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Artificial intelligence (AI) is increasingly applied across all disciplines of medicine, 
including dentistry. Oral health research is experiencing a rapidly increasing 
use of machine learning (ML), the branch of AI that identifies inherent patterns 
in data similarly to how humans learn. In contemporary clinical dentistry, 
ML supports computer-aided diagnostics, risk stratification, individual risk 
prediction, and decision support to ultimately improve clinical oral health care 
efficiency, outcomes, and reduce disparities. Further, ML is progressively used in 
dental and oral health research, from basic and translational science to clinical 
investigations. With an ML perspective, this review provides a comprehensive 
overview of how dental medicine leverages AI for diagnostic, prognostic, and 
generative tasks. The spectrum of available data modalities in dentistry and their 
compatibility with various methods of applied AI are presented. Finally, current 
challenges and limitations as well as future possibilities and considerations for 
AI application in dental medicine are summarized.
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1 Artificial intelligence in the medical context

While the concept of artificial intelligence (AI), including its potential use in medicine, is 
several decades old (Turing, 1950), computing power remained a prohibitive bottleneck 
throughout most of the last century (Schwartz et al., 1987). Indeed, machine learning (ML), 
often considered the main branch of AI that identifies inherent patterns and connections in 
the input data similarly to how humans learn, is much more resource-intensive than most 
methods of classical statistics. Although classical statistics and ML are related fields, there is a 
key difference: ML models infer rules based on examples instead of being given explicit — if 
tentative — rules. Translated into clinical medicine, explicit rules describing straightforward 
causal relationships can be used for evidence-based decision making; nonetheless, complex 
patterns and interactions among numerous variables can be difficult to capture in this manner. 
In contrast, ML maps prior outcomes to the existing data to infer implicit rules (Figure 1). 
While this approach also requires more data than human learning and more processing power 
than classical statistics, ML models in turn can process massive datasets (Halevy et al., 2009), 
make predictions on new data, and use feedback for continuous training. The sustained, 
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dramatic increase in semiconductor density — colloquially referred 
to as Moore’s law — and the availability of considerably larger datasets 
(i.e., big data) are two key factors that enabled the progressive 
development of ML. Big data and enhanced computing capabilities 
enable deep learning that leverages complex algorithms to model and 
understand intricate patterns in large volumes of data (Esteva et al., 
2019; Topol, 2019). In today’s medicine, both deep learning and other 
forms of ML are increasingly used to augment the work of both 
clinicians and researchers (He et al., 2019).

Algorithms of applied ML in medicine can be categorized into 
three broad paradigms based on their learning style and by the extent 
to which input data are labeled: supervised, unsupervised, and semi-
supervised learning. Supervised learning requires input data to 
be labeled as the algorithms learn from datasets that include both 
input data and corresponding correct outputs (e.g., radiographs used 
for training are first diagnosed by a human observer). In many cases, 

obtaining a strong supervisory signal (i.e., labeling of most or all of 
the dataset) is challenging. A combination of labeled and unlabeled 
input data enables weak supervision (Zhou, 2017). The promised 
advantage of weak supervision is the ability to process larger datasets 
while still not completely foregoing expert labeling. Unsupervised 
learning only uses unlabeled data as the algorithms try to find 
underlying patterns of structures using methods including clustering 
(i.e., grouping of similar instances) or dimensionality reduction (i.e., 
data simplification while retaining structure). Biomedical research 
uses unsupervised learning to identify previously unknown 
connections in an agnostic manner (e.g., protein structure 
prediction). Reinforcement learning uses unlabeled data to optimize 
a sequence of decisions in order to maximize a pre-set outcome 
(Sutton and Barto, 2018). Based on their use cases in medicine, most 
ML models can also broadly be  categorized based on their task, 
variables, and output into regression and classification models. 

FIGURE 1

Traditional reasoning process compared to a data-driven approach using artificial intelligence in a clinical setting. In the traditional reasoning process 
within a clinical setting, explicit rules (e.g., those derived from pathophysiology) are applied to the observed data (e.g., a patient’s symptoms), to make a 
diagnosis or predict an outcome. Explicit rules should be based on scientific evidence. The traditional reasoning process is effective in situations where 
the underlying rules are straightforward and clear. However, it tends to fall short in more complex scenarios. In contrast, machine learning models, 
which are trained using numerous examples, infer implicit rules by correlating outcomes with the data. This data-driven approach not only adapts 
better to the presence of multicollinearity but also provides outcomes that are tailored to individual patients, making it particularly valuable for 
predictive modeling and personalized medicine. Machine learning models can be continuously improved as new data are acquired.
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Regression models can be used to predict continuous outcomes. In 
medicine, this often includes quantifying the risk of an event or 
predicting the outcome of an intervention. Classification models can 
be used to categorize data into predefined classes. In the medical 
context, this includes establishing preliminary diagnoses or stratifying 
patients into risk categories. Computer vision, arguably one of the 
most widespread methods of ML in medicine, uses a combination of 
both classification and regression models to locate and interpret 
structures in image data.

Dental medicine has seen a swift increase in AI application 
comparable to other medical disciplines (Schwendicke et al., 2021c). 
Research output, clinical application, as well as public interest are 
increasing considerably. Notably, use and reporting of AI methods 
in dental medicine, including quantitative performance metrics, are 
characterized by a substantial heterogeneity. In the succeeding 
sections, a comprehensive overview of how various AI methods, 
including diagnostic, prognostic, and generative modeling used in 
dental medicine, is presented. Notably, several recent reviews have 
discussed the application of AI-enabled tools depending on 
different dental disciplines (e.g., periodontology, operative 
dentistry, oral radiology, etc.) (Nguyen et al., 2021a; Ding et al., 
2023). In contrast to previous work, this article adopts an ML 
perspective, providing a cross-section of the spectrum of available 
data modalities, and exploring their compatibility with various 
AI methodologies.

1.1 Data modalities in dental medicine

The amount of electronic health data generated globally is sharply 
increasing (Favaretto et al., 2020; Schwendicke and Krois, 2022). In 
dental medicine, this data can be divided into three major overarching 
modalities: image data, structured numerical data, and unstructured 
textual data (Figure 2).

Image data include radiography, photography, ultrasonography, 
near-infrared light transillumination, histology, and three-
dimensional point clouds. Arguably the most prevalent form of 
imaging in dental medicine, dental radiography ranges from small, 
two-dimensional intraoral images (e.g., intraoral periapical 
radiographs, bitewings) to large, three-dimensional cranial computed 
tomography (CT) scans. Although still considerably less prevalent 
than CT, magnetic resonance tomography is increasingly used as a 
radiation-free alternative, especially in larger hospital settings. Intra- 
and extraoral photography is an important diagnostic and 
documentary tool in oral medicine. Dental ultrasonography is a 
noninvasive, real-time imaging method surging in popularity after the 
development of small probes suitable for intraoral use (Chan et al., 
2018). Histological imaging in oral and maxillofacial pathology is 
routinely used to assess tissue biopsies, comparable to general 
pathology. Three-dimensional point clouds are generated through 
intra- and extraoral scanning. Image data constitute a large share of 
all data created in dental medicine, largely owing to the high number 
of radiographs. Notably, the number of radiographs created in dental 
medicine is much higher when compared to other medical disciplines. 
Dentistry generates approximately 1.1 billion radiographs annually, 
which account for 26% of all radiographic procedures worldwide 
(United Nations Scientific Committee on the Effects of Atomic 
Radiation, 2022).

Structured numerical data (e.g., clinical parameters measured for 
clinical care and research, dental insurance claims, billing records) 
require standardized entry at least on the provider level. A considerable 
share of numerical data in dental medicine is either created by 
research institutions for clinical studies (i.e., patient-feature matrices) 
or through the billing of the rendered dental services (e.g., procedure 
codes). In addition to being assessed by clinicians, numerical data can 
also be  self-reported (e.g., through forms or surveys) or even 
automatically measured (e.g., using wearable sensors). However, some 
sources of structured numerical data regularly registered in other 
medical disciplines (e.g., serum- or saliva-based diagnostic tests) 
might not be captured as a part of routine dental care.

Unstructured textual data (e.g., clinical notes) are widespread in 
electronic dental records (EDRs) from dental clinics and offices. Most 
clinicians do not maintain numerical data in a structured manner 
within the EDR for future reference, instead including numerical data 
(e.g., working length of a root canal, clinical attachment level 
measurements) within freeform clinical notes. In a broader sense, 
unstructured textual data can include patient and vendor 
correspondence, journal articles, and other written material. 
Inevitably, unstructured textual data represent the data modality most 
contingent upon its author; while image or numerical data can vary 
among providers due to differences in quality or calibration, textual 
data further depends on personal writing style.

Considering the unique advantages of each data modality, their 
integration plays a key role in rendering comprehensive dental care. 
Notably, most dental patients see their providers regularly and over 
longer periods of time. Put into the context of ML, this yields rich 
sources of longitudinal, multimodal datasets (radiographs, EDRs, 
clinical parameters, etc.). When used in ML, multimodal datasets 
allow for more accurate, robust data that include various aspects of an 
individual’s clinical and treatment history, creating a more 
personalized, integrated model.

2 Diagnostic modeling

Diagnostic modeling typically involves recognizing structures and 
patterns in the input data or classifying these into largely predefined 
categories (e.g., health or disease). In dental medicine, these input data 
are predominantly visual, with structured numerical data playing a 
secondary role. Imaging methods require visual assessment by the 
observer; with increasing complexity, the diagnostic difficulty 
increases. In addition, human diagnostic accuracy is inherently a 
function of the observer’s experience and attention, as well as the 
prevalence of the diagnosis. To mitigate these limitations, computer-
aided diagnostics use ML and computer vision to aid the human 
diagnostic process.

2.1 Computer vision

Computer vision refers to the inference of patterns from 
visual data (Esteva et  al., 2021). To enable processing of the 
images by an ML model, a neural network fractionates images 
into single labeled pixels; convolutional neural networks (CNNs) 
are used for single images, while recurrent neural networks 
(RNNs) process a series of images (e.g., sequential images or 
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videos). The neural network then uses the pixel-level labels to 
perform convolutions (i.e., a mathematical operation on 
functions f  and g  that produces a third function, f g∗ ) and 
predict the content of the input data; the number of parameters 
to learn is reduced by down-sampling (e.g., pooling). This 
process’s accuracy depends on many factors, not least of which 
the chosen model and labeling method. Various labeling methods 
are demonstrated on a partial panoramic radiograph in Figure 3. 
At the basic level, image-level labeling enables classification of 
the entire image, without further separation of its contents 
(Figure 3A). Recognizing structures within images requires more 
detailed annotation. Bounding boxes (i.e., minimum enclosing 
rectangles) represent the simplest way to annotate a structure 
within a radiograph. While they can be  quickly added to the 
image, they specifically enable basic object detection: the trained 
ML model coarsely localizes the structure, without accurate 
demarcation of its boundaries (Figure 3B). Meanwhile, pixel-wise 
masks assign a label to every annotated pixel. While the 
annotation process is considerably more labor-intensive, it 
enables the precise segmentation of an object (Figure 3C). For 
three-dimensional point clouds, point-wise masks are used 
analogously. A faster alternative to pixel-wise masks is the use of 
polygons, where the annotator fits geometric figures to the 
structure. Notably, masks and polygons can be  assigned to 

different instances of the same class, enabling discrete 
segmentation of each instance (e.g., 18 and 28 are both third 
molars, but they are not the same third molar, Figure 3D).

The reliance on radiographic imaging for dental diagnostics and 
the consequently large amount of available radiographic data makes 
computer vision one of the most relevant areas of ML in dentistry. 
Using computer vision to detect and segment anatomical structures 
(e.g., teeth) enables automated dental charting (Gao et al., 2022; 
Kabir et al., 2022). Dental caries and periodontitis, two of the most 
prevalent pathological conditions worldwide (Tonetti et al., 2017; 
Bernabe et al., 2020), are diagnosed using radiographs as well as 
visual and tactile examination. However, radiographic diagnostics 
remain highly variable among examiners (Akesson et  al., 1992; 
Bader et al., 2001). Diagnostic sensitivity is especially low for early 
caries lesions (Schwendicke et  al., 2015). Computer vision is 
increasingly used to aid or automate radiographic diagnostics. In 
addition, there is an apparent shift toward more sophisticated 
segmentation models as opposed to simpler object detection models 
(Arsiwala-Scheppach et al., 2023). Compared with human observers, 
computer vision yields a higher sensitivity while maintaining 
noninferior specificity (Schwendicke et  al., 2021b). Notably, the 
accuracy of caries detection increases nonlinearly with an increasing 
size of the training dataset (Schwendicke et  al., 2022). Various 
computer vision applications have been proposed for the diagnosis 

FIGURE 2

Data modalities and artificial intelligence applications in dental medicine. The majority of data generated in dental medicine can be categorized into 
image data, structured numerical data, as well as unstructured textual data. Image data predominantly includes radiographs, which can be two-
dimensional (e.g., panoramic and periapical radiographs, bitewings) or three-dimensional (e.g., computed tomography scans). Further sources of 
image data include photographs and three-dimensional point clouds (e.g., intraoral scanning). Structured numerical data include demographic data, 
electronic dental records, as well as clinical parameters (e.g., periodontal probing depth, vertical alveolar bone loss). Unstructured text data include 
free-form clinical notes, patient testimonials, referrals, treatment plans, as well as academic publications and regulatory documentation.
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of gingivitis and periodontitis (Revilla-León et  al., 2022). In the 
radiographic detection of periodontal bone loss, computer vision 
does not appear obviously superior to human observers, mostly 
owing to inconsistent reporting quality (Patil et  al., 2023). 
Periodontal diagnostics routinely involve the use of intraoral 
radiographs of the entire dentition. Compared to panoramic 
radiographs, intraoral images only capture a portion of the dentition 
and jawbones. The diagnostic workflow thus includes the mounting 
(i.e., correct arrangement) of these smaller radiographs. Applying 
image classification to entire intraoral radiographic series has been 
proposed as an approach for automating the mounting process (Lin 
et al., 2023).

While radiographic data still represent the largest portion of 
training data for computer vision in dentistry, models are increasingly 
trained on other relevant sources of imaging data. Clinical dental 
practice increasingly involves the use of intra- and extraoral 
photography as well as scanning which create two-dimensional RGB 
images and three-dimensional point clouds, respectively. These data 
sources enable novel uses of computer vision. Trained on intraoral 
photographs, CNNs can diagnose carious lesions (Moharrami et al., 
2023), tooth crowding (Ryu et al., 2023), as well as dental anomalies 
associated with orofacial clefts (Ragodos et al., 2022). The classification 
of entire intra- and extraoral photographs has further been proposed 
as a way of automating the sorting and archival of orthodontic images 
for documentation and treatment monitoring purposes (Li et  al., 
2022). Trained on intraoral scans, CNNs enable instance segmentation 
of individual teeth (Zanjani et al., 2021; Vinayahalingam et al., 2023). 
Multimodal data consisting of point clouds and radiographic imaging 
further enable CNN-based superimposition of intraoral scans and 
cone beam CT images, given they are noninferior to human operators 
(Ntovas et al., 2024). Extraoral scans can be used to train CNNs to 
automatically locate orthodontic soft tissue landmarks (Baysal et al., 
2016) as well as predict morphological changes following orthognathic 
surgery (Tanikawa and Yamashiro, 2021). While dental 

ultrasonography is a novel imaging method whose adoption remains 
low, CNNs have been successfully trained to identify anatomical 
structures on sonograms (Nguyen et al., 2021b).

To a large extent, computer vision used in dentistry has 
concentrated on individual models and tasks as opposed to more 
complex, multi-step workflows (Schwendicke and Krois, 2022). Some 
models can simultaneously detect and classify structures on 
radiographs (Yang et al., 2020). Notwithstanding the efficacy of single-
step architectures, their nature is somewhat in contrast with clinical 
diagnostics where the human observer often performs a sequence of 
tasks to make a diagnosis. The process of inferring from the observer’s 
own previous experience as well as contextual information has been 
described as clinical diagnostic reasoning. To replicate individual steps 
of the human clinical diagnostic reasoning process, composite ML 
workflows of multiple models have been proposed (Feher et al., 2022). 
While these methods offer good explainability, as they closely 
resemble clinical reasoning, it is crucial to note that precisely 
emulating the stepwise diagnostic process of a human clinician does 
not result in superior diagnostic performance when compared to 
end-to-end approaches.

2.2 Classification

Patterns in structured numerical data have been used for 
automated diagnostics based on classification since the 1970s 
(Leonard et  al., 1973, 1974). From a technical standpoint, the 
modeling architectures for classification and prediction tasks are 
comparable. The term “prediction” itself can broadly refer to the 
output of any ML model (e.g., an object detection model “predicts” a 
bounding box). Essentially, classification determines categories for 
elements already within the dataset whereas prediction approximates 
elements missing from the dataset. Clinically, the distinction lies in 
whether the ML model’s output exists at the time of application: 

FIGURE 3

Labeling methods for computer vision. (A) Image-level labeling without further annotation enables the classification of entire images. (B) Annotating 
images using bounding boxes enables the training of object detection models. As the output of an object detection model is a predicted bounding 
box, it is unsuitable for the precise demarcation of anatomical structures. Here, third molar teeth are roughly localized. (C) Pixel-wise masks enable the 
training of semantic segmentation models whose outputs are pixel-wise masks as well. Importantly, no differentiation is made between multiple 
instances of the same structure. Here, all occurrences of a third molar are marked without differentiation between them. (D) Separately labeled pixel-
wise masks enable further distinction between multiple instances of the same structure using instance segmentation models. Here, in addition to all 
occurrences of a third molar being marked, the two third molars are clearly distinguished from one another.
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classification mainly establishes a present diagnosis (e.g., disease 
staging) whereas prediction can also estimate potential future events 
(e.g., risk of complications).

Classification algorithms used in dentistry are typically trained 
on labeled data. In addition to CNNs and related neural networks, 
several supervised non-deep learning approaches are routinely 
used. These include decision trees and Random Forests, Support 
Vector Machines, Bayesian networks, K Nearest Neighbors, and 
Voting Feature Intervals classifiers (Singh et al., 2016; Joshi and 
Jetawat, 2020). Random Forests and Support Vector Machines 
represent the most prevalent non-deep learning dental classification 
approaches, each operating upon a different base architecture and 
specialized in modeling different scenarios (Arsiwala-Scheppach 
et al., 2023).

Outside of computer vision, structured numerical data 
represent the primary data modality for classification models. 
Data derived from clinical examinations and radiographs can 
be used to train ML models that classify patients’ maxillofacial 
morphology (Ueda et al., 2023), establish primary orthodontic 
diagnoses, assess treatment need and support treatment planning 
(Thanathornwong, 2018; Prasad et al., 2023; Senirkentli et al., 
2023). An advanced application of ML-supported treatment 
decision-making based on classification modeling involves the 
planning of removable partial dentures (RPDs) and the 
subsequent ability to autonomously generate customized RPD 
designs. Although this might resemble generative modeling, the 
underlying architecture actually classifies input structures into 
predefined Java curve functions, the collective arrangement of 
which constitutes the design for an RPD (Chen et  al., 2020). 
Importantly, unstructured data cannot be processed natively by 
classification algorithms, thus the information contained therein 
remains unusable for classification purposes.

2.3 Natural language processing

Dental medicine generates a large body of unstructured language 
data in the form of clinical notes (Pethani and Dunn, 2023), published 
research articles, clinical correspondence, and verbal transcriptions. 
Natural language processing (NLP) is a branch within AI that focuses 
on using models to understand, analyze, and structuralize human 
language; this applies to both written and spoken text. The application 
of NLP in medicine is highly logical, given that clinicians compile 
extensive patient information in unstructured text (Jensen et al., 2017; 
Sheikhalishahi et  al., 2019). The application of NLP to extract 
information from clinical text is thus increasingly relevant (Kreimeyer 
et al., 2017; Wu et al., 2019). Named entity recognition and relation 
extraction, NLP techniques that identify key entities and their relation 
from text corpora, have demonstrated high precision and recall when 
extracting information from medical text (Li et al., 2023; Raza and 
Schwartz, 2023).

In dentistry, NLP has a wide range of potential use cases (Büttner 
et al., 2024); the most obvious one is presently the analysis of EDRs. 
NLP can be used to structure free-text EDRs to extract information 
pertaining to patients (e.g., prior clinical diagnoses) as well as previous 
treatments (e.g., previous restorative procedures, materials used, etc.) 
(Chen et al., 2021; Patel et al., 2022a). Analyzing longitudinal EDR 
data using NLP further enables the tracking of temporal changes, as 

shown in previous work monitoring periodontal disease progression 
(Patel et al., 2023b).

Compared to text corpora, the processing of spoken words 
involves the additional step of translating the audio signal; deep neural 
networks can be used to support this process (Nassif et al., 2019). 
Applied to the transcripts of clinical case vignettes, NLP shows 
noninferior dental charting performance compared to human experts 
(Zhang et al., 2021). NLP, coupled with speech recognition, thus shows 
high potential to increase administrative efficiency.

In addition to clinical practice, NLP has potential in dental 
education, with success identifying clinically relevant messages from 
a large dental online community forum (Bekhuis et al., 2011). Recent 
trends in the United States (US) show a decline in practice ownership 
among dentists, along with a growing tendency for new graduates to 
join dental service organizations; meanwhile, only a small fraction of 
graduating dental students envision a career in academia (Istrate et al., 
2023). Outside academia, clinicians can use discussion groups, 
forums, or social media to acquire and exchange insights. As NLP has 
been shown to effectively extract relevant messages from online dental 
discussion groups, it can potentially aid clinicians in sifting through 
information and experiential cases from their peers (Bekhuis 
et al., 2011).

2.4 Limitations

While AI has already demonstrated potential in diagnostic 
modeling across computer vision, classification, and NLP tasks, 
limitations exist regarding data quality and quantity, explainability, 
generalization, cost and infrastructure, as well as clinical validation. 
As diagnostic modeling is arguably the most important area of applied 
AI in medicine, these limitations are particularly important. Indeed, 
most studies on either computer vision or other classification models 
are limited by single-center datasets. AI’s diagnostic capabilities rely 
on the datasets used to train the model; consequently, the diagnosis 
will be biased toward the outcomes of the training set and will not 
account for potential variability between different patient populations. 
This pertains to the diversity of patients in the training sets, the 
accuracy of the labeling of the data, and the quality of the data itself. 
The inherent homogeneity of patients collected within a single clinical 
practice exacerbates this problem, and cross-center validity remains a 
challenge (Schwendicke et  al., 2021a). Indeed, clinical validation 
requires the rigorous testing of AI-enabled tools against large, diverse 
datasets. Further constraints of certain diagnostic methods lie in the 
heterogeneity of reported performance metrics, as well as the models’ 
explainability and clinical applicability. The necessity for human 
supervision is presently a non-negotiable aspect of any clinical 
encounter, and transparency is of utmost importance in the decision-
making process. Nonetheless, the utility of AI-enabled tools as clinical 
decision support systems still presupposes the interpretability of their 
predictions and recommendations (Kundu, 2021; Reddy, 2022).

3 Prognostic modeling

While diagnostic modeling focuses on identifying existing 
conditions, ML models can also be trained to anticipate future events 
in a proactive manner in the form of prognostic modeling. Patterns 
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identified in large longitudinal datasets can be extrapolated into the 
future, thereby estimating events like the onset of diseases, success 
rates of performed procedures, and epidemiological trends. In 
dentistry, prognostic modeling can be  especially valuable for 
preventive care and early diagnosis to deliver more personalized, 
holistic clinical care.

Prognostic modeling uses various algorithms to forecast 
outcomes based on a set of inputs. Discriminative models, or 
models that learn P Y X|� �, are particularly effective for classification 
tasks with discrete outputs. These models use training data to learn 
the boundaries between classes and then utilize the learned 
boundaries to predict a class, or a forecast, from a given input; for 
example, using input data like age, past medical history, past dental 
history, diagnostic biomarkers combined with other risk factors to 
classify individuals into categories of periodontal disease risk (low, 
medium, high) (Figure 4). Regression models are also widely used 
for prognostic modeling, particularly for continuous outputs. 
Regression is a form of supervised ML that aims to create a “best 
fit” line or curve to best describe the relationship between 
independent (input) and dependent (output) variables. This “best 
fit” model is then used to predict outputs given a set of new, 
unseen inputs.

In addition to regression modeling, classification models can also 
be  used for prognostic tasks, including Random Forests, Support 
Vector Machines, and neural networks (Arsiwala-Scheppach et al., 
2023). Random Forests and Support Vector Machines are architectures 
mainly used for classification tasks, the latter focusing on the data 
points closest to the decision boundary by finding an optimal 
separating hyperplane. Neural networks function by possessing a 
network of nodes, referred to as neurons, that are connected based on 
weighted paths.

Temporal changes in parameters can be used to identify patterns 
more accurately through the use of longitudinal data. RNNs were 
designed to manage sequential data, enabling them to consider 
temporal changes. RNNs can further be  enhanced using intra-
attention mechanisms to emphasize the portion of sequences 
contributing the most to predictions (Bahdanau et al., 2014; Luong 
et al., 2015). In addition, RNNs can be enriched using different types 
of layers, including CNNs and graph neural networks (Ma et al., 2020; 
An et al., 2021).

Structured numerical data, the primary data modality for 
prognostic modeling, have been used to train prediction models for 
tooth loss (Hasuike et al., 2022), periodontitis (Patel et al., 2022b), 
peri-implantitis (Mameno et al., 2021; Fan et al., 2023), xerostomia 
(Lee et al., 2024), Sjögren’s disease (Mao et al., 2024), medication-
related osteonecrosis of the jaw (Kim et  al., 2018), the malignant 
progression of oral leukoplakia (Liu et al., 2017), as well as the survival 
of patients with oral squamous cell carcinoma (Kim et  al., 2019). 
Further, prediction models based on structured numerical data have 
been proposed for the prognosis of certain dental treatments, 
including root canal treatment (Bennasar et  al., 2023) and dental 
implants (Ha et  al., 2018; Rekawek et  al., 2023). As previously 
mentioned, structured numerical data can be collected from patients 
in a self-reported manner, as shown in previous work on predicting 
tooth mobility (Yoon et al., 2018).

Notably, AI can be used to obtain structured numerical data from 
other data modalities. Prediction models for postoperative 
neuropathy after mandibular third molar extraction showed 

noninferior performance when human observers evaluated native 
three-dimensional radiographs compared with STL files 
pre-processed with computer vision for anatomical segmentation 
(Picoli et al., 2023). Crucially, the prediction models still relied on 
structured numerical data compiled by human observers from the 
image assessments.

3.1 Limitations

While prognostic modeling is not the predominant application of 
AI in dental medicine, estimating future risk and identifying patients 
at risk for diseases and complications is highly valuable for its clinical 
usefulness. However, a considerable distinction exists between 
diagnostic and prognostic modeling in the realm of trust. While the 
output of a diagnostic model can be immediately compared with other 
diagnostic tools to verify a diagnosis, a prognosis cannot 
be immediately validated. This increases the necessity of trust in the 
AI model’s forecast and underscores the importance of predictive 
accuracy and model calibration: miscalibration of the model can lead 
to overtreatment if a patient is incorrectly deemed at risk or, 
conversely, serious health issues if a risk is underestimated (Van 
Calster et al., 2019). This emphasizes the critical importance of AI 
interpretability, which remains the primary challenge in predictive 
modeling to eliminate the one-size fits all approach that exists in many 
facets of dental medicine (Giannobile et  al., 2013a,b). Emerging 
diagnostics are creating expanded opportunities for clinicians to 
combine saliva diagnostics and chairside clinical innovations to 
advance precision care that can be advanced with these approaches 
(Steigmann et al., 2020).

Practically, the biggest limitation standing between clinical 
practice and prognostic models is the reliance on structured data. 
During a clinical trial, information is recorded into a patient-feature 
matrix, which makes the data readily accessible to algorithmic 
processing, including the training of ML models. In contrast, 
practicing clinicians routinely store information, including numerical 
measurements, in free-form clinical notes. Even though most health 
records are digitized, clinical notes are generally only comprehensible 
to humans. This limits not just the training of new prognostic models 
based on data routinely gathered through clinical practice, but also the 
application of existing prognostic models to patients outside of clinical 
study settings. To maximize patient benefit from AI-enabled tools, 
their applicability in clinical practice needs improvement. A crucial 
part of this improvement is making data progressively 
machine-readable.

4 Generative modeling

Generative models learn the probabilistic distribution of the input 
space P X� � and use these probabilities to generate new data. Often in 
response to prompts (i.e., descriptions of the AI task in natural 
language), generative models create synthetic new data (e.g., text, 
images, audio, video) with similar characteristics to their training 
data. Numerous generative models each employ a distinct method for 
content creation. The most commonly used approaches include 
generative adversarial networks (GANs), transformer-based models, 
and diffusion models. A sample approach to generate synthetic 
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radiographs using a GAN is demonstrated in Figure 5. Transformers 
build the basis of most contemporary large language models (LLMs), 
artificial neural networks for general-purpose language creation.

Synthetic data produced by generative models can be useful for 
model training in research or educational purposes without 
compromising patient privacy (Umer and Adnan, 2024). Further, 
synthetic data can reference real information. Through generative 
summarization, LLMs can synthesize overwhelming amounts of 
electronic health data and create a clinical narrative summary (e.g., 
for the automation of clinical notes after a patient visit). Although 
the generation of dental-specific notes has yet to be  detailed in 
scholarly work, summarization models have demonstrated success 
in creating clinical notes based on structured health record data from 
electronic health records (Gong and Guttag, 2018). LLMs have 
further been shown to generate discharge summaries (Patel and Lam, 

2023) and correspondence to patients detailing their diagnoses and 
post-operative instructions (Ali et  al., 2023). Notably, in some 
instances, health care professionals have been shown to prefer 
LLM-generated responses to questions asked by patients in an online 
forum over physicians’ answers in both information quality and 
empathy (Ayers et  al., 2023). Current results from oral and 
maxillofacial surgery further suggest a higher quality of responses to 
patient questions than to technical questions asked by surgeons 
(Balel, 2023).

In addition to generating text corpora through LLMs, generative 
AI holds significant potential in creating synthetic images for 
settings where images from real patients cannot be  utilized. 
Generative models, for example, have been shown to produce 
intraoral images that were, at a resolution of 512 px ∗ 512 px, 
indistinguishable from real images in a pediatric dental setting; 

FIGURE 4

Overview of a clinical risk stratification workflow. In this process, predictive modeling is applied to patient data to classify individuals into predefined risk 
categories. Notably, although the underlying machine learning architecture may be similar to diagnostic modeling, risk stratification predictions lack a 
definitive ground truth. The provider uses the information from the model to guide the treatment planning and risk prediction at the patient level.

FIGURE 5

Sample scenario illustrating the use of a generative adversarial network (GAN) to create synthetic panoramic radiographs. GANs consists of two 
models, a generator and a discriminator, trained simultaneously through an adversarial process. The generator is tasked to create synthetic data 
intended to mimic real data — in this example, panoramic radiographs. The discriminator is a classifier that evaluates input from the generator as well 
as the training dataset, attempting to determine which are real or synthetic. The result of the classification task — success or failure — is used as 
feedback for both models. The generator thus aims to create data indistinguishable from real data to the discriminator, while the discriminator aims to 
distinguish generated data from real data. Feedback from the discriminator is used to train the generator. Through this iterative adversarial process, the 
generator improves at producing realistic data, while the discriminator improves at classifying data as real or synthetic.
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rough artifacts remained visible at a resolution of 1,024 px ∗ 1,024 
px (Kokomoto et al., 2021). The use of diffusion instead of GAN for 
image creation can potentially improve this limitation, as diffusion 
models have been shown to outperform GAN models on all tasks 
(Saharia et  al., 2022). Still, GANs can achieve performance 
satisfactory for clinical application, including the generation of 
crown designs from point clouds obtained from intraoral scanning 
(Ding et al., 2023).

Besides research and practice, AI shows potential in medical 
education as well. LLMs have been shown to create viable, high-
quality multiple-choice questions when given adequate guidance 
(i.e., question difficulty, number of questions, and answer choices) 
with prompt engineering (Johnson et  al. 2023). While specific 
questions from the study still required improvement following 
faculty review, this technology could improve the quality of 
didactic questions, reduce faculty workload, and minimize cheating 
through exam reuse over time. Based on the performance of 

contemporary LLMs in other areas, it further seems plausible to 
retrain or fine-tune models with data relevant to oral health 
education and create a virtual patient with which students and 
educators can interact to enable learning in an interactive, 
immersive manner (Figure 6).

4.1 Limitations

Given how a generative AI model functions on probabilistic 
distributions, guessing the next token in a sequence through auto-
regressive prediction, hallucinations (i.e., fabricated information 
presented as factual) present one of the most severe limitations. In the 
medical domain, hallucination has been demonstrated through asking 
an LLM to explain the pathophysiology of osteoporosis; none of the five 
articles referenced by the model existed, and all had PubMed IDs that 
were of different, unrelated papers (Alkaissi and McFarlane, 2023). 

FIGURE 6

High-level overview of the potential use of generative AI in dental medicine. Rich, multimodal data gathered from clinical practice and dental research 
could be leveraged to train generative AI models that function as co-pilots to dental professionals. These models could be deployed in a variety of 
different settings, including patient care and dental education. Importantly, multiple stakeholders benefit from their interactions with the models. In 
patient care, both providers and patients could leverage generative AI to gain information; providers could further automate administrative processes 
to increase efficiency. In dental education, faculty and students could both engage with generative AI to create an immersive learning environment 
with individualized feedback.
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Hallucinations are especially dangerous in the clinical context, where 
erroneous information can place patients at risk. It remains uncertain 
whether hallucinations can be prevented through gradual improvements 
in the existing LLM architecture, or if a deeper fundamental 
transformation in the LLM methodology may be necessary to prevent 
nonfactual responses. Creating an LLM that must provide citations for 
factual responses could be a potential solution (Glaese et al., 2022). 
Adjusting the prompt fed into the LLM with question-specific context 
has also proved successful (Feldman et al., 2023). The temperature of a 
model, a hyperparameter that can be  fine-tuned by the engineer, 
controls how “random” the output of a generative model is; a higher 
pre-programmed temperature increases the chance of the model 
following a word-path with a lower initial probability, and consequently 
increases the risk of hallucinations. In dentistry, where hallucinations 
pose such large threats for patient care, a lower temperature parameter 
is essential.

Generative models are inherently reliant on the data used to 
train them. There are limitations both in finding sufficient, 
reliable training data and in the biased output that the training 
data can produce. In dental medicine, protecting patient privacy 
is paramount (Joda et al., 2019). When using generative models, 
the user must be aware of where the private patient data they 
input into a model are being stored. Commercially available 
LLMs might store user interaction data on their servers unless a 
user chooses to opt out (OpenAI, 2023a,b). Utilizing closed-
sourced LLMs that are run by private companies means that 
potential patient data sent to the model will be  sent to the 
company’s server, which may not be compliant with data privacy 
regulations. This limitation could be solved using open-sourced 
models that can be downloaded to run on an individual’s private 
server, one that can be  compliant and already stores critical 
patient data. The unique characteristics of LLMs require a 
tailored, adaptive approach to regulatory oversight to ensure 
ethical use (Meskó, 2023). Further, the data used to train 
generative models must be stripped of patient identifiers, as the 
use of traceable information when outputting new responses 
must not be risked. Because of this risk of using identifiable data, 
acquiring sufficient and robust training data to produce accurate, 
reliable models is extremely difficult. Alternatively, data can 
be sanitized of sensitive or personally identifiable information, 
but the process is rigorous and reliant on human error and time. 
Moreover, even when training data are acquired and sufficiently 
sanitized, there is a risk of a biased output dependent upon biased 
training data. If only data from a certain population demographic 
or location are used to train the models, not only will the output 
be  inherently biased, but it can consequently propagate the 
underlying bias. The difficulty of acquiring sufficient, accurate, 
robust training data increases the risk of engineers becoming less 
strict about the population and any clinical bias the data may 
possess. In the medical domain, it is of critical importance to 
ensure that the data used applied ML models are representative 
of the entire population.

5 Future considerations and directions

Adopted by all stakeholders in a fair, ethical, transparent, and 
equitable manner, the application of AI has transformative potential in 

dental research and clinical care (Table 1). For clinicians, application of 
AI in dental medicine can enhance diagnostics, treatment planning, and 
outcome prediction. For providers, AI can improve operations, decision 
support, and case acceptance. For patients, AI can increase diagnostic 
transparency and enable more efficient treatment monitoring. In the 
optimization of administrative tasks and the generation and 
implementation of synthetic data in oral health education, AI can 
streamline workflows, reduce administrative burdens, and provide 
personalized patient care. To this end, explainability and generalizability 
of ML models used in dentistry must be maximized. Datasets used for 
training should be  diversely sourced and validated across patient 
populations; single-center datasets should only be used for proof-of-
principle reports or if there is a specific reason in connection with the 
research question. Ideally, both datasets and codebases should be made 
openly available to other researchers to enable thorough peer review 
and reproducibility. Transparency and interpretability are key desiderata 
for the application of AI in any medical setting.

The clinical use of AI is subject to medical device regulation. 
While this process is generally administered at the national level, 
supranational unions with specialized medical regulatory agencies 
streamline regulation for large populations: the European Medicines 
Agency of the European Union (EU, population: 450 million), the 
Medical Device Committee of the Association of Southeast Asian 
Nations (ASEAN, 670 million), and the forthcoming African 
Medicines Agency of the African Union (1.3 billion). Notably, 
supranational unions allow their members to regulate on the 
national level (e.g., the Health Services Authority in Singapore, an 
ASEAN member state). In stark contrast, regulation is strictly kept 
at the national level by some of the largest countries in the world by 
population, including India (Central Drug Standard Control 
Organization), China (National Medical Products Administration), 
and the US (Food and Drug Administration, FDA). The FDA has no 

TABLE 1 Opportunities to apply artificial intelligence in dentistry 
[adapted from Elani and Giannobile (2024)].

Stakeholders Opportunities to apply artificial 
intelligence

Dental clinicians Assisted diagnostics with automated documentation

Patient education

Assisted treatment planning

Treatment outcome prognostication

Clinics and 

providers

Scheduling, billing, and reimbursement optimization

Patient triage and management through virtual assistants

Clinical decision support

Patients Transparency in diagnostics and patient information on 

treatment need

Continuous treatment monitoring

Insurers and 

payers

Optimized operations (e.g., prior authorization)

Automated administrative workflows

Fraud prevention

Academic 

institutions

Education and training on artificial intelligence

Synthetic patient cases for personalized dental education

Utilization of longitudinal datasets for research

Regulatory bodies Framework for fair, transparent, and equitable use of 

artificial intelligence

Ensure compliance of other stakeholders
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distinct clearance process for AI-enabled products and a large share 
obtains regulatory clearance through the existing 510(k) premarket 
notification pathway, arguing substantial equivalence to a former 
FDA-cleared device (i.e., predicate) (Joshi et al., 2024). However, 
recent data show that 33% of devices cleared through the 510(k) 
pathway were cleared on the basis of predicates whose first 
generations did not have any AI-enabled functions; for an additional 
8%, it was unclear whether the first-generation predicates had any 
AI-enabled functions (Muehlematter et al., 2023). Contrary to the 
non-medical software industry which, for the most part, represents 
a global market, the landscape of medical device regulation has 
resulted in considerable fragmentation in the market of AI-enabled 
medical software. Inevitably, this prevents the clinical adoption of 
AI in dental care on a global scale: with developers incentivized to 
maximize their return on investment, many are discouraged by the 
challenges of navigating non-standardized global regulatory and 
insurance environments.

The quality of training data critically influences an AI model’s 
outputs. Moreover, the AI model will be  reflective of the patient 
population utilized in its training. High-quality datasets that represent 
diverse patients across various locations, ages, backgrounds, and 
clinical situations in large volumes are necessary for developing robust 
models. Additionally, the quality of data labeling is vital to the model’s 
quality. Accurate annotation requires domain expertise and is time-
intensive with large datasets. This necessity for extensive and diverse 
data is a limiting factor to model creation and consequently, AI 
innovation in dental medicine, due to the challenges in acquiring and 
accurately labeling such data.

Data privacy is integral to the implementation of AI in dental 
medicine. Data privacy regulations, which vary by country, impose 
stringent restrictions on the transfer, storage, and processing of patient 
data to protect privacy. Developers of AI-enabled medical software must 
ensure compliance with local regulations, each country having their own 
policies on how patient data can be  utilized. For any organization 
operating in the EU or using the personal data of its citizens, the General 
Data Protection Regulation must be followed. In the US, the Health 
Insurance Portability and Accountability Act applies to any organization 
acting primarily in the US or dealing with US healthcare data. For AI 
research involving data sharing, a data use/sharing agreement is essential 
to specify the terms of exchange and ensure regulatory compliance. 
Compared to other areas, adherence to data privacy regulations 
inevitably throttles development of medical AI technology, as the 
stringent legal requirements render the acquisition of patient data 
complex and resource-intensive.

From the patient’s perspective, data privacy considerations 
include informed consent. Generally, patients can revoke consent 
for the inclusion of their data in biomedical research. However, 
this becomes impractical for large ML models trained on millions 
of patient records; removing individual records and retraining 
models is unrealistic if consent is revoked. Moreover, much of the 
data used for contemporary model training was collected 
retrospectively before medical AI became mainstream, meaning 
patients were unaware that their consent would effectively 
become irreversible. It is thus essential that patients be adequately 
informed if their data are used to train ML models.

Technologically, understanding the processes and potential pitfalls 
of many ML algorithms can be challenging due to their inherent lack 
of transparency from input to output. ML models often exhibit a 

“black box” nature, obscuring decision-making processes and 
complicating error detection. This issue is particularly acute in 
medicine where precision is paramount. Explainability, or the aim to 
address this “black box” ambiguity, is essential to have proper 
accountability, trust, technological accuracy, compliance, and 
continued model improvement as AI evolves.

From a global health viewpoint, achieving equitable AI 
implementation in dental medicine is essential. Evidence suggests that 
AI could reduce health disparities between high-income nations with 
comprehensive health care systems and lower-income countries 
(Ciecierski-Holmes et  al., 2022; Elani and Giannobile, 2024). 
Nonetheless, this requires global cooperation on knowledge as well as 
data sharing to facilitate robust, multi-center ML development and 
implementation worldwide, thereby earning the trust of clinicians and 
health care professionals. Further, dedicated efforts (e.g., scaling 
programs) should be directed toward assisting lower-income countries 
to adopt AI-enabled solutions in health care, including 
dental medicine.

Taken together, a growing body of literature underscores the 
considerable potential of AI in dental medicine, while also highlighting 
obstacles that hinder the integration of AI-enabled tool into routine 
clinical workflows. Enhancing the transparency, interpretability, and 
reliability of these technologies, establishing robust regulatory 
frameworks, and providing support in underserved regions could 
pave the way for a future where AI enables better and more equitable 
patient care on a global scale.
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