

contain both the organ and the tool.

4.1.18 PathQABench-Public
PathQABench-Public contains 52 regions of interest (ROIs)

hand-selected by a board-certified pathologist from whole slide

images (WSIs) in the publicly available The Cancer Genome Atlas

(TCGA) repository. These images represent various organ systems:

brain, lung, gastrointestinal tract, urinary tract, male reproductive

tract, skin/eye/connective tissue, pancreaticohepatobiliary system,

endocrine system, head/neck/mediastinum, gynecology, and

breast. Per each organ system there are from 4 to 6 images.

Each image is paired with a corresponding multiple-choice

question, offering 10 possible answers. Additionally, there are five

open-ended questions for each image, resulting in a total of 260

open-ended questions categorized into microscopy, diagnosis,

clinical, and ancillary testing.

4.2 VLM evaluation metrics

This section delves into the evaluation process of medical

VLMs. The initiation of this process involves meticulously selecting

benchmark datasets and defining evaluation metrics tailored to the

specific vision-language tasks at hand.

4.2.1 Evaluation metrics for report generation
The prevalent benchmark datasets for medical RG are MIMIC-

CXR (Johnson et al., 2019a) and Open-I (Demner-Fushman et al.,

2015). For more information on these datasets, see Section 4.1.

Several metrics are used to evaluate the effectiveness of VLMs on

RG tasks. The more frequently used metrics are outlined below.

Bilingual Evaluation Understudy (BLEU) score was originally

designed for machine translation evaluation, but it has been

adapted for RG and evenVQA in amodified form. BLEU provides a

quantitative measure of how well the machine-generated text aligns

with human-generated reference text (Papineni et al., 2002). First,

the precision of different n-grams, which are consecutive sequences

of n words, is calculated using the formula:

Precision(n) =
#overlapping n-grams

#all n-grams in a model-generated text
, (1)

where “overlapping n-grams” refer to n-grams in the model-

generated text that share common elements with at least one n-

gram in the reference text. To ensure the precision score remains

robust and is not disproportionately affected by repeated n-grams

in the model-generated text, a modification known as clipping is

often introduced. This process involves capping the count of each

n-gram in the model-generated text to a maximum count. This

maximum count is determined by the highest count observed in

any single reference text for the same n-gram. The final BLEU-n

score is defined as:

BLEU-n = BP ×
1

n
exp

(

n
∑

k=1

log
[

Precision(k)
]

)

. (2)

In eq. 2, BP is referred to as the brevity penalty and is calculated as:

BP =

{

1 if c ≥ r

e(1−r/c) if c < r,
(3)

where c is the length of the model-generated text, and r is the length

of the reference text. It is common to use n = 4. The BLEU score

ranges from 0 to 1, where a higher score suggests better agreement

with the reference text. The overall BLEU score of the model is the

average of BLEU scores for each pair of reports.

Recall-Oriented Understudy for Gisting Evaluation

(ROUGE) is a set of metrics that evaluate the overlap between

the model-generated text and human-generated reference text

(Lin, 2004). ROUGE-n assesses the overlap of n-grams between

model-generated text and reference text, and it is defined as:

ROUGE-n =
#overlapping n-grams

#all n-grams in a reference text
. (4)

ROUGE-L focuses on measuring the longest common

subsequence between model-generated text Y and reference text X,

and it is calculated using the following relationship:

ROUGE-L =
(1+ β2)× R× P

(R+ P × β2)
, (5)

where R = LCS(X,Y)/m, P = LCS(X,Y)/n, m is the length of X,

n is the length of Y , LCS(X,Y) is the length of a longest common

subsequence of X and Y , and β is a parameter that depends on the

specific task and the relative importance of precision (P) and recall

(R). There are other ROUGE score variants. The ROUGE scores

range from 0 to 1, where higher scores indicate similarity between

the model-generated text and the reference text. For each ROUGE

variant, the overall score of the model is the average of scores for

each instance.
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Metric for Evaluation of Translationwith Explicit ORrdering

(METEOR) is an evaluation metric designed to be more forgiving

than some other metrics and takes into account the fluency and

meaning of the generated text (Banerjee and Lavie, 2005). The

METEOR score is computed as follows:

METEOR =
10× P × R

R+ 9× P
(1− Penalty) (6)

where

R =
#overlapping 1-grams

#1-grams in a reference text
, (7)

P =
#overlapping 1-grams

#1-grams in a model-generated text
, (8)

Penalty =
1

2
×

(

#chunks

#overlapping 1-grams

)3

, (9)

and chunks are groups of adjacent 1-grams in the model-generated

text that overlap with adjacent 1-grams in the reference text.

The METEOR score ranges from 0 to 1, with higher scores

indicating better alignment between the model-generated text and

the reference text. The overall METEOR score of a model is the

average of scores for each instance.

Perplexity measures the average uncertainty of a model in

predicting each word in a text (Hao et al., 2020). The formula for

perplexity is defined as:

Perplexity = exp

(

−
1

n

n
∑

k=1

lnP(wk|w1,w2, . . . ,wk−1)

)

, (10)

where n is the total number of words in the text. The value of the

perplexity metric can range from 1 to+∞, and lower values signify

a more accurate and confident model in capturing the language

patterns within the given text.

BERTScore was initially designed for evaluating models that

use BERT (Devlin et al., 2019) embeddings (Zhang et al., 2020).

However, it can also leverage other word embeddings to evaluate

the similarity between model-generated and reference text. The

BERTScore of a single text pair is calculated according to the

relationship:

BERTScore =
2× P × R

P + R
, (11)

where P represents the ratio of the maximum cosine similarity

score between tokens in the model-generated text and the reference

text to the numbers of tokens in the model-generated text and

R represents the ratio of the maximum cosine similarity score

between tokens in the model-generated text and the reference text

to the numbers of tokens in the reference text. The BERTScore of

the model is the average of BERTScores across all text pairs.

RadGraph F1 is a novel metric that measures overlap in clinical

entities and relations extracted from radiology reports (Yu et al.,

2023). The RadGraph F1 score is computed in the following way.

First, the RadGraph model maps model-generated and reference

reports into graph representations with clinical entities represented

as nodes and their relations as edges between them. Second, the

number of nodes that match between the two graphs based on

clinical entity text and labels (entity type) is determined. Third,

the number of edges that match between the two graphs based on

their start and end entities and labels (relation type) is calculated.

Lastly, the F1 score is separately computed for clinical entities and

relations, and then the RadGraph F1 score for a report pair is

the average of these two scores. The overall model performance

is determined by averaging RadGraph F1 scores across all report

pairs.

Human evaluation is crucial for assessing the quality of VLMs

in medical RG. In Jeong et al. (2023), expert radiologists assessed

the X-REMmodel’s performance in RG by segmenting reports into

lines and assigning scores based on five error categories to each line.

These scores reflected error severity, with higher values indicating

more severe errors.

The next few metrics are designed for classification evaluation,

and RG can be viewed as such a task. In Moon et al. (2022), Lee

et al. (2023), and Pellegrini et al. (2023), these metrics are computed

based on the 14 labels obtained from applying the CheXpert (Irvin

et al., 2019) or CheXbert (Smit et al., 2020) labeler to the reference

reports as well as the model-generated reports. In this context,

reports bearing accurate diagnosis labels are categorized as positive,

while those with inaccurate labels are regarded as negative. The

following metrics are also called clinical efficacy metrics.

• Accuracy measures the ratio of all positive predictions to the

total number of predictions.

• Precision evaluates the accuracy of positive predictions. It is

calculated as the ratio of true positive predictions to the total

instances predicted as positive, expressed as:

Precision =
True Positives

True Positives + False Positives
. (12)

High Precision indicates a low false positive rate.

• Recall assesses the model’s ability to predict all positive classes.

It is defined as the ratio of correctly predicted positive

observations to the total actual positives:

Recall =
True Positives

True Positives + False Negatives
. (13)

High Recall means effectively identifying the most actual

positive instances.

• F1 Score provides an overall measure of the model’s

performance by balancing Precision and Recall. It is calculated

as:

F1 =
2× Precision× Recall

Precision + False Recall
. (14)

F1 scores range from 0 to 1, with higher values indicating

better performance. In multi-class classification, the macro-

F1 score is commonly computed by averaging the F1

scores independently calculated for each class. This method

ensures unbiased evaluation across all classes, assigning equal

importance regardless of size or prevalence.

4.2.2 Evaluation metrics for VQA
The common benchmark datasets for medical VQA include

VQA-RAD (Lau et al., 2018), SLAKE (Liu et al., 2021a), and
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PathVQA (He et al., 2020). While various metrics are available

for VQA evaluation, only a few are highlighted here to avoid

redundancy with already mentioned metrics.

Accuracy is a fundamental metric for gauging overall model

correctness in VQA evaluation. It is determined by calculating

the proportion of correctly predicted answers to the total

number of questions. For a detailed comparison of accuracies

among different medical VLMs discussed in Section 4.3, refer to

Table 3.

Exact match computes the ratio of generated answers

that match exactly (excluding punctuation) the correct answer.

However, it may not credit semantically correct answers that lack

an exact lexical match. This metric is more suitable for evaluating

answers to close-ended questions than open-ended ones.

Human evaluation can be performed for VQA in various ways.

For instance, in Moor et al. (2023), medical experts evaluated

Med-Flamingo’s performance on each VQA problem using a user-

friendly interface, assigning scores from 0 to 10.

4.3 Medical models

In this part of the review paper, we provide an overview

of existing medical VLMs tailored for VQA and/or RG. The

information is organized chronologically based on the first

appearance of the model. Our focus is mainly on recently

introduced open-source and publicly available models. A summary

of these VLMs is presented in Table 2.

4.3.1 Medical vision language learner
MedViLL can process medical images to generate associated

reports (Moon et al., 2022). The model employs ResNet-50 (He

et al., 2016), trained on ImageNet (Deng et al., 2009), for extracting

visual features v. The model leverages WordPiece (Wu et al., 2016)

tokenizer to extract textual features t from clinical reports. Both

visual and textual features incorporate positional information to

capture spatial relationships and sequential order. These features,

along with special tokens [CLS], [SEP]V, [SEP]L, are concatenated

into a single vector (CLS, v, SEPV , t, SEPL) and fed into the BERT-

based Transformer. The MedViLL is pre-training on two tasks:

MLM and ITM. The MLM task employs a bidirectional auto-

regressive (BAR) self-attention mask. For MLM, a negative log-

likelihood loss function is used. Pre-training is performed on

89, 395 image-report pairs from MIMIC-CXR (Johnson et al.,

2019a), with fine-tuning on 3, 547 pairs from Open-I (Demner-

Fushman et al., 2015). VQA is performed on VQA-RAD (Lau et al.,

2018) (see Table 3), where the output representation of [CLS] is

used to predict a one-hot encoded answer. For radiology RG fine-

tuning, the model uses a sequence-to-sequence (S2S) mask instead

of BAR and generates reports by sequentially recovering MASK

tokens. RG is evaluated on MIMIC-CXR (Johnson et al., 2019a)

and Open-I (Demner-Fushman et al., 2015). MedViLL achieves

a BLEU-4 score of 0.066, a perplexity value of 4.185, and using

a CheXpert labeler (Irvin et al., 2019) an accuracy of 84.1%, a

precision value of 0.698, a recall value of 0.559, and an F1 score of

0.621 on MIMIC-CXR. Additionally, it achieves a BLEU-4 score of

0.049, a perplexity value of 5.637, an accuracy of 73.4%, a precision

value of 0.512, a recall value of 0.594, and an F1 score of 0.550 on

Open-I.

4.3.2 PubMedCLIP
PubMedCLIP is a CLIP-based (Radford et al., 2021) model

pre-trained on the ROCO (Pelka et al., 2018) dataset (Eslami

et al., 2023). It employs a CLIP text encoder based on the

Transformer architecture and three distinct visual encoders: ViT-

B/32 (Dosovitskiy et al., 2021), ResNet-50, and ResNet-50×4 (He

et al., 2016). Following CLIP’s approach, the model generates

joint representations by computing cosine similarity between

textual and visual features. The pre-training objective involves

computing cross-entropy losses for vision and language, which

are then averaged to derive an overall loss. Repurposed as a

pre-trained visual encoder for VQA, PubMedCLIP’s output is

also concatenated with the output of a convolutional denoising

autoencoder (CDAE) (Masci et al., 2011). Questions are encoded

using GloVe (Pennington et al., 2014) word embeddings followed

by an LSTM (Hochreiter and Schmidhuber, 1997). Image and

question features are combined using bilinear attention networks

(BAN; Kim et al., 2018), and the resulting representations are

classified using a two-layer feedforward neural network. The

VQA loss combines classification and image reconstruction losses.

PubMedCLIP is fine-tuned on datasets like SLAKE (Liu et al.,

2021a) and VQA-RAD (Lau et al., 2018). Its performance is

compared with existing Medical VQA (MedVQA) methods,

such as Mixture of Enhanced Visual Features (MEVF; Zhan

et al., 2020) and question-conditioned reasoning (QCR; Liu

et al., 2023a). PubMedCLIP, integrated into the QCR framework,

achieves superior accuracies on VQA-RAD and SLAKE datasets

compared to the MEVF framework. The highest accuracies of

PubMedCLIP in the QCR framework on both datasets are shown in

Table 3.

4.3.3 RepsNet
RepsNet is designed for VQA tasks (Tanwani et al., 2022).

It can generate automated medical reports and interpret medical

images. The model employs a modified version of the pre-trained

ResNeXt-101 (Xie et al., 2016) as its image encoder and utilizes pre-

trained BERT (Devlin et al., 2019) as the text encoder, with text

tokenization done through WordPiece (Wu et al., 2016). Fusion

of image and question features is achieved using BAN (Kim et al.,

2018). To align images with textual descriptions, themodel employs

bidirectional contrastive learning (Chen et al., 2020a). The language

decoder, based on GPT-2, is adapted to incorporate image features

and prior context, generating text sequences in an auto-regressive

manner until an end-of-sequence token is produced. The overall

loss function combines contrastive loss for encoding phase and

cross-entropy loss for decoding phase. For VQA tasks, the model

is fine-tuned and evaluated on VQA-RAD (Lau et al., 2018) (see

Table 3). In contrast, for RG, fine-tuning and evaluation are done

using IU-Xray (Demner-Fushman et al., 2015) dataset. On the IU-

Xray dataset, RepsNet achieves BLEU-2, and BLEU-4 scores of 0.44

and 0.27, respectively.
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TABLE 2 A list of medical VLMs developed for VQA and RG.

Model Stream Decoder Architecture VQA RG Datasets Code

MedViLL

Moon et al. (2022)
single No RN50 + BERT + + MIMIC-CXR, Open-I, VQA-RAD GH

PubMedCLIP

Eslami et al. (2023)
dual No ViT-B/32 or RN50 or RN50×4 +

Transformer + BAN
+ – ROCO, SLAKE, VQA-RAD GH

RepsNet

Tanwani et al.
(2022)

dual Yes ResNeXt-101 + BERT + BAN +
language decoder

+ + VQA-RAD, IU-Xray Web

BiomedCLIP

Zhang et al. (2023a)
dual No ViT-B/16 + PubMedBERT + METER + – PMC-15, SLAKE, VQA-RAD HF

UniXGen

Lee et al. (2023)
single Yes VQGAN + Transformer – + MIMIC-CXR GH

RAMM

Yuan et al. (2023)
dual No Swiss Transformer + PubMedBERT +

multimodal encoder w/ retrieval-atten.
module

+ – PMCPM, ROCOMIMIC-CXR,
SLAKE, VQA-RAD, VQA-Med 2019,
VQA-Med 2021

GH

X-REM

Jeong et al. (2023)
dual No ALBEF (ViT-B/16 + BERT +

multimodal encoder)
– + MIMIC-CXR,MedNLI, RadNLI GH

Visual Med-Alpaca

Shu et al. (2023)
single Yes DePlot or Med-GIT + prompt manager

+LLaMa-7B
+ – ROCO; MedDialog, MEDIQA QA,

MEDIQA RQE, MedQA, PubMedQA
+ GPT-3.5-Turbo

GH

CXR-RePaiR-Gen

Ranjit et al. (2023)
dual Yes ALBEF + FAISS retriever + prompt

manager + text-davinci-003 or
GPT-3.5-Turbo or GPT-4

– + CXR-PRO, MS-CXR –

LLaVa-Med

Li et al. (2023a)
single Yes ViT-L/14 + projection layer + LLaMa-7B + – PMC-15 + GPT-4, VQA-RAD,

SLAKE, PathVQA
GH

XrayGPT

Thawkar et al.
(2023)

single Yes MedCLIP + linear transformation
layer+ Vicuna-7B

+ + MIMIC-CXR Open-I GH

CAT-ViL DeiT

Bai et al. (2023b)
dual No RN18 + CAT-ViL fusion module + DeiT + – EndoVis 2017, EndoVis 2018 GH

MUMC

Li et al. (2023b)
dual Yes ViT-B/12 + BERT + multimodal

encoder + answer decoder
+ – ROCO, MedICaT, ImageCLEF

Caption, VQA-RAD, SLAKE
PathVQA

GH

Med-Flamingo

Moor et al. (2023)
single Yes ViT-L/14 + perceiver resampler +

LLaMa-7B
+ – MTB, PMC-OA, VQA-RAD,

PathVQA,Visual USMLE
GH

RaDialog

Pellegrini et al.
(2023)

single Yes BioViL-T + BERT + prompt manager
+ Vicuna-7B

+ + MIMIC-CXR,Instruct GH

PathChat

Lu et al. (2024b)
single Yes UNI + multimodal projector + Llama

2-13B
+ – CONCH, PathChat dataset,

PathQABench
GH

4.3.4 BiomedCLIP
BiomedCLIP is pre-trained on the specifically curated PMC-15

dataset that consists of 15 M figure-caption pairs derived from the

PMC articles (Zhang et al., 2023a) but is not publicly available. The

model architecture is similar to CLIP (Radford et al., 2021), except

that the text encoder is a pre-trained PubMedBERT (Gu et al., 2021)

model with WordPiece tokenizer (Wu et al., 2016). The model uses

ViT-B/16 (Dosovitskiy et al., 2021) as the visual data encoder. For

pre-training, the model adopts the CL approach, and to mitigate

memory usage, it utilizes the sharding contrastive loss (Cherti

et al., 2022). For adaptation to VQA, the model incorporates the

METER (Dou et al., 2022) framework. This involves deploying a

Transformer-based co-attention multimodal fusion module that

produces cross-modal representations. These representations are

then fed into a classifier for the final prediction of answers. The

model is evaluated on VQA-RAD (Lau et al., 2018) and SLAKE

(English; Liu et al., 2021a) datasets (see Table 3).

4.3.5 Unified chest X-ray and report Generation
model

UniXGen is a unified model that can generate both reports and

view-specific X-rays (Lee et al., 2023). The model tokenizes chest

X-rays leveraging VQGAN (Esser et al., 2021), a generative model

that amalgamates generative adversarial networks (GANs) with

vector quantization (VQ) techniques. VQGAN employs an encoder

to transform input images into continuous representations,

subsequently using vector quantization to discretize them into

learnable codebook vectors. Additionally, VQGAN incorporates a

decoder, translating these discrete codes back into images during
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the generation process. For chest X-rays, multiple views from

the same study are tokenized into sequences of discrete visual

tokens, demarcated by special tokens to distinguish perspectives.

In the case of radiology reports, the model uses the byte-level BPE

(Wang et al., 2020) tokenizer, augmented with sinusoid positional

embedding for enhanced representation. The model is based on the

Transformer architecture (Vaswani et al., 2017) with a multimodal

causal attention mask, ensuring that each position in the sequence

attends to all previous positions and not future ones. During

training, multiple views of chest X-rays and a report embedding are

concatenated randomly and fed into the Transformer. The model

is optimized using the negative log-likelihood loss function. The

model is trained on 208, 534 studies sampled from the MIMIC-

CXR (Johnson et al., 2019a) dataset. Each study contains at most

three chest X-rays representing PA (from back to front), AP

(from front to back), and lateral views. On the MIMIC-CXR

dataset, UniXGen achieves a BLEU-4 score of 0.050 and, using the

CheXpert labeler (Irvin et al., 2019), attains a precision score of

0.431, a recall value of 0.410, and an F1 score of 0.420.

4.3.6 Retrieval-augmented bioMedical
multi-modal pretrain-and-finetune paradigm

RAMM, a retrieval-augmented VLM designed for biomedical

VQA, integrates Swin Transformer (Liu et al., 2021b) as its image

encoder and PubMedBERT (Gu et al., 2021) as its text encoder

(Yuan et al., 2023). The visual and textual features are then fused

by the multimodal encoder, a 6-layer Transformer (Vaswani et al.,

2017). The model is pre-trained on the MIMIC-CXR (Johnson

et al., 2019a) and ROCO (Pelka et al., 2018) datasets along with

a newly curated PMC-Patients-Multi-modal (PMCPM) dataset,

consisting of 398, 000 image-text pairs sampled from PMC-OA

(Lin et al., 2023a) dataset. The pre-training objective function

of RAMM is the sum of three tasks: CL, ITM, and MLM.

Using CL, the model aligns images and texts using the cosine

similarity metric. The VQA task is viewed as a classification

problem, and the model is optimized using the cross-entropy loss

function. During model fine-tuning, the retrieval-attention module

fuses the representations of the image-question input with four

representations of the retrieved image-text pairs from the pre-

trained datasets. This lets RAMM to focus on relevant parts of

the retrieved information when generating answers. The model is

evaluated on VQA-Med 2019 (Abacha et al., 2019), VQA-Med 2021

(Ionescu et al., 2021), VQA-RAD (Lau et al., 2018), and SLAKE (Liu

et al., 2021a) datasets (see Table 3).

4.3.7 Contrastive X-ray REport match
X-REM is a retrieval-based radiology RG model that uses

an ITM score to measure the similarity of a chest X-ray image

and radiology report for report retrieval (Jeong et al., 2023). The

VLM backbone of the model is ALBEF (Li et al., 2021). ALBEF

utilizes ViT-B/16 (Dosovitskiy et al., 2021) as its image encoder

and initializes the text encoder with the first 6 layers of the BERT

(Devlin et al., 2019) base model. The multimodal encoder in

ALBEF, responsible for combining visual and textual features to

generate ITM scores, is initialized using the final six layers of the

BERT base model. X-REM leverages ALBEF’s pre-trained weights

and performs further pre-training on X-rays paired with extracted

impression sections (2, 192 pairs), findings sections (1, 597 pairs),

or both (2, 192 pairs) from the MIMIC-CXR (Johnson et al.,

2019a) dataset. Subsequently, the model is fine-tuned on the ITM

task, where the scoring mechanism involves using the logit value

for the positive class as the similarity score for image-text pairs.

To address the positive skewness in medical datasets, 14 clinical

labels obtained from the CheXbert (Smit et al., 2020) labeler

are utilized. The model efficiently manages the computational

burden associated with ITM scores by employing ALBEF’s pre-

aligned unimodal embeddings. This involves narrowing down the

candidate reports based on high cosine similarity with the input

image before computing ITM scores. Additionally, the text encoder

undergoes fine-tuning on natural language inference (NLI) task,

utilizing datasets such as MedNLI (Romanov and Shivade, 2018)

and RadNLI Miura et al. (2021). This step is crucial for preventing

the retrieval of multiple reports with overlapping or conflicting

information. X-REM achieves a BLEU-2 score of 0.186 on the

MIMIC-CXR (Findings only) dataset. The BERTScore of the model

is 0.386 on MIMIC-CXR (Findings only) and 0.287 on MIMIC-

CXR (Impressions and Findings).

4.3.8 Visual Med-Alpaca
Visual Med-Alpaca is a biomedical FM designed for addressing

multimodal biomedical tasks like VQA (Shu et al., 2023). The

model processes image inputs through a classifier to select the

appropriate module for converting visual information into text,

with supportedmodules including DePlot (Liu et al., 2022) for plots

and Med-GIT (Wang et al., 2022a) fine-tuned on the ROCO (Pelka

et al., 2018) dataset for radiology images. The prompt manager

combines textual information from images and text inputs to

form prompts for the LLaMA-7B (Touvron et al., 2023a) model.

However, before generating responses, LLaMa-7B undergoes both

standard and LoRA (Hu et al., 2022) fine-tuning on a carefully

curated set of 54, 000 medical QA pairs. The questions within this

set are derived from question-answering datasets such as MEDIQA

QA (Ben Abacha et al., 2019), MEDIQA RQE (Ben Abacha et al.,

2019), MedQA (Jin et al., 2021), MedDialog (Zeng et al., 2020),

and PubMedQA (Jin et al., 2019), with their corresponding answers

synthesized using GPT-3.5-Turbo in the self-instruct (Wang et al.,

2023b) manner. Human experts filter and edit the obtained QA

pairs for quality and relevance. The evaluation of this model is still

ongoing (Shu et al., 2023).

4.3.9 Contrastive X-ray-report pair retrieval
based generation

CXR-RePaiR-Gen, designed for radiology RG, integrates the

RAG framework to address hallucinated references (Ranjit et al.,

2023). The model leverages the pre-trained ALBEF (Li et al., 2021)

previously utilized in CXR-ReDonE (Ramesh et al., 2022). Textual

features are indexed in a vector database, Facebook AI Similarity

Search (FAISS). When given a radiology image input, embeddings

from the reports or sentences corpus with the highest dot-product

similarity to the image embedding are retrieved. The CXR-PRO

(Ramesh et al., 2022) dataset is employed for text retrieval to

gather relevant impressions for generating the radiology report.
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The retrieved impression sections from the CXR-PRO dataset serve

as the context for the prompt to an LLM, along with instructions

to generate the radiology report. Two prompts are employed: one

for the text-davinci-003 model and another for conversational RG

with GPT-3.5-Turbo and GPT-4 models. The model is evaluated

on MS-CXR (Boecking et al., 2022) and CXR-PRO datasets. A code

has yet to be provided for this model. Evaluated on MS-CXR and

CXR-PRO datasets, CXR-RePaiR-Gen achieves BERTScore scores

of 0.2865 on CXR-PRO (GPT-4) and 0.1970 on MS-CXR (text-

davinci-003). Its RadGraph F1 scores are 0.1061 on CXR-PRO

(GPT-4) and 0.0617 on MS-CXR (text-davinci-003), employing

three retrieval samples per input during RAG.

4.3.10 Large language and vision assistant for
biomedicine

LLaVa-Med, an adaptation of LLaVa (Liu et al., 2023c),

is customized for the medical domain through training on

instruction-following datasets (Li et al., 2023a). Visual features

are extracted by the pre-trained CLIP visual encoder ViT-

L/14 (Dosovitskiy et al., 2021), which can be substituted with

BiomedCLIP (Zhang et al., 2023a). These features are mapped into

textual embedding space via linear projection layer and combined

with instructions before being input to the LLM LLaMa-7B

(Touvron et al., 2023a), which can be replaced with Vicuna (Chiang

et al., 2023). After initializing with the general-domain LLaVA,

the model undergoes fine-tuning using curriculum learning.

First, the model learns to connect visual elements in biomedical

images to corresponding language descriptions, using a dataset

of 600, 000 image-caption pairs from PMC-15, initially employed

in BiomedCLIP. These image-caption pairs are transformed into

an instruction-following dataset, where the instructions prompt

the model to describe the corresponding image concisely or

in detail. Given the language instruction and image input, the

model is prompted to predict the original caption. The visual

encoder and language model weights are frozen during this stage,

with updates exclusively applied to the linear projection layer.

The second stage of training focuses on aligning the model to

follow diverse instructions. For this purpose, another instruction-

following dataset is generated from PMC-15. Instructions for this

dataset are designed to guide the GPT-4 model to generate multi-

round questions and answers from the image caption and sentences

from the original PMC paper mentioning the image (Li et al.,

2023a). In this training phase, the model undergoes training on a

set of 60, 000 images, each accompanied by its respective caption

and multi-round questions and answers. Throughout this process,

the weights of the visual encoder remain unchanged, preserving

the previously acquired visual features. Meanwhile, the pre-trained

weights of the projection layer and the language model undergo

continuous updates. Lastly, for VQA, the model is fine-tuned and

evaluated on VQA-RAD (Lau et al., 2018), SLAKE (Liu et al.,

2021a), and PathVQA (He et al., 2020) (see Table 3).

4.3.11 XrayGPT
XrayGPT is a conversational medical VLM specifically

developed for analyzing chest radiographs (Thawkar et al., 2023).

The VLM uses MedCLIP (Wang et al., 2022b) to generate visual

features. These features undergo a meticulous transformation

process: initially, they are mapped to a lower-dimensional space

through a linear projection head and subsequently translated into

tokens via a linear transformation layer. The model incorporates

two text queries: an assistant query framing its purpose and a

doctor’s query guiding relevant information provision. Tokens

generated from a visual input are concatenated with the tokenized

queries and then fed into Vicuna-7B (Chiang et al., 2023),

fine-tuned on 100, 000 patient-doctor and 20, 000 radiology

conversations sourced from: ShareGPT.com. During training, the

weights of the vision encoder and LLM are frozen while the weights

of the linear transformation layer undergo updates. The model

is first trained on 213, 514 image-text pairs from pre-processed

MIMIC-CXR (Johnson et al., 2019a) dataset and then on 3, 000

image-text pairs from Open-I (Demner-Fushman et al., 2015)

dataset. XrayGPT achieves ROUGE-1 = 0.3213, ROUGE-2 =

0.0912, and ROUGE-L = 0.1997 on MIMIC-CXR dataset.

4.3.12 Co-attention gaTed vision-language
data-e�cient image transformer

CAT-ViL DeiT is a specialized VLM tailored for VQA within

surgical scenarios, focusing on answer localization (Bai et al.,

2023b). It integrates ResNet-18 (He et al., 2016) pre-trained on

ImageNet (Deng et al., 2009) to generate visual features and

custom BERT tokenizer (Seenivasan et al., 2022) for text encoding.

The Co-Attention gaTed Vision-Language (CAT-ViL) module

facilitates interaction between visual and textual features, fused

via gating mechanisms to optimize multimodal embeddings. These

embeddings are further processed by a pre-trained Data-efficient

image Transformer (DeiT) module for optimal joint representation.

For VQA, the model adopts a standard classification head, while

for answer localization within images, it employs the detection with

transformers (DETR; Carion et al., 2020) head. The overall loss

function comprises cross-entropy as the classification loss and L1-

norm, along with the generalized intersection over union (GIoU;

Rezatofighi et al., 2019), serving as the localization loss. The model

is trained on 1, 560 frames, and 9, 014 QA pairs from the surgical

datasets EndoVis 2018 (Allan et al., 2020). The model achieved an

accuracy of 61.92% on the remaining data from EndoVis 2018 and

45.55% on EndoVis 2017 (Allan et al., 2019) dataset.

4.3.13 Masked image and text modeling with
unimodal and multimodal contrastive losses

MUMC utilizes a ViT-B/12 (Dosovitskiy et al., 2021) as its

image encoder, the first 6 layers of BERT (Devlin et al., 2019) as

its text encoder, and the last 6 layers of BERT as its multimodal

encoder (Li et al., 2023b). The multimodal encoder incorporates

cross-attention layers to align visual and textual features. For

pre-training, the model employs CL, MLM, and ITM. Also,

the model utilizes a newly introduced masked image strategy,

randomly masking 25% of image patches as a data augmentation

technique. This exposes the model to a greater variety of visual

contexts and enables learning representations that are more robust

to partially occluded inputs. The pre-training is performed on

ROCO (Radford et al., 2021), MedICaT (Subramanian et al.,

2020), and Image Retrieval in Cross-Language Evaluation Forum
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(ImageCLEF) caption (Rückert et al., 2022) datasets. For VQA

tasks, an answering decoder is added to generate answer text

tokens. The encoder weights are initialized from pre-training, and

the model is fine-tuned and evaluated on VQA-RAD (Lau et al.,

2018), SLAKE (Liu et al., 2021a), and PathVQA (He et al., 2020)

(see Table 3).

4.3.14 Med-Flamingo
Med-Flamingo is a multimodal few-shot learner model based

on the Flamingo (Alayrac et al., 2022) architecture, adapted to the

medical domain (Moor et al., 2023). The model is pre-trained on

the MTB (Moor et al., 2023) dataset, a newly curated collection

comprising 4, 721 segments from various Medical TextBooks,

encompassing textual content and images. Each segment is

designed to contain at least one image and up to 10 images, with

a specified maximum length. Also, it is pre-trained on 1.3 M

image-caption pairs from the PMC-OA (Lin et al., 2023a) dataset.

The model’s few-shot capabilities are achieved through training on

these mixed text and image datasets, enabling it to generalize and

perform diverse multimodal tasks with only a few examples. The

model utilizes a pre-trained frozen CLIP vision encoder ViT-L/14

for visual feature generation. To convert these visual features into a

fixed number of tokens, the model employs a module known as the

perceiver resampler, which is trained from scratch. Subsequently,

these tokens and tokenized text inputs undergo further processing

in a pre-trained frozen LLM LLaMA-7B (Touvron et al., 2023a),

enhanced with gated cross-attention layers, which are trained from

scratch. This augmentation aids in learning novel relationships

and enhances training stability. Med-Flamingo’s performance is

evaluated on VQA-RAD (Lau et al., 2018) and PathVQA (He et al.,

2020). The exactmatch scores forMedFlamingo demonstrate a few-

shot performance of 0.200 on VQA-RAD and 0.303 on PathVQA.

In contrast, the zero-shot performance yields an exact match score

of 0.000 on VQA-RAD and 0.120 on PathVQA. Additionally,

it is evaluated on a specifically created Visual United States

Medical Licensing Examination (USMLE) dataset, comprising 618

challenging open-ended USMLE-style questions augmented with

images, case vignettes, and tables of laboratory measurements,

covering a diverse range of medical specialties.

4.3.15 RaDialog
RaDialog is a VLM that integrates automated radiology RG

with conversational assistance (Pellegrini et al., 2023). The model

incorporates BioViL-T (Bannur et al., 2023), a hybrid model

that fuses the strengths of ResNet-50 (He et al., 2016) and

Transformer (Vaswani et al., 2017) architectures. Pre-trained on

radiology images and reports, BioViL-T generates patch-wise visual

features. The extracted features undergo alignment through a BERT

(Devlin et al., 2019) model, transforming them into a concise

representation of 32 tokens. The model incorporates the CheXpert

classifier to offer organized findings in medical images. These

findings are generated based on labels obtained from the CheXbert

(Smit et al., 2020) model. The classifier is trained independently

using labels predicted by CheXbert from the findings section

of radiology reports. Visual features, structured findings, and a

directive prompt are combined as input for the Vicuna-7B LLM,

fine-tuned using LoRA. The training is performed on MIMIC-

CXR (Johnson et al., 2019a) dataset. RaDialog achieves a BLEU-

4 score of 0.095, ROUGE-L score of 0.2710, METEOR score of

0.14, and BERTScore of 0.400 on the MIMIC-CXR dataset. To

address the challenge of catastrophic forgetting during training

and ensure the model’s capability across diverse downstream tasks,

it is specifically trained on the newly created Instruct (Pellegrini

et al., 2023) dataset. This dataset is meticulously curated to

encompass a spectrum of eight diverse tasks: RG, NLE, complete

CheXpert QA, binary CheXpert QA, region QA, summarization,

report correction, and reformulation report using simple language.

Carefully formulated prompts accompany each task, tailored to

elicit specific responses from the model. For instance, some

prompts involve answering questions about particular X-ray

regions. RaDialog trained on the Instruct dataset achieves an F1

score of 0.397 on the binary CheXpert QA task and 0.403 on

the complete CheXpert QA task. In contrast, RaDialog without

being trained on Instruct achieves lower F1 scores of 0.018 and

0.098, respectively.

4.3.16 PathChat
PathChat is a multimodal generative AI copilot designed for

human pathology (Lu et al., 2024b). It employs UNI (Chen et al.,

2024), built on the ViT-L backbone and pre-trained using SSL on

over 100 M histology image patches from approximately 100,000

WSIs, to generate visual features. PathChat uses the Llama 2 13B

(Touvron et al., 2023b) LLM for text decoding, which is pre-

trained on general text data. The UNI is connected to the LLM

through a multimodal projector that maps visual tokens into the

LLM’s embedding space. During PathChat’s pre-training phase,

UNI and multimodal projector are trained on the CONCH (Lu

et al., 2024a) dataset, comprising 1.18 M pathology image-caption

pairs sourced from PMC-OA (Lin et al., 2023a) and internally

curated datasets, aligning the image representations with pathology

text while keeping the LLM weights frozen. The whole dataset is

not publicly available. During instruction fine-tuning, the entire

model is trained end-to-end on a specially curated PathChat

dataset consisting of 456,916 pathology-specific instructions of 6

different types and 999,202 QA pairs. The model is evaluated

on the newly curated PathQABench dataset, consisting of public

and private subparts. On the multiple-choice questions across

the entire PathQABench dataset, PathChat achieved an accuracy

of 78.1% when only images and questions are provided to the

model and 89.5% when clinical data is also included. For open-

ended questions, PathChat attained an accuracy of 78.7% on

the subset of questions for which pathologist evaluators reached

a consensus.

5 Challenges and future directions

As VLMs become more prevalent in healthcare, various

challenges and opportunities for future research emerge. This

section highlights key obstacles and proposes research directions

to improve VLM’s effectiveness and seamless integration within

clinical environments.
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TABLE 3 The comparison of medical VLMs’ accuracies on VQA tasks.

Model SLAKE SLAKE VQA-
RAD

VQA-RAD PathVQA PathVQA

open
-ended

close-
ended

open
-ended

close-
ended

open-
ended

close
-ended

VQA-Med
2019

VQA-Med
2021

MedViLL

Moon et al. (2022)
– – 59.50% 77.70% – – – –

PubMedCLIP

Eslami et al. (2023)
78.40% 82.50% 60.10% 80.00% – – – –

RepsNet

Tanwani et al. (2022)
– – – 87.05% – – – –

BioMedCLIP

Zhang et al. (2023a)
82.50% 89.70% 67.60% 79.80% – – – –

RAMM

Yuan et al. (2023)
82.48% 91.59% 67.60% 85.29% – – 82.13% 39.20%

LLaVa-Med

Li et al. (2023a)
– 84.19% – 85.34% – 91.21% – –

MUMC

Li et al. (2023b)
– – 71.50% 84.20% 39.00% 90.4% – –

The underlined accuracies are the highest for a specific dataset.

5.1 Data availability and privacy

A significant challenge in developing effective medical VLMs

is the limited availability of ML-ready diverse and representative

medical datasets. This limitation restricts the comprehensive

training of VLMs, impeding their ability to understand the

complexities of diverse and rare clinical scenarios (Moor et al.,

2023). To mitigate privacy concerns, most datasets undergo

rigorous pre-processing to remove Protected Health Information

(PHI) before model training. The common approach is using

algorithms to detect and remove sensitive information from

structured and unstructured data. For example, Philter redacts PHI

from clinical notes (Norgeot et al., 2020). ImageDePHI automates

the removal of PHI from WSIs (Clunie et al., 2024). Another

approach is replacing identifying information with artificial

identifiers, which keeps data linkable without disclosing personal

details. However, the risk of PHI leakage still remains a concern.

In the future, addressing this limitation can involve employing

innovative approaches such as RAG and federated learning (FL).

While RAG usually involves a frozen model during training,

exploring the pre-training of VLMs within the RAG framework

opens up a new avenue of research (Zhao et al., 2023). This

innovative approach can potentially enhance the robustness of

VLMs, especially in handling new and unforeseen medical cases.

Additionally, FL offers a promising strategy to address data scarcity

while protecting patient privacy (Zhang et al., 2021). In FL, models

are trained locally at multiple institutions on their own patient

data. Each institution shares the updated model weights with

the central server. The server then aggregates these weights to

create a global model. Later, the updated global model can be

sent back to institutions for fine-tuning. To further safeguard

privacy, the weights in FL can be protected using techniques such

as differential privacy (DP) or homomorphic encryption (HE).

In DP, noise is added to the gradients before they are sent to

the central server (Dwork, 2006). In contrast, HE encrypts the

weights, allowing the central server to perform computations on

themwithout decryption (Stripelis et al., 2021). Future research can

focus on optimizing the balance between privacy and performance

of VLMs, and enhancing the efficiency of encryptionmethods in FL

(Koutsoubis et al., 2024b,a).

5.2 Proper evaluation metrics

In medical RG, traditional metrics like BLEU and ROUGE can

be used to effectively quantify surface-level linguistic similarity by

capturing text overlap and structural matching between generated

and reference texts. METEOR goes further by accounting for

synonyms and stemming, providing amore nuanced view of textual

similarities. Perplexity, often used to measure language fluency,

evaluates how well the generated text adheres to natural language

patterns. Together, these metrics assess fluency, coherence, and

overall readability, ensuring that generated reports are well-formed

and comprehensible. However, they often fall short in capturing the

nuanced complexities of clinical language and contextual relevance

critical in medical settings (Yu et al., 2023). Specifically, they may

fail to determine whether a report accurately conveys essential

clinical findings or diagnoses. Advanced metrics like BERTScore

seek to assess semantic similarity beyond surface-level text overlap,

but they require fine-tuning on medical datasets to understand

specialized terminology and relationships, and may still miss subtle

clinical nuances.

In medical VQA, traditional metrics like Accuracy, Precision,

and Recall are commonly used to evaluate how well VLMs

answer clinical questions, such as identifying medical conditions

or anatomical features. While these metrics effectively assess

binary outcomes, they fail to account for the varying clinical

relevance or significance of errors made by the model. For

example, misclassifying a serious condition may have far more

severe consequences than making minor prediction errors, yet this

distinction is not captured in simple accuracy-based evaluations.
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To address the limitations of traditional metrics, it is imperative

to develop specialized metrics tailored for medical RG and

VQA, particularly for open-ended medical queries. For instance,

RadGraph F1 (Yu et al., 2023) was developed to evaluate the

extraction of clinical entities (e.g., diagnoses, findings) and their

relations (e.g., linking conditions to anatomical locations) in

radiology reports. This metric is particularly valuable for assessing

structured medical data, ensuring that reports capture not only

relevant clinical entities but also their correct relationships, which

is crucial for the accuracy and integrity of medical conclusions.

The development of additional specialized metrics is vital for

evaluating VLMs performance and for assessing factors such

as generalization, efficiency, and robustness in clinical decision-

making and diagnostic support. Furthermore, integrating these

metrics with other quantitative measures and human assessments

can significantly enhance evaluations and drive continuous

advancements in the capabilities of medical VLMs.

5.3 Hallucinations

The issue of hallucinations in generative VLMs poses a

significant challenge to their reliability and practical application

(Liu et al., 2024). Hallucinations refer to instances where VLMs

generate outputs that are not grounded in the provided images or

inconsistent with the established knowledge. In medical contexts,

these hallucinations can have serious consequences, leading to

inaccurate diagnostic information or treatment recommendations.

One identified cause of hallucinations is the lack of alignment

between visual and textual information (Sun et al., 2023). Training

VLMs to effectively align these data modalities is crucial in

mitigating the risk of hallucinations. For instance, LLaVA-RLHF

(Sun et al., 2023) achieved hallucination reduction by incorporating

RLHF to align different modalities. Further research can focus on

integrating RLHF into medical VLMs. Additionally, incorporating

RAG can help reduce the risk of generatingmisleading or fabricated

outputs by allowing the system to analyze medical images while

simultaneously accessing relevant information from trusted textual

sources.

5.4 Catastrophic forgetting

Overcoming catastrophic forgetting poses an additional

challenge in the development of medical VLMs. Catastrophic

forgetting occurs when a model learns new information but

inadvertently erases or distorts previously acquired knowledge,

potentially compromising its overall competence. Striking a

balance during fine-tuning can be crucial; moderate fine-tuning can

be helpful to adapt the model to a specific task, while excessive

fine-tuning can lead to catastrophic forgetting (Zhai et al., 2023;

Khan et al., 2023). As a future research direction, leveraging

methodologies from continual learning (Wang et al., 2023a; Zhou

et al., 2023a; Cai and Rostami, 2024; Khan et al., 2023, 2024)

might be useful in the context of medical VLMs. Continual learning

focuses on training models to sequentially learn from and adapt to

new data while retaining knowledge from previously encountered

tasks (Khan et al., 2024). Also, incorporating adapters within the

framework of continual learning can be a valuable tool inmitigating

catastrophic forgetting (Zhang et al., 2023b).

5.5 Integration into hospital systems

Integrating VLMs into hospital systems also presents

substantial challenges, requiring extensive collaboration between

medical professionals and AI/ML researchers. First, medical

professionals must maintain rigorous data collection practices

to ensure that the data is clean, well-organized, and accessible,

as ML experts rely on high-quality data to train and fine-tune

VLMs. Second, VLMs must be designed to address the right

clinical questions, ensuring their relevance and utility in medical

practice. Third, healthcare professionals need training to use VLMs

effectively, and the models should be intuitive and user-friendly

to integrate smoothly into daily clinical routines. Furthermore,

implementation scientists play a crucial role in this process by

facilitating collaboration between clinicians and ML experts

(Reddy, 2024). They help bridge the gap between these two groups,

ensuring that VLMs are both technically robust and clinically

relevant.

In this context, models like RaDialog (Pellegrini et al., 2023)

and PathChat (Lu et al., 2024b) show the potential of VLMs

to enhance clinical effectiveness. RaDialog demonstrates a solid

capability to produce clinically accurate radiology reports. It

transforms static reporting into a dynamic tool where clinicians

can ask follow-up questions and seamlessly incorporate expert

insights. This aligns closely with the interactive processes typical

in clinical settings. Meanwhile, PathChat demonstrates promising

clinical effectiveness as an AI copilot for pathology. It can assist

pathologists in their work in real medical settings, including

human-in-the-loop clinical decision-making, complex diagnostic

workups, analyzing morphological details in histology images, and

guiding immunohistochemistry (IHC) interpretations. However,

the assessment of VLM effectiveness in medical environments is an

open research question. Comprehensive clinical trials are necessary

to confirm that VLMs truly enhance patient care and integrate

effectively into existing clinical workflows.

5.6 Security

The security of VLMs must be thoroughly considered, focusing

on privacy, minimizing medical errors, and preventing the

introduction of significant new errors. VLMs must be kept behind

the hospital firewall to protect sensitive medical information. It

is also crucial to involve independent experts in the validation

process. Validating the model on unseen medical data can

help identify and rectify potential inaccuracies. Additionally,

adversarial attacks represent another significant security issue, as

they can exploit vulnerabilities in the model, leading to incorrect

predictions. To combat this, incorporating adversarial training by

exposing the model to adversarial examples during training can

enhance its robustness against such attacks (He et al., 2023a).

Continuous monitoring and updating of the VLMs are also
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essential to prevent the introduction of new errors, which should

include regular audits and updates based on the latest medical

research and clinical guidelines.

6 Conclusion

This review paper highlights the transformative potential

of VLMs in generating medical reports and answering clinical

questions from medical images. It explores 16 recent medical

VLMs, among which 15 are publicly available. We observed that

6 of them share a similar architecture that has only recently

become common. These VLMs incorporate a vision encoder,

often with a projection module, to produce visual features, which

can be used as input to LLMs. The visual features are then

combined with tokenized text input and fed into the LLM. This

approach simplifies model design and leverages the extensive

prior knowledge embedded in LLMs. Furthermore, feeding all

data features into LLMs enables the generation of human-like

text outputs, improving user experience and facilitating more

effective communication of medical insights. The review also

explores 18 publicly available medical vision-language datasets

and over 10 evaluation metrics for RG and VQA. By providing

essential background information, this review ensures accessibility

for readers from the medical field while promoting collaboration

between the AI/ML community and medical professionals.

Moreover, the review highlights the current challenges and

potential future directions for VLMs in medicine. The limited

availability of diverse medical datasets and privacy concerns

can be addressed through rigorous data pre-processing and

techniques like RAG and FL. Also, since traditional evaluation

metrics often fall short of capturing the nuances of clinical

language, there is a need to develop specialized metrics tailored

to medical RG and VQA. It is likewise crucial to address

VLM hallucinations, and incorporating RLHF and RAG are

promising solutions. Continual learning methods can help mitigate

catastrophic forgetting, ensuring that models retain the knowledge

they have previously acquired. Furthermore, collaboration between

healthcare professionals and AI researchers is essential to deploy

VLMs in ways that genuinely improve patient care. Lastly, ensuring

the security of these models is vital, which can be achieved through

robust firewalls and adversarial training. Ultimately, the review

serves as a valuable resource for researchers developing and refining

VLMs for medical applications, guiding them in overcoming key

obstacles and leveraging innovative approaches to enhance model

performance and clinical integration.
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