
TYPE Original Research

PUBLISHED 14 November 2024

DOI 10.3389/frai.2024.1427534

OPEN ACCESS

EDITED BY

Zekarias Tilahun Kefato,

AstraZeneca, United Kingdom

REVIEWED BY

Sarunas Girdzijauskas,

Royal Institute of Technology, Sweden

Ahmed E. Samy,

Royal Institute of Technology, Sweden, in

collaboration with reviewer SG

Nasrullah Sheikh,

IBM Research Almaden, United States

*CORRESPONDENCE

Sergi Abadal

abadal@ac.upc.edu

†These authors have contributed equally to

this work and share first authorship

RECEIVED 03 May 2024

ACCEPTED 15 October 2024

PUBLISHED 14 November 2024

CITATION

Wassington A, Higueras R and Abadal S (2024)

SkyMap: a generative graph model for GNN

benchmarking. Front. Artif. Intell. 7:1427534.

doi: 10.3389/frai.2024.1427534

COPYRIGHT

© 2024 Wassington, Higueras and Abadal.

This is an open-access article distributed

under the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited,

in accordance with accepted academic

practice. No use, distribution or reproduction

is permitted which does not comply with

these terms.

SkyMap: a generative graph
model for GNN benchmarking

Axel Wassington†, Raúl Higueras† and Sergi Abadal*

Department of Computer Architecture, Universitat Politècnica de Catalunya, Barcelona, Spain

Graph Neural Networks (GNNs) have gained considerable attention in recent

years. Despite the surge in innovative GNN architecture designs, research

heavily relies on the same 5-10 benchmark datasets for validation. To address

this limitation, several generative graph models like ALBTER or GenCAT have

emerged, aiming to fix this problem with synthetic graph datasets. However,

these models often struggle to mirror the GNN performance of the original

graphs. In this work, we present SkyMap, a generative model for labeled

attributed graphs with a fine-grained control over graph topology and feature

distribution parameters. We show that our model is able to consistently replicate

the learnability of graphs on graph convolutional, attention, and isomorphism

networks better (64% lower Wasserstein distance) than ALBTER and GenCAT.

Further, we prove that by randomly sampling the input parameters of SkyMap,

graph dataset constellations can be created that cover a large parametric space,

hence making a significant stride in crafting synthetic datasets tailored for

GNN evaluation and benchmarking, as we illustrate through a performance

comparison between a GNN and a multilayer perceptron.

KEYWORDS

Graph Neural Network (GNN), machine learning datasets, graph generation model,

mixing matrix, degree distribution, benchmark

1 Introduction

Graph Neural Networks (GNNs) have seen an exponential growth in interest and

performance in the last years owing to their ability to model and learn from graph-

structured relational data. As a result, GNNs have found their way into a broad variety

of domains (Keramatfar et al., 2022) including drug discovery (You et al., 2018), Pinterest’s

recommendation systems (Ying et al., 2018), Google Maps’ traffic prediction (Derrow-

Pinion et al., 2021), or DeepMind’s GraphCast climate forecast modeling (Lam et al., 2023),

among many others.

An analysis of the multiple and ever appearing applications of GNNs will show that

their respective datasets are markedly different not only in terms of the graph structure,

but also the feature and class distributions over the graph.

In spite of this dataset variability, the availability of publicly accessible high-quality

graph-structured data remains limited, particularly in comparison to the ample datasets

prevalent in other deep learning modalities like images (Deng et al., 2009) or textual

data (Raffel et al., 2023). Many studies in GNNs rely on datasets such as the Open

Graph Benchmark (OGB) (Hu et al., 2020), which, albeit valuable, are constrained and

biased toward a small set of applications. This limitation severely hampers the research

community’s ability to benchmark new GNN developments across the diverse range of

graphs found in real-world applications.

To tackle the scarcity of public real-world graph datasets, one potential solution

involves the creation of synthetic graph datasets (Palowitch et al., 2022). This approach

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2024.1427534
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2024.1427534&domain=pdf&date_stamp=2024-11-14
mailto:abadal@ac.upc.edu
https://doi.org/10.3389/frai.2024.1427534
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2024.1427534/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Wassington et al. 10.3389/frai.2024.1427534

would facilitate the generation of sizable datasets formethod testing

(Wassington and Abadal, 2022). For synthetic benchmarks to be

effective, however, it is imperative to ensure that the generated

graph datasets exhibit shapes, structures, feature distributions, and

class distributions similar to those found in real-world data. As

an example, real-world social networks often display community

structures and occasionally adhere to scale-free characteristics

(Onnela et al., 2007). Therefore, the methodologies employed for

graph generation need to capture these specific properties to retain

the expressivity of the resulting datasets.

Moreover, for GNN benchmarking, a crucial aspect that

synthetic graph datasets must encapsulate is learnability. The

generated graphs should perform comparably to real-world graphs

when processed by GNNs to be of utility. Failing to mimic

the behavior of real graphs would render the generated graphs

unusable, as they will not provide informative insights into the

mechanisms that make GNNs work for particular types of datasets.

Despite the extensive bibliography related to graph generation,

many existing models (Erdos and Rényi, 2022; Watts and Strogatz,

1998; Albert and Barabási, 2002) focus on the graph structure and

lack the generation of node labels and features necessary for graph

learning. Moreover, many existing models, originally designed for

tasks unrelated to GNNs, often prioritize mimicking characteristics

that are not necessarily crucial for the specific problem at hand.

For instance, while metrics like diameter and degree distribution

are pertinent for understanding social networks, they may not

significantly impact GNN performance. Conversely, factors such

as the structure of the mixing matrix, i.e., whether nodes of two

particular classes tend to be connected or not (Newman, 2003),

play a more substantial role in GNN tasks but are frequently

overlooked or oversimplified. Another common issue highlighted

by Bonifati et al. (2020) is the lack of multi-domain applicability

in existing models. For example, some models enforce specific

degree distributions common in social networks but not present

in other domains, such as graph representations of optimization

processes where GNNs are also utilized (Schuetz et al., 2022).

Even for models specifically developed for GNN benchmarking,

such as ALBTER (Polina Andreeva and Bochenina, 2022), GenCAT

(Maekawa et al., 2023) andDancer (Largeron et al., 2017), achieving

the desired learnability remains a challenge, as demonstrated in

subsequent sections.

In our article, we present SkyMap1, a specialized generative

graph model tailored to mimic the performance of GNN models,

surpassing existing methods such as GenCAT and ALBTER in

replicating the performance of various GNN models on real-world

graphs. We benchmark our approach against three widely-used

GNN architectures: Graph Convolutional Network (GCN) (Kipf

and Welling, 2017), Graph Attention Network (GAT) (Veličković

et al., 2018), and Graph Isomorphism Network (GIN) (Xu et al.,

2019). The emulation process, shown on Figure 1, entails initially

extracting a set of pertinent metrics for the node classification

problem, which can be categorized into (i) metrics pertaining to

class distributions and mixing matrices, i.e., the percentage of

edges between nodes of different classes, (ii) metrics concerning

the feature distribution, i.e., the distribution of features and their

1 The code of SkyMap can be found at https://github.com/raulhigueras/

skymap_graph_generator.

relationship with node classes, and (iii) metrics relating to graph

topology, e.g. degree distribution. Subsequently, SkyMap utilizes

these metrics as input to generate a graph exhibiting similar

characteristics. Our evaluation reveals that SkyMap achieves a

Wasserstein distance of 0.09 between the generated and real graphs,

while other state-of-the-art generators typically exhibit distances

exceeding 0.2. This indicates that SkyMap is more than twice as

accurate as other state-of-the-art generators.

Furthermore, we delve into the practical implications of

SkyMap, elucidating its novelty and presenting the obtained results.

Leveraging this validatedmodel, we curate a diverse dataset suitable

for benchmarking GNN algorithms. We evaluate SkyMap based

on three performance indicators: realism (being able to replicate

selected real-world graphs), diversity (ensuring coverage of a sizable

portion of a parametric space in the generated graphs), and utility

(illustrating its use for GNN benchmarking and explainability).

The remainder of this paper is organized as follows. In

Section 2, we provide a description of the state of the art in terms of

synthetic graph dataset generation. In Section 3, we delve into the

details of our proposed generative model SkyMap, describing the

different steps of generation and the metrics used in the process. In

Section 4, we describe the experiments done to assess the validity

and performance of SkyMap and illustrate the significance of the

proposed approach via a use case study. Finally, the paper is

concluded in Section 5.

2 State of the art

Graph models, as statistical frameworks, play a pivotal role in

capturing real graph statistics and features for analysis. Primarily

generative in nature, these models enable the generation of new

graphs. However, a predominant emphasis in many existing graph

generators lies in modeling the graph topology, often overlooking

node attributes and labels. Classical models such as the Erdos-Renyi

model (Erdos and Rényi, 2022), Watts-Strogatz model (Watts and

Strogatz, 1998), and Barabási-Albert model (Albert and Barabási,

2002), or the recursive matrix (R-MAT) model (Chakrabarti et al.,

2004), while foundational in understanding fundamental graph

properties, lack focus on modeling node-level characteristics.

The evolution of graphmodels traces a long history, adapting to

diverse requirements over time. Initially conceived to mimic social

networks, subsequent development was spurred by challenges like

community detection. Notably, Stochastic Block Models emerged

as a family of models specifically tailored to this objective (Lee

and Wilkinson, 2019). Node classification in GNNs can be viewed

as an extension of the community detection problem, integrating

node features. SkyMap, introduced in this study, extends the

principles of Stochastic Block Models to accommodate node

attributes as well. Further, recent efforts have witnessed the advent

of generative models based on deep learning approaches like

VGAE (Kipf and Welling, 2016) and GraphGAN (Wang et al.,

2018). However, while demonstrating prowess in tasks such as

node embeddings generation, they exhibit limitations as generative

graph models.

The landscape of graph modeling and benchmark dataset

generation for graph algorithms remains rife with challenges. For

instance, the need for graph generators with simple parameters

Frontiers in Artificial Intelligence 02 frontiersin.org

https://doi.org/10.3389/frai.2024.1427534
https://github.com/raulhigueras/skymap_graph_generator
https://github.com/raulhigueras/skymap_graph_generator
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Wassington et al. 10.3389/frai.2024.1427534

Mimic graph 2

Real graph

M
e

tric
s

 C
a

lc
u

la
to

r

G
ra

p
h

G
e

n
e

ra
to

r

Finite set of relevant

metrics Mimic graph 1

Wasserstein

distance

Evaluate GNN

arch. on Graph

A
rc

h
.
1

A
rc

h
.
2

A
rc

h
.
3

A
rc

h
.
4

A
rc

h
.
1

A
rc

h
.
2

A
rc

h
.
3

A
rc

h
.
4

A
c
c
u

ra
c
y

A
c
c
u

ra
c
y

 graph S1

graph S2

Random selection on the

metric space (latent space)

M
e

tric
 D

im
 2

Metric Dim 1

S4

S1

S5

S3

S6

S2

1 2

G
ra

p
h

G
e

n
e

ra
to

r

G
ra

p
h

G
e

n
e

ra
to

r

Evaluate GNN

arch. on Graph

FIGURE 1

Overview of the objectives of this work. (1) Generation of synthetic graphs using metrics from real-world graph and their validation employing

statistical distance measures to assess the similarity in learnability between generated graphs and their real-world counterparts. (2) Utilization of the

validated generator to produce a diverse dataset, randomly sampled from points across a parametric space.

and multi-domain applicability persists (Bonifati et al., 2020).

Addressing these concerns, SkyMap employs a set of well-defined

graph metrics as parameters, which enables the reproduction of

graphs from diverse domains. In particular, this study focuses on

generative graph models capable of modeling label and attribute

distributions alongside graph topology, thereby enabling the

generation of attributed and labeled graphs. Few approaches exist

that can provide attributes and labels, as well as allowing some

control over the graph topology (Polina Andreeva and Bochenina,

2022; Maekawa et al., 2023; Largeron et al., 2015). In the subsequent

sections, we detail the characteristics of ALBTER and GenCAT,

which we use as baseline graph generators in our performance

evaluation.

2.1 ALBTER

The ALBTER model is an extension of the Block Two Level

Erdos-Renyi model (BTER) (Polina Andreeva and Bochenina,

2022), that is capable of generating node labels and attributes on

top of the graph structure. The BTER model (Seshadhri et al.,

2011) aims to fix two of the biggest problems graph models

presented when trying to model real data: capturing the heavy-

tail degree distribution and maintaining the community structures.

For this, the authors present a two-step approach. Firstly, ALBTER

distributes the nodes in communities and connects the nodes inside

each community, and after that the links between each community

are created.

In ALBTER, the label assignment is extracted directly from

the BTER model, assigning one different class to each of the

communities, where the number of communities is an input

parameter. The attribute generation is designed with the idea of

having control over the attribute assortativity coefficient. For that,

each node is assigned a value Xv = fc + gv, where fc ∼ N(0, σcluster)

is sampled for all elements inside a cluster and gv ∼ N(0, σnode)

is sampled for each node. The variance of the distributions allow

to control the assortativity as follows. If σcluster is large and σnode is

small, then all nodes within one cluster would be very similar but

notably different from nodes in other clusters, thus giving a lower

assortativity.

In their work, the authors show how ALBTER can be used

for assessing the impact of certain metrics on the performance

of GNNs, like the attribute assortativity or the average longest

path chain. However, as we show in Section 4, modeling these

characteristics well is not enough to accurately capture the

performance of graphs on GCN, GAT and GIN.

2.2 GenCAT

GenCAT (Maekawa et al., 2023) is another graph model

capable of generating labels and attributes for nodes. Contrary

to ALBTER, GenCAT generates at the same time the graph

topology and the features and labels. As inputs, the model

needs four matrices: the mean and deviation class preference

matrices, which capture how likely are different classes to be

connected together; the class size distribution, which determines

the size of each class; and the attribute-class correlation, which

captures the relation between classes and attributes. Those

input matrices are combined to generate three latent matrices,

which are eventually used for the graph topology, class and

attribute generation.

The model is designed to have control over two important

features of real graphs: homophily and the differentiation between

core and border nodes, corresponding to nodes surrounded by

nodes of the same or different class, respectively. The reason for

modeling homophily is that several studies have shown that such a

metric has a strong influence on the performance of certain GNNs

such as the GCN (Ma et al., 2022). Nevertheless, our empirical study

in Section 4 shows that GenCAT is not able to capture the GNN

performance with enough precision in models that do not strongly

rely on homophily.

Frontiers in Artificial Intelligence 03 frontiersin.org

https://doi.org/10.3389/frai.2024.1427534
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Wassington et al. 10.3389/frai.2024.1427534

Mixing Matrix (M) Class-Feature Matrix (F)

0.9 0.3 0

0.7 0.5 1

0.8 0.7 0.7

f1 f2 f3

c1

c2

c3

(1) Subgraph generation (2) Subgraph combination (3) Attribute assignment

Expected degree

0.3 0.2 0.1

0.2 0.2 0.1

0.1 0.1 0.1

c1

c2

c3

c1 c2 c3

 1 ...2 3 4 5

Graph Metrics

Degree

%

FIGURE 2

Overview of the SkyMap generative model.

3 Materials and methods

3.1 Overview of SkyMap

Our main contribution is a novel graph model belonging to

the Stochastic Block Models family. This method, which we call

SkyMap, aims to generate synthetic graphs that can replicate, with

high-fidelity, the behavior of real-world graphs when processed

by different GNN models. To this end, SkyMap consists of four

phases that are executed sequentially, as shown in Figure 2 and

summarized next:

1. First, given a set of inputs relative to the graph structure,

feature distribution, and class distribution, we generate the

degree distributions that are later used in the graph generation.

Moreover, we generate two matrices called mixing matrix M

and class-feature matrix F. The mixing matrix M describes the

probability of having edges between certain nodes based on their

class, whereas the class-feature matrix F provides the probability

of features having a certain value based on the class of the node.

These methods are described in Section 3.2.

2. Then, a subgraph is generated for each class of the dataset. The

number of nodes is given by an imbalance parameter describing

the distribution of class populations, whereas the number of

edges is given by the diagonal of the mixing matrix M. The

placement of the edges is guided by the degree distributions

also calculated in the previous step. More details are given in

Section 3.3.2

3. Once all subgraphs are generated, they are connected adding

inter-class edges following the distribution of the mixing matrix

M. This is described further in Section 3.3.3.

4. Finally, once the graph topology is given, features are assigned

to the nodes based on their class according to the distribution

dictated by the class-feature matrix F. See Section 3.3.4 for

more details.

The inputs that are used to generate the dataset can be

obtained directly from real-world datasets or arbitrarily chosen

within certain bounds. In the latter case, by executing SkyMap

multiple times sampling the different input parameters accordingly,

a constellation of synthetic graph datasets covering a large portion

of the parametric space can be obtained. Next, the parameter set is

described in more detail.

3.2 Model parameters

The metrics that SkyMap uses as parameters can be found,

along with their bounds, in Table 1. These metrics are selected

Frontiers in Artificial Intelligence 04 frontiersin.org

https://doi.org/10.3389/frai.2024.1427534
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Wassington et al. 10.3389/frai.2024.1427534

TABLE 1 Input parameters of SkyMap and sampling method used to generate a graph dataset constellation.

Parameter Domain range Sampling method

Subgraph generation (imbalance

distribution)

Number of nodes [1000,1000] Constant

Graph density [0, 1] Logarithmic (10)

Number of classes [2, 16] Logarithmic (2)

Class imbalance parameter [0, 1] Logarithmic (10)

Lambda (degree distribution) [0, 10] Uniform

Delta (degree distribution) [0, 50] Uniform

Subgraph combination (mixing

matrix)

Homophily [0, 1] Uniform

Self affinity imbalance ratio [0, 1] Uniform

Inter-class affinity imbalance ratio [0, 1] Uniform

Mean class assortativity [0, Number of classes] Uniform

Mean class size attraction force [0, Number of classes] Uniform

Mean inverse class size attraction force [0, Number of classes] Uniform

Inter-class degree multiplication mean [0, 1] Uniform

Inter-class degree multiplication var [0, mean*(1-mean)] Logarithmic (2)

Attribute assignment

(class-feature matrix)

Feature vector size (number of features) [1, 4096] Uniform

Mean percentage of zeros [0, 1] Uniform

Class variance [0, mean*(1-mean)] Uniform

Feature variance [0, mean*(1-mean)] Uniform

Inter-class dissimilarity variance [0, mean*(1-mean)] Uniform

with the objective of capturing the important features that affect

the accuracy of GNNs, hence providing interpretability. The final

selection of metrics was obtained after an iterative process where

the impact of the different metrics on the performance of different

GNN variants was assessed. Next, we describe and mathematically

define the different metrics, along with the methods used to

reconstruct the different probability distributions or matrices

required to build the graph datasets.

We start with the definition of the main dataset parameters.

The graph is defined as G = (V̂ , Ê), where V̂ is the set of nodes or

vertices, Ê is the set of edges, and is defined by Ê ⊆ {{u, v}|(u, v) ∈

V̂2 ∧ vi 6= vj}. Then, the number of nodes is n = |V̂|, whereas the

graph densityD is calculated as the ratio of the edges present in the

graph to the maximum possible number of edges it can have, given

byD = |Ê|

|V̂|∗(|V̂|−1)
. With respect to the graph connectivity, SkyMap

generates subgraphs with specific degree distributions following a

discrete log logistic distribution (Para and Jan, 2016), that is able

to mimic both power-law and normal distributions depending on

the values of its scale parameter λ (Lambda) and shape parameter

δ (Delta).

Regarding the classes, Ĉ is the set of classes, going from Ĉ1

to Ĉk, such that each community Ĉi ∈ Ĉ is a subset of vertices

Ĉi ⊆ V̂ , and no vertex v ∈ V̂ belongs to more than one community

(Ĉi ∪ Ĉj = ∅, ∀i, j ∈ [1, k]). Here, the number of classes is denoted

as k = |Ĉ|. Regarding the features, let X̂ be the matrix representing

the node feature vectors, where each row Exi corresponds to the

feature vector of vertex vi ∈ V . Thus, X̂ is an n× f matrix, where f

is the number of features.

From here, the rest of parameters refer to the generation

of subgraphs using imbalance distributions (Section 3.2.1),

combination of subgraphs via a mixing matrix (Section 3.2.2),

and assignment of attributes by means of a class-feature matrix

(Section 3.2.3).

3.2.1 Imbalance distribution
One critical consideration in modeling for machine

learning algorithms is the imbalance in class sizes.

Extensive literature addresses strategies for handling

imbalanced classes (Johnson and Khoshgoftaar, 2019),

including the development of specific metrics for evaluating

models trained on imbalanced data. Since real-world

datasets are generally imbalanced to different extents,

SkyMap should be able to generate similarly imbalanced

datasets synthetically.

The objective is to find a discrete probability distribution p′i that

accurately represents the proportion of nodes pi in each of classes

i ∈ [1, k] where pi = |Ĉi|/|V̂|. This distribution can then be fitted

to various graph class distributions using a maximum likelihood

estimator. Subsequently, the parameters of the distribution can be

utilized as metrics of the graph.

Traditionally, class imbalance has been modeled following a

power-law distribution. However, power-law distributions pose

two significant challenges, which we aim to address with a novel

modeling approach. Firstly, power-law distributions are inherently

continuous, necessitating discretization methods that may distort

results depending on the application, as noted by Clauset et al.

(2009). Secondly, the parameterization of power-law distributions

becomes infinite for an even distribution of classes, limiting

its utility.

Frontiers in Artificial Intelligence 05 frontiersin.org

https://doi.org/10.3389/frai.2024.1427534
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Wassington et al. 10.3389/frai.2024.1427534

FIGURE 3

Illustration of the concept of the imbalance distribution described with Equation 1, used to generate imbalanced datasets with non-uniform class

sizes. The right panel shows the class distribution of the Cora dataset and its replication using the proposed method.

To overcome these challenges, we propose an ad-hoc discrete

distribution that exhibits a good fit for our validation set, as

illustrated in Figure 3. This distribution is defined by the number

of classes and the class imbalance parameter µ, for which low

values produce rather uniform distributions (with 0 indicating

perfect uniformity) while values closer to 1 yield highly imbalanced

distributions. The imbalance distribution is defined as follows

p′1 = (1−

k
∑

i=2

pi)

p′c =

(

1

c
+

(

1−
1

c

)

µ

)

· (1−

k
∑

j=c+1

pj), for c ∈ [2, k− 1] (1)

p′k =
1

k
+

(

1−
1

k

)

µ

3.2.2 Mixing matrix
To model the connectivity between nodes of the same or

different classes, the concept of mixing matrix is described in

Newman (2003). The mixing matrix M is defined as a matrix of

size k× k, where each row and column represents a class, and each

cell value contains the proportion of edges going from one class to

another (Mi,j = |{{u, v}|u ∈ Ĉi ∧ v ∈ Ĉj}|/|Ê|). For the case of

undirected graphs, this matrix is symmetrical. Some examples of

mixing matrices can be seen on Figure 4 that can help understand

the different metrics discuses in the following paragraphs. Based on

the mixing matrix, we define the following metrics:

• Homophily:
∑k

c=1 Mc,c. A high homophily value means that

nodes from the same class are very connected with other nodes

of the same class.

• Self-affinity imbalance ratio: imbalance of the values on

the diagonal of M, computed in the same way as the class

imbalance parameter, as shown in Equation 1.

• Inter-class affinity imbalance ratio: imbalance of the values

outside of the diagonal ofM, computed in the same way as the

class imbalance parameter, as shown in Equation 1.

In addition to the previously mentioned parameters, we

introduce three additional parameters aimed at fully reconstructing

the mixing matrix. To achieve this, we first introduce the concept

of class assortativity (Ea). This is a novel concept inspired by the

concept of graph assortativity (Newman, 2002). Class assortativity

is calculated on the graph defined by the intra-class and the

inter-class edges (where the intra-class edges define the weight

of the nodes and the intra-class edges define the weight of the

edges), as illustrated in Figure 4. Given that the classes are ordered

increasingly by the number of intra-class edges, this vector is

constructed in the following manner:

Eai =
∑

j,j′ : j−j′=i

Mj,j′ (2)

This vector codes information about the how the edges are

distributed with respect to the classes’ sizes. Higher values on the

last elements of the vectors indicate that the bigger classes are highly

connected with the smaller classes.

Additionally, we define the class size attraction force vector Eg

where each element i ∈ [1, k] is the number of connection a class

has with classes of smaller size:

Egi =

k
∑

j=i+1

Mi,j (3)

This vector encodes information regarding the attraction or

rejection of classes with high number of intra-class edges toward

inter-class connections. We also define the inverse class size

attraction force vector (g†), which is defined exactly as g but

exchanging rows for columns, which complements the information

from Eg. Using these three vectors, we finally define the following

metrics:

• Mean class assortativity: Weighted average of the a index,

using the values of a as weights (
∑k

i=1 i ∗ Eai). This indicates

the average distance in terms of class size for inter-class

connections. A high value indicates that there are many

connections between classes of different sizes, while a low

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2024.1427534
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Wassington et al. 10.3389/frai.2024.1427534

FIGURE 4

Illustration of the concept of mixing matrix as a representation of the number of edges across classes. Center and right panels represent two di�erent

mixing matrices (Brazil air and Cora) as a heatmap and as a graph where each node is a class (with its size indicating the number of edges within the

class) and each edge represent the inter-class edges (with its size being the amount of edges between those classes). In this case, Brazil air has a low

homophily, a high imbalance within and across classes. Instead, the Cora shows an opposite behavior with less imbalanced distributions of edges.

value indicates that most of the connections happen between

classes closer in size.

• Mean class attraction force:Weighted average of the g index,

using the values of g as weights (
∑k

i=1 i ∗ Egi). This indicates

the average distance in terms of class size for inter-class

connections, accounting only for connections from larger to

smaller classes. A high value indicates that the larger classes

concentrate most of the inter-class edges connecting to smaller

classes.

• Mean class inverse attraction force:Weighted average of the

g† index, using the values of g as weights (
∑k

i=1 i ∗
Eg†
i). This

indicates the average distance in terms of class size for inter-

class connections, accounting only for connections from small

to larger classes. A high value indicates that the smaller classes

concentrate most of the inter-class edges connecting to larger

classes.

3.2.3 Class-feature matrix
Despite SkyMap being general, for simplicity we considered

only binary features in this paper (Xi,j ∈ {0, 1}). Being the

features binary and in order to understand the variation of

the feature behavior across classes, we define the Class-Feature

matrix F of size k × f . Each element of the matrix is the

percentage of zeros that a feature has for nodes belonging to

a specific class (Fi,j = |{Xu,j|u ∈ Ĉi ∧ Xu,j = 0}|/|Ĉi|).

Then, we define four parameters that characterize the feature

distribution, namely:

• Mean percentage of zeros: The average percentage of zeros in

each class (Mean({Mean({Fi,j, ∀j}), ∀i})). A low value indicates

that the feature matrix is sparse and contains a high number of

zeros. This parameter can be generalized to non-binary feature

vectors.

• Class variance: The average of the variance value of each

feature (Mean({Var({Fi,j, ∀j}), ∀i})). A low value indicates that

the classes have similar feature distributions.

• Feature variance: The variance of the average value of each

feature (Var({Mean({Fi,j, ∀j}), ∀i})). A low value indicates that

the features are similar among the classes.

• Inter-class dissimilarity variance: The variance

of the variance of the values of each feature

(Var({Var({Fi,j, ∀j}), ∀i})). A low value indicates that the

feature distributions for each class behave similarly.

3.3 Dataset generator

Here, we detail the steps followed to generate the actual graph

datasets, involving the reconstruction of the mixing and class-

feature matrices, subgraph generation, subgraph combination, and

attribute assignment.

3.3.1 Matrix reconstruction
Before the actual graph generation, SkyMap performs an

important pre-computation: generating the mixing matrix of the

graph to be created. To generate the mixing matrix M, we use

seven input parameters described above: the number of classes

(pk), homophily (ph), self-affinity imbalance (pself-aff-imb), inter-

class affinity imbalance (pinter-aff-imb), mean class attraction force

(patt-forc), mean class inverse attraction force (patt-forc-inv) and mean

class assortativity (pclass-assort). The exact generation method can be

seen in Algorithm 1. The reconstruction of the class-feature matrix

Frontiers in Artificial Intelligence 07 frontiersin.org

https://doi.org/10.3389/frai.2024.1427534
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Wassington et al. 10.3389/frai.2024.1427534

is also done in this step, but explained in subsequent sections for

clarity.

3.3.2 Subgraph generation
Once the mixing matrix is computed, SkyMap generates one

subgraph per each of the target classes. In order to determine the

number of nodes of each class, a distribution of nodes is generated

using the input imbalance parameter (pµ) and the total number of

nodes (pn) as described in Section 3.2.1. The number of edges of

each class is determined directly by the mixing matrix (M) and the

density (pd), using the diagonal entries, and the total number of

edges that is calculated using the total number of nodes and the

density of the graph. Then, for each class, a graph is generated

with a specific degree distribution following a discrete log logistic

distribution (Para and Jan, 2016) using the Lambda pλ and Delta

pδ parameters of the distribution. This process can be seen in

Algorithm 2.

3.3.3 Subgraph combination
In this step, all the subgraphs generated in the previous step are

combined into a single graph. To accomplish that, we add edges

procedure GenerateMixingMatrix(pk, ph, pself-aff, pinter-aff,

patt-forc, patt-forc-inv, pclass-assort)

M← 0pk×pk ⊲ Null matrix of size k× k

d1, . . . , dC ← ImbalanceDistribution(C, pself-aff) · ph

q1, . . . , q(C−1)C/2 ← ImbalanceDistribution(
pk
2 (pk −

1), pinter-aff) · (1− ph)

for m repetitions do

q1, . . . , q((C−1)C)/2 ← Shuffle(q1, . . . , q(C−1)C/2)

diag(M)← d1, . . . , dC

nonDiag(M)← q1, . . . , q(C−1)C/2

A ← [ClassAssort(M),AttractionForce(M),

InvAttractionForce(M)]

if Dist(A, [pclass-assort, patt-forc, patt-forc-inv]) < T

then

return M ⊲ Return mixing matrix if

distance is below threshold

end if

end for

end procedure

Algorithm 1. Mixing matrix reconstruction.

procedure GenerateSubgraphs(M, pn, pk, pd , pµ, pλ, pδ)

p1, . . . , pC ← ImbalanceDistribution(pn, pµ)

for i← 1 to pk do

n←
⌈

N ∗ pi
⌉

m←
⌈

Mi,i ∗ pd ∗ (pn ∗ (pn − 1)/2)
⌉

Gi ← ExpectedDegreeGraph(n,m,DiscreteLogLogistic(pλ , pδ))

end for

return G1, . . . ,Gpc ⊲ Return all subgraphs

end procedure

Algorithm 2. Subgraph generation.

in between the subgraphs to make the entire graph connected.

The number of edges added between each pair of subgraphs is

determined by the mixing matrix M, and the edges are selected

using a custom approach based on the distribution of the degree

multiplication of the pairs of nodes belonging to different groups

following a beta distribution with mean pdmm and variance pdmv.

This algorithm is shown in Algorithm 3.

3.3.4 Attribute assignment
Finally, a feature vector is created for each node, which can be

represented as a feature matrix. In order to generate the feature

matrix, we use five input parameters: the number of features (pf),

the average percentage of zeros (pmm), the class variance (pmv),

the feature variance (pvm) and the inter-class dissimilarity variance

(pvv). Those parameters are used as input for beta distributions

using the moments method to generate the matrix F as defined

in Section 3.2.3. Finally, the content of the feature matrix X is

generated by sampling a Bernoulli distribution for each node and

parameter, using the values in F as the probability parameter.

This method allows SkyMap to generate node distributions that

behave similarly inside classes and in between classes. This way,

the generated graph is able to generate classes with very similar

procedure CombineSubgraphs(G1, . . . ,GC ,M, pk, pn, pd , pdmm, pdmv)

G← G1 ∪ G2 ∪ · · · ∪ GC

for i← 1 to pk do

for j← i+ 1 to pk do

c← (nx , ny) : ∀nx ∈ Gi∀ny ∈ Gj ⊲ All possible

edges between subgraphs

cd ← sqrt(deg(nx) ∗ deg(ny)/Gi.maxDegree ∗

Gj.maxDegree) :∀(nx , ny) ∈ c

cw ← BetaMoments(pdmm, pdmv).pmf (cd)

m←
⌈

Mi,j ∗ pd ∗ (pn ∗ (pn − 1)/2)
⌉

e← sampleWeighted(c,m, cw)

G← addEdges(G, e)

end for

end for

return G ⊲ Final combined graph

end procedure

Algorithm 3. Subgraph combination.

procedure AssignAttributes(pk, pn, pf , pmm, pmv , pvm, pvv)

F← 0pk×pf

Em← BetaMoments(pmm, pmv).sample(pk)

Ev← BetaMoments(pvm, pvv).sample(pk)

for i← 1 to pk do

Fj ← BetaMoments(Emi, Evi).sample(pf)

Xi,n ← Bernoulli(Fi,c).sample(|Ĉi|) :∀n ∈ Ĉi

end for

return X ⊲ Feature matrix

end procedure

Algorithm 4. Attribute assignment.

Frontiers in Artificial Intelligence 08 frontiersin.org

https://doi.org/10.3389/frai.2024.1427534
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Wassington et al. 10.3389/frai.2024.1427534

or dissimilar nodes, independently for each class. The resulting

routine is outlined in Algorithm 4.

4 Results

We have developed three experiments to demonstrate the

realism, diversity, and utility of the developed approach for GNN

benchmarking. We first validate the generator in Section 4.1 by

comparing it to other state-of-the-art generators and showing

that we obtain a much closer (i.e., realistic) approximation to

the behavior of real graphs. Second, in Section 4.2, we build

a constellation of graphs using the generator and show that

this comprehensive dataset meets the diversity requirement of

benchmarking. In Section 4.3, we show the utility of SkyMap by

illustrating a practical usage of the generated dataset. In particular,

we show that SkyMap can be used for GNN model selection and to

understand the behavior of GNNs for different graph types. Finally,

in Section 4.4 we assess the computational complexity of SkyMap.

For all of these experiments, we curated a validation set

comprising diverse real-world graphs, ensuring binary features for

consistency across models. This dataset is composed of nine well-

known graphs belonging to different problems that are addressed

using GNNs, as described below and in Table 2:

• Citeseer and Cora: Publication citation/coauthor networks.

The task is to find the subject or tags of the publications.

• Coauthor-Cs: A co-authorship network. The task is to map

authors to their respective field of study.

• Amazon-photo and Amazon-comp: Co-purchase

networks. The task is to map goods to their respective

product category.

• Wiki Cham and Wiki Squirrel: Sitemaps of Wikipedia

pages related to a subject. The task is to find the most

visited pages.

• Brazil air, EU air, and USA air: Graphs representing flight

connection data. The task is to find the most visited airports.

All the experiments are run using the same software, the

PyTorch Geometric framework (Fey and Lenssen, 2019) with

CUDA version 10.1 and torch version 1.10.2; as well as the same

hardware, a machine with CPU Intel(R) Core(TM) i7-2600 CPU @

3.40GHz, GPU GeForce GTX 980 Ti and 15 GB of RAM.

4.1 SkyMap validation

In a first experiment, we compare SkyMap with two state-

of-the-art generators (ALBTER and GenCAT). In order to use

the ALBTER and GenCAT models for mimicking graphs, we

followed the process present in their papers and repositories

(Polina Andreeva and Bochenina, 2022; Maekawa et al., 2023).

For GenCAT, the necessary input matrices are directly computed

from the original graphs. Additionally, the extra attribute-class

correlation matrix is generated by computing the average number

of ‘1’ values for each pair of attribute-class on the original graph.

In the case of ALBTER, a preliminary step of parameter tuning is

conducted for the sake of a fair comparison. This process involves

a grid search aimed at minimizing the difference between original

model metrics and the metrics obtained on the generated graphs.

Specifically, the metrics considered for optimization include

homophily, feature assortativity, average clustering coefficient,

average shortest path length, and average degree. Following the

grid search, the parameters yielding the closest overall results are

selected for mimicking that specific graph.

The experiment consists in assessing the similarity between

accuracy obtained when the generated graphs and the original

graphs they aim to mimic are used to train a given GNN. In

particular, we replicated each real-world graph three times with

each generator and trained and evaluated each of the designs in our

design space on each replica five times. By analyzing the resulting

distributions of accuracy or F-score, we computed the Wasserstein

distance to quantify the similarity of the replicated graphs from

SkyMap, ALBTER, and GenCAT with those of the original real-

world graph. This way, compare the performance of SkyMap with

the other graph models.

Our design space comprises six possible configurations,

determined by the convolutional layer type (GIN, GAT, or GCN)

and the number of layers (3 or 5). All training sessions were

conducted for 128 epochs, employing the ADAM optimizer with a

learning rate of 1e-2. The training set consisted of 60% of the nodes,

while the testing set comprised 40%. To accommodate larger graphs

TABLE 2 Overview of validation (real-world) dataset metrics.

Dataset # Nodes # Classes Density Class imb. Homophily Class assort. # Features Class
variance

Citeseer 3,327 6 3e-3 0.07 0.7 3 3,703 4e-8

Cora 2,708 7 1e-2 0.12 0.8 3.1 1,433 1e-7

Coauthor-Cs 18,333 15 9e-3 0.12 0.8 5.3 6,805 8e-6

Amazon-photo 7,650 8 4e-2 0.14 0.8 5.6 745 7e-3

Amazon-comp 13,752 10 3e-2 0.2 0.7 4.4 767 4e-3

Wiki Cham 2,277 5 1e-2 0.03 0.2 2.2 2,325 2e-5

Wiki Squirrel 5,201 5 2e-2 0 0.2 2.4 2,089 2e-5

Brazil air 131 4 2e-1 0.02 0.4 1.9 131 0

EU air 399 4 1e-1 0.01 0.4 1.9 399 0

USA air 1,190 4 5e-2 0 0.7 1.8 1,190 0

Frontiers in Artificial Intelligence 09 frontiersin.org

https://doi.org/10.3389/frai.2024.1427534
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Wassington et al. 10.3389/frai.2024.1427534

FIGURE 5

Comparison of the distribution of accuracy between real-world graphs and synthetic graphs generated with SkyMap, GenCAT, and ALBTER when

trained with GAT, GCN, and GIN. (1) Results for the Amazon Photo dataset, illustrating the distribution of accuracies for each of the generators and

each of the GNN models. (2) Mean Wasserstein distance for the accuracy distributions for all the considered datasets. “ALL” corresponds to the mean

Wasserstein distance across GNNs as well.

within GPU memory constraints, the data was partitioned for

training and testing into chunks of approximately 500 nodes using

the algorithm proposed by Chiang et al. (2019). This partitioning

strategy enabled efficient processing of larger graphs.

As depicted in Figure 5, SkyMap demonstrates superior

performance compared to the two competing generators across

all considered GNN models. Notably, the closest competitor is

ALBTER on the GCN model. SkyMap achieves a mean distance of

0.09 across all datasets and models for the accuracy, which is less

than half the distance achieved by the other generators. A similar

distance is obtained for the F1-score, with SkyMap achieving a

distance of 0.08 and other generators a distance of over 0.2. This

underscores the effectiveness of SkyMap in accurately mimicking

the distribution of accuracy scores, highlighting its potential for

generating high-fidelity graph datasets for GNN evaluation.

4.2 Comprehensive dataset generation

The second experiment involves generating a diverse dataset by

randomly selecting points in the metric space and demonstrating

how this dataset is able to cover the space (Wassington and

Abadal, 2024). Specifically, we generate a dataset comprising

1000 graphs, each containing 1000 nodes. The parameters are

sampled as summarized in Table 1: most parameters are uniformly

sampled from the interval [0,1], some parameters follow an

exponential distribution, and certain parameters depend on others.

For instance, all variances of the beta distributions are bounded by

the distribution ofmean ∗ (1−mean).

In Figure 6, we observe that the real-world graphs are within the

broad range of the parametric space delimited by the constellation

of datasets generated by SkyMap. The diversity within the dataset is

inherently built into its design, as the model’s input parameters are

the metrics intended to exhibit variation, and the sampling process

ensures diversity. To evaluate the representation of real datasets,

we quantify the distance between the real datasets and the closest

graph from the generated dataset. This distance is then compared

to the mean minimum distance between the generated graphs. If

the former distance exceeds the latter by an order of magnitude, it

suggests that the generated graphs fall outside the distribution. In

our analysis, the distances from the validation dataset to the closest

generated graph range from 0.4 to 0.7, with a mean of 0.51, while

Frontiers in Artificial Intelligence 10 frontiersin.org

https://doi.org/10.3389/frai.2024.1427534
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Wassington et al. 10.3389/frai.2024.1427534

FIGURE 6

Projection of generated synthetic graphs (gray) and validation real-world graphs (orange) on six metrics involved in the di�erent dataset generation

processes, specifically (1) two metrics related to the distribution of nodes in classes (number of classes and class imbalance ratio), (2) two metrics

related to the mixing matrix (interclass a�nity imbalance ratio and self-a�nity imbalance ratio), and (3) two metrics related to the parameter

distribution (class variance and percentage of zeros).

the mean minimum distance between the generated graphs is 0.45.

All these distances are between normalized features. These results

imply that the generated graphs effectively capture the distribution

of the validation dataset.

4.3 Use case study

In order to showcase the utility of SkyMap, we leverage the

benchmark dataset generated in the preceding sections to conduct

a comparative analysis between a GNN model and a non-GNN

model. Specifically, we juxtapose a Graph Attention Network

(GAT) against a MultiLayer Perceptron (MLP), both employing 3

layers. Our methodology entails training and testing each graph in

the generated dataset using bothmodel architectures. Subsequently,

we compute the accuracy difference between the two designs for

every graph. To elucidate the nuanced interplay between various

graph metrics and model performance, we employ a mixed linear

+ non-linear regression model. This model utilizes the same set of

graph metrics employed as input for SkyMap. The model’s output

provides an approximation of the accuracy difference that each

design is expected to achieve, which could be positive (MLP is

better) or negative (GAT is better) and, hence, enables us to discern

scenarios in which one design outperforms the other. Furthermore,

by dissecting the impact factors, we gain invaluable insights into the

influence of different metrics on the comparative performance of

the two designs. To test the model we use our validation set already

presented.

Figure 7 illustrates how regression over the generated dataset

allows us to approximate the difference in accuracy between the two

models. The regression model exhibits satisfactory performance,

achieving an accuracy of approximately ∼77% in classifying which

model performs better over our validation set, with exceptions

observed for Brazil air and EU air datasets.

Notably, higher levels of homophily tend to enhance the

accuracy of the GNN model compared to the MLP, as the

former integrates information from the edges. However, certain

factors such as density and mean class assortativity appear to

introduce noise that the GAT model struggles to handle effectively.

Conversely, features unrelated to graph topology, such as the

variance of features between classes and across different features,

are better managed by the MLP. Additionally, a higher number of

classes tends to be better accommodated by the GAT model than

by the MLP. Overall, these results suggest that such a regressor

trained with the comprehensive graph dataset constellation of

SkyMap could be useful for an a priori model selection based on

the characteristics of the graph dataset at hand, also providing

explainability of the reasons behind the selection.

4.4 Computational complexity assessment

Finally, to study the computational complexity of the graph

generator, we have registered the execution time of SkyMap under

the conditions of the previous sections and also scaling the number

of nodes. Figure 8 summarizes the results. With our setup, it took

approximately 3 seconds to generate a graph with 1,000 nodes

and around 1 hour to generate a 30,000-node graph. We can

also observe that the execution time scales quadratically with the

number of nodes. To clarify the origin of such a scaling trend, we

analyzed the code and did some scaling tests. SkyMap’s algorithm

can be essentially divided in three steps, whose computational

complexity scales with the number of nodes N and number of

features F as follows:

• Subgraph Generation: The complexity is O(N2 logN).

• Subgraph Combination: The complexity is also O(N2 logN).

• Attribute Assignment: The complexity is O(FN logN).

Additionally, from the experimental results, we obtained that

the subgraph combination step dominates the overall processing

time, corresponding to a mean of 92% of the processing time,

with the other 8% percent equally divided between the subgraph

generation and the attribute assignment steps. This confirms the

quadratic nature of SkyMap’s execution time.

Although the graph generation process does not scale efficiently

with respect to the number of nodes, it is worth noting that all

the analyses conducted in the previous sections were performed

with a dataset consisting of graphs of 1,000 nodes. Our results

Frontiers in Artificial Intelligence 11 frontiersin.org

https://doi.org/10.3389/frai.2024.1427534
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Wassington et al. 10.3389/frai.2024.1427534

FIGURE 7

Predicted accuracy di�erence between the GAT model and an MLP. (1) Real vs predicted plot, showing that our model can correctly predict that a

GNN is better for the evaluated real datasets, with a reasonable prediction of the di�erence in accuracy. (2) Feature importance of the regression.

FIGURE 8

The graph generation time scales quasi-quadratically with respect to the number of nodes. In the figure, a curve is fitted to the data to demonstrate

the O(N2 log(N)) scaling behavior.

demonstrate that, even when the generated graphs differ in size

from the original graphs by up to an order of magnitude, the

selected metrics scale correctly with graph size and produce similar

outcomes.

5 Discussion

In this article, we presented SkyMap, a novel graph model able

to generate labeled attributed graphs seeking to solve the problem

of the scarcity of large public benchmarks for GNN validation. The

model was designed with the objective of capturing the attributes

that affect the performance of the graph when used as an input

of a GNN to solve a node classification task. We designed several

experiments to showcase the usefulness and significance of the

approach and to compare its performance with that of two state-

of-the-art models, GenCAT and ALBTER. We showed through

those experiments that our method consistently outperforms other

methods on the ability to imitate the performance of the graphs

on three of the most famous GNN architectures (GCN, GAT and

GIN), quantified by a reduction of 64% of the Wasserstein distance

of their distributions. We also showed that by randomly sampling

on the input parameters of SkyMap, we can generate a graph dataset

constellation covering a multi-dimensional parametric space and

always having the real-world datasets within distribution. We have

finally showcased the utility of SkyMap by using such a dataset

constellation to train a regression model that predicts whether a

GAT or an MLP will be better suited to a particular dataset just

by looking at its characteristics; yet we believe that this is just one

of the possible applications of the synthetic datasets generated by

SkyMap.

The proposed model has proven effective in addressing node

classification tasks. However, it is important to note that themodel’s

current design does not yet directly extend to other tasks such as

graph classification and edge prediction. Despite this limitation,

it is plausible that with minimal modifications, the methodology

Frontiers in Artificial Intelligence 12 frontiersin.org

https://doi.org/10.3389/frai.2024.1427534
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Wassington et al. 10.3389/frai.2024.1427534

could be adapted for these additional tasks. Specifically, for graph

classification, the generator might be adjusted by removing the

steps and metrics, e.g. homophily, that concern the distribution

of classes throughout the graph and their relationship with the

distribution of features and the graph connectivity. Another point

for future work is an improvement of the execution time of

SkyMap. In this respect, subgraph combination stands as the most

time consuming step and should be analyzed further; one could

assess possible parallelization strategies or analyze the impact of

relaxing this step on both the time complexity of SkyMap and the

quality of the generated graphs.

Data availability statement

The original contributions presented in the study are publicly

available. This data can be found here: https://github.com/

raulhigueras/skymap_graph_generator.

Author contributions

AW: Conceptualization, Data curation, Formal analysis,

Investigation, Methodology, Software, Supervision, Validation,

Visualization, Writing – original draft, Writing – review &

editing. RH: Conceptualization, Data curation, Formal analysis,

Investigation, Methodology, Software, Validation, Visualization,

Writing – original draft, Writing – review & editing. SA:

Conceptualization, Supervision, Validation, Writing – original

draft, Writing – review & editing, Data curation, Formal

analysis, Funding acquisition, Investigation, Methodology, Project

administration, Resources, Software, Visualization.

Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Albert, R., and Barabási, A.-L. (2002). Statistical mechanics of complex networks.
Rev. Mod. Phys. 74:47–97. doi: 10.1103/RevModPhys.74.47

Bonifati, A., Holubová, I., Prat-Pérez, A., and Sakr, S. (2020). Graph generators: state
of the art and open challenges. ACM Comp Surveys 53:1–30. doi: 10.1145/3379445

Chakrabarti, D., Zhan, Y., and Faloutsos, C. (2004). “R-mat: a recursive model
for graph mining,” in Proceedings of the 2004 SIAM International Conference on
Data Mining (SIAM) (Orlando, FL: Society for Industrial and Applied Mathematics),
442–446.

Chiang, W.-L., Liu, X., Si, S., Li, Y., Bengio, S., and Hsieh, C.-J. (2019). “Cluster-gcn:
An efficient algorithm for training deep and large graph convolutional networks,” in
Proceedings of the 25th ACMSIGKDD International Conference on Knowledge Discovery
& Data Mining, 257–266.

Clauset, A., Shalizi, C. R., and Newman, M. E. (2009). Power-law distributions in
empirical data. SIAM Rev. 51, 661–703. doi: 10.1137/070710111

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). “Imagenet: a
large-scale hierarchical image database,” in 2009 IEEE Conference on Computer Vision
and Pattern Recognition (Miami, FL: IEEE), 248–255.

Derrow-Pinion, A., She, J., Wong, D., Lange, O., Hester, T., Perez, L., et al. (2021).
“ETA prediction with graph neural networks in google maps,” in Proceedings of the 30th
ACM International Conference on Information & Knowledge Management (New York,
NY: Association for Computing Machinery), 3767–3776.

Erdos, P. L., and Rényi, A. (2022). “On random graphs. I,” in Publicationes
Mathematicae Debrecen (Institute of Mathematics; University of Debrecen).

Fey, M., and Lenssen, J. E. (2019). Fast graph representation learning with pytorch
geometric. arXiv [preprint] arXiv:1903.02428. doi: 10.48550/arXiv.1903.02428

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B., et al. (2020). Open graph
benchmark: Datasets for machine learning on graphs. Adv. Neural Inf. Process. Syst. 33,
22118–22133. doi: 10.5555/3495724.3497579

Johnson, J. M., and Khoshgoftaar, T. M. (2019). Survey on deep learning with class
imbalance. J. Big Data 6, 1–54. doi: 10.1186/s40537-019-0192-5

Keramatfar, A., Rafiee, M., and Amirkhani, H. (2022). Graph neural
networks: A bibliometrics overview. Mach. Learn. Applicat. 10:100401.
doi: 10.1016/j.mlwa.2022.100401

Kipf, T. N., and Welling, M. (2016). Variational graph auto-encoders. arXiv
[preprint] arXiv:1611.07308. doi: 10.48550/arXiv.1611.07308

Kipf, T. N., and Welling, M. (2017). “Semi-supervised classification with graph
convolutional networks,” in 5th International Conference on Learning Representations,
ICLR 2017 (Toulon: Conference Track Proceedings).

Lam, R., Sanchez-Gonzalez, A.,Willson,M.,Wirnsberger, P., Fortunato,M., Alet, F.,
et al. (2023). Learning skillful medium-range global weather forecasting. Science 382,
1416–1421. doi: 10.1126/science.adi2336

Largeron, C., Mougel, P.-N., Benyahia, O., and Zaïane, O. R. (2017). Dancer:
dynamic attributed networks with community structure generation. Knowl. Inf. Syst.
53, 109–151. doi: 10.1007/s10115-017-1028-2

Largeron, C., Mougel, P.-N., Rabbany, R., and Zaïane, O. R. (2015).
Generating attributed networks with communities. PLoS ONE 10:e0122777.
doi: 10.1371/journal.pone.0122777

Lee, C., and Wilkinson, D. J. (2019). A review of stochastic block
models and extensions for graph clustering. Appl. Netw. Sci. 4, 1–50.
doi: 10.1007/s41109-019-0232-2

Ma, Y., Liu, X., Shah, N., and Tang, J. (2022). “Is homophily a necessity for graph
neural networks?,” in The Tenth International Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25-29, 2022.

Maekawa, S., Sasaki, Y., Fletcher, G., and Onizuka, M. (2023). Gencat: Generating
attributed graphs with controlled relationships between classes, attributes, and
topology. Inf. Syst. 115:102195. doi: 10.1016/j.is.2023.102195

Newman, M. E. (2002). Assortative mixing in networks. Phys. Rev. Lett. 89:208701.
doi: 10.1103/PhysRevLett.89.208701

Newman, M. E. J. (2003). Mixing patterns in networks. Phys. Rev. E 67:6126.
doi: 10.1103/PhysRevE.67.026126

Frontiers in Artificial Intelligence 13 frontiersin.org

https://doi.org/10.3389/frai.2024.1427534
https://github.com/raulhigueras/skymap_graph_generator
https://github.com/raulhigueras/skymap_graph_generator
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1145/3379445
https://doi.org/10.1137/070710111
https://doi.org/10.48550/arXiv.1903.02428
https://doi.org/10.5555/3495724.3497579
https://doi.org/10.1186/s40537-019-0192-5
https://doi.org/10.1016/j.mlwa.2022.100401
https://doi.org/10.48550/arXiv.1611.07308
https://doi.org/10.1126/science.adi2336
https://doi.org/10.1007/s10115-017-1028-2
https://doi.org/10.1371/journal.pone.0122777
https://doi.org/10.1007/s41109-019-0232-2
https://doi.org/10.1016/j.is.2023.102195
https://doi.org/10.1103/PhysRevLett.89.208701
https://doi.org/10.1103/PhysRevE.67.026126
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Wassington et al. 10.3389/frai.2024.1427534

Onnela, J.-P., Saramäki, J., Hyvönen, J., Szabó, G., Lazer, D., Kaski, K., et al. (2007).
Structure and tie strengths in mobile communication networks. Proc. Nat. Acad. Sci.
104, 7332–7336. doi: 10.1073/pnas.0610245104

Palowitch, J., Tsitsulin, A., Mayer, B., and Perozzi, B. (2022). “Graphworld: fake
graphs bring real insights for GNNS,” in Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, KDD ’22 (New York, NY:
Association for Computing Machinery).

Para, B. A., and Jan, T. R. (2016). Discrete version of log-logistic distribution and its
applications in genetics. Int. J. Mod. Math. Sci 14, 407–422.

Polina Andreeva, E. S., and Bochenina, C. (2022). “Attributed labeled bter-
based generative model for benchmarking of graph neural networks,” in Proceedings
of the 17th International Workshop on Mining and Learning with Graphs (MLG)
(Washington, DC).

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., et al. (2023).
Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach.
Learn. Res. 21, 167.

Schuetz, M. J., Brubaker, J. K., and Katzgraber, H. G. (2022). Combinatorial
optimization with physics-inspired graph neural networks. Nat. Mach. Intellig. 4,
367–377. doi: 10.1038/s42256-022-00468-6

Seshadhri, C., Kolda, T., and Pinar, A. (2011). Community structure
and scale-free collections of erdös-rényi graphs. Phys. Rev. E. 85:056109.
doi: 10.1103/PhysRevE.85.056109

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P.,
and Bengio, Y. (2018). “Graph attention networks,” in International

Conference on Learning Representations (New York, NY: Association for
Computing Machinery).

Wang, H., Wang, J., Wang, J., Zhao, M., Zhang, W., Zhang, F., et al. (2018).
“Graphgan: graph representation learning with generative adversarial nets,” in
Proceedings of the AAAI Conference on Artificial Intelligence (Palo Alto, CA), 32.

Wassington, A., and Abadal, S. (2022). “Prognnosis: a data-driven model to predict
gnn computation time using graph metrics,” in 4th Workshop on Accelerated Machine
Learning (AccML): co-located with the HiPEAC 2022 Conference (Budapest).

Wassington, A., and Abadal, S. (2024). Bias reduction via cooperative bargaining in
synthetic graph dataset generation. Appl. Intell.

Watts, D. J., and Strogatz, S. H. (1998). Collective dynamics
of ‘small-world’ networks. Nature 393, 440–442. doi: 10.1038/3
0918

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2019). “How powerful are graph neural
networks?,” in International Conference on Learning Representations (ICLR) (Appleton,
WI).

Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W. L., and Leskovec, J.
(2018). “Graph convolutional neural networks for web-scale recommender systems,”
in Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (New York, NY: Association for Computing Machinery),
974–983.

You, J., Liu, B., Ying, Z., Pande, V., and Leskovec, J. (2018). “Graph convolutional
policy network for goal-directed molecular graph generation,” in Advances in Neural
Information Processing Systems (Red Hook, NY: Curran Associates Inc.), 31.

Frontiers in Artificial Intelligence 14 frontiersin.org

https://doi.org/10.3389/frai.2024.1427534
https://doi.org/10.1073/pnas.0610245104
https://doi.org/10.1038/s42256-022-00468-6
https://doi.org/10.1103/PhysRevE.85.056109
https://doi.org/10.1038/30918
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

	SkyMap: a generative graph model for GNN benchmarking
	1 Introduction
	2 State of the art
	2.1 ALBTER
	2.2 GenCAT

	3 Materials and methods
	3.1 Overview of SkyMap
	3.2 Model parameters
	3.2.1 Imbalance distribution
	3.2.2 Mixing matrix
	3.2.3 Class-feature matrix

	3.3 Dataset generator
	3.3.1 Matrix reconstruction
	3.3.2 Subgraph generation
	3.3.3 Subgraph combination
	3.3.4 Attribute assignment

	4 Results
	4.1 SkyMap validation
	4.2 Comprehensive dataset generation
	4.3 Use case study
	4.4 Computational complexity assessment

	5 Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

