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Given close relationships between ocular structure and ophthalmic disease, ocular 
biometry measurements (including axial length, lens thickness, anterior chamber 
depth, and keratometry values) may be leveraged as features in the prediction of 
eye diseases. However, ocular biometry measurements are often stored as PDFs 
rather than as structured data in electronic health records. Thus, time-consuming 
and laborious manual data entry is required for using biometry data as a disease 
predictor. Herein, we  used two separate models, PaddleOCR and Gemini, to 
extract eye specific biometric measurements from 2,965 Lenstar, 104 IOL Master 
500, and 3,616 IOL Master 700 optical biometry reports. For each patient eye, our 
text extraction pipeline, referred to as Ocular Biometry OCR, involves 1) cropping 
the report to the biometric data, 2) extracting the text via the optical character 
recognition model, 3) post-processing the metrics and values into key value pairs, 
4) correcting erroneous angles within the pairs, 5) computing the number of errors 
or missing values, and 6) selecting the window specific results with fewest errors 
or missing values. To ensure the models’ predictions could be put into a machine 
learning-ready format, artifacts were removed from categorical text data through 
manual modification where necessary. Performance was evaluated by scoring 
PaddleOCR and Gemini results. In the absence of ground truth, higher scoring 
indicated greater inter-model reliability, assuming an equal value between models 
indicated an accurate result. The detection scores, measuring the number of valid 
values (i.e., not missing or erroneous), were Lenstar: 0.990, IOLM 500: 1.000, and 
IOLM 700: 0.998. The similarity scores, measuring the number of equal values, were 
Lenstar: 0.995, IOLM 500: 0.999, and IOLM 700: 0.999. The agreement scores, 
combining detection and similarity scores, were Lenstar: 0.985, IOLM 500: 0.999, 
and IOLM 700: 0.998. IOLM 500 was annotated for ground truths; in this case, 
higher scoring indicated greater model-to-annotator accuracy. PaddleOCR-to-
Annotator achieved scores of detection: 1.000, similarity: 0.999, and agreement: 
0.999. Gemini-to-Annotator achieved scores of detection: 1.000, similarity: 1.000, 
and agreement: 1.000. Scores range from 0 to 1. While PaddleOCR and Gemini 
demonstrated high agreement, PaddleOCR offered slightly better performance 
upon reviewing quantitative and qualitative results.
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Introduction

Eye structure is known to be  associated with various eye 
diseases; for example, myopia increases the risk of cataracts, 
glaucoma, strabismus, myopic macular degeneration, myopic 
foveoschisis, and retinal detachments, while hyperopia raises the 
risk for uveal effusion syndrome and angle closure glaucoma. Given 
these connections, ocular biometry measurements—such as axial 
length, lens thickness, anterior chamber depth, and keratometry 
values—can be valuable predictors for eye conditions, alongside 
data from electronic health records (EHRs) and ophthalmic 
imaging. However, these measurements are often stored in portable 
document format (PDF) format rather than as structured data in 
EHRs, requiring manual, labor-intensive data entry for use in 
disease prediction.

With the global rise in myopia there has been a subsequent rise in 
retinal tears (RTs) retinal detachments (RDs). The severity of axial 
elongation impacts outcome; for example, RD is five or six times more 
likely in highly myopic (odds ratio > 20) as compared to low myopic 
(odds ratio < 4) patients (Flitcroft, 2012; Williams and Hammond, 
2019). Ocular biometric measurements may serve as key features in the 
prediction of RDs. Optical biometers, including (Lenstar LS 900; 
IOLMaster 500; IOLMaster 700) provide measurements including axial 
length (AL), anterior chamber depth (ACD), anterior scleral thickness 
(AST), central corneal thickness (CCT), keratometry (K) including the 
flat meridian of the cornea (R1) and steep meridian of the cornea (R2), 
lens thickness (LT), true keratometry (TK), and white-to-white (WTW) 
values, that may provide insight into the development of RDs. Learning 
from biometry and EHR-related features, conventional machine learning 
(ML) algorithms may aid in predicting RT/RD progression. However, 
acquiring the biometry data confined within the PDF reports is a time-
consuming and laborious task.

We expand the task of optical character recognition (OCR) into 
the biomedical domain by applying text extraction techniques to 
standard-of-care clinical documents. The aims of the study were 1) 
extracting the text of biometer data via two separate OCR models and 
2) measuring the inter-model agreement. After selecting biometry 
measurement related PDFs from the original dataset, the text 
extraction algorithm was applied independently across 3 different 
optical biometer data types and 2 different OCR models. Performance 
was assessed by quantifying inter-model reliability scores between the 
two models’ outputs. Our text extraction algorithm, Ocular Biometry 
OCR, will facilitate downstream analytical tasks, including the 
classification of future RT/RD development via conventional 
ML methods.

Materials and equipment

Optical character recognition

OCR refers to a bevy of computational methods capable of 
converting textual information confined within images of typed, 
printed, or handwritten documents into machine encoded text. OCR 

models perform the tasks of text detection, localization of words 
within an image, and text recognition, the interpretation of the 
aforementioned words into machine encoded text.

Text detectors include convolutional neural networks such as 
DBNet (Liao et al., 2020) and DMPNet (Liu and Jin, 2017). DBNet 
segments out the region of text from a larger image by adaptively 
setting thresholds on probability maps. As a regression task, DMPNet 
computes quadrangles by applying sliding quadrilateral windows 
upon convolutional layers and Monte Carlo methods. Text recognition 
involves convolutional recurrent neural networks (CRNNs) in which 
convolutional layers generate a feature map from the input image; 
After, the feature maps are converted into feature sequences which 
pass through the recurrent layers to predict each text character in 
sequence (Shi et al., 2016). More novel methods have been explored 
like SVTR which decomposes an image into small patches referred to 
as character components, these components pass through hierarchical 
stages of mixing, merging, and combining to identify inter and intra 
character patterns, culminating in a linear predictor (Du et al., 2022).

Recent models have employed visual encoding strategies to 
interleave text and image data for performing tasks such as visual 
question answering, image captioning, etc. For example, PaLI 
generates text responses based on image and text inputs with an 
architecture underpinned on large pretrained encoder-decoder 
language models (Vaswani et al., 2017) and vision transformers with 
a balanced parameter share between vision and language modules for 
optimal performance (Chen et  al., 2022). Similarly, the Flamingo 
family of vision language models input visual data interleaved with 
text to output free form text and is capable of optimizing performance 
after few shot learning and task specific tuning (Alayrac et al., 2022). 
Due to the reliance on pre-training for boosting performance, 
methods such as Contrastive Captioner (CoCa) have been proposed 
to pretrain image-text encoder-decoder foundation models with 
contrast and captioning objectives (Yu et al., 2022).

Ocular Biometry OCR

A custom text extraction algorithm, Ocular Biometry OCR, was 
developed to collect the clinical measurements of interest from each 
modality specific report (Figure 1). Prior to running the algorithm, 
a set of eye-specific windows is determined manually to 1) focus on 
the biometric measurements via cropping and 2) de-identify data 
and exclude protected health information (PHI). The original 
biometry report is cropped to the biometric data by a window. The 
OCR model is applied to extract all the text found within the 
windowed image. The clinically relevant metrics, defined 
beforehand, are retrieved from the model’s output and processed 
into a set of key-value pairs where the key is the metric and the 
value is the associated text or numerical quantity. If the associated 
value cannot be determined for a metric it is marked as an error. It 
was noted that identifying angles associated with K1, K2, and 
deltaK were particularly difficult (i.e., confusing the degree symbol 
for 0). To correct erroneous angles, a rules-based algorithm was 
applied to verify the relationship between angles; for example, angle 
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K1 should equal angle K2 +/− 90 degrees and angle deltaK is equal 
to angle K2. The number of erroneous metrics was computed by 
summing the number of missing or undetermined metrics and the 
number of incorrect relationships between angles. The number of 
errors is collected per eye-specific window. The window with the 
lowest number of errors is considered the final result. The task was 
conducted separately for both right eye (OD) and left eye (OS). Text 
post processing performs optimally when the model’s prediction of 
metrics and values appear in the same order as in the original 
biometric document (i.e., right-to-left, top-to-bottom, normal 
English formatting). While steps are taken to address situations in 
which the sequence differs from expected, the ideal model would 
preserve the formatting. Two separate OCR models were employed.

PaddleOCR

PaddleOCR refers to a collection of open-source models within 
PaddlePaddle designed for OCR tasks (Du et al., 2020; Du et al., 2021). 

For the study, the architecture adopted for PaddleOCR consists of two 
separate components: 1) text detection taken from PP-OCRv3 and 2) 
text recognizer taken from PP-OCRv4 (Li et al., 2022; PaddleOCR). 
PaddleOCR was initialized to the English language and without the 
angle classifier as none of the biometric data was rotated by 180 
degrees. Parallel processing was implemented for faster text extraction 
times. Note, PaddleOCR infers upon an image.

Gemini

Gemini refers to a suite of models developed by Google optimized 
for multimodal inference tasks, including video, image, text, and audio 
(Team et al., 2023). The Gemini architecture is based upon transformer 
decoders (Vaswani et al., 2017) and utilizes multi-query attention 
(Shazeer, 2019). As part of the study, Gemini Pro Vision was 
implemented with a temperature of 0.1 and maximum output tokens 
of 2048 (default). Given the task of text extraction, a lower temperature 
value was selected for a more deterministic and less creative response 

FIGURE 1

Our text extraction algorithm, Ocular Biometry OCR, where (a) crop biometry information; (b) apply PaddleOCR or Gemini; (c) set key-value pairs for 
metrics of interest; (d) verify and correct angles by rule checking; and (e) provide results in a usable, tabular, and ML ready format. This computational 
process can be repeated for multiple windows with the final set of key-value pairs selected based on the number of fewest missing or erroneously 
extracted values.
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as compared to the default value of 0.4. Parallel processing was not 
implemented for Gemini text extraction because the number of 
Gemini inference requests per second was rate limited. Note, Gemini 
infers upon an image and prompt.

Methods

PaddleOCR was selected as representative of the status quo of 
publicly available OCR algorithms whereas Gemini was chosen to 
represent more novel and commercially available technology. 
Biometric reports were retrieved from the Stanford Research 
Repository (STARR), Stanford’s Clinical Data Warehouse, and securely 
stored in a dedicated storage bucket within a protected computing 
environment. The original cohort contained 31,428 patients and 
2,723,994 samples. Optical biometer specific subgroups were identified 
after addressing common clinical practices which may affect results 
(duplicated data, missing entries, etc.). The data inclusion workflow 
ensured quality documents (no missingness or repetitiveness). The 
rationale was that identical inputs lead to identical outputs and would 
either lack meaningfulness or skew performance results (Figure 2). For 
each subgroup, several key metrics were identified for text extraction.

Lenstar dataset

For Lenstar text extraction, the biometric information of interest 
includes: LS, AL (mm), CCT (um), AD (mm), ACD (mm), LT (mm), 
R1 (D + angle), R2 (D + angle), R (D), AST (D + angle), n, WTW 
(mm), and Target Refraction.

For Lenstar, text extraction was performed by PaddleOCR for the 
2,978 reports identified for 1,346 patients. If between samples, the 
metrics of interest and model output produced by PaddleOCR were 
duplicated, the samples were removed. Text extraction via Gemini was 
performed on the remaining 2,965 reports for 1,346 patients. In an 

effort to reduce unordered text and specific to the Lenstar modality, 
the same image was prompted twice for text extraction per sample. 
The first prompt, from which LS was extracted, was: “Extract all the 
text in the entire image and keep the formatting”. The second prompt 
to extract the remaining data was: “Extract metrics in the format ‘AL 
[mm]’ x, ‘CCT [um]’ x, ‘AD [mm]’ x, ‘ACD [mm]’ x, ‘LT [mm]’ x, and 
‘Target Refraction: ‘x where x is the value. If x is missing, skip the 
value. Extract metrics in the format, ‘R1 [mm/D/°]’ x ‘/’ x ‘@’ x, ‘R2 
[mm/D/°]’ x ‘/’ x ‘@’ x, ‘R [mm/D]’ x ‘/’ x, ‘A ST [D/°]’ x ‘@’ x, ‘n ‘x, 
‘WTW [mm]’ x where x is the full line of all the text immediately to 
the right of the metric. If the text immediately to the right of the 
metric is blank, skip the metric. Ignore the values for IOL and Eye. No 
bullet points. No colons. No superscripts.”; The reason the ‘AST’ was 
written as ‘A ST’ was because within certain documents it appears as 
such, in an effort to increase algorithmic robustness.

IOLM 500 dataset

For IOLM 500 text extraction, the biometric information of 
interest includes: LS, AL (mm), ACD (mm), WTW (mm), K1 
(D + angle), K2 (D + angle), deltaK (D + angle).

For IOLM 500, text extraction was performed by PaddleOCR for 
the 104 reports identified for 101 patients. As no samples were found 
to be duplicated according to the metrics of interest and model output 
of PaddleOCR, no samples were removed. Text extraction via Gemini 
was performed on all 104 reports for 101 patients. Gemini was 
prompted to “Extract all the text in the image from top to bottom. If 
there is no text, extract nothing. No dashes or colons.” for this exercise.

IOLM 700 dataset

For IOLM 700 text extraction, the biometric information of 
interest includes: LS, vitreous status (VS), laser vision correction 

FIGURE 2

The data inclusion workflow where (a) subset the biometer modality; (b) drop duplicate data entries, keep files with the relevant PDF (only IOLM 700), 
drop duplicate samples, drop samples without reports, drop duplicate samples by file-to-file comparison, drop duplicate samples with identical 
cropped biometry information; (c) drop duplicate PaddleOCR metrics of interest and output, and interpret final dataset by Gemini.
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(LVC), Target ref., surgically induced astigmatism (SIA) (D + angle), 
AL (mm, SD), ACD (mm, SD), LT (mm, SD), WTW (mm), spherical 
equivalent (SE) (D, SD), K1 (D + angle), deltaK (D + angle), K2 
(D + angle), TSE (D, SD), TK1 (D + angle), deltaTK (D + angle), and 
TK2 (D + angle). Unlike Lenstar and IOLM 500, the biometric 
information for IOLM 700 was not limited to the first page of the 
patient report and had a wider variation in formatting.

For IOLM 700, text extraction was performed by PaddleOCR for 
the 3,947 reports identified for 2,931 patients. If between samples, the 
PaddleOCR metrics of interest and output were duplicated, the 
samples were removed. Text extraction via Gemini was performed on 
the remaining 3,616 reports for 2,931 patients. Gemini was prompted 
to “Extract all the text in the entire image and keep the original 
formatting. Include the standard deviations (SD) and angles (@). 
Denote standard deviation as SD not +/−.” for this exercise.

Performance evaluation

For text data (LS, VS, LVC), the output quantities were manually 
processed for artifacts, modifying results to within the known 
categorical values present for each optical biometer subgroup. In other 
words, the unique responses per text metric were viewed and through 
human intervention, a rules-based algorithm was developed to 
automatically match certain text outputs with the expected result. For 
example, if the text extraction algorithm predicted “Phakica” for LS 
with the letter “a” clearly being an artifact, the final result would 
be considered “Phakic”.

In the absence of ground truth data, four separate metrics were 
identified to assess detection, similarity, and agreement and served as 
an indicator of inter-model reliability, also assuming that equal values 
indicated a more accurate result. This included detection, similarity, 
and agreement scores which range from 0 to 1 with a higher score 
indicating fewer differences and greater inter-model reliability 
between the values extracted via PaddleOCR to those extracted by 
Gemini. In addition, the Cohen-Kappa statistic, which ranges from 
−1 (i.e., inverse prediction) to 1 (i.e., perfect prediction), was 
computed to measure inter-model reliability between PaddleOCR and 
Gemini for the task of detection (Cohen, 1960). The four performance 
measures were applied across all optical biometers.

Given that inter-model reliability quantified performance, as 
opposed to ground truth data, several limitations include: 1) the same, 
yet incorrect predictions for both models and 2) a specific formatting 
style of a model’s prediction was not accounted for as part of the post-
processing strategy causing the relevant text to be  extracted 
incorrectly. To gauge these mistakes, an annotator manually collected 
IOLM 500 biometric information for reference as ground truth.

Results
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(1)

Detection score between PaddleOCR & Gemini.
Detection indicated that the text algorithm retrieved a valid value 

for a specific metric. The positive and negative detections were 

counted for each model. A positive detection (+) indicated that a valid 
value was predicted for the metric whereas a negative detection (−) 
indicated that an erroneous or missing value was associated with the 
metric. The detection score was then computed as the ratio of all 
positive and negative detections (i.e., between PaddleOCR and 
Gemini) summed over the total number of detections (Equation 1).
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Cohen-Kappa statistic where D indicates the detection quantity 
for PaddleOCR & Gemini.

The Cohen-Kappa statistic, leveraging the appropriate detection 
quantities for PaddleOCR and Gemini, was also calculated 
(Equation 2).
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Nominal similarity where ŷ indicates a predicted value.
The similarity indicated the number of metrics for which the 

values associated with all positive values (i.e., between PaddleOCR 
and Gemini) are equal or different. In other words, if both values were 
successfully retrieved for a specific sample and metric in both models, 
the similarity measures if the two values are equal to each other 
(Equation 3). The similarity score is computed as the ratio of all equal 
values (i.e., where the result of PaddleOCR is the same as that of 
Gemini) divided by the total number of all positive detections (i.e., 
where the results of PaddleOCR and Gemini were 
successfully retrieved).

 
/
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Detection SimilarityAgreement
Detection
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(4)

Observed agreement between PaddleOCR & Gemini.
The agreement score was computed as the ratio of the equivalent 

values and all negative detections (i.e., between PaddleOCR and 
Gemini) summed over the total number of detections (Equation 4). 
The agreement score combines the detection and similarity scores to 
indicate overall inter-model agreement and performance of the 
two models.

Lenstar

Indicative of inter-model reliability, the average scores were 0.990 
for detection, 0.995 for similarity, and 0.985 for agreement while the 
average Cohen-Kappa statistic was 0.629 for detection (Table 1).

IOLM 500

Indicative of inter-model reliability, the average scores were 1.000 
for detection, 0.999 for similarity, and 0.999 for agreement while the 
average Cohen-Kappa statistic was 1.000 for detection (Table  2). 
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Comparing PaddleOCR to ground truth, the average scores were 
1.000 for detection, 0.999 for similarity, and 0.999 for agreement while 
the average Cohen-Kappa statistic was 1.000 for detection (Table 3a). 

Comparing Gemini to ground truth, the average scores were 1.000 for 
detection, 1.000 for similarity, and 1.000 for agreement while the 
average Cohen-Kappa statistic was 1.000 for detection (Table 3b).

TABLE 2 Inter-model reliability between PaddleOCR and Gemini per IOLM 500 metric across OD and OS.

IOLM 
500

Detection Similarity Agreement 
score

Metric PaddleOCR 
(−) & 

Gemini (−)

PaddleOCR 
(−) & 

Gemini (+)

PaddleOCR 
(+) & 

Gemini (−)

PaddleOCR 
(+) & 

Gemini (+)

Cohen 
Kappa

Score (=) (≠) Score

ACD mm 56 0 0 152 1.000 1.000 152 0 1.000 1.000

AL mm 22 0 0 186 1.000 1.000 186 0 1.000 1.000

K1 D 19 0 0 605 1.000 1.000 605 0 1.000 1.000

K1 DEG 19 0 0 605 1.000 1.000 603 2 0.997 0.997

K2 D 19 0 0 605 1.000 1.000 605 0 1.000 1.000

K2 DEG 19 0 0 605 1.000 1.000 603 2 0.997 0.997

LS 2 0 0 206 1.000 1.000 206 0 1.000 1.000

WTW mm 40 0 0 376 1.000 1.000 376 0 1.000 1.000

deltaK D 19 0 0 605 1.000 1.000 605 0 1.000 1.000

deltaK 

DEG
19 0 0 605 1.000 1.000 603 2 0.997 0.997

Average 1.000 1.000 0.999 0.999

Lens status (LS), axial length (AL), flat meridian of the cornea (K1), steep meridian of the cornea (K2), subtraction of K1 from K2 (delta K), anterior chamber depth (ACD), white-to-white 
(WTW), diopters (D), degrees (DEG), and millimeters (mm).

TABLE 1 Inter-model reliability between PaddleOCR and Gemini per Lenstar metric across OD and OS.

Lenstar Detection Similarity Agreement 
score

Metric PaddleOCR 
(−) & 

Gemini (−)

PaddleOCR 
(−) & 

Gemini (+)

PaddleOCR 
(+) & 

Gemini (−)

PaddleOCR 
(+) & 

Gemini (+)

Cohen 
Kappa

Score (=) (≠) Score

ACD mm 245 57 1 5,627 0.889 0.990 5,536 91 0.984 0.975

AD mm 255 47 8 5,620 0.898 0.991 5,549 71 0.987 0.979

AL mm 5 74 0 5,851 0.118 0.988 5,850 1 1.000 0.987

AST D 71 2 7 5,850 0.940 0.998 5,788 62 0.989 0.988

AST DEG 118 34 2 5,776 0.865 0.994 5,757 19 0.997 0.991

CCT um 7 47 0 5,876 0.228 0.992 5,857 19 0.997 0.989

LS 0 0 173 5,757 NA 0.971 5,757 0 1.000 0.971

LT mm 299 58 2 5,571 0.903 0.990 5,570 1 1.000 0.990

R D 44 1 54 5,831 0.611 0.991 5,814 17 0.997 0.988

R1 D 48 17 19 5,846 0.724 0.994 5,824 22 0.996 0.990

R1 DEG 131 21 4 5,774 0.911 0.996 5,755 19 0.997 0.993

R2 D 51 17 16 5,846 0.753 0.994 5,819 27 0.995 0.990

R2 DEG 118 34 2 5,776 0.865 0.994 5,757 19 0.997 0.991

Target ref. D 91 51 129 5,659 0.488 0.970 5,652 7 0.999 0.968

WTW mm 187 50 2 5,691 0.873 0.991 5,680 11 0.998 0.989

n 0 0 23 5,907 NA 0.996 5,838 69 0.988 0.984

Average 0.629 0.990 0.995 0.985

Lens status (LS), axial length (AL), central corneal thickness (CCT), aqueous depth (AD), anterior chamber depth (ACD), lens thickness (LT), flat meridian of the cornea (R1), steep meridian 
of the cornea (R2), average of R1 and R2 (R), anterior scleral thickness (AST), white-to-white (WTW), target refraction (Target ref.), diopters (D), degrees (DEG), and millimeters (mm).
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IOLM 700

Indicative of inter-model reliability, the average scores were 0.998 
for detection, 0.999 for similarity, and 0.998 for agreement while the 
average Cohen-Kappa statistic was 0.943 for detection (Table 4).

Discussion

Lenstar

Assessing the detection scores of PaddleOCR and Gemini, the 
models heavily disagreed for LS and Target Refraction. There were 

various circumstances which resulted in the disputed samples for 
LS. These challenges include the: 1) Gemini request for the first prompt 
used to extract LS appears to have failed to run, 2) useful biometric 
information necessary for proper text extraction was cut out at the 
window edges, and 3) value for LS was in the wrong location for proper 
text extraction not in right-to-left, top-to-bottom, normal English 
formatting. When checking the same for Target Refraction, Gemini did 
not retrieve the relevant metric and value for the second prompt.

The average Cohen-Kappa statistic indicated substantial 
agreement (0.61–0.80) for detection, though there was wide variation 
in performance by metric owing to high numbers of disputed samples 
(i.e., false negatives and false positives overwhelming true negatives) 
in certain cases. For LS and n, the Cohen Kappa statistic could not 

TABLE 3 Performance computed between a) Annotator and PaddleOCR and b) Annotator and Gemini per IOLM 500 metric across OD and OS.

IOLM 500

a) Detection Similarity Agreement 
score

Metric Annotator 
(−) & 

PaddleOCR 
(−)

Annotator 
(−) & 

PaddleOCR 
(+)

Annotator 
(+) & 

PaddleOCR 
(−)

Annotator 
(+) & 

PaddleOCR 
(+)

Cohen 
Kappa

Score (=) (≠) Score

ACD mm 56 0 0 152 1.000 1.000 152 0 1.000 1.000

AL mm 22 0 0 186 1.000 1.000 186 0 1.000 1.000

K1 D 19 0 0 605 1.000 1.000 605 0 1.000 1.000

K1 DEG 19 0 0 605 1.000 1.000 603 2 0.997 0.997

K2 D 19 0 0 605 1.000 1.000 605 0 1.000 1.000

K2 DEG 19 0 0 605 1.000 1.000 603 2 0.997 0.997

LS 2 0 0 206 1.000 1.000 206 0 1.000 1.000

WTW mm 40 0 0 376 1.000 1.000 376 0 1.000 1.000

deltaK D 19 0 0 605 1.000 1.000 605 0 1.000 1.000

deltaK 

DEG
19 0 0 605 1.000 1.000 603 2 0.997 0.997

Average 1.000 1.000 0.999 0.999

b) Detection Similarity

Agreement 
ScoreMetric

Annotator 
(−) & 

Gemini (−)

Annotator 
(−) & 

Gemini (+)

Annotator 
(+) & 

Gemini (−)

Annotator 
(+) & 

Gemini (+)

Cohen 
Kappa

Score (=) (≠) Score

ACD mm 56 0 0 152 1.000 1.000 152 0 1.000 1.000

AL mm 22 0 0 186 1.000 1.000 186 0 1.000 1.000

K1 D 19 0 0 605 1.000 1.000 605 0 1.000 1.000

K1 DEG 19 0 0 605 1.000 1.000 605 0 1.000 1.000

K2 D 19 0 0 605 1.000 1.000 605 0 1.000 1.000

K2 DEG 19 0 0 605 1.000 1.000 605 0 1.000 1.000

LS 2 0 0 206 1.000 1.000 206 0 1.000 1.000

WTW mm 40 0 0 376 1.000 1.000 376 0 1.000 1.000

deltaK D 19 0 0 605 1.000 1.000 605 0 1.000 1.000

deltaK 

DEG
19 0 0 605 1.000 1.000 605 0 1.000 1.000

Average 1.000 1.000 1.000 1.000

Lens status (LS), axial length (AL), flat meridian of the cornea (K1), steep meridian of the cornea (K2), subtraction of K1 from K2 (delta K), anterior chamber depth (ACD), white-to-white 
(WTW), diopters (D), degrees (DEG), and millimeters (mm).
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be determined because there were no all negative detections for those 
specific metrics.

Reviewing the similarity scores of PaddleOCR and Gemini, it was 
unveiled that ACD mm, AD mm, AST D, and n had some of the 
lowest scores. There were several Gemini related errors in this regard, 
issues included: 1) swapping the value of AD mm and ACD mm, 2) 
mistaking the value of R D for AST D, 3) providing AST degrees 
(DEG) twice, 4) missing a digit for n, and 5) mistaking AST D for n 
(Figures 3–5). Across all three optical biometers, PaddleOCR and 
Gemini had the lowest agreement score for Lenstar, likely owing to the 

relative complexity of the biometric data as compared to the other 
biometer documents.

IOLM 500

Reviewing the detection scores of PaddleOCR and Gemini, the 
models achieved uniform predictions across all biometric information. 
This was supported by the average Cohen-Kappa statistic achieving 
perfect agreement (+1) for detection. Identified by lower similarity 

TABLE 4 Inter-model reliability between PaddleOCR and Gemini per IOLM 700 metric across OD and OS.

IOLM 
700

Detection Similarity Agreement 
score

Metric PaddleOCR 
(−) & 

Gemini (−)

PaddleOCR 
(−) & 

Gemini (+)

PaddleOCR 
(+) & 

Gemini (−)

PaddleOCR 
(+) & 

Gemini (+)

Cohen 
Kappa

Score (=) (≠) Score

ACD mm 233 0 1 6,998 0.998 1.000 6,998 0 1.000 1.000

AL mm 178 0 1 7,053 0.997 1.000 7,053 0 1.000 1.000

K1 D 150 0 9 7,073 0.970 0.999 7,072 1 1.000 0.999

K1 DEG 150 0 9 7,073 0.970 0.999 7,035 38 0.995 0.994

K2 D 151 0 13 7,068 0.958 0.998 7,067 1 1.000 0.998

K2 DEG 146 5 0 7,081 0.983 0.999 7,043 38 0.995 0.994

LS 15 0 12 7,205 0.714 0.998 7,204 1 1.000 0.998

LT mm 251 0 0 6,981 1.000 1.000 6,981 0 1.000 1.000

LVC 97 1 12 7,122 0.936 0.998 7,122 0 1.000 0.998

SD 5,075 0 14 31,071 0.998 1.000 31,052 19 0.999 0.999

SE D 150 0 6 7,076 0.980 0.999 7,074 2 1.000 0.999

SIA D 218 0 4 7,010 0.991 0.999 7,010 0 1.000 0.999

SIA DEG 218 0 4 7,010 0.991 0.999 7,000 10 0.999 0.998

TK1 D 2,185 1 4 5,042 0.998 0.999 5,040 2 1.000 0.999

TK1 DEG 2,186 1 4 5,041 0.998 0.999 5,040 1 1.000 0.999

TK2 D 2,187 0 5 5,040 0.998 0.999 5,040 0 1.000 0.999

TK2 DEG 2,177 10 2 5,043 0.996 0.998 5,042 1 1.000 0.998

TSE D 2,186 0 3 5,043 0.999 1.000 5,043 0 1.000 1.000

Target ref. 

D
218 0 23 6,991 0.948 0.997 6,991 0 1.000 0.997

VS 18 1 85 7,128 0.292 0.988 7,128 0 1.000 0.988

WTW 

mm
118 0 5 7,109 0.979 0.999 7,108 1 1.000 0.999

deltaK D 252 0 47 6,933 0.911 0.994 6,932 1 1.000 0.993

deltaK 

DEG

146 5 0 7,081 0.983 0.999 7,043 38 0.995 0.994

deltaTK 

D

2,263 10 2 4,957 0.996 0.998 4,956 1 1.000 0.998

deltaTK 

DEG

2,177 10 2 5,043 0.996 0.998 5,042 1 1.000 0.998

Average 0.943 0.998 0.999 0.998

Lens status (LS), vitreous status (VS), laser vision correction (LVC), surgically induced astigmatism (SIA), target refraction (Target ref.), axial length (AL), anterior chamber depth (ACD), lens 
thickness (LT), white-to-white (WTW), spherical equivalent of corneal power according to keratometry (SE), flat meridian of the cornea (K1), steep meridian of the cornea (K2), subtraction 
of K1 from K2 (delta K), true flat meridian of the cornea (TK1), true steep meridian of the cornea (TK2), subtraction of TK1 from TK2 (delta TK), and spherical equivalent of corneal power 
according to TK (TSE), standard deviation associated with individual metrics (SD), diopters (D), degrees (DEG), and millimeters (mm).
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scores, there were a few disputes between PaddleOCR and Gemini for 
K1 DEG, K2 DEG and deltaK DEG. For these samples, Gemini 
provided correct predictions while PaddleOCR provided incorrect 
predictions as verified by the ground truth (Figures  6–8). The 

PaddleOCR mistakes were likely propagated through the rule 
checking for angles. Across all three optical biometers, PaddleOCR 
and Gemini had the highest agreement score for IOLM 500, likely due 
to the relative simplicity of the biometric data.

FIGURE 3

Ocular Biometry OCR for Lenstar with results for the (a) right eye and (b) left eye. For Gemini, the right eye had swapped values for AD mm and ACD 
mm. Lens status (LS), axial length (AL), central corneal thickness (CCT), aqueous depth (AD), anterior chamber depth (ACD), lens thickness (LT), flat 
meridian of the cornea (R1), steep meridian of the cornea (R2), average of R1 and R2 (R), anterior scleral thickness (AST), and white-to-white (WTW). 
Target refraction is listed at the bottom.

FIGURE 4

Ocular Biometry OCR for Lenstar with results for the (a) right eye and (b) left eye. For Gemini, the right eye had swapped values for R D and AST D. 
Lens status (LS), axial length (AL), central corneal thickness (CCT), aqueous depth (AD), anterior chamber depth (ACD), lens thickness (LT), flat meridian 
of the cornea (R1), steep meridian of the cornea (R2), average of R1 and R2 (R), anterior scleral thickness (AST), and white-to-white (WTW). Target 
refraction is listed at the bottom.
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IOLM 700

Assessing the detection scores of PaddleOCR and Gemini, both 
models’ predictions were near uniform across all metrics. Further, the 
average Cohen-Kappa statistic implied nearly perfect agreement 

(0.81–0.99), though there was a significant decline for LS which 
achieved substantial agreement (0.61–0.80) and VS which achieved 
fair agreement (0.21–0.40) as a result of the high number of disputed 
samples (i.e., false negatives and false positives overwhelming true 
negatives) for detection.

FIGURE 5

Ocular Biometry OCR for Lenstar with results for the (a) right eye and (b) left eye. For Gemini, the left eye had swapped digits for AD mm and ACD mm 
as well as the last digit of n being missing. Lens status (LS), axial length (AL), central corneal thickness (CCT), aqueous depth (AD), anterior chamber 
depth (ACD), lens thickness (LT), flat meridian of the cornea (R1), steep meridian of the cornea (R2), average of R1 and R2 (R), anterior scleral thickness 
(AST), and white-to-white (WTW). Target refraction is listed at the bottom.

FIGURE 6

Ocular Biometry OCR for IOLM 500 with results for the (a) right eye and (b) left eye. For PaddleOCR, the left eye had swapped values for K1_2 DEG, 
K2_2 DEG, and deltaK_2 DEG. Axial length (AL), flat meridian of the cornea (K1), steep meridian of the cornea (K2), subtraction of K1 from K2 (delta K), 
anterior chamber depth (ACD), and white-to-white (WTW). Lens status (LS) is at the top.
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FIGURE 7

Ocular Biometry OCR for IOLM 500 with results for the (a) right eye and (b) left eye. For PaddleOCR, the left eye had swapped values for K1_2 DEG, 
K2_2 DEG, and deltaK_2 DEG. Axial length (AL), flat meridian of the cornea (K1), steep meridian of the cornea (K2), subtraction of K1 from K2 (delta K), 
anterior chamber depth (ACD), and white-to-white (WTW). Lens status (LS) is at the top.

FIGURE 8

Ocular Biometry OCR for IOLM 500 with results for the (a) right eye and (b) left eye. Axial length (AL), flat meridian of the cornea (K1), steep meridian of 
the cornea (K2), subtraction of K1 from K2 (delta K), anterior chamber depth (ACD), and white-to-white (WTW). Lens status (LS) is at the top.
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Checking the similarity scores of PaddleOCR and Gemini, the 
metrics that had lower scores included K1 D, K2 D, and deltaK 
DEG. Reviewing a few of the disputed samples, Gemini had 
occasionally switched K1 and K2 DEG, an error that would have been 
propagated by angle rule checking to deltaK DEG (Figures 9–11). The 
agreement score for IOLM 700 was much higher than that of Lenstar, 
but just below IOLM 500.

PaddleOCR and Gemini

As part of the text extraction process, significant steps were taken 
to address the common mistakes of PaddleOCR and Gemini. A 
significant drawback of PaddleOCR was incorrectness, especially 
regarding the angles. The model confused the degree symbol with the 
number zero. Occasionally, the model also missed the decimal points 
of values. Hence, the implementation of the rules-based corrections 
for angles and the counting of per window errors of angles and outlier 
quantities; however, some errors still managed to trickle through. 
While the rules-based corrections currently apply to model specific 
outputs, implementing a similar policy across modalities (PaddleOCR 
and Gemini) for the same sample may reduce the degree/zero 
confusion, akin to aggregating predictions.

On the other hand, Gemini had little issue extracting the correct 
answer; however, the model occasionally provided text in the incorrect 
order (not left to right, top to bottom) despite being instructed to do 
so, and substituted missing values with values of other metrics. 
Indeed, during pipeline development, it was observed that Gemini can 

hallucinate, especially if a significant amount of data was missing from 
the report. Accounting for these drawbacks as well considering the 
wide variation for IOLM 700 reports, the text extraction algorithm 
was run on multiple windows of varying shape, manually decided by 
checking the location of the biometric data. Better prompt engineering 
may also reduce hallucinations; for example, prompting: ‘Extract all 
the text line-by-line from top-to-bottom, left-to-right normal 
English formatting’.

Both PaddleOCR and Gemini have their own trade-offs. As a 
publicly available model, PaddleOCR struggles with accurately 
identifying metrics and corresponding values underneath specific 
circumstances but still provides the standard formatting. As a pay for 
service model, Gemini accurately identifies metrics and corresponding 
values but struggles at times to provide the normal formatting 
necessary for useful text extraction. Apart from better fine-tuning of 
post-processing methods, future studies would involve reducing 
Gemini’s temperature parameter to see if that would reduce formatting 
related errors and ensure that results for samples with missing 
information are consistent. After achieving sufficient text extraction 
performance with Ocular Biometry OCR, the future aims are: (1) 
classification of patients to prognosticate RT/RD development via 
gradient boosted trees and (2) exploratory analysis of clinically 
relevant attributes associated with classifier decision making.

Apart from use as predictors in ML-tasks, the reports provided by 
the ubiquitous optical biometers (Lenstar, IOLM 500, IOLM 700) are 
an informative prerequisite to the most common surgery in the world, 
cataract surgery (Lee et al., 2008). Ocular Biometry OCR can provide 
the anatomical information confined within these reports in the form 

FIGURE 9

Ocular Biometry OCR for IOLM 700 with results for the (a) right eye and (b) left eye. For Gemini, the left eye had swapped values for K1 DEG, K2 DEG, 
and deltaK DEG. Lens status (LS), vitreous status (VS), laser vision correction (LVC), surgically induced astigmatism (SIA), target refraction (Target ref.), 
axial length (AL), anterior chamber depth (ACD), lens thickness (LT), white-to-white (WTW), spherical equivalent of corneal power according to 
keratometry (SE), flat meridian of the cornea (K1), steep meridian of the cornea (K2), subtraction of K1 from K2 (delta K), true flat meridian of the cornea 
(TK1), true steep meridian of the cornea (TK2), subtraction of TK1 from TK2 (delta TK), and spherical equivalent of corneal power according to TK (TSE). 
Standard deviation (SD) is listed to the side.
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FIGURE 10

Ocular Biometry OCR for IOLM 700 with results for the (a) right eye and (b) left eye. For Gemini, the right eye had swapped values for TK1 DEG, TK2 
DEG, and deltaTK DEG. Plano for Target ref. is equivalent to 0. Lens status (LS), vitreous status (VS), laser vision correction (LVC), surgically induced 
astigmatism (SIA), target refraction (Target ref.), axial length (AL), anterior chamber depth (ACD), lens thickness (LT), white-to-white (WTW), spherical 
equivalent of corneal power according to keratometry (SE), flat meridian of the cornea (K1), steep meridian of the cornea (K2), subtraction of K1 from 
K2 (delta K), true flat meridian of the cornea (TK1), true steep meridian of the cornea (TK2), subtraction of TK1 from TK2 (delta TK), and spherical 
equivalent of corneal power according to TK (TSE). Standard deviation (SD) is listed to the side.

FIGURE 11

Ocular Biometry OCR for IOLM 700 with results for the (a) right eye and (b) left eye. For Gemini, the right eye had swapped values for K1 DEG, K2 DEG, 
and deltaK DEG. Lens status (LS), vitreous status (VS), laser vision correction (LVC), surgically induced astigmatism (SIA), target refraction (Target ref.), 
axial length (AL), anterior chamber depth (ACD), lens thickness (LT), white-to-white (WTW), spherical equivalent of corneal power according to 
keratometry (SE), flat meridian of the cornea (K1), steep meridian of the cornea (K2), subtraction of K1 from K2 (delta K), true flat meridian of the cornea 
(TK1), true steep meridian of the cornea (TK2), subtraction of TK1 from TK2 (delta TK), and spherical equivalent of corneal power according to TK (TSE). 
Standard deviation (SD) is listed to the side.
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of machine encoded text to enable statistical analysis without 
requiring manual entry of biometer results. Overall, Ocular Biometry 
OCR is well generalizable for the aforementioned biometers to which 
the post-processing methods have been designed to handle the 
models’ predictions. However, the text extraction pipeline will not 
generalize to other optical biometer reports because the formatting of 
the models’ predictions may be different; though ways to adapt Ocular 
Biometry OCR include selecting new image windows and listing out 
the metrics of interest.

Conclusion

In sum, Ocular Biometry OCR, a text extraction pipeline built on 
PaddleOCR and Gemini, was implemented to collect biometric 
information from patient IOL reports. The main motivation for not 
only performing text extraction, but also text post-processing was to 
ensure the biometric measurements could be semi-automatically put 
into a usable, tabular format ideal for running ML experiments. The 
features derived from the biometry dataset will enable the training of 
downstream ML classifiers.

Data availability statement

The data analyzed in this study is subject to the following licenses/
restrictions: must have approval to access high risk Stanford University 
patient data. Requests to access these datasets should be directed to 
caludwig@stanford.edu.

Ethics statement

The studies involving humans were approved by Stanford 
University Institutional Review Board. The studies were conducted in 
accordance with the local legislation and institutional requirements. 
Written informed consent for participation was not required from the 
participants or the participants’ legal guardians/next of kin in 
accordance with the national legislation and institutional requirements.

Author contributions

AS: Conceptualization, Data curation, Formal analysis, 
Investigation, Methodology, Software, Validation, Visualization, 
Writing – original draft, Writing – review & editing. LA: Writing – 
review & editing. KL: Writing – review & editing. GF: Writing – review 
& editing. SW: Data curation, Resources, Software, Writing – review & 
editing. CuL: Supervision, Writing – review & editing. VM: Supervision, 
Writing – review & editing. ChL: Conceptualization, Data curation, 
Formal analysis, Funding acquisition, Investigation, Methodology, 
Project administration, Resources, Software, Supervision, Validation, 
Writing – original draft, Writing – review & editing.

Funding

The author(s) declare financial support was received for the 
research, authorship, and/or publication of this article. This work was 
supported by the National Eye Institute K23 Grant, K23EY035741 and 
E. Matlida Ziegler Foundation for the Blind Grant awarded to Chase 
A. Ludwig as well as the Stanford P30 Vision Research Core Grant, 
NEI P30-EY026877, and Research to Prevent Blindness, Inc.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

References
Alayrac, J.-B., Donahue, J., Luc, P., Miech, A., Barr, I., Hasson, Y., et al. (2022). Flamingo: 

a visual language model for few-shot learning. Adv. Neural Inf. Proces. Syst. 35, 23716–23736. 
doi: 10.48550/arXiv.2204.14198

Chen, X., Wang, X., Soravit Changpinyo, A. J., Piergiovanni, P. P., Salz, D., 
Goodman, S., et al. (2022). Pali: a jointly-scaled multilingual language-image model. 
arXiv. doi: 10.48550/arXiv.2209.06794

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 
20, 37–46. doi: 10.1177/001316446002000104

Du, Y., Chen, Z., Jia, C., Yin, X., Zheng, T., Li, C., et al. (2022). Svtr: scene text 
recognition with a single visual model. arXiv. doi: 10.48550/arXiv.2205.00159

Du, Y., Li, C., Guo, R., Cui, C., Liu, W., Zhou, J., et al. (2021). Pp-ocrv2: bag of tricks 
for ultra lightweight ocr system. arXiv. doi: 10.48550/arXiv.2109.03144

Du, Y., Li, C., Guo, R., Yin, X., Liu, W., Zhou, J., et al. (2020). Pp-ocr: a practical ultra 
lightweight ocr system. arXiv. doi: 10.48550/arXiv.2009.09941

Flitcroft, D. I. (2012). The complex interactions of retinal, optical and environmental 
factors in myopia aetiology. Prog. Retin. Eye Res. 31, 622–660. doi: 10.1016/j.
preteyeres.2012.06.004

IOLMaster 500. Zeiss. Germany: Carl Zeiss Meditec.

IOLMaster 700. Zeiss. Germany: Carl Zeiss Meditec.

Lee, A. C., Qazi, M. A., and Pepose, J. S. (2008). Biometry and intraocular lens power 
calculation. Curr. Opin. Ophthalmol. 19, 13–17. doi: 10.1097/ICU.0b013e3282f1c5ad

Lenstar LS 900. Haag-Streit AG. Switzerland.

Li, C., Liu, W., Guo, R., Yin, X., Jiang, K., Du, Y., et al. (2022). PP-OCRv3: more 
attempts for the improvement of ultra lightweight OCR system. arXiv. doi: 
10.48550/arXiv.2206.03001

Liao, M., Wan, Z., Yao, C., Chen, K., and Bai, X. (2020). Real-time scene text detection 
with differentiable binarization. Proc. AAAI Conf. AI 34, 11474–11481. doi: 10.1609/
aaai.v34i07.6812

Liu, Y., and Jin, L. "Deep matching prior network: toward tighter multi-oriented text 
detection." In Proceedings of the IEEE conference on computer vision and pattern 
recognition, pp. 1962–1969. (2017). https://openaccess.thecvf.com/content_cvpr_2017/ 
papers/Liu_Deep_Matching_Prior_CVPR_2017_paper.pdf

PaddleOCR. PaddlePaddle. Available at: https://github.com/PaddlePaddle/PaddleOCR

Shazeer, N. (2019). Fast transformer decoding: one write-head is all you need. arXiv 
preprint arXiv:1911.02150. doi: 10.48550/arXiv.1911.02150

Shi, B., Bai, X., and Yao, C. (2016). An end-to-end trainable neural network for image-based 
sequence recognition and its application to scene text recognition. IEEE Trans. Pattern Anal. 
Mach. Intell. 39, 2298–2304. doi: 10.1109/TPAMI.2016.2646371

https://doi.org/10.3389/frai.2024.1428716
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
mailto:caludwig@stanford.edu
https://doi.org/10.48550/arXiv.2204.14198
https://doi.org/10.48550/arXiv.2209.06794
https://doi.org/10.1177/001316446002000104
https://doi.org/10.48550/arXiv.2205.00159
https://doi.org/10.48550/arXiv.2109.03144
https://doi.org/10.48550/arXiv.2009.09941
https://doi.org/10.1016/j.preteyeres.2012.06.004
https://doi.org/10.1016/j.preteyeres.2012.06.004
https://doi.org/10.1097/ICU.0b013e3282f1c5ad
https://doi.org/10.48550/arXiv.2206.03001
https://doi.org/10.1609/aaai.v34i07.6812
https://doi.org/10.1609/aaai.v34i07.6812
https://openaccess.thecvf.com/content_cvpr_2017/papers/Liu_Deep_Matching_Prior_CVPR_2017_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2017/papers/Liu_Deep_Matching_Prior_CVPR_2017_paper.pdf
https://github.com/PaddlePaddle/PaddleOCR
https://doi.org/10.48550/arXiv.1911.02150
https://doi.org/10.1109/TPAMI.2016.2646371


Salvi et al. 10.3389/frai.2024.1428716

Frontiers in Artificial Intelligence 15 frontiersin.org

Team, G., Anil, R., Borgeaud, S., Wu, Y., Alayrac, J.-B., Yu, J., et al. (2023). Gemini: a 
family of highly capable multimodal models. arXiv. doi: 10.48550/arXiv.2312.11805

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al. 
(2017). Attention is all you  need. Adv. Neural Inf. Proces. Syst. 30. doi: 10.48550/
arXiv.1706.03762

Williams, K., and Hammond, C. (2019). High myopia and its risks. Commun. Eye 
Health 32, 5–6. https://pmc.ncbi.nlm.nih.gov/articles/PMC6688422/

Yu, J., Wang, Z., Vasudevan, V., Yeung, L., Seyedhosseini, M., and Wu, Y. (2022). Coca: 
contrastive captioners are image-text foundation models. arXiv. doi: 10.48550/
arXiv.2205.01917

https://doi.org/10.3389/frai.2024.1428716
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://doi.org/10.48550/arXiv.2312.11805
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.1706.03762
https://pmc.ncbi.nlm.nih.gov/articles/PMC6688422/
https://doi.org/10.48550/arXiv.2205.01917
https://doi.org/10.48550/arXiv.2205.01917

	Ocular Biometry OCR: a machine learning algorithm leveraging optical character recognition to extract intra ocular lens biometry measurements
	Introduction
	Materials and equipment
	Optical character recognition
	Ocular Biometry OCR
	PaddleOCR
	Gemini

	Methods
	Lenstar dataset
	IOLM 500 dataset
	IOLM 700 dataset
	Performance evaluation

	Results
	Lenstar
	IOLM 500
	IOLM 700

	Discussion
	Lenstar
	IOLM 500
	IOLM 700
	PaddleOCR and Gemini

	Conclusion

	References

