
TYPE Systematic Review

PUBLISHED 03 July 2024

DOI 10.3389/frai.2024.1428501

OPEN ACCESS

EDITED BY

Christos A. Frantzidis,

University of Lincoln, United Kingdom

REVIEWED BY

Ishleen Kaur,

University of Delhi, India

Panteleimon Chriskos,

Aristotle University of Thessaloniki, Greece

Antonio Sarasa-Cabezuelo,

Complutense University of Madrid, Spain

*CORRESPONDENCE

Ahtisham Fazeel Abbasi

ahtisham.abbasi@dfki.de

Muhammad Nabeel Asim

muhammad_nabeel.asim@dfki.de

RECEIVED 07 May 2024

ACCEPTED 12 June 2024

PUBLISHED 03 July 2024

CITATION

Abbasi AF, Asim MN, Ahmed S, Vollmer S and

Dengel A (2024) Survival prediction landscape:

an in-depth systematic literature review on

activities, methods, tools, diseases, and

databases. Front. Artif. Intell. 7:1428501.

doi: 10.3389/frai.2024.1428501

COPYRIGHT

© 2024 Abbasi, Asim, Ahmed, Vollmer and

Dengel. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The

use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

Survival prediction landscape: an
in-depth systematic literature
review on activities, methods,
tools, diseases, and databases

Ahtisham Fazeel Abbasi1,2*, Muhammad Nabeel Asim2*,

Sheraz Ahmed2, Sebastian Vollmer1,2 and Andreas Dengel1,2

1Department of Computer Science, Rhineland-Palatinate Technical University of

Kaiserslautern-Landau, Kaiserslautern, Germany, 2Smart Data & Knowledge Services, Deutsches

Forschungszentrum für Künstliche Intelligenz (DFKI), Kaiserslautern, Germany

Survival prediction integrates patient-specific molecular information and clinical

signatures to forecast the anticipated time of an event, such as recurrence,

death, or disease progression. Survival prediction proves valuable in guiding

treatment decisions, optimizing resource allocation, and interventions of

precision medicine. The wide range of diseases, the existence of various

variants within the same disease, and the reliance on available data necessitate

disease-specific computational survival predictors. The widespread adoption of

artificial intelligence (AI) methods in crafting survival predictors has undoubtedly

revolutionized this field. However, the ever-increasing demand for more

sophisticated and e�ective prediction models necessitates the continued

creation of innovative advancements. To catalyze these advancements, it is

crucial to bring existing survival predictors knowledge and insights into a

centralized platform. The paper in hand thoroughly examines 23 existing review

studies and provides a concise overview of their scope and limitations. Focusing

on a comprehensive set of 90 most recent survival predictors across 44 diverse

diseases, it delves into insights of diverse types of methods that are used

in the development of disease-specific predictors. This exhaustive analysis

encompasses the utilized datamodalities alongwith a detailed analysis of subsets

of clinical features, feature engineering methods, and the specific statistical,

machine or deep learning approaches that have been employed. It also provides

insights about survival prediction data sources, open-source predictors, and

survival prediction frameworks.
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1 Introduction

According to World Health Organization (WHO), around ten thousand diseases have
been discovered and each disease has unique characteristics, symptoms, and implications
on human health (Haendel et al., 2020). Millions of people died from such diseases in
the span of years 2000 to 2019, while cancers, cardiovascular, and infectious diseases
persisted as the leading causes of mortality (Jamison, 2018; World Health Organization,
2020). Extensive research on the intersection of life and technology has yielded a wide
range of therapies and medications for various well-known diseases [National Research
Council (US), 2010]. However, the core idea behind traditional therapies and medications
is based on the “one-size-fits-all” (Sellin, 2015). In this paradigm, a single drug is supposed
to effectively treat a medical condition across a variety of patient cohorts i.e., children, old
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and young populations (Al-Lazikani et al., 2012; Sellin, 2015). In-
depth exploration and understanding of living organisms’ inherent
biological processes reveal that high variability in genetics and
drug responses make one-size-fits-all medication ineffective (Al-
Lazikani et al., 2012; Sellin, 2015).

The groundbreaking discoveries of the factors contributing to
the limited effectiveness of generalized medications marked the
inception of the era of precision medicine (Ashley, 2016; Kosorok
and Laber, 2019). Precision medicine offers customization in
tailored medical treatments based on an individual’s unique genetic
makeup, and optimization in drug selection and dosage based
on the individual’s lifestyle, and environmental factors (Farrokhi
et al., 2023). Precision medicine’s adoption and effectiveness have
been significantly enhanced by the accurate, cost-effective, and
large-scale analysis of molecular information obtained through
next-generation sequencing (Kamps et al., 2017).

In the realm of precision medicine, survival prediction plays
a pivotal role in tailoring medical treatments to individual
needs (Billheimer et al., 2014; Tsimberidou et al., 2019). Survival
prediction categorizes patients into distinct risk groups that
enhance the efficiency of resource allocation for the patients
who are likely to gain the most benefit from specific treatments
(Billheimer et al., 2014; Tsimberidou et al., 2019). It also enables
counseling of patients and their families by predicting the expected
course of the disease and potential challenges (Billheimer et al.,
2014). In addition to medical treatments, survival prediction
offers multiple advantages in research, particularly in the area
of biomarker discovery and disease understanding (Chen et al.,
2018; Sarma et al., 2020). Survival prediction models provide
useful information about the correlation between different features
and clinical outcomes. This correlation information enables the
identification of novel biomarkers associated with disease prognosis
(Sarma et al., 2020). Moreover, researchers leverage survival
prediction to unravel disease heterogeneity which helps to identify
distinct subtypes with different survival profiles (Hao et al., 2023).
This knowledge not only aids in the stratification of homogeneous
patients in clinical trials but also validates therapeutic targets by
assessing their relevance in predicting patient outcomes (Glare
et al., 2003). Furthermore, it enables the longitudinal monitoring
of disease progression that helps to explore critical time points and
progression patterns (Carobbio et al., 2020).

To expedite advancements in survival prediction research,
researchers are harnessing the capabilities of AI algorithms by
utilizing extensive survival-related data from public databases such
as the Cancer Genome Atlas Program (TCGA) (Tomczak et al.,
2015), and NCI Genomic Data Commons (GDC) (Jensen et al.,
2017; Shen et al., 2019; Malik et al., 2021; Mirbabaie et al., 2021;
Arjmand et al., 2022; Fan et al., 2023; Pellegrini, 2023). In addition,
the diversity and heterogeneity of diseases hinder the development
of a universally applicable survival prediction pipeline (Kourou
et al., 2015; Hao et al., 2023).

Driven by the necessity for disease-specific predictors, there
is a concerted effort to develop more accurate and powerful
predictive tools (Baek and Lee, 2020; Jiang et al., 2020; Benkirane
et al., 2023). Figure 1 illustrates that for the advancement of
survival predictors, public databases provide a spectrum of clinical
data (Jung et al., 2023; Qian et al., 2023) and encompass nine

diverse omics data modalities, including gene expression (mRNA),
micro RNA (miRNA), DNA methylation, copy number variation
(CNV), long non-coding RNA (lncRNA), proteomics, metabolic,
whole exome sequencing (WES) and mutation (Baek and Lee,
2020; Malik et al., 2021; Han et al., 2022; Jiang et al., 2022). In
each data modality, there exists an array of missing values that
hinder survival predictors learning. Extensive research is being
conducted to impute missing values by using different techniques
such as deletion, multiple, K-nearest neighbor (KNN), and median
imputation (Van Buuren et al., 1999; García-Laencina et al., 2015;
Chai et al., 2021b). In addition, various normalization methods are
also being used to normalize feature space such as quantile (Zhao
et al., 2020), variance threshold (Bolstad et al., 2003), and rank
normalizations (Ni and Qin, 2021).

In the development of survival prediction pipelines, researchers
are trying to unlock the potential of various data modalities
by assessing predictor performance with individual modalities
and combinations of multiple data modalities across diverse
types of diseases (Lee et al., 2020; Hao et al., 2023; Pellegrini,
2023). When data from different modalities is combined, survival
predictors’ input feature space becomes very large which impedes
the performance of AI approaches (Feldner-Busztin et al., 2023).
Researchers are trying to explore feature engineering approaches
such as random forest importance (RFI), and recursive feature
elimination (RFI) (Wang et al., 2022), principal component analysis
(PCA) (Lv et al., 2020; Jiang et al., 2022), non-negative matrix
factorization (NMF) (Tang et al., 2021), and autoencoders (AEs)
(Li et al., 2020; Wang et al., 2020; Owens et al., 2021). Moreover, in
an end-to-end survival predictive pipeline, apart from the selection
of appropriate data and feature engineering strategy, designing
appropriate survival prediction models is also an active area of
research (Deepa and Gunavathi, 2022).

Under different aforementioned directions, the recent 3 years
have witnessed around 74 different survival predictors for different
diseases. To further accelerate and expedite the development
of more powerful predictors, in the last 10 years, from time
to time, researchers have published 22 different review articles.
These articles primarily aim to summarize the latest trends and
developments in data modalities, feature engineering methods,
and AI models specifically related to survival prediction. However,
the focus of these reviews is often constrained to either a
singular disease or multiple subtypes of cancer, highlighting
a limited scope within the broader landscape of survival
prediction research (Herrmann et al., 2021; Pobar et al., 2021;
Boshier et al., 2022; Deepa and Gunavathi, 2022; Feldner-
Busztin et al., 2023; Rahimi et al., 2023). More comprehensive
details about the scope of existing review articles in terms of
contributions and drawbacks are summarized in Table 2 and
Section 3. Following the need for a comprehensive review article
for survival prediction, the contributions of this paper are
manifold:

• It consolidates a diverse array of 22 survival prediction
review papers, bringing together their scopes and limitations
under a unified umbrella. This compilation serves as a
valuable resource for researchers seeking high-level insights
and pertinent information in the field.
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FIGURE 1

An end-to-end survival prediction pipeline.

• It provides comprehensive insights into 74
survival prediction articles published between 2020
and 2023.

The objective is to delve into diverse aspects of the field,
extract and furnish useful information from these articles under
the following different research questions (RQs) and objectives: (i)
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TABLE 1 Common clinical/survival endpoints in cancer studies.

Endpoint Definition Example in cancer

Overall survival (OS) Time from diagnosis or treatment initiation to death from any cause Time from breast cancer diagnosis to death
from any cause

Disease-free survival (DFS) Time from treatment initiation to disease recurrence or death from
any cause, whichever occurs first

Time from colorectal cancer surgery to
disease recurrence or death

Progression-free survival (PFS) Time from treatment initiation to disease progression or death from
any cause, whichever occurs first

Time from lung cancer treatment to tumor
progression or death

Biochemical recurrence (BC) Return of cancer based on biochemical markers, typically measured in
prostate-specific antigen (PSA) levels

Increase in PSA levels after prostate cancer
treatment

What is the distribution of 74 research articles across 44 different
diseases, and how does it vary among cancer subtypes and other
diseases? (ii) How do studies address the spectrum of survival
prediction, from a broader perspective covering multiple cancer
subtypes to individual subtypes? (iii) What are the predominant
survival endpoints used in studies, and how are studies distributed
across four endpoints overall survival (OS), disease-free survival
(DFS), progression-free survival (PFS), and biochemical recurrence
(BC)? (iv) What are the most commonly used public and private
data sources in existing survival prediction studies and the types of
data they encompass? (v) What are the most commonly used omics
data modalities and their associations with different diseases and
survival endpoints? (vi)Which clinical features aremost commonly
employed in survival prediction studies? (vii) How have feature
engineering techniques evolved across different data modalities,
diseases, and survival endpoints in survival prediction studies?
(viii) Which specific statistical, machine learning (ML), and deep
learning (DL) survival prediction algorithms have been applied
to diverse diseases and survival endpoints? (ix) Which survival
prediction studies have made their source codes publicly available,
and what types of methods are available in open-source survival
prediction frameworks? (x) What are the most commonly utilized
survival prediction evaluation measures? (xi) Which conferences
and journals predominantly publish survival prediction studies?

2 Background

Survival prediction makes use of patient-specific molecular
information and clinical signatures to forecast a wide range
of events at particular time intervals (Pellegrini, 2023). The
most common events include recurrence, metastasis, response,
hospitalization, recovery, and progression of a disease. Some
of these events represent similar contexts, i.e., metastasis and
progression, both contribute to the overall progression of the
condition/cancer (Murthy et al., 2004). Survival prediction events
are generally categorized into 4 different survival endpoints
namely, overall survival (OS) (Driscoll and Rixe, 2009), disease-
free survival (DFS) (Sargent et al., 2005), progression-free survival
(PFS) (Gyawali et al., 2022), and biochemical recurrence (BC)
(Boorjian et al., 2011). Survival endpoints serve as crucial measures
for assessing the outcomes of interventions, indicating the duration
until specific events occur. Therefore, events are essentially the
occurrences that contribute to the survival endpoints (Fiteni et al.,
2014). These endpoints are critical to examine the trajectory of a

particular disease (Fiteni et al., 2014; Gyawali et al., 2022). These
survival endpoints are clearly defined in Table 1.

Survival prediction is time to event approach with two distinct
aspects, i.e., survival and hazard function (Kleinbaum and Klein,
1996). Survival function describes the probability that a subject
survives longer than some specified time t. Mathematically, it is
expressed as:

S(t) = P(T > t),

where T is the random variable for survival time, t is a specific
value of interest for T. For instance, S(10) represents the probability
of survival beyond 10 years without experiencing a specific event.
As time passes, S(t) decreases, reflecting the reduction in the
probability of surviving without the occurrence of event E up to
time t.

In comparison, the hazard function illustrates the probability
of an event E occurring at a specific time interval (1t) with a prior
assumption that the event has not taken place. The probability that
the event E occurs within a very small time interval1t around time
t is given by the conditional probability:

P(t ≤ T < t + 1t | T ≥ t)

Dividing this probability by the length of the time interval (1t)
gives the rate of occurrence of the event at time t. The limit as the
time interval (1t) approaches zero gives the instantaneous rate of
occurrence at time t. Mathematically, this is represented as:

h(t) = lim
(1t→0)

Pr(t ≤ T < t + 1t | T ≥ t)

1t

=
f (t)

S(t)

Pr(t ≤ T < t + 1t | T ≥ t) =

P(individual fails in interval | [t, t + 1t]

survival up to time t)

where f (t) represents the probability density function of survival
time. Thus, survival function S(t) shows that the subject survives
beyond a specific time point and hazard function h(t) complements
this by providing a risk rate that a patient does not survive
in a specific time interval conditioned on having survived thus
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TABLE 2 The scope and limitations of current survey papers.

References Citations Number
of articles
covered

Scope Shortcomings

Deepa and
Gunavathi (2022)

17 37 Cancer survival, subtypes, and recurrence prediction across
seven cancer subtypes i.e., breast, lung, gastric, cervical, oral,
cystic fibrosis, and multi- cancers

Does not take into account all types of
cancers, and other diseases on the basis of
multiomics and clinical data.

Herrmann et al.
(2021)

59 NS A benchmark of different ML and statistical survival analysis
methods on multiple cancer datasets from TCGA i.e.,
bladder, breast invasive, colon, esophegeal, head-neck
squamous, kidney renal, cervical kidney, acute myloid
leukemia, low grade glioma, liver hepatocellular, lung
adenocarcinoma, lung squamous, ovarian cancer, oancreatic,
sarcoma, skin cutaneous, stomach, and Uterine corpus
cancers.

A benchmark with a limited number of
methods for survival modeling.

Rahimi et al. (2023) 2 13 Cervical cancer (CC) survival analysis based on ML and
statistical methods to predict Disease-free survival (DFS),
progression-free survival (PFS), and overall survival (OS)

The review is confined to cervical cancer
survival prediction and does not encompass
deep learning-based methods.

Bashiri et al. (2017) 80 17 Survival Prediction based on gene expression data across
Mantle cell lymphoma, esophageal adenocarcinoma,
Esophageal squamous cell carcinoma, Non- small cell lung
carcinomas, Diffuse large B-Cell lymphoma (DLBCL),
astrocytic tumor, and Lung cancer

Multiomics data is not extensively discussed,
as it is understood that the emphasis on gene
expression alone may not define the survival
of a subject.

Tewarie et al. (2021) 23 27 Continous and discrete-time survival prediction across
glioblastoma based on magnetic resonance images (MRI),
genomics, and clinical data

The review paper does not include a
discussion of survival prediction models.
Also, the role of multiomics data in survival
prediction has not been explored.

Westerlund et al.
(2021)

23 NS Risk prediction in cardiovascular diseases (CVD) based on
clinical, and image data, and molecular signatures such as
single nucleotide polymorphism (SNP).

-

Kresoja et al. (2023) 5 NS An overall spectrum of survival prediction in cardiovascular
diseases is presented based on the image, omics, and clinical
data.

-

Kaur et al. (2022) 33 62 The authors reviewed how data mining and ML are
transforming medical decision-making, focusing on cancer
survival research. They analyzed 62 articles from the past 15
years, noting a shift from traditional methods to ML and DL,
due to the availability of large digital datasets. The study
highlights a move toward using clinical data with smaller
sample sizes and an increasing use of DL and hybrid
approaches. They identify ten open research issues and
suggest future research directions to improve cancer survival
predictions, offering insights for both new and experienced
researchers.

Limited papers cohort and lack of discussion
on multi-omics data modalities and survival
endpoints.

Wiegrebe et al.
(2023)

4 58 Survival prediction with DL models from five major
categories i.e., discrete-time, piece- wise exponential,
parametric, ranking-based, and ordinary differential
equation (ODE)

While it encompasses numerous models, the
paper still lacks coverage of information
related to ML models.

Salerno and Li
(2023)

5 NS ML and DL based methods are discussed for survival
analysis with a focus on high dimensionality of the data.
Mainly, regularized cox models, support vector machines,
random survival forests, boosting, and artificial neural
networks are presented.

Only a handful of methods are discussed in
this specific review whereas, the number of
methods used to deal with high dimensional
data is significant in number.

Pobar et al. (2021) 15 16 DL for survival prediction in palliative cancer patients
(advanced cancer patients) on the basis of radiomics data
and evaluation based on Palliative Prognostic Score (PaP),
Palliative Prognostic Index (PPI) and Number of Risk
Factors (NRF)

The prime focus is only related to
radiomics-based methods.

Bakasa and Viriri
(2021)

16 NS Pancreatic survival prediction models and the use of DL
models such as image segmentation, and feature extraction.
Different concepts like image segmentation and feature
extraction are discussed in detail with less emphasis on their
utilization in ML or DL-based survival prediction. In
addition, very few studies are referred related to pancreatic
cancer survival prediction.

(Continued)
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TABLE 2 (Continued)

References Citations Number
of articles
covered

Scope Shortcomings

Ahmed (2005) 252 NS The internal components of artificial neural networks
(ANNs)

Authors provide a rough overview of
artificial neural networks (ANNs). At the
time of this publication, there was
approximately very little attention given to
survival prediction using ML and DL-based
models. Therefore, the review discusses only
the internal workings of ANNs rather than
discussing the details of survival prediction
and the role of AI in it.

Kantidakis et al.
(2022)

3 24 Studies related to survival prediction are presented in two
different settings i.e., setting 1: time is added as part of the
input features and a single output node is specified, setting 2:
multiple output nodes are defined for each time interval

Authors discuss different types of neural
network setting used for survival analysis yet
they did not categorize all the studies related
to survival analysis on the basis of the type of
neural network setting being used.

Altuhaifa et al.
(2023)

0 30 Studies related to cancer survival prediction. The authors
present databases utilized for the prediction of cancer
survival prediction along with feature selection algorithms,
types and nature of features, survival prediction models, and
limitations.

Lack of characterization with respect to the
multiomics-based data modalities.

Wekesa and
Kimwele (2023)

0 NS radiomics, and multiomics studies related to different factors
that play a critical role in various diseases i.e., miRNA,
circRNA, and so on are presented. The prime focus is on
data integration techniques based on DL for interaction
prediction, disease diagnosis, and treatment.

Only a handful of studies are covered

Kvamme and
Borgan (2021)

47 NS Authors discuss in detail the architectures and schemes
utilized to predict survival in a discrete or continuous
fashion.

-

Feldner-Busztin
et al. (2023)

13 NS Dimensionality reduction in ML models with context to
cancer subtype identification, and survival prediction.

The prime focus is on the use of
dimensionality reduction in multiomics
related tasks. The role of dimensionality
reduction in survival prediction has not been
covered in this review.

Boshier et al. (2022) 0 17 Survival prediction in esophageal adenocarcinoma is
discussed on the basis of clinical data. In addition, various
survival prediction models are evaluated on new validation
data comprised of 2,450 patients.

Only limited to a single cancer and the focus
is only related to clinical data.

Gupta et al. (2018) 38 16 Prognostication in terms of esophageal and gastroesophageal
junction cancer on the basis of image and clinical data.

Lack of multiomics-based analysis.

Wissel et al. (2022) - - Authors discuss and propose new standardized benchmark
datasets and their splits for survival prediction, obtained
from TCGA, TARGET, and ICGC databases. The
comparison of the AI-based and statistical models is also
presented in the paper which shows that statistical models
often beat AI-based models in time to event prediction with
multiomics data.

-

Lee and Lim (2019) 62 NS Different concepts related to survival analysis are discussed
i.e., survival functions, Kalpan Meier estimators, and
log-rank test. In addition, multiple time-to-event modeling
approaches are also presented in detail such as, Cox-PH
model, random survival forest, survival support vector
machines, bagging, cox boosting, and artificial neural
networks.

Limited coverage of omics-based modalities
and an in-depth discussion.

Guan et al. (2022) 40 NS Subtyping and risk prediction in Schizophrenia. -

Mo et al. (2022) 0 NS A comparison of 12 supervised ML models to predict the
outcome of head and squamous cell carcinoma i.e., bayesian
network, naive Bayes, logistic regression, generalized linear
model, k-nearest neighbor, decision tree, random forest,
bootstrap aggregating, and AdaBoost, gradient boosting
trees, neural network, and support vector machine. In
addition, important genes are further validated using a
variety of wet lab experiments.

Only a single multiomics data is used for the
comparison of different survival outcome
prediction models, whereas multiple datasets
can show the generalizability of the models
on the data belonging to various
demographic locations.

(Continued)
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TABLE 2 (Continued)

References Citations Number
of articles
covered

Scope Shortcomings

Ours - 74 A systematic analysis of diverse survival prediction
literature. This review encompasses ML, DL, and statistical
survival predictors across more than 30 different diseases. In
addition, the review addresses diverse research questions
related to the distribution of survival predictors, databases,
data modalities, feature engineering methods, survival
prediction models, source codes and libraries for the
development of survival predictors, and various evaluation
measures.

This review paper focuses solely on current
trends in survival prediction, omitting basic
terminologies and mathematical
formulations. For a concise mathematical
overview, readers are advised to consult
earlier review papers (Lee and Lim, 2019;
Kvamme and Borgan, 2021).

far. Moreover, S(t) is always monotonic in nature, however h(t)
is classically assumed to follow increasing Weibull, decreasing
Weibull, or lognormal survival curves (Kleinbaum and Klein, 1996;
Murthy et al., 2004).

3 A look-back into existing review
studies

In recent years multiple review papers have been published
and the objective of each review revolves around summarizing
fundamental concepts in survival prediction and identifying trends
in statistical, ML, and DL algorithms that have been utilized in the
development of survival predictors. Table 2 illustrates a high-level
overview of the existing 22 review articles in terms of their review
scope and limitations. This comprehensive summary aims to assist
researchers in locating specific information within relevant articles
more effectively.

In Table 2, a comprehensive analysis of the scope of review
articles indicates that existing studies can be classified into three
distinct groups. (I) Nine review papers primarily focus on the
application of DL algorithms in survival prediction (Ahmed, 2005;
Bakasa and Viriri, 2021; Kvamme and Borgan, 2021; Pobar et al.,
2021; Kantidakis et al., 2022; Altuhaifa et al., 2023; Salerno and
Li, 2023; Wekesa and Kimwele, 2023; Wiegrebe et al., 2023), (II)
seven review papers summarize the application of ML algorithms
in survival prediction (Gupta et al., 2018; Lee and Lim, 2019;
Boshier et al., 2022; Guan et al., 2022; Mo et al., 2022; Wissel et al.,
2022; Feldner-Busztin et al., 2023), andsix review papers summarize
survival prediction methods from three different categories namely
statistical, ML, and DL methods (Bashiri et al., 2017; Herrmann
et al., 2021; Tewarie et al., 2021; Westerlund et al., 2021; Deepa and
Gunavathi, 2022; Rahimi et al., 2023).

On the other hand, in the realm of disease specific survival
predictors scope of existing review papers is limited. For instance,
eight papers only summarize survival predictors on single disease
or subtype of cancer, i.e., cervical cancer (Rahimi et al., 2023),
glioblastoma (Tewarie et al., 2021), esophageal adenocarcinoma
(Boshier et al., 2022), esophageal and gastroesophageal junction
cancer (Gupta et al., 2018), head and squamous cell carcinoma
(Mo et al., 2022), palliative cancer patients (Pobar et al., 2021),
cardiovascular diseases (CVD) (Westerlund et al., 2021; Kresoja
et al., 2023), and schizophrenia (Guan et al., 2022). Although
four papers cover multiple subtypes of cancer but they cover only
handful of eight different subtypes such as, breast, lung, gastric,
colon, esophageal, ovarian cancers and so on.

While the scope of survival prediction extends beyond multiple
diseases, existing review papers fall short to summarize current
trends of data modalities, feature engineering approaches and
survival prediction models. For example, Deepa and Gunavathi
(2022) specifically address the primary categories of data modalities
used for survival prediction, namely multiomics and clinical
data. However, the review does not extensively explore trends
and patterns related to the nine different omics types i.e., gene
expression (mRNA), micro RNA (miRNA), methylation, copy
number variation (CNV), whole exome sequencing (WES), long
noncoding RNA (lncRNA), mutation, metabolic, and proteomics,
or clinical features associated with distinct cancer subtypes.
Similarly, Westerlund et al. (2021) do not explore the potential of
multiomics data in terms of cardiovascular diseases. In addition,
various review papers completely neglect to address feature
engineering in survival prediction (Ahmed, 2005; Bashiri et al.,
2017; Gupta et al., 2018; Pobar et al., 2021; Kantidakis et al.,
2022; Rahimi et al., 2023). For instance, Feldner-Busztin et al.
(2023) despite their focus on dimensionality reduction, fall short
in providing a comprehensive summary of current trends in
feature engineering approaches with respect to diseases and data
modalities. Furthermore, a small portion of these review papers
cover details of few state of the art survival prediction models
(Ahmed, 2005; Kantidakis et al., 2022; Wiegrebe et al., 2023). While
current review papers summarize survival prediction pipelines
partially, there is a necessity to bring diverse information into a
unified platform which offers comprehensive insights into patterns
and trends associated with survival prediction pipelines.

4 Methodology

This section explains different steps or stages of preferred
reporting items for systematic review andmeta-analyses (PRISMA)
strategy (Moher et al., 2010), which is used to gather relevant papers
on survival analysis. Figure 2 provides a visual representation of
various stages form PRISMA that are summarized in the following
subsections.

4.1 Search strategy

In Figure 2, the identification stage illustrates combinations of
different keywords that are used to search research articles. The
keywords block has two different types of operators “∧” and “∨”
operators. On the basis of these operators one keyword from each
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FIGURE 2

PRISMA flow diagram: a step-by-step process for articles search and their inclusion or exclusion criteria to generate a set of studies for further

in-depth trends analysis. The included papers are collected from Jan 2020 to Jul 2023.

block is selected and various search queries are formulated such as,
“SURVIVAL PREDICTION AND AI AND OMICS”, “SURVIVAL

PREDICTION AND AI AND Multiomics”, “SURVIVAL Machine

Learning AND OMICS”, and so on. These queries are utilized
in literature search engines like lens (https://www.lens.org/), and
Google Scholar for literature search from Jan 2020 to Jul 2023.

4.2 Eligibility and screening strategy

With an aim to retain literature related to survival prediction,
two different screenings are performed on the basis of the following
criteria;

• Articles that use only image-based datasets for survival
prediction.

• Articles that do not make use ofML, DL, or statistical methods
for survival prediction.

• Articles with closed access.

Initially, guided by the title and abstract of the articles,
more than 800 studies are discarded. Subsequently, at
the final step, based on a comprehensive review of the
full text a second screening is performed, resulting in the
exclusion of an additional 20 studies. Ultimately, 90 papers

are selected for the final comparison and discussion of
survival prediction.

5 Results

5.1 RQ I, II, III: survival predictors
distribution analysis across diseases and
survival endpoints

The primary aim of this section is to summarize the distribution
of survival predictors across various diseases and survival
endpoints. Predictors distribution analysis under individual
diseases offers insights into the most active trends of predictors
associated with specific diseases. This consolidated distribution
provides a centralized platform to access valuable information
about their disease of interest. Similarly, examining the distribution
of articles across survival endpoints is valuable for identifying
current trends in forecasting multiple events. This approach not
only enhances our understanding of the current state of predictive
modeling but also facilitates researchers in efficiently accessing
information specific to their desired endpoints. Through this
exploration, we aim to contribute to a deeper understanding
of the diverse landscape of survival prediction research and its
applications across various diseases and endpoints.
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TABLE 3 Distribution of survival predictors across individual diseases.

Disease subtype Number
of studies

References

Nasopharyngeal carcinoma: 1 Miao et al., 2022

HER2-negative metastatic
breast cancer

1 Wang J. et al., 2023

Tripple negative breast cancer 1 Zhang et al., 2023

Breast invasive carcinoma 1 Hao et al., 2023

Colon adenocarcinoma 1 Lv et al., 2020

Gastric cancer 1 Li et al., 2020

Gastrointestinal cancer 1 Jung et al., 2023

Adult diffuse glioma 1 Yang Q. et al., 2020

Invasive ductal carcinoma 1 Lin et al., 2022

Pancreatic cancer undergoing
biliary drainage

1 Zhou et al., 2023

Kidney renal clear cell
carcinoma

2 Zhao L. et al., 2021; Hao
et al., 2023

Lung squamous cell
carcinoma

1 Hao et al., 2023

Cervical cancer 1 Hu Q. et al., 2021

Neuroblastoma 1 Wang et al., 2022

Rectal cancer 1 Zhang J. Z. et al., 2022

Colon cancer 3 Tong D. et al., 2020; Yang H.
et al., 2020; Lee et al., 2023

Liver cancer 1 Wang et al., 2020

Esophageal carcinoma 2 Yu et al., 2020; Bichindaritz
and Liu, 2022

Stomach adenocarcinoma 1 Zhao L. et al., 2021

Ovarian serous
cystadenocarcinoma

2 Zhao L. et al., 2021;
Bichindaritz and Liu, 2022

Kidney renal clear cell
carcinoma

2 Zhao L. et al., 2021; Jiang
et al., 2022

Lower grade glioma 1 Wu et al., 2022

Head-and-neck squamous cell
carcinoma

1 Zhao L. et al., 2021

Bladder cancer 3 Chai et al., 2021a; Tang
et al., 2021; Chauhan et al.,
2023

Bladder urothelial carcinoma 1 Zhao L. et al., 2021

Renal cell carcinoma Tong et al., 2021; Shetty
et al., 2023

Lymphoma 1 Li et al., 2023

Hepatocellular carcinoma 3 Owens et al., 2021; Zhang R.
et al., 2022; Wang X. et al.,
2023

Ovarian cancer 5 Hira et al., 2021; Pawar
et al., 2022; Wu and Fang,
2022; Lang et al., 2023;
Wang X. et al., 2023

(Continued)

TABLE 3 (Continued)

Disease subtype Number
of studies

References

Glioblastoma 4 Du et al., 2020; Kazerooni
et al., 2021; Redekar et al.,
2022; Wu and Fang, 2022

Prostate cancer 3 Doja et al., 2020; Li et al.,
2021; Pellegrini, 2023

Non-small cell lung cancer 5 Zhang Z.-S. et al., 2021;
Ellen et al., 2023;
Manganaro et al., 2023;
Wang Q. et al., 2023

Pancreatic cancer 3 Baek and Lee, 2020; Han
et al., 2022

Breast cancer 10 Tong L. et al., 2020; Hu S.
et al., 2021; Malik et al.,
2021; Zhou et al., 2021; Wu
and Fang, 2022; Zhang J. Z.
et al., 2022; Othman et al.,
2023; Palmal et al., 2023;
Zarean Shahraki et al., 2023;
Zhu et al., 2023

Lung adenocarcinoma 4 Jiang et al., 2020; Lee et al.,
2020; Zhang S. et al., 2022;
Bhat and Hashmy, 2023

Pan-cancer 7 Tan et al., 2020; Zhang X.
et al., 2021; Zheng et al.,
2021; Yin et al., 2022;
Benkirane et al., 2023; Fan
et al., 2023; Majji et al., 2023

Colorectal cancer 1 Willems et al., 2023

Atherosclerosis 3 Hathaway Q. A. et al., 2021;
Hathaway Q. et al., 2021;
Qian et al., 2023

Myocardial infarction 1 Feng et al., 2022

Stroke 1 Feng et al., 2022

COVID-19 1 Richard et al., 2022

Cardiovascular disease 6 Unterhuber et al., 2021;
Vahabi et al., 2021; Xu et al.,
2021; Zeng et al., 2021; Feng
et al., 2022;
Moreno-Sanchez, 2023

Liver transplant 2 Kantidakis et al., 2020; Raju
and Sathyalakshmi, 2023

Trauma 1 Abdelhamid et al., 2022

Metastatic urothelial cancer 1 Tarango et al., 2023

Hypertrophic
cardiomayopathy

1 Farahani et al., 2023

Papillary thyroid carcinoma 1 Lun et al., 2024

Esophagectomy 1 Rahman et al., 2023

Diffuse large B-cell lymphoma 1 Pant et al., 2023

Table 3 illustrates disease specific predictors distribution for
both cancer and other diseases, respectively. In the last 3 years,
74 predictors have been designed for different cancer subtypes
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related survival prediction (Tan et al., 2020; Fan et al., 2023;
Majji et al., 2023) while only 17 predictors have been designed
for other diseases such as cardiovascular diseases, COVID-19,
cardiomyopathy, esophagectomy and trauma (Kantidakis et al.,
2020; Abdelhamid et al., 2022; Feng et al., 2022; Farahani et al.,
2023; Qian et al., 2023; Rahman et al., 2023).

To date, approximatelymore than 100 different cancer subtypes
have been identified (Grever et al., 1992). However, a deeper
analysis of the last 3 years reveals that survival prediction
models have been developed for only 40 distinct cancer subtypes,
as outlined in Table 3. Among 36 different subtypes, most
of the predictors have been designed for breast cancer, lung
adenocarcinoma, ovarian cancer, and glioblastoma. On the other
hand, seven different predictors have been designed for pancancer.
Notably, there is a difference between other cancer types and
pan-cancer because under this paradigm predictors simultaneously
deal with multiple cancer subtypes. Pan-cancer based survival
prediction entails predicting patient survival outcomes using data
and models applicable to various cancer types (Fan et al., 2023).
Instead of focusing on just one type of cancer, this approach draws
on data from multiple cancers to identify shared patterns and
markers that influence survival. By combining a diverse array of
genetic, molecular, and clinical features that are common across
different cancers, this method aims to improve the accuracy of
survival predictions (Wu et al., 2023). For the development of
pan-cancer based predictors, there exists public data having more
than 30 distinct cancer subtypes (Liu et al., 2018). However,
researchers are utilizing different subsets for the development of
predictors (Fan et al., 2023). Figure 3 provides an overview of
multiple survival prediction studies that encompass a range of
cancer subtypes, either within a pan-cancer context or within
the context of predicting survival for different subtypes. A total
of 14 studies have taken into account multiple cancer subtypes
whereas the majority of the studies have only covered only a
single type of cancer subtype such as colorectal cancer (Willems
et al., 2023), lymphoma (Li et al., 2023), colon adenocarcinoma
(Lv et al., 2020), gastric cancer (Li et al., 2020), and so
on.

Figures 4, 5 illustrate predictors distribution across survival
endpoints. A majority of studies 67 (76%) have OS as an endpoint
of survival prediction (Chai et al., 2021a; Abdelhamid et al., 2022;
Benkirane et al., 2023; Bhat and Hashmy, 2023), whereas eight
studies have incorporated multiple survival endpoints in their
analysis. Out of eight studies, three studies have incorporated DFS
and BC (Lee and Wang, 2003; Baek and Lee, 2020; Pellegrini,
2023). Two studies have incorporated OS, DFS, and PFS (Tan
et al., 2020; Tang et al., 2021) and two studies have OS, and
PFS as the survival endpoints (Jiang et al., 2022; Chauhan et al.,
2023), one focuses on OS and DFS (Pant et al., 2023). A single
study has focused on DFS only (Manganaro et al., 2023), and
two only on BC (Li et al., 2021; Vahabi et al., 2021). The rest of
studies either did not explicitly specify their endpoints for survival
prediction or predominantly concentrated on predicting patients’
survival outcomes without a specific focus on distinct survival
endpoints.

5.2 RQ IV: survival prediction data
availability in public and private sources
and opportunities for development of
predictors

Survival prediction models development relies on the quality
and quantity of annotated data, which is generated through
extensive wet lab experiments. Experimental findings are stored
in different types of databases that open new doors for the
development of survival prediction applications. However, there
exist multiple databases and each database encompasses particular
diseases and modality specific survival data. For instance, CGGA
(Zhao Z. et al., 2021) focuses on brain tumors, and MESA (Bild
et al., 2002) contains data related to atherosclerosis. To accelerate
the development of more competent survival predictors, it is
essential to summarize which database contains which type of
disease and what data modalities. In the highlight of research
question IV, Table 4 illustrates public databases details in terms of
diseases and data modalities they offer.

A deeper analysis of existing survival predictors reveals that
among the 90 studies 58 utilized publicly accessible data from
three key databases: the Cancer Genome Atlas Program (TCGA)
(Tomczak et al., 2015), NCI Genomic Data Commons (GDC)
(Jensen et al., 2017), and the Gene Expression Omnibus (GEO)
(Clough and Barrett, 2016; Chai et al., 2021a; Hu Q. et al., 2021;
Poirion et al., 2021; Zhao L. et al., 2021; Han et al., 2022; Jiang
et al., 2022; Redekar et al., 2022; Wu and Fang, 2022; Wu et al.,
2022; Zhang R. et al., 2022). Apart from public databases, there also
exist private databases that have been utilized in existing survival
prediction studies (Vahabi et al., 2021; Feng et al., 2022; Miao et al.,
2022; Richard et al., 2022; Chauhan et al., 2023; Lee et al., 2023;
Moreno-Sanchez, 2023). However, these private databases often
restrict data access and may require extensive research proposals
for data retrieval. Among these databases commonly used databases
are Heidelberg University Hospital (Jung et al., 2023), COMBO-
01 (Zhou et al., 2023), Life cohort (Unterhuber et al., 2021),
and UNOS (Kantidakis et al., 2020; Raju and Sathyalakshmi,
2023). The reliance on private databases for survival prediction
creates significant hurdles for research in several ways (Raufaste-
Cazavieille et al., 2022). Firstly, limited accessibility to such data
impedes the reproducibility and verification of study findings
by other researchers, hindering the validation and robustness
of predictive models (Misra et al., 2019). Secondly, the lack
of transparency and standardized access procedures for private
datasets introduces challenges in benchmarking and comparing
different survival prediction models (Raufaste-Cazavieille et al.,
2022). Lastly, the exclusivity of private databases may contribute
to a potential bias in research outcomes, as the diversity and
representativeness of the data are often compromised which
impacts the generalizability of survival predictions to broader
patient cohorts (Boffa et al., 2021).

Public access to databases enables researchers to create
survival benchmark datasets that fosters the development of
survival prediction models (Liu et al., 2018; Rahimi et al., 2023).
However, many researchers develop datasets without making them
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FIGURE 3

Cancer subtypes coverage based on pan-cancer or individual subtype settings.

FIGURE 4

Survival endpoint distribution across diverse studies.

public which hinders transparency and the broader scientific
community progress (Weston et al., 2019). The lack of shared
data and presence of multiple datasets associated with a single
disease pose a notable challenge in survival prediction. For
instance, it hinders the establishment of standardized testing and
benchmarking procedures for newly proposed survival prediction

methods, leading to ambiguities in identifying the most advanced
techniques (Wissel et al., 2022). Moreover, recognizing the need
for standardization in benchmarking survival prediction models,
Wissel et al. (2022) introduced benchmark survival datasets tailored
for both individual cancer subtypes and pan-cancer settings.
These datasets are accessible at https://survboard.vercel.app/,
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FIGURE 5

Distribution of explored survival prediction streams from existing

literature. DFS, disease-free survival; PFS, progression-free survival;

OS, overall survival; BC, biochemical recurrence.

contributing to a more uniform and transparent benchmarking
framework within the survival prediction landscape. Particularly,
here we emphasize the use of these datasets for benchmarking in
addition to newly created datasets to have unified benchmarking
for cancer-specific survival prediction models.

5.3 RQ V, VI: survival prediction data
modalities and utilization of their
combinations for disease and survival
endpoints specific predictors development

Following the objective of research question V, the primary
focus of this section is to investigate and provide a comprehensive
summary of the various data modalities utilized in the development
of diverse survival predictors. To address research question V,
it describes the distribution of data modalities across predictors
associated with four distinct survival endpoints, and 44 different
diseases. Furthermore, in response to research question VI,
it furnishes information regarding the specific clinical features
utilized by various survival prediction studies.

Out of 90 different studies, data modalities details of only
84 studies are available. Within this subset, 27 studies exclusively
used clinical data, 39 studies utilized multiomics data, and 16
studies investigated the combined potential of both clinical and
multiomics data modalities. Moreover, based on characteristics of
molecular information omics data is generally categorized into
nine different classes namely gene expression (mRNA), micro
RNA (miRNA), methylation, copy number variation (CNV),
whole exome sequencing (WES), long noncoding RNA (lncRNA),
mutation, metabolic, and proteomics. The specifics of different
predictors, in terms of variations in the combinations of clinical
and various omics data modalities, are outlined in Table 5. Among
55 survival prediction studies based on multiomics, 49 studies

utilized different combinations of four distinct omics types: mRNA,
methylation, miRNA, and CNV (Baek and Lee, 2020; Jiang et al.,
2020; Li et al., 2020; Tan et al., 2020; Tong D. et al., 2020; Tong
L. et al., 2020; Yang Q. et al., 2020; Chai et al., 2021a; Hira et al.,
2021; Hu Q. et al., 2021; Owens et al., 2021; Tong et al., 2021;
Zhang X. et al., 2021; Zhang Z.-S. et al., 2021; Zhao L. et al., 2021;
Bhat and Hashmy, 2023; Ellen et al., 2023; Hao et al., 2023). Only
seven studies utilized additional modalities such as whole exome
sequencing (WES) (Baek and Lee, 2020; Jiang et al., 2022), long
coding RNA (lncRNA) (Jiang et al., 2022), proteomics (Tan et al.,
2020; Malik et al., 2021; Unterhuber et al., 2021; Richard et al., 2022;
Pellegrini, 2023), and mutation data (Tan et al., 2020; Malik et al.,
2021; Unterhuber et al., 2021; Pellegrini, 2023).

The choice of omics type hinges on the specific disease under
investigation, as indicated by the disease-wise distribution of omics
types in Figure 6. Out of nine omics types, mRNA, CNV, miRNA,
and methylation have been the most commonly utilized modalities
for 33 cancer subtypes i.e., breast cancer (Tong L. et al., 2020; Malik
et al., 2021; Zhou et al., 2021; Wu and Fang, 2022; Zhang J. Z.
et al., 2022; Hao et al., 2023; Othman et al., 2023; Zhang et al.,
2023), pan-cancer (Tan et al., 2020; Poirion et al., 2021; Zhang
X. et al., 2021; Zheng et al., 2021; Redekar et al., 2022; Yin et al.,
2022; Fan et al., 2023), colon cancer (Lv et al., 2020; Tong D. et al.,
2020; Yang H. et al., 2020; Zhang J. Z. et al., 2022; Lee et al., 2023),
lung adenocarcinoma (Jiang et al., 2020; Lee et al., 2020; Bhat and
Hashmy, 2023), and ovarian cancer (Hira et al., 2021; Tong et al.,
2021; Zhao L. et al., 2021; Pawar et al., 2022; Wu and Fang, 2022;
Zhang S. et al., 2022). In addition, mutation data has been utilized
for seven cancer subtypes namely, adult diffuse glioma (Yang Q.
et al., 2020), breast cancer (Malik et al., 2021), cervical cancer (Hu
Q. et al., 2021), non-small cell lung cancer (Manganaro et al., 2023),
ovarian cancer (Zhang S. et al., 2022), and pancreatic cancer (Han
et al., 2022). Among 10 data modalities, three modalities namely,
proteomic, lncRNA and WES have been utilized the least having
limited applicability to clear renal cell cancer (Jiang et al., 2022),
pancreatic cancer (Baek and Lee, 2020), breast cancer (Malik et al.,
2021), localized prostate cancer (Pellegrini, 2023), and pan-cancer
(Zheng et al., 2021). In terms of other diseases i.e., COVID-19 and
heart diseases, proteomics, methylation, mRNA, metabolic, and
methylation have been the only omics types utilized for survival
prediction (Unterhuber et al., 2021; Vahabi et al., 2021; Richard
et al., 2022).

The variability in omics-type selection is not solely bound to
diseases but notably varies across a wide spectrum of survival
endpoints. Figure 7 shows the counts of different omics types that
have been utilized for different survival endpoints prediction. In
the context of OS prediction, mRNA, miRNA, methylation, and
CNV have been primarily utilized in more than 31 studies, with
10 studies based on proteomics, mutation, and metabolic data.
However, in terms of DFS and PFS the selection of omics types
appears less distinct. These endpoints have been frequently studied
in conjunction with OS, predominantly utilizing mRNA, miRNA,
and methylation data. This combination suggests a commonality
in the predictive factors across these survival endpoints, indicating
potential interconnections or shared biological processes.

Clinical data modality has been utilized in 42 different studies.
However, in this modality number of features varied from study
to study and it is still unclear which particular set of features is
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TABLE 4 The ample collection of survival data within diverse public databases.

Data source Diseases covered Types of data URL Description

GDAC Broad
Firehose (Voet
et al., 2022)

38 different cancer subtypes Clinical, CNV,
methylation, miRNA,
mRNA, mutation,
proteomics

https://gdac.
broadinstitute.org/

The Firehose platform provides processed and analyzed
data from TCGA, making it accessible to researchers for
further analysis and interpretation.

Chinese Glioma
Genome Atlas
(CGGA) (Zhao Z.
et al., 2021)

Brain Tumor Clinical, single cell RNA,
mRNA, image, and
microarray

http://www.cgga.org.
cn/

The Chinese Glioma Genome Atlas (CGGA) is a
genomic database focused on glioma, providing
comprehensive molecular characterization and clinical
information to advance the understanding and
treatment of glioma tumors.

TARGET Pediatric cancers such as
osteosarcoma, neuroblastoma,
rhabdoid cancer, Wilms, acute
myloid leukemia, acute
lymphoblastic leukemia

Clinical, mRNA,
miRNA, methylation,
proteomic and CNV

https://www.cancer.
gov/ccg/research/
genome-sequencing/
target

The TARGET (Therapeutically Applicable Research to
Generate Effective Treatments) NCI (National Cancer
Institute) database is dedicated to pediatric cancers,
offering molecular and clinical data to facilitate
research and the development of targeted therapies for
pediatric cancer patients.

SEQC (Zhang et al.,
2015)

Neuroblastoma Microarray, and mRNA – RNA-seq and microarray data to predict
clinical/survival endpoints for neuroblastoma,

MsigDb (Liberzon
et al., 2011)

– Curated gene sets, motif
gene sets, gene ontology
terms, oncogenic
signatures, and
immunologic signatures

https://www.gsea-
msigdb.org/gsea/
msigdb

The Molecular Signatures Database (MSigDB) is a
collection of annotated gene sets, pivotal for gene set
enrichment analysis, encompassing diverse biological
pathways and functions, aiding researchers in studying
gene expression patterns.

GTEX (Stanfill and
Cao, 2021)

54 non-diseased tissue sites
across nearly 1,000
individuals

Single cell, mRNA,
methylation, chip-seq,
histology images

https://www.
gtexportal.org/home/

The Genotype-Tissue Expression (GTEx) project is a
comprehensive research initiative that characterizes the
genetic and tissue-specific gene expression patterns
across a diverse set of human tissues, providing
valuable insights into the relationship between genetic
variation and gene regulation.

Kaggle Not disease-specific Clinical https://www.kaggle.
com/

Kaggle is an online platform that hosts data science
competitions and facilitates collaboration among data
scientists, offering datasets and a community for
learning and problem-solving. In addition, Kaggle is
not specifically designed for omics-based datasets or
studies.

MESA (Bild et al.,
2002)

Heart diseases Clinical, genetic, and
imaging

https://www.mesa-
nhlbi.org/default.aspx

The Multi-Ethnic Study of Atherosclerosis (MESA)
MESA is a research study by the National Heart, Lung,
and Blood Institute, involves 6,000+ individuals from
six U.S. communities, assessed at affiliated university
clinics

UCSC Xena
(Goldman et al.,
2018)

Various cancer subtypes that
are present in TCGA

Clinical and omics data
modalities associated
with TCGA

https://xena.ucsc.edu/ UCSC Xena is a bioinformatics platform offering a
user-friendly interface for the exploration and
visualization of integrated multi-omic and clinical
datasets, enabling researchers to analyze and interpret
diverse biological and disease-related information
collaboratively.

GEO (Clough and
Barrett, 2016)

Plethora of diseases such as
cardiovascular and
neurological diseases and
cancers

Clinical, mRNA,
miRNA, CNV,
methylation, chromatin
interaction, DNA
modification, splicing,
lncRNA, and mutation

https://www.ncbi.nlm.
nih.gov/geo/

The Gene Expression Omnibus (GEO) is a publicly
accessible repository, maintained by the National
Center for Biotechnology Information (NCBI), housing
a diverse collection of high-throughput functional
genomics datasets, enabling researchers to freely access
and analyze gene expression and other omics data
across a broad spectrum of biological conditions and
diseases. GEO does not have a specific or dedicated
portal for survival prediction datasets.

TCGA-GDC
(Tomczak et al.,
2015)

More than 40 cancer subtypes
such as glioblastoma,
pancreatic, bladder, breast
and rectal cancers

Clinical, mRNA, miRNA,
CNV, methylation,
methylation, miRNA,
splicing, lncRNA, and
mutation

https://www.cancer.
gov/ccg/research/
genome-sequencing/
tcga

Cancer genome atlas (TCGA) generates genomics data,
while GDC is the platform that hosts and shares not
only TCGA data but also other cancer genomics
datasets, promoting data accessibility and collaboration
in the cancer research community.

UK Biobank
(Bycroft et al., 2018)

Population-based cohort
study with over 500,000
participants, collecting
extensive health and genetic
data

Clinical, genetic,
imaging, lifestyle, and
environmental data

https://www.
ukbiobank.ac.uk/

UK Biobank is a large-scale prospective cohort study
that aims to improve the prevention, diagnosis, and
treatment of a wide range of illnesses, including cancer,
by providing a rich resource for researchers to study the
complex interplay between genetic, environmental, and
lifestyle factors.
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FIGURE 6

Distribution of omics data modalities across a diverse set of diseases. Bar heights represent the counts of each data modality with respect to disease

specific published research papers. For instance, CNV has been used in six papers related to breast cancer, mRNA has been used in seven breast

cancer papers and so on.

FIGURE 7

Distribution of di�erent omics modalities with respect to survival endpoints.
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most important. To perform an in-depth analysis, which study
utilized which subset of features across diverse cancer subtypes and
heart diseases, a comprehensive collection of clinical features is
presented in Table 6. In order to better understand and discern the
trends in clinical features across diverse diseases, hereby they are
placed in seven different categories i.e., demographic features (6),
disease-specific clinical markers (71), treatment-related features
(17), laboratory and biomarkers (48), comorbidity and lifestyle
factors (18), and other factors (15).

A closer look at the clinical features across diverse diseases
reveals a consistent set of fundamental demographic features i.e.,
age and gender which are prevalent in nearly all studies (Hathaway
Q. A. et al., 2021; Unterhuber et al., 2021; Feng et al., 2022;
Redekar et al., 2022; Li et al., 2023; Wang X. et al., 2023). Beyond
demographic features, disease-specific features also play critical
role for disease-specific survival prediction. For instance, cancer-
related studies invariably focus on tumor stage, histological type,
and treatment specifics, underlining the critical role of disease-
specific clinical markers in prognosis (Lee et al., 2023; Pellegrini,
2023).

Treatment-related features such as chemotherapy,
radiotherapy, and immunotherapy, are particularly evident
in cancer subtypes specific studies which reflect the profound
influence of therapeutic interventions on survival outcomes
(Othman et al., 2023; Wang X. et al., 2023). Moreover, the
recurrent inclusion of lifestyle and comorbidity factors ranging
from smoking history and BMI to hypertension and diabetes
across multiple diseases underlines their pervasive impact on
prognostic modeling (Hathaway Q. A. et al., 2021; Bhat and
Hashmy, 2023). These lifestyle and comorbidity features show the
complex relationship between individual health choices and their
potential influence on survival outcomes.

5.4 RQ VII: feature engineering trends
across data modalities and disease-specific
survival predictors

This section addresses research question VII by investigating
the application of feature engineering methods in survival
prediction studies across a variety of diseases. This will help
researchers to analyze and understand trends of feature engineering
techniques in disease or endpoint specific survival prediction
pipelines. Additionally, it delves into the trends in diverse feature
engineering methods and their relevance to clinical andmultiomics
data modalities. This investigation aims to reveal trends and
patterns in the dynamic interplay between feature engineering
methods and the specific characteristics of different datamodalities,
and survival endpoints.

Table 7 illustrates 30 different feature engineering methods
that have been utilized in diverse survival prediction studies.
These methods are broadly categorized into five categories, namely
supervised methods, incorporating L1 regularized Cox regression
(Qian et al., 2023), RSF algorithm (Qian et al., 2023), Cox
regression (Zhang S. et al., 2022), least absolute shrinkage and
selection operator (lasso) regression (Abdelhamid et al., 2022),
cascaded Wx (Yin et al., 2022), recursive feature elimination

(Wang et al., 2022), Boruta (Jiang et al., 2022), Akaike information
criterion (AIC) regression (Zeng et al., 2021), variance (Zhao
L. et al., 2021), lasso analysis (Tang et al., 2021), multivariate
regression (Tang et al., 2021), Chi-squared (Moreno-Sanchez,
2023), mutual information (Moreno-Sanchez, 2023), and ANOVA
(Lv et al., 2020; Moreno-Sanchez, 2023). Additionally, Network
based methods include network based stratification (NBS) (Shetty
et al., 2023), weighted correlation network analysis (WGCNA)
(Wang X. et al., 2023), canonical correlation analyses (CCA)
(Wang J. et al., 2023), patient similarity networks (Wang et al.,
2022), and neighborhood component analysis (NCA) (Malik et al.,
2021). Dimensionality reduction methods include non-negative
matrix factorization (NMF) (Tang et al., 2021), autoencoders (AEs)
(Benkirane et al., 2023), variational autoencoders (VAEs) (Owens
et al., 2021), principal component analysis (PCA) (Lv et al., 2020),
and dominant effect of the cancer driver genes (DEOD) (Amgalan
and Lee, 2015; Lee et al., 2023). Moreover, clustering methods
comprise Kruskal-Wallis and Gaussian clustering (Poirion et al.,
2021), hierarchical clustering (Chai et al., 2021a), and Guassian
clustering (Poirion et al., 2021). In addition, to deal with clinical
data, Palmal et al. (2023) showed the application of Tab-transformer
for feature extraction.

A comprehensive analysis of feature engineering methods
across a range of disease-specific survival prediction studies unveils
that supervised methods, such as Cox regression, L1 regularized
Cox regression, and RSF algorithm, have been prevalent in diseases
like ASCVD, trauma, and ovarian cancer (Abdelhamid et al., 2022;
Zhang S. et al., 2022). On the other hand, network based methods
including NBS and WGCNA, have been applied in diseases like
KIRP, and hepatocellular carcinoma, which shows the significance
of network structures in certain medical contexts (Wang X. et al.,
2023). Univariate analyses, including ANOVA, chi-squared, and
univariate Cox regression, have been prevalent in diseases such as
pancreatic cancer and heart failure, underscoring the significance of
statistical testing in identifying relevant features (Moreno-Sanchez,
2023; Zhou et al., 2023). Furthermore, dimensionality reduction
methods such as PCA, and NMF have been consistently used across
various diseases namely, ovarian cancer (Zhang S. et al., 2022),
lower grade glioma (Wu et al., 2022), colon adenocarcinoma (Lv
et al., 2020), bladder and breast cancers (Tang et al., 2021; Lin et al.,
2022). In addition, the potential of AEs, and VAEs have also been
explored in diseases like glioblastoma multiforme, breast cancer,
pan-cancer, and Lung Adenocarcinoma for feature integration and
dimensionality reduction (Benkirane et al., 2023; Bhat andHashmy,
2023; Hao et al., 2023).

While feature engineering methods exhibit specificity tailored
to distinct diseases, their efficacy is influenced by the inherent
characteristics of the utilized data (Jiang et al., 2017). This raises the
pertinent question of which particular feature engineering method
proves most effective in the context of clinical and multiomics
datasets. A thorough analysis of feature engineering methods
and their applicability with respect to clinical and multiomics
datasets reveals that methods like Cox regression, CCA, AIC, and
ANOVA have been quite widely utilized in studies involving only
clinical data (Zeng et al., 2021; Moreno-Sanchez, 2023; Qian et al.,
2023; Wang J. et al., 2023). These methods have been applied
to clinical data for multiple reasons for instance, such methods
are interpretable which is important to gain meaningful insights
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TABLE 6 Diverse collection of clinical features utilized in various survival prediction studies.

References Disease Total Features (generic)

Qian et al. (2023) Atherosclerotic
cardiovascular disease
(ASCVD)

39 Height, weight, waist and hip circumference, blood pressure, B-ultrasound, heart rate,
hypertension, prehypertension, pulse pressure difference, body mass index, body obesity index,
waist to hip ratio, composite index triglyceride, blood glucose index, fat accumulation product
index, lipoprotein binding index, atherosclerosis index, atherogenic index of plasma, low high
density lipoprotein ratio, bilirubin composite index, family history of diseases of diabetes or
ASCVD, smoking, alcohol consumption, fasting blood glucose, triglyceride, high-density
lipoprotein cholesterol, total cholesterol, low-density lipoprotein cholesterol, diabetes, fatty liver,
blood glucose index, fat accumulation product index, lipoprotein binding index, atherosclerosis
index, AIP, low–high-density lipoprotein ratio and bilirubin composite index

Pellegrini (2023) Localized prostate cancer 24 Prostate-specific antigens, Gleason primary score, tumor stage expression levels for NF2 and
CDKN1B

Jung et al. (2023) Gastroesophageal cancer 117 Biometric variables, past medical history of diseases, tumor diagnosis, cTNM classification,
histology, neoadjuvant therapy, time between diagnosis and resection, type of operation, extent
of resection, anatomical reconstruction, duration of surgery, intraoperative complication, blood
loss and transfusion, days on ICU and ward, postoperative complications, pTNM classification,
lymph node ratio, grading, r status, histology, post-discharge problems

Chauhan et al. (2023) Bladder cancer 17 Gender, median age, ethnicity, smoking history, initial tumor stage, neoadjuvant chemotherapy
received, histology, pathology, pathologic complete response, smoking history, pack years, body
mass index, hemotocrit, urine cfDNA, variant allele frequency, inferred tumor mutational
burden, tumor fraction

Li et al. (2023) Lymphoma 18 Sex, age at diagnosis, ethnic, medical insurance, Ann Arbor stage, pathological type, b
symptoms, surgery, radiotherapy, chemotherapy, targeted therapy, immunotherapy, LDH,
β2-microglobulin, platelet, lymphocyte, albumin globulin ratio and C reactive protein

Lee et al. (2023) Colon cancer 7 Age, sex, AJCC stage, prognostic information such as alive, deceased, disease free and recurrence

Wang X. et al. (2023) Hepatocellular carcinoma 24 Age, gender, ALT, main tumor size, multinodular, cirrhosis, TNM stage, BCLC stage, CLIP stage,
tumor grade, TMB, stromal score, immune score, ESTIMATE score, risk score, CNLC stage,
hepatitis B, Lymph node invasion, vascular invasion, perineural invasion, albumin, AFP, CEA
and CA199

Manganaro et al. (2023) Non-small cell lung cancer 6 Histology, gender, age, pathological staging, DFS, and smoking status related features

Othman et al. (2023) Breast cancer 25 Age at diagnosis, tumor size, tumor stage, lymph nodes, examined positive neoplasm, histologic
grade, histological type, ER status, PR status, HER2 SNP6 state, type of treatment, the patient
received survival status and time, inferred menopausal state, overall survival, HER2 SNP6 state,
treatment and patients vital status

Moreno-Sanchez (2023) Heart failure 13 Age, anemia, high blood pressure, creatinine phosphokinase, diabetes, ejection fraction, sex,
platelets, serum creatinine, serum sodium, smoking, time follow up period and death event

Wang J. et al. (2023) Metastatic breast cancer 10 Age at diagnosis, mean age, molecular classification (luminal, triple-negative), de novo
metastasis, number of metastatic sites, visceral metastases, adjuvant chemotherapy, adjuvant
radiotherapy, adjuvant endocrine therapy and previous endocrine therapy

Ellen et al. (2023) Non-small lung cancer 11 Age, sex, tumor, volume, primary diagnosis, prior malignacy, synchronous malignancy,
pathological stage, staging tumor, staging lymph nodes, staging metastasis, no. of pack-years
smoked

Miao et al. (2022) Nasopharyngeal carcinoma 17 Age, stage, sex, ethnicity, marriage, occupation, pathological, transfer information, radiotherapy,
chemical therapy, targeted therapy, EBV, BQ, LAR, NLR and PLR

Feng et al. (2022) Cardiovascular 8 Age, age groups, sex, region of residence, number of Charlson comorbidities, Charlson
comorbidities, lab test results(LDL-cholesterol, blood glucose, eGFR, HbA1c, at least one lab
test), features related to medications

Bichindaritz and Liu
(2022)

Esophageal carcinoma 3 Vital status, days to death and days to last follow up

Redekar et al. (2022) Glioblastoma multiforme 9 Age, gender, diagnosis method, treatment history, Karnofsky score, performance score, radiation
therapy, duration of survival and death status

Unterhuber et al. (2021) Cardiovascular disease 12 Age, sex, body mass index, smoking status, systolic and diastolic blood pressure, current smoker,
total cholesterol, HDL cholesterol, triglycerides, lipid lowering drug dose, antihypertensive drug
use and median follow-up time

Hathaway Q. A. et al.
(2021)

Atherosclerosis 33 Age, albumin/creatinine ratio, BMI, cholesterol, diabetes, educational status, family history of
heart diseases, gender, HDL, hyperlipidemia, hypertension, income category, LDL, mean
diastolic and systolic blood pressure, metabolic syndrome, smoking in past years, statin use,
triglycerides, minutes walking per week, c reactive protein, D dimer, factor VIII, fibrinogen
antigen, homocysteine, interleukin-6, plasmin antiplasmin, pericardial fat deposition, coronary
artery calcium score, left ventricular area and left ventricular ejection fraction

(Continued)
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TABLE 6 (Continued)

References Disease Total Features (generic)

Zhao L. et al. (2021) Multiple cancer subtypes 3 Age, Overall Survival time, Status

Li et al. (2021) Prostate cancer 4 Age at diagnosis, clinical tumor stage (T1(a-c),T2(a-c), T3(a-b),T4), NA Gleason score and
preoperative PSA

Kantidakis et al. (2020) Liver transplantation 97 52 donor and 45 liver recipient characteristics, unique encrypted person Id, unique encrypted
donor Id, candidate listing center, OPO serving, transplant center, transplant date, graft failure
date, cohort censoring date, death date, graft follow up date, age, gender, race, ethnicity,
socioeconomic status and education level, smoking history, alcohol consumption, physical
activity level, cocaine or other drug history, blood type, etiology (cause of disease), laboratory
measurements for arginine, serum creatinine, serum sodium, total bilirubin

Baek and Lee (2020) Pancreatic adenocarcinoma
(PAAD)

7 Sex, grade, AJCC cancer stage, smoking history, treatment outcome, age, primary site

Tong D. et al. (2020) Colon cancer 7 Gender, survival status, survival time, TNM stage, age at initial diagnosis

for healthcare professionals (Jiang, 2022). Clinical data is always
multifactorial, which means that multiple features of the data can
lead to a specific event, andmethods like ANOVA are quite efficient
in analyzing such contributors (Azizi et al., 2022). Although, such
models have shown promising performance with clinical data, yet
one of the drawbacks of such models is their inability to handle
non-linear data which is the case in terms of multiomics data
(Cleves, 2008). Considering similar limitations, multiple methods
such as cascaded wx (Yin et al., 2022), RFI (Wang et al., 2022),
PSN (Jiang et al., 2022), NMF (Tang et al., 2021), Boruta (Jiang
et al., 2022), PCA (Chai et al., 2021a) variance (Zhao L. et al., 2021),
DEOD (Lee et al., 2023), have been utilized to handle multiomics
to capture important interactions among the features and to
integrate cross modalities properly. Particularly, here methods such
as AEs and VAEs play a significant role and recent studies also
show a growing interest in using such methods for dimensionality
reduction and feature integration by such methods for multiomics
and clinical datasets i.e., AEs (Baek and Lee, 2020; Jiang et al., 2020,
2022; Li et al., 2020; Lv et al., 2020; Wang et al., 2020; Yang H. et al.,
2020; Owens et al., 2021; Wu and Fang, 2022), and VAEs (Tong L.
et al., 2020; Hira et al., 2021; Zhang X. et al., 2021; Benkirane et al.,
2023).

Although the selection of a feature engineering method is tied
to the characteristics of the disease and the nature of the data (Dong
and Liu, 2018), there is no significant evidence to suggest that it is
substantially impacted by survival endpoints such as DFS, PFS, BC,
and OS. This assumption arises due to the absence of a consistent
pattern in feature engineering method selection across different
survival endpoints. Studies, such as Lv et al. (2020), Tang et al.
(2021), and Manganaro et al. (2023), demonstrate a varied use of
feature engineering techniques irrespective of the specific survival
endpoints (DFS, PFS, BC, or OS). This lack of uniformity implies
that feature engineering method selection is driven more by the
unique characteristics of the data and disease than by the nature
of the survival endpoint itself.

On the basis of various trends and patterns it can be concluded
that for heart diseases, univariate analyses and supervised feature
engineering methods have been utilized. Conversely, in terms of
cancer subtypes a mixture of dimensionality reduction methods is
observed with a recent trend toward the AEs. In terms of survival
datasets, the prime focus has been to use supervised methods for

clinical data and multiple dimensionality reduction methods for
multiomics data. Moreover, there are no conclusive remarks that
feature engineering methods get affected by the survival endpoints,
as the current literature also suggests a varied use of feature
engineering methods regardless of the survival endpoints.

5.5 RQ VIII: survival prediction methods
insights and distribution across disease
types and survival endpoints

In pursuit of addressing research question VIII, this section
presents an overview and insights about statistical, ML, and
DL algorithms that have been utilized in existing survival
prediction pipelines. It succinctly examines their emerging trends
across diseases and survival endpoints. This exploration aims to
empower researchers in identifying gaps within disease-specific and
survival endpoint-focused studies, ultimately contributing to the
enhancement of survival predictive pipelines.

Table 8 provides information about 44 diseases and the
corresponding survival prediction algorithms utilized in these
diseases. A deeper analysis of Table 8 shows that Cox-PH and
lasso Cox-PH models have been extensively utilized for disease
specific survival prediction i.e., ASCVD (Hathaway Q. A. et al.,
2021; Qian et al., 2023), bladder cancer (Chai et al., 2021a; Tang
et al., 2021), colorectal cancer (Tong D. et al., 2020; Yang H. et al.,
2020; Zhang J. Z. et al., 2022; Lee et al., 2023), hepatocellular
carcinoma (Owens et al., 2021; Zhang R. et al., 2022; Wang X. et al.,
2023), ovarian cancer (Hira et al., 2021; Pawar et al., 2022; Wu
and Fang, 2022; Zhang S. et al., 2022), lung adenocarcinoma (Bhat
and Hashmy, 2023), heart failure (Moreno-Sanchez, 2023), HER2-
negative metastatic breast cancer (Wang J. et al., 2023), pancreatic
cancer (Baek and Lee, 2020; Zhou et al., 2023), trauma (Abdelhamid
et al., 2022), nasopharyngeal carcinoma (Miao et al., 2022), triple-
negative breast cancer (Zhang et al., 2023), lymphoma (Li et al.,
2023), breast cancer (Chai et al., 2021a; Tang et al., 2021; Chauhan
et al., 2023), ovarian cancer (Hira et al., 2021; Pawar et al., 2022;Wu
and Fang, 2022; Zhang S. et al., 2022), and lower-grade glioma (Wu
et al., 2022), cardiovascular disease (Unterhuber et al., 2021; Vahabi
et al., 2021; Xu et al., 2021; Zeng et al., 2021; Feng et al., 2022),
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TABLE 7 Diverse feature engineering methods for survival prediction.

Method name References

L1 regularized Cox regression Qian et al., 2023

RSF algorithm Qian et al., 2023

Cox regression Zhang S. et al., 2022; Qian et al., 2023

Network-Based Stratification (NBS)
for data integration

Shetty et al., 2023

Weighted correlation network
analysis (WGCNA)

Wang X. et al., 2023

Canonical correlation analyses (CCA) Wang J. et al., 2023

Least Absolute Shrinkage and
Selection Operator (lasso) regression
modeling

Abdelhamid et al., 2022; Eckardt et al.,
2023

Cascaded Wx Yin et al., 2022

Recursive feature elimination Wang et al., 2022; Eckardt et al., 2023

Patient similarity networks Wang et al., 2022

Boruta Jiang et al., 2022

Akaike Information Criterion (AIC)
regression

Zeng et al., 2021

Kruskal-Wallis and Gaussian
clustering

Poirion et al., 2021

Variance Zhao L. et al., 2021

Non-negative matrix factorization
(NMF)

Tang et al., 2021

Lasso analysis Tang et al., 2021

Multivariate regression Tang et al., 2021

PCA Lv et al., 2020; Chai et al., 2021a; Jiang
et al., 2022; Zhang S. et al., 2022

ANOVA Lv et al., 2020; Moreno-Sanchez, 2023

Chi-squared Eckardt et al., 2023; Moreno-Sanchez,
2023

Mutual information Moreno-Sanchez, 2023

Hierarchical clustering Tong D. et al., 2020; Chai et al., 2021a

Neighborhood component analysis
(NCA)

Malik et al., 2021

DEOD Lee et al., 2023

Minimal-redundancy-maximal-
relevance criterion
(MRMR)

Palmal et al., 2023

Graph convolution Networks Palmal et al., 2023

Tab-transformer Pant et al., 2023

Transformer Hu S. et al., 2021

Variational autoencoders Tong L. et al., 2020; Hira et al., 2021;
Zhang X. et al., 2021; Benkirane et al.,
2023; Bhat and Hashmy, 2023

Autoencoders Baek and Lee, 2020; Jiang et al., 2020,
2022; Li et al., 2020; Lv et al., 2020;
Wang et al., 2020; Yang H. et al., 2020;
Owens et al., 2021; Wu and Fang, 2022

invasive ductal carcinoma (Lin et al., 2022), liver transplantation
(Kantidakis et al., 2020), gastric cancer (Li et al., 2020), lung cancer
(Jiang et al., 2020), esophageal squamous cell carcinoma (Yu et al.,
2020), glioma (Yang Q. et al., 2020), and liver cancer (Wang et al.,
2020). RSF has been employed in 13 studies for six diseases namely,
ASCVD (Qian et al., 2023), bladder cancer (Chai et al., 2021a),
gastrointestinal cancer (Jung et al., 2023), cervical cancer (Hu Q.
et al., 2021), liver transplantation (Kantidakis et al., 2020), and heart
failure (Moreno-Sanchez, 2023). DL model DeepSurv, has been
utilized in five studies related to gastrointestinal cancer (Jung et al.,
2023), ASCVD (Hathaway Q. A. et al., 2021), NSCLC (Zhang Z.-S.
et al., 2021). On the other hand, in the analyzed survival predictive
pipelines less frequently utilized methods are i.e., survival SVM (Yu
et al., 2020; Abdelhamid et al., 2022; Manganaro et al., 2023), partial
logistic regression (Lin et al., 2022; Lee et al., 2023), log hazard net
(Lee et al., 2023;Majji et al., 2023), boosting (Wang et al., 2020; Feng
et al., 2022), stepCox (Wang X. et al., 2023), elastic net (Manganaro
et al., 2023), CNN-cox (Majji et al., 2023), DeepOmix (Majji et al.,
2023), ordinal Cox-PH (Bichindaritz and Liu, 2022), DeepHit (Feng
et al., 2022), and linear multitask logistic regression (MTLR) (Feng
et al., 2022).

Furthermore, Supplementary Table S3 provides details about
predictors distribution with respect to survival endpoints. A
detailed analysis reveals, out of 90 predictors, 47, 8, 1, and 6
models have been utilized for OS, DFS, PFS, and BC survival
endpoints, respectively. Unlike disease-specific predictors, here a
mixture of methods is utilized and no particular trend exists. To
provide high-level overview of multiple methods that have been
utilized in all four survival endpoints we have provided a graphical
representation of methods in Figure 8.

It can be seen in Figure 8, diverse types of methods that have
been utilized in survival predictive pipelines can be categorized
into three different categories i.e., statistical, ML, and DL. Statistical
methods are broadly classified into three different categories
i.e., parametric, semi-parametric, and non-parametric models.
Parametric methods make assumptions about the survival time
distribution (Lee and Wang, 2003; Kubi et al., 2022). Parametric
methods include exponential, Weibull, log-normal, Weibull,
gamma models, and so on (Ishak et al., 2013; Kubi et al., 2022).
Comparatively, semi-parametric methods make no assumptions
about the shape of the baseline hazard function (non-parametric)
(Kleinbaum and Klein, 1996). Rather, these methods assume a
specific functional form for the effect of covariates (parametric)
(Sinha and Dey, 1997). In comparison, non-parametric methods
do not take into account assumptions about the underlying
distribution of survival times and the shape of the hazard function.
These methods include Kalpan-Meier, Nelson-Aalen, Breslow,
Gehan-Eilcoxon, and life table methods (Stevenson and EpiCentre,
2009). Some statistical methods (i.e., COX-PH) have certain
disadvantages with multiomics based survival prediction (Lee and
Lim, 2019). For instance, COX-PH assumes linear relationships
among variables and fails to capture complex and non-linear data
patterns (Therneau et al., 2000). These methods perform poorly
on high dimensional data where the number of features is larger
than the number of samples. This specific gap is filled by the
emergence of AI based models. Various ML models are utilized
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TABLE 8 Distribution of survival predictors across diverse diseases.

References Disease Predictor

Hathaway Q. A. et al. (2021), Qian et al. (2023) ASCVD Cox-PH, RSF, MTLR, Deepsurv neural network, lasso Cox-PH

Hao et al. (2023), Shetty et al. (2023) KIRP GeneNet, ANNs

Li et al. (2021), Pellegrini (2023) Prostate cancer Coherent Voting Network (CVN), Best Linear Unbiased
Prediction (BLUP)

Jung et al. (2023) Gastrointestinal cancer DeepSurv, MTLR, Gompertz model, RSF

Zhang et al. (2023) Tripple negative breast cancer lasso Cox-PH

Chai et al. (2021a), Tang et al. (2021), Chauhan et al. (2023) Bladder cancer Cox-PH, RSF, CoxNet, and transfer learning-based CoxNet

Li et al. (2023) Lymphoma lasso-Cox-PH

Tong D. et al. (2020), Yang H. et al. (2020), Zhang J. Z. et al. (2022), Lee
et al. (2023)

Colon cancer Loghazard Net, partial logistic regression, Cox-PH

Owens et al. (2021), Zhang R. et al. (2022), Wang X. et al. (2023) Hepatocellular carcinoma Stepwise Cox (StepCox), SurvivalSVM, Cox-PH, CoxNet

Hira et al. (2021), Pawar et al. (2022), Wu and Fang (2022) Zhang S.
et al. (2022)

Ovarian cancer Cox-PH, Cox-Time, and DeepSurv with consensus training

Zhang Z.-S. et al. (2021), Ellen et al. (2023), Manganaro et al. (2023) NSCLC SVM, Elastic net and Cox-PH, CNN and ANN

Benkirane et al. (2023) Multiple cancers ANN

Tong L. et al. (2020), Malik et al. (2021), Wu and Fang (2022), Othman
et al. (2023)

Breast cancer CoxNet, Cox-PH, Cox-Time, and DeepSurv with consensus
training, Loghazard Net, partial logistic regression

Bhat and Hashmy (2023) Lung adenocarcinoma Cox-PH, and lasso Cox-PH

Tan et al. (2020), Poirion et al. (2021), Zhang X. et al. (2021), Zheng
et al. (2021), Zhao L. et al. (2021), Yin et al. (2022), Fan et al. (2023),
Majji et al. (2023)

Pan-cancer Survival neural network, CNN-Cox, Cox-PH, DeepOmix, lasso
and group penalized Cox-PH, VAE based NN

Willems et al. (2023) Colorectal cancer Lasso Cox-PH

Moreno-Sanchez (2023) Heart failure Cox-PH, RSF

Wang J. et al. (2023) HER2-negative metastatic
breast cancer

Cox-PH

Baek and Lee (2020), Zhou et al. (2023) Pancreatic cancer Cox-PH, l2 regularized regression

Abdelhamid et al. (2022) Trauma RF, SVM for outcome prediction

Miao et al. (2022) Nasophrngeal carcinoma Cox-PH

Unterhuber et al. (2021), Vahabi et al. (2021), Xu et al. (2021), Zeng
et al. (2021), Feng et al. (2022)

Cardiovascular disease Survival outcome prediction based on naive Bayes, ANNs, and
SVM, Logistic regression and XGboost. Survival prediction:
Cox-PH, survival XGboost, DeepHit, DeepSurv, Cox-PH, Linear
MTLR, and RSF

Richard et al. (2022) COVID-19 SVM

Wang et al. (2022) Neuroblastoma Deep neural network (DNN)

Lin et al. (2022) Invasive ductal carcinoma Multivariate Cox two way stepwise regression

Bichindaritz and Liu (2022) Stomach, Esophageal
carcinoma and Ovarian
serous cystadenocarcinoma

Bidirectional LSTM, ordinal Cox model network and auxiliary
loss

Wu et al. (2022) Lower grade glioma Lasso Cox-PH

Jiang et al. (2022) Renal cell carcinoma Cox-PH

Du et al. (2020), Lee et al. (2020), Kazerooni et al. (2021), Redekar et al.
(2022), Wu and Fang (2022)

Glioblastoma Cox-PH, CoxNet, SVM and Cox-PH, lasso Cox-PH

Hu Q. et al. (2021) Cervical cancer RSF, and Cox-PH

Tong et al. (2021) Ovarian and breast cancer

Kantidakis et al. (2020) Liver transplantation RSF, Cox-PH, and partial logistic artificial neural networks
(PLANN)

Lv et al. (2020) Lung adenocarcinoma

(Continued)
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TABLE 8 (Continued)

References Disease Predictor

Li et al. (2020) Gastric cancer Lasso, univariate and multi-variate Cox-PH

Jiang et al. (2020) Lung cancer Cox-nnet

Yu et al. (2020) Esophageal squamous cell
carcinoma

Support vector machine, K-means clustering

Yang Q. et al. (2020) Glioma Cox regression

Wang et al. (2020) Liver cancer XGBoost for subtype classification, and Cox-PH for survival
prediction

for survival analysis such as random survival forest (Ishwaran
et al., 2008), and boosting-basedmethods (Binder and Schumacher,
2008). Shivaswamy et al. (2007), Van Belle et al. (2007), and
Khan and Zubek (2008) proposed ranking and regression-based
survival SVM for survival prediction while handling right censored
data. Particularly, survival SVM is used in three ways for survival
prediction i.e., ranking, regression, and combined. Ishwaran et al.
(2008) proposed RSF where log-rank test is utilized for the splitting
as compared to the Gini impurity of the classical random forest
models.

DL methods are utilized in two ways to model survival
prediction tasks i.e., continuous and discrete time (Kvamme et al.,
2019). Models like CoxCC and time (Kvamme et al., 2019),
piecewise constant hazard or PEANN (Fornili et al., 2014), and
DeepSruv (Katzman et al., 2018) are utilized for continuous
survival time prediction. Whereas, Nnet-survival (Gensheimer and
Narasimhan, 2019), Nnet-survival probabilitymass function (PMF)
(Kvamme and Borgan, 2019b), DeepHit and DeepHit Single (Lee
et al., 2018), multi-task logistic regression (MTLR) (Yu et al.,
2011; Fotso, 2018), and BCESurv (Kvamme and Borgan, 2019a) are
utilized to predict survival in a discrete-time setting.

5.6 RQ IX: open source tools and libraries
potential for development of survival
prediction pipelines

Following the objective research question IX, this section
summarizes details of open-source libraries and source codes of
existing survival predictors. This comprehensive information will
facilitate researchers to build upon existing work, fostering a
collaborative environment and accelerating the development of
robust and effective survival prediction models.

Table 9 presents an overview of open-source survival prediction
models. Among the 90 distinct survival prediction studies, only
28 have provided publicly accessible source code. Among these
studies, six studies have utilized R (Kantidakis et al., 2020; Li et al.,
2021; Redekar et al., 2022; Zhang S. et al., 2022; Ellen et al., 2023;
Willems et al., 2023) and 22 have opted for Python (Jiang et al.,
2020; Tong L. et al., 2020; Chai et al., 2021a; Hathaway Q. A.
et al., 2021; Hira et al., 2021; Malik et al., 2021; Poirion et al.,
2021; Xu et al., 2021; Zhang X. et al., 2021; Zhao L. et al., 2021;
Wang et al., 2022; Wu and Fang, 2022; Yin et al., 2022; Zhang J.
Z. et al., 2022; Benkirane et al., 2023; Fan et al., 2023; Hao et al.,
2023; Lang et al., 2023; Manganaro et al., 2023; Moreno-Sanchez,

2023; Palmal et al., 2023; Shetty et al., 2023). A comprehensive
analysis of open source codes reveals that a majority of these tools
have been developed from scratch without utilizing any specific
survival prediction library (Benkirane et al., 2023; Hao et al., 2023;
Manganaro et al., 2023; Shetty et al., 2023).

Approximately 10 different survival prediction packages or
libraries have been developed as shown in Table 10. Each library
offers a diverse set of preimplemented statistical, ML, and DL
survival prediction models. For instance, Pycox (Kvamme et al.,
2019) primarily focuses on continuous and discrete DL survival
prediction models such as CoxTime, CoxCC, MTLR, and so on.
Lifelines (Davidson-Pilon, 2019), scikit-survival (Pölsterl, 2020),
and pysurvival (Fotso et al., 2019 ) cover a wide range of statistical
and ML survival prediction models like Cox-PH, RSF, survival
support vector machine, and gradient boosting survival (Davidson-
Pilon, 2019; Fotso et al., 2019 ; Pölsterl, 2020).

Notably, addressing the lack of interpretability or explainability
in the previously discussed libraries, Spytek et al. (2023) introduced
Survex. This library allows researchers to analyze the features
responsible for a specific event by offering different methods for
both local and global explanations of various survival prediction
models.

The selection of a specific library is inherently subjective and
depends on factors such as the preferred development platform,
choice of survival prediction models, and the specific research
question in hand. Therefore, recommendations are made based on
the number of survival prediction models and evaluation measures
each library offers. For Python, Lifelines (Davidson-Pilon, 2019)
and Pycox (Kvamme et al., 2019) are recommended, with Lifelines
(Davidson-Pilon, 2019) providing a diverse range of statistical and
ML models, while Pycox (Kvamme et al., 2019) is specialized in DL
models. Additionally, for R, mlr3proba (Sonabend et al., 2021) is
recommended, as it offers a variety of statistical and ML models
for survival prediction. Ultimately, selecting a library aligned with
individual research needs not only streamlines the development
process but also contributes to the overall reliability of survival
prediction models.

5.7 RQ X: strategies for assessing survival
predictors: unveiling common evaluation
measures

The main objective of this section is to provide a
concise overview of research question X, which focuses on
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FIGURE 8

Hierarchal illustration of survival prediction methods under three di�erent categories.
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TABLE 9 Summary of open-source survival prediction methods in existing studies.

References Disease Approach Source code

Shetty et al. (2023) Kidney Papillary, Renal Cell Carcinoma (KIRP) GeneNet Link

Pellegrini (2023) Localized prostate cancer Coherent Voting Network (CVN) Link

Hao et al. (2023) GBM, KRCCC, LSCC, BIC ANNs for binary survival class prediction Link

Zhang S. et al. (2022) Ovarian Cancer DT, RF, and ANN Link

Manganaro et al. (2023) Non-small Cell Lung Cancer Two layer SVM Link

Benkirane et al. (2023) Pan-cancer ANN Link

Fan et al. (2023) Pan-cancer Survival neural network Link

Willems et al. (2023) Colorectal cancer Lasso penalized cox model Link

Moreno-Sanchez (2023) Heart failure Two-way survival prediction Link

Ellen et al. (2023) Non-small cell lung cancer Elastic net and cox proportional hazard model Link

Yin et al. (2022) Pan-cancer CNN and a cox model (CNN-Cox) Link

Wang et al. (2022) Neuroblastoma Deep neural network (DNN) Link

Zhang J. Z. et al. (2022) Breast cancer Loghazard Net Link

Wu and Fang (2022) Glioblastoma, ovary and breast cancers CoxNet Link

Redekar et al. (2022) Glioblastoma multiforme Cox regression Link

Hathaway Q. A. et al. (2021) Atherosclerosis Various models Link

Xu et al. (2021) Cardiovascular disease DeepSur, Cox-PH, RSF Link

Poirion et al. (2021) Pan-cancer Cox-PH model Link

Zhao L. et al. (2021) 8 cancer subtypes DeepOmix based on DNN Link

Chai et al. (2021a) Bladder cancer Cox regression, deep cox neural network Link

Hira et al. (2021) Ovarian cancer Cox-PH regression Link

Tong et al. (2021) Ovarian, lung, kidney, and pancreatic cancer Various survival models Link

Kantidakis et al. (2020) Liver transplantation RSF, Cox-PH, PLANN Link

Jiang et al. (2020) Lung adenocarcinoma Cox-nnet Link

Tong L. et al. (2020) Breast cancer DNN and cox proportional hazard model Link

Li et al. (2021) Prostate cancer BLUP Link

Malik et al. (2021) Breast cancer Deep neural network Link

Zhang X. et al. (2021) Pan-cancer Deep Neural network Link

Kim (2023) – Graph Neural networks –

the commonly employed evaluation measures for survival
predictive pipelines.

Table 11 shows a compilation of 18 distinct evaluationmeasures
that have been commonly used to evaluate survival prediction
pipelines. The survival prediction pipelines can be categorized
into two distinct classes namely survival outcome prediction
(Lynch et al., 2017) and survival prediction (Tarkhan et al., 2021).
Details related to these categories is provided in the background
section. Out of 18 evaluation measures mentioned in Table 11, a
set of 10 evaluation measures have been employed to assess the
performance of survival outcome prediction models. In addition
to the aforementioned measures, 8 other evaluation measures have
been utilized to assess the performance of survival prediction
models.

In survival prediction category based evaluation measures,
the objective is to capture two distinct characteristics namely,
calibration and discrimination (D’Agostino and Nam, 2003;
Simino, 2009). Specifically, calibration refers to how well the
predicted probabilities of survival align with the actual observed
survival rates over time (D’Agostino and Nam, 2003). Under
this paradigm most widely used evaluation measures are BS
(Schumacher et al., 2003), IBS (Gerds and Schumacher, 2006),
TD-ROC (Heagerty et al., 2000), and DCA (Vickers and Elkin,
2006). Discrimination paradigm based evaluationmeasures capture
differentiation between individuals with different survival times.
Under this paradigm most widely used measures are C-index
(Hartman et al., 2023), AUC-ROC (Terrematte et al., 2022), and
likelihood ratio (Murphy, 1995).
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TABLE 10 Survival analysis libraries, models, and evaluation metrics.

Library Language Models Evaluation metrics

Scikit-survival (Pölsterl, 2020) Python Cox-PH, Penalized Cox-PH, RSF, Kaplan-Meier,
Gradient boosting survival, Survival suppport
vector machine

Concordance Index (C-index), Integrated
Brier Score

Lifelines (Davidson-Pilon, 2019) Python Kaplan-MeierFitter, CoxTimeVaryingFitter,
Survival regression, Discrete survival models,
Piecewise exponential models

Concordance Index (C-index)

Survival (Therneau and Lumley, 2015) R Survival regression, Cox-PH, accelerated time
failure (AFT) models, Competing risk analysis,

Hazard Ratios, Log-likelihood, Akaike
Information Criterion (AIC)

Statsmodels (McKinney et al., 2011) Python PHReg, AFT models Hazard Ratios, Log-likelihood, Akaike
Information Criterion (AIC)

Pycox (Kvamme et al., 2019) Python Continuous time models such as Cox-Time,
CoxCC, PCHazard and DeepSurv, Discrete time
models such as Nnet-survival, probability mass
function, DeepHit, multitask logistic regression,
and BCEsurv

Concordance Index, integrated and
administrative Brier Score, time dependent
concordance index, negative and integrated
bionomial log likelihood

Pysurvival (Fotso et al., 2019 ) Python CoxPH, RSF, Kaplan-Meier, Survival Support
Vector Machine, multitask logistic regression,
Parametric models like exponential, Weibull,
Gompertz, log logistic, and log normal

Concordance Index (C-index), Integrated
Brier Score

flexsurv (Jackson, 2016) R Parametric survival models (e.g., Weibull,
Exponential)

Hazard Ratios, Log-likelihood, Akaike
Information Criterion (AIC)

mlr3proba (Sonabend et al., 2021) R Density estimation measures, Cox-PH, flexible
spline models, penalized regression, RSF, Van Belle
support vector machine, gradient boostinf
machine DeepSurv, DeepHit, CoxTime

Houwelingen’s β , C-index, time dependent
AUC, log-loss, integrated log loss, Brier and
integrated Brier score, and Schmid score

rstpm2 (Clements, 2019) R Restricted Mean Survival Time (RMST),
Cause-specific Hazard Models, Fine-Gray Model
(Competing Risks)

IBS, Time-dependent ROC curves, Grays
Test for Equality of Cumulative Incidence
Functions

Survex (Spytek et al., 2023) R Local and global explanations for survival
prediction models

None

SurvSHAP (Krzyziński et al., 2023) Python Shapely additive explanations for survival
prediction models

–

On the other hand objective of survival outcome prediction
evaluation measures is to assess diverse characteristics of a model
i.e., efficacy of the model, overall accurate predictions, biasness
toward type I or type II errors (Hao et al., 2023; Lee et al., 2023).
Specifically, accuracy and F1 score are used to measure overall
accurate predictions, precision, and recall examine the model’s
biasness with respect to type I and type II errors (Zeng et al., 2021;
Wang et al., 2022). Additionally, MCC provides a comprehensive
assessment, taking into account overall accurate predictions, and
errors (Othman et al., 2023). In addition, AUC-ROC assesses the
predictive potential of a model by analyzing the true positive rate
(TPR) and true negative rate (TNR) at different thresholds (Hao
et al., 2023; Pellegrini, 2023; Qian et al., 2023).

5.8 RQ XI: publisher and journal-wise
distribution of research papers

This section addresses research question XI by presenting the
distribution of survival prediction literature across diverse journals
and publishers. Overall, this analysis not only enables researchers
to strategically position their work but also offers opportunities for
interdisciplinary collaboration, promoting a more interconnected

and dynamic research landscape within the domain of survival
prediction.

In Figures 9, 10, the distribution of survival prediction
literature is presented based on journals and publishers. The
studies have been published in 25 different publishers, including
but not limited to Springer, Elsevier, Oxford Press, and BioMed
Central. Notably, around 30 out of 90 survival prediction studies
have been disseminated through Springer, and BioMed Central.
Furthermore, Elsevier has contributed to the field by publishing 10
relevant papers in recent years. Particularly, these studies have been
published in more than 50 different conferences/journals, which
shows the diversity of the survival prediction landscape.

6 Discussion

The field of disease survival prediction has become a pivotal
aspect of effective healthcare, especially within the domain of
precision medicine. Recognizing the significant variability present
among patients within specific diseases, there is an increasing
demand and development for disease specific survival predictors.
Our analysis reveals that researchers place a profound emphasis
on predicting survival in cancer as compared to other diseases,
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TABLE 11 A summary of evaluation measures used in survival prediction and survival outcome prediction pipelines.

Task Evaluation measure Count References Advantages

C-index 43 Pellegrini, 2023; Qian et al., 2023; Shetty et al.,
2023

Robust, measures discriminatory power. Less sensitive to
censoring compared to other metrics.

BS 7 Kantidakis et al., 2020; Hathaway Q. A. et al., 2021;
Xu et al., 2021

Measures accuracy of predicted survival probabilities.

IBS 5 Xu et al., 2021; Jung et al., 2023; Othman et al.,
2023

Considers entire survival time distribution.

Su
rv
iv
al
pr
ed
ic
ti
on Log Rank P-value 9 Jiang et al., 2022; Redekar et al., 2022; Benkirane

et al., 2023; Zhang et al., 2023
Tests differences in survival experiences.

DCA 1 Miao et al., 2022 Accounts for clinical consequences.

Kappa 3 Zheng et al., 2021; Pellegrini, 2023; Shetty et al.,
2023

Measures agreement beyond chance.

TD-ROC 2 Wang J. et al., 2023; Zhang et al., 2023 Time-dependent evaluation of ROC.

AUC-pval 1 Pellegrini, 2023 Evaluates AUC significance.

Odds ratio 1 Pellegrini, 2023 Measures association between groups.

Likelihood Ratio 1 Tong D. et al., 2020 Helps in understanding the odds of a predicted event
occurring compared to the odds of it not occurring.

AUC-ROC 21 Hao et al., 2023; Pellegrini, 2023; Qian et al., 2023 Provides a comprehensive view of the model’s performance
across various threshold values.

Accuracy 12 Hao et al., 2023; Lee et al., 2023 Simple and easy to understand, providing an overall
measure of correct predictions.

Precision 6 Chauhan et al., 2023; Hao et al., 2023; Othman
et al., 2023; Wang J. et al., 2023

Useful when the cost of false positives is high, as it focuses
on the accuracy of positive predictions.

Recall 6 Chauhan et al., 2023; Hao et al., 2023; Othman
et al., 2023; Wang J. et al., 2023

Emphasizes the ability of the model to capture all positive
instances, important for sensitive scenarios.

Su
rv
iv
al
ou

tc
om

e
pr
ed
ic
ti
on MCC 1 Othman et al., 2023

F1-Score 2 Zeng et al., 2021; Wang et al., 2022 Harmonizes precision and recall, making it useful when
there is a trade-off between false positives and false
negatives.

PPV 1 Zeng et al., 2021; Chauhan et al., 2023 Focuses on the proportion of true positives among positive
predictions, providing insights into prediction accuracy.

NPV 1 Zeng et al., 2021; Chauhan et al., 2023 Focuses on the proportion of true negatives among negative
predictions, providing insights into prediction accuracy.

and there are compelling reasons behind this focus. First, cancer
exhibits significant variability from one patient to another as
compared to other diseases, which highlights the imperative need
for cancer survival prediction to explore and comprehend the
heterogeneity of cancer. Second, cancer is a leading cause of
death worldwide, and effective survival prediction can aid in early
detection and intervention, potentially saving lives. Third, a huge
amount of data sources are developed to make cancer-related
data publicly available to accelerate and optimize cancer-related
research.

Furthermore, to analyze the trajectory of the disease,
researchers place great focus on studying different survival
endpoints that suit the respective research setting i.e., treatment,
progression, recurrence, and death. Among four different
survival endpoints i.e., OS, DFS, BC, and PFS, OS is often
emphasized more in survival prediction studies. Despite the
prime focus on OS, the significance of other survival endpoints in
understanding disease trajectories cannot be understated. These
survival endpoints help to analyze different characteristics of

diseases such as understanding treatment efficacy and durability,
treatments that not only extend life but also effectively manage
the course of the illness, and markers responsible for disease
recurrence. The lack of research in other survival endpoints opens
up new research avenues for the AI experts to develop novel
methods that can help explore various characteristics related
to disease.

Although both public and private databases have been
utilized in survival prediction studies, yet the preference for
public databases stems from their accessibility and the wealth of
information they provide. For instance, TCGA (Tomczak et al.,
2015) offers a vast array of genomic and clinical data across
different cancer types. This invaluable resource aids researchers
in developing accurate survival prediction models. Likewise, GDC
(Jensen et al., 2017) and GEO (Clough and Barrett, 2016) offer
comprehensive datasets that encompass a wide range of diseases,
making them appealing choices for various research endeavors.
Furthermore, a crucial observation regarding private data sources
is that they are not universally accessible. This argument is
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FIGURE 9

Journal-wise distribution of articles.

supported by the limited accessibility of omics datasets related
to cardiovascular diseases. Despite a singular study employing
omics data for survival prediction in cardiovascular diseases, the
challenge lies in the difficulty of retrieving the original data.
Authors often refrain from sharing their datasets, and obtaining
access to databases requires extensive proposals, adding a layer
of complexity to the development of novel survival prediction
pipelines for cardiovascular diseases. This obstacle may impede
the advancement of innovative survival prediction pipelines for
cardiovascular disease.

Overall, the use of omics and clinical data in survival prediction
tools marks a significant stride toward precision medicine. The
distribution of omics types in survival prediction studies reveals
a preference for mRNA, methylation, microRNA, and CNV
across various cancer subtypes. In addition, the limited number
of multiomics based survival prediction studies in cardiovascular
diseases hinders definitive conclusions on the importance of
specific omics types. Disease-specific patterns highlight the

importance of tailored clinical markers, prominently seen in
cancer studies with a focus on tumor stage and histological
type. Treatment-related features, notably chemotherapy and
radiotherapy, underscore the impact of therapeutic interventions
on survival predictions. Moreover, clinical features along
with omics data with diverse molecular aspects are utilized
together to improve the performance of survival prediction
models. Diverse survival prediction research accentuates the
pivotal role of leveraging patient information, such as medical
history, demographics, disease-related features, and diagnostic
records. This trend reflects an increasing recognition of the
potential of clinical data in not only understanding disease
progression but also in guiding personalized treatment strategies
and enhancing patient care. A recent benchmark study on
survival prediction models with multiomics and clinical data
also shows the significant role of clinical data in survival
prediction across multiple cancer subtypes (Herrmann et al.,
2021).
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FIGURE 10

Publisher-wise distribution of articles.

In addition, our analysis reveals that increasing the total
number of data modalities does not necessarily offer improved
survival predictions, yet data modalities are quite specific to the
disease and survival endpoints. Therefore, the selection of data
modalities should be made very carefully as rather than improving
the overall performance it can induce undesirable noise in the
analysis.

One of the common problems in survival analysis is data
censoring (Leung et al., 1997). Censoring arises when there is
incomplete information about the time points and/or events of
some subjects in a study. There are different types of censoring i.e.,
(I) Right Censoring is the most common type of data censoring,
where an event does not occur for some subjects by the end of study
or by the last time point at which data is collected. For example, a
subject withdraws from the study or there is a lost follow up for
a specific subject (II) Left Censoring is the least common type of
censoring where the event may occur before the start of the study
or during the data collection phase. (III) Interval Censoring arises
when the event of interest occurs in a time interval but the exact
time point is not known. In survival analysis, three assumptions
are taken into account to infer censored data i.e., (I) Independent
Censoring: assumes that the censoring times for multiple subjects
are independent of each other. (II) Random censoring assumes that
the time t at which individuals are censored must be random and
the failure rate for subjects who are censored is assumed to be equal
to the failure rate for subjects who remained in the risk set who
are not censored. (III) Non-informative censoring occurs if the

distribution of survival times (T) provides no information about
the distribution of censorship times (C), and vice versa. Although,
data censoring is quite important in terms of survival prediction,
yet it has been discussed and dealt with properly in the existing
studies. We recommend to incorporate comprehensive details of
data censoring in future survival prediction studies. Particularly
details on how each type of data censoring is handled should not
be neglected.

Our analysis of the utilization of feature engineering methods
raises two crucial points. First, even though a plethora of methods
have been already tested for various survival prediction studies,
autoencoder based methods tend to reduce the dimensionality of
omics data modalities more efficiently. In addition, the rest of
the methods work much better with clinical features. The success
of feature engineering approaches is contingent upon the chosen
technique with the inherent properties of the data. This highlights
the importance of large-scale benchmark studies in guiding the
selection of feature engineering strategies for the development of
accurate predictive pipelines.

In end-to-end survival predictive pipelines, researchers have
utilized methods from three different families namely statistical
(Hazard models, Kaplan-Meier Estimator, Log-Rank Test, and
Frailty Models) (Kleinbaum and Klein, 1996), ML (Random
Forests, Support Vector Machines, Gradient Boosting Machines,
and Nearest Neighbors) (Ishwaran et al., 2008; Ma et al., 2022),
and DL (CoxNnet, DeepSurv) (Ching et al., 2018; Katzman et al.,
2018). Statistical methods are unable to extract complex non-linear
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TABLE 12 A summary of key research questions of our review and main findings.

Research question (RQ) Main findings

RQ I, II, III: Survival predictors distribution analysis across diseases
and survival endpoints

A detailed analysis of the past three years shows that survival prediction models have been
developed majorly for 36 distinct cancer subtypes, as outlined in Table 3. Additionally, the
primary focus of this research has been on overall survival (OS) as the clinical/survival endpoint.

RQ IV: Survival prediction data availability in public and private
sources and opportunities for the development of predictors

Publicly accessible data primarily comes from three key databases: the Cancer Genome Atlas
Program (TCGA), NCI Genomic Data Commons (GDC), and the Gene Expression Omnibus
(GEO). In contrast, private databases also exist but present several challenges. Limited
accessibility to private data hinders the reproducibility and validation of survival models, and
the lack of standardized access complicates model comparison, potentially introducing bias and
impacting generalizability. In addition, our recommendation is to use Survboard datasets for
benchmarking and testing of survival models, which are available at https://survboard.vercel.
app/.

RQ V, VI: Survival prediction data modalities and utilization of their
combinations for disease and survival endpoints specific predictors
development

The selection of data modalities depends on the disease and survival endpoint. For example, in
cancer subtypes, mRNA, miRNA, and methylation data are most frequently used. Similarly,
these modalities are commonly employed for OS endpoint, while distinct patterns are less
evident for DFS, PFS, and BC endpoints. In addition, clinical features such as demographic,
histological, lifestyle, and comorbidity are of high importance and are used commonly in
survival analysis.

RQ VII: Feature engineering trends across data modalities and
disease-specific survival predictors

In terms of cardiovascular diseases, univariate analyses, and supervised feature engineering
methods i.e., Cox regression, L1 regularized Cox regression, and RSF algorithm, are common,
while cancer research based on multiomics data opts for dimensionality reduction methods like
PCA, AEs, and VAEs. There is no consistent or apparent effect of survival endpoints on the
selection of feature engineering method in the published literature.

RQ VIII: Survival Prediction Methods Insights and Distribution
Across Disease Types and Survival Endpoints

A plethora of statistical, machine ML, and DL based approaches have been utilized for survival
prediction. However, our analysis reveals that statistical methods have significant disadvantages:
they depend on strong assumptions like the proportionality of hazards, struggle with
high-dimensional data, and complex non-linear relationships. Additionally, they are sensitive to
outliers and missing data. In contrast, DL methods such as DeepSurv, Survival Convolutional
Neural Networks (SurvCNN), BCESurv, SurNnet, and autoencoders are preferred due to their
ability to handle high-dimensional data, model non-linear relationships, and integrate
heterogeneous data sources, making them more robust and accurate for multiomics based
survival prediction.

RQ IX: Open source tools and libraries potential for development of
survival prediction pipelines

For survival analysis in Python, Lifelines and Pycox are commonly used packages. Lifelines
provides a diverse range of statistical and ML models, while Pycox specializes in DL models.
Alternatively, mlr3proba is also used which can be a good choice for R users, offering a variety of
statistical and ML models for survival prediction.

RQ X: Strategies for assessing survival predictors: unveiling common
evaluation measures

In our findings on survival prediction evaluation, we discovered two key assessment paradigms:
calibration and discrimination. Calibration evaluates the alignment between predicted and
observed survival rates over time using measures like BS, IBS, TD-ROC, and DCA. Meanwhile,
discrimination measures such as C-index, AUC-ROC, and likelihood ratio focus on
distinguishing individuals with varying survival times. Additionally, for overall model
evaluation, we identified accuracy, F1 score, precision, recall, MCC, and AUC-ROC as crucial
metrics for assessing efficacy, prediction accuracy, and bias toward type I or type II errors.

RQ XI: Publisher and journal-wise distribution of research papers Our analysis of the survival prediction literature reveals a diverse distribution across various
publishers. Among the 16 publishers identified, notable contributions come from Springer,
Elsevier, Oxford Press, and BioMed Central. Around 30 out of 74 studies have been
disseminated through Springer and BioMed Central, highlighting their significant presence in
the field. Additionally, Elsevier has contributed 10 relevant papers in recent years. These studies
have been published across more than 50 different conferences and journals, underscoring the
breadth and diversity of the survival prediction landscape.

patterns that is why in current predictors focus of researchers is on
ML or DL based methods (Katzman et al., 2018). In spite of the
applications and usefulness of traditional ML methods, they face
numerous limitations when applied to survival prediction. These
limitations arise either from the inherent challenges of survival data
or from the models themselves. Such limitations include censored
observations (Khan and Zubek, 2008), overfitting and outliers
(Biccler et al., 2020; Nariya et al., 2023), and complex relationships
among variables. ML models also suffer from outliers in survival
prediction datasets (Biccler et al., 2020). DL methods address many
of these limitations through their advanced architectures and ability
to learn complex patterns from large datasets. DL models such as

DeepSurv, extend the Cox proportional hazards model by learning
non-linear representations of the covariates and handling censored
data effectively (Katzman et al., 2018). This model leverages the
strengths of neural networks to capture complex relationships
and interactions between variables, improving prediction accuracy
(Katzman et al., 2018). In addition, there are some advantages
of ML methods as well, i.e., they perform better even on small
datasets while DL methods require large data (LeCun et al., 2015).
Similarly, ML methods decisions are explainable and DL methods
decisions are black box (Dwivedi et al., 2023). Although, a research
comunity is focusing on unveiling black box decisions of predictors.
However, in survival prediction, most of predictors do not have
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explainability component (Krzyziński et al., 2023). But researchers
are trying to incorporate explainability methods with survival
models (Krzyziński et al., 2023).

While developing different data modalities based on survival
predictor, predictive pipelines require dimensionality reduction
methods that avoid the curse of the dimensionality problem
(Feldner-Busztin et al., 2023). Although several traditional methods
(PCA, LDA, TSNE, UMAP etc.) have been developed to transform
data into new space that have more comprehensive patterns and
less number of features. However, these methods lacks in extracting
and incorporating non-linear patterns of features (Gastinel, 2012;
Kirpich et al., 2018; Degenhardt et al., 2019). On the other hand in
deep learning based predictive pipelines, researchers are utilizing
auto-encoders that are capable of generating more comprehensive
feature space by extracting both linear and non-linear patterns of
features (Tan et al., 2020). Following overall pros and cons of ML
and DL based predictive pipelines, new predictors can be developed
by utilizing ML based methods with smaller datasets. Moreover,
in these predictors rather than utilizing traditional dimensionality
reduction methods, autoencoders can be utilized. Moreover, when
data is large, it is better to develop DL predictors but these
predictors must be enriched with explainability methods.

With an aim to evaluate the performance of predictive
pipelines, diverse types of evaluation measures have been
developed. Each evaluation measure addresses a specific aspect of
survival prediction models, precluding the possibility of any single
metric being universally ideal for a comprehensive evaluation of
survival prediction. For instance, C-index estimates the robustness
and discriminatory power of the survival prediction model.
In addition, BS and IBS measure the accuracy of a model
on time distribution. Moreover, log-rank p-value evaluates the
potential of the model by testing the differences in different
survival groups. Although these measures are the most commonly
utilized, there are diverse other evaluation measures for similar
purposes i.e., restricted mean survival time (RMST), odds ratio
(Pellegrini, 2023), Kappa for inter-rater reliability (Zheng et al.,
2021), integrated absolute error (IAE), integrated square error
(ISE), mean absolute error (MAE), integrated AUC (IAUC) time-
dependent integrated discrimination improvement, and time-
dependent net reclassification improvement (NRI). Furthermore,
while these individual measures provide valuable insights, it is
noteworthy to mention that their collective application offers
a more comprehensive evaluation. Therefore, we recommend
utilizing multiple evaluation measures to assess discrimination and
calibration of survival prediction models.

7 Reccomendations

With an aim to expedite and enhance research in survival
prediction. Hereby, on the basis of Table 12, we summarize some
important recommendations for future survival prediction studies.

We highly recommend leveraging open-source tools and
libraries for developing survival prediction pipelines. Pycox
(Kvamme et al., 2019), Lifelines (Davidson-Pilon, 2019), and scikit-
survival (Pölsterl, 2020) are excellent choices, offering a rich array
of pre-implemented statistical, ML, and DL models. In addition,
selecting appropriate evaluation measures is paramount. We advise
researchers to carefully choose measures aligned with their research

question and survival prediction task. Utilizing multiple measures
ensures a comprehensive assessment of model performance i.e.,
C-index, IBS, BS, and ROC (Schumacher et al., 2003; Gerds and
Schumacher, 2006; Terrematte et al., 2022; Hartman et al., 2023).

Integration of clinical and omics data is key to improving
prediction accuracy. Researchers should explore diverse data
sources and consider disease-specific patterns and survival
endpoints to enhance the predictive power of their models.
Researchers should carefully use feature engineering methods
tailored to their data characteristics. Autoencoder-based
dimensionality reduction for omics data and traditional methods
for clinical features can significantly enhance predictive pipelines.
Particularly it is important to note that addressing data censoring
transparently is essential for model reliability. We recommend
providing comprehensive details on censoring types and handling
methods to ensure the robustness of survival prediction models.

Both traditional ML and DL methods offer unique advantages.
Researchers should explore the strengths of each approach, with
a particular focus on DL methods like DeepSurv for capturing
complex relationships. In addition, models like Transformers can
also be used to deal with clinical data which shall be an interesting
research perspective in future (Pant et al., 2023). Enriching
survival prediction models with explainability methods is crucial
for improving interpretability. By understanding and unveiling
model decisions, researchers can enhance trust and adoption in
clinical settings. By following such recommendations, researchers
can contribute to the development of robust and effective survival
prediction models, ultimately facilitating personalized treatment
strategies and improving patient care across various disease.
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