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Introduction: Falls have been acknowledged as a major public health issue 
around the world. Early detection of fall risk is pivotal for preventive measures. 
Traditional clinical assessments, although reliable, are resource-intensive and 
may not always be feasible.

Methods: This study explores the efficacy of artificial intelligence (AI) in predicting 
fall risk, leveraging gait analysis through computer vision and machine learning 
techniques. Data was collected using the Timed Up and Go (TUG) test and 
JHFRAT assessment from MMU collaborators and augmented with a public 
dataset from Mendeley involving older adults. The study introduces a robust 
approach for extracting and analyzing gait features, such as stride time, step 
time, cadence, and stance time, to distinguish between fallers and non-fallers.

Results: Two experimental setups were investigated: one considering separate 
gait features for each foot and another analyzing averaged features for both 
feet. Ultimately, the proposed solutions produce promising outcomes, greatly 
enhancing the model’s ability to achieve high levels of accuracy. In particular, 
the LightGBM demonstrates a superior accuracy of 96% in the prediction task.

Discussion: The findings demonstrate that simple machine learning models can 
successfully identify individuals at higher fall risk based on gait characteristics, 
with promising results that could potentially streamline fall risk assessment 
processes. However, several limitations were discovered throughout the 
experiment, including an insufficient dataset and data variation, limiting the 
model’s generalizability. These issues are raised for future work consideration. 
Overall, this research contributes to the growing body of knowledge on fall 
risk prediction and underscores the potential of AI in enhancing public health 
strategies through the early identification of at-risk individuals.
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1 Introduction

In recent years, falls have been recognized as a significant public health issue in society. 
The issue is rapidly growing, especially among older adults. According to the report from the 
World Health Organization (WHO) in 2021, an estimated 684,000 individuals globally die 
from falls each year, with over 80% of these deaths happening in poor and middle-income 
countries. Additionally, an estimated 37.3 million falls require medical attention. Moreover, 
individuals aged 60 and above exhibit the highest fatality rate from falls (World Health 

OPEN ACCESS

EDITED BY

Kezhi Li,  
University College London, United Kingdom

REVIEWED BY

Guilherme De Alencar Barreto,  
Federal University of Ceara, Brazil
Balu Bhasuran,  
University of California, San Francisco, 
United States

*CORRESPONDENCE

Tee Connie  
 tee.connie@mmu.edu.my

RECEIVED 02 May 2024
ACCEPTED 07 August 2024
PUBLISHED 28 August 2024

CITATION

Lim ZK, Connie T, Goh MKO and Saedon N‘IB 
(2024) Fall risk prediction using temporal gait 
features and machine learning approaches.
Front. Artif. Intell. 7:1425713.
doi: 10.3389/frai.2024.1425713

COPYRIGHT

© 2024 Lim, Connie, Goh and Saedon. This is 
an open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 28 August 2024
DOI 10.3389/frai.2024.1425713

https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2024.1425713&domain=pdf&date_stamp=2024-08-28
https://www.frontiersin.org/articles/10.3389/frai.2024.1425713/full
https://www.frontiersin.org/articles/10.3389/frai.2024.1425713/full
https://www.frontiersin.org/articles/10.3389/frai.2024.1425713/full
mailto:tee.connie@mmu.edu.my
https://doi.org/10.3389/frai.2024.1425713
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2024.1425713


Lim et al. 10.3389/frai.2024.1425713

Frontiers in Artificial Intelligence 02 frontiersin.org

Organization, 2021). Therefore, early detection of individual fall risk 
is crucial for mitigating public concerns.

The current methods for reliably assessing an individual’s risk of 
falling are clinical fall risk assessment tools. However, these methods 
rely on physical tests, surveys, and many other procedures, which 
could be both costly and time-consuming. They may strain hospital 
staff resources.

Recently, researchers have turned to artificial intelligence to 
identify human fall risks. They have discovered a connection between 
falls and gait, leading to the utilization of wearable sensors for gait 
assessment and machine learning techniques in the field. However, 
wearable sensors have constraints such as inconvenience for 
participants as well as high costs for the devices.

This study aims to discover suitable gait features acquired from 
camera sources that can be  used to predict falls effectively. The 
methodology involved data collection through the Timed Up and Go 
(TUG) assessment, referred to as the MMU-FRiP dataset (Time Up 
and Go (TUG), 2024b). Computer vision and machine learning 
methods are applied to estimate the human pose and extract gait 
features extraction that can be indicative of falls. During the process, 
individuals are divided into two categories: Faller and Non-faller. 
Faller refers to people who are at low risk, whereas non-fallers are at 
high risk. Surprisingly, gait features extracted using simple machine 
learning approaches performed well in the study by achieving 
promising performance, indicating their suitability for identifying 
individuals at risk of falling. Specifically, we found a high association 
between falls and increased cadence, and shorter step times. The 
results showed that gait analysis using artificial intelligence techniques 
shows promise in automated fall risk assessment.

2 Related work

Falling among the elderly has gained international recognition as 
a serious public health issue. Many academics have started to 
investigate fall risk assessment to create workable solutions that would 
lessen the issues. Older adults’ fall risk is generally correlated with 
their mobility, and this section addresses the relevant studies on fall 
risk prediction in this age range.

2.1 Conventional methods

In 2022, a group of researchers (Chakraborty and Sorwar, 2022) 
proposed a method that could automatically identify fall risk in 
elderly individuals using statistical and machine learning 
approaches. The study assessed a long-term mobility monitoring 
dataset from 71 older people and divided them into a group of fallers 
or non-fallers. The methods involved three different approaches that 
were tested and two different machine learning algorithms for 
classification, AdaBoost and Decision Tree, as well as cross-
validation (20 or 30-fold) to achieve the mean AUC score, and the 
mean AUC score was used as a performance comparison. The first 
approach does not involve any feature selection or data shuffling, 
then the second approach uses data shuffling without any feature 
selection, as well as the third approach uses both data shuffling and 
feature selection. The study’s findings demonstrate that the third 
approach with a decision tree classifier achieved the highest mean 

AUC score of 0.98, highlighting that the random data shuffling 
combined with cross-validation can significantly improve 
classification accuracy. However, the study reveals that certain 
features did not perform well in fall risk classification and the dataset 
for the research is limited.

Another group of researchers (Beauchet et al., 2018) conducted a 
study on fall predictions using artificial neural network (ANN) 
approaches. The data were gathered from 848 older inpatients with 
different kinds of characteristics, such as age, gender, number of drugs 
taken daily, use of psychoactive drugs or analgesics, history of previous 
falls, ability to stand, ability to sit and to stand, ability to stand up and 
sit down, mobility disorders, neuropsychiatric disorders, and so on. 
In the study, participants were categorized into two groups, 
non-fallers, and fallers. Three ANN algorithms were applied in the 
process, including MLP, averaged neural network, and NEAT. The 
dataset was split into a ratio of 80:20 for training and testing sets. In 
the training phase, all classifiers achieve impressive results, while MLP 
has the greatest accuracy of 99.71%. While in the testing phase, the 
averaged neural network had a poor result of 17.86%, while MLP and 
NEAT achieved promising results of 81.44% and 83.83%, respectively. 
However, the study mentioned there is a limitation on dataset 
availability, which might have an impact on the algorithm’s ability to 
generalize effectively.

Later on, a study (Velusamy et  al., 2023) provided detailed 
information on real-time fall prediction using wearable sensors and 
machine learning algorithms. The study discussed multiple machine 
learning algorithms and sensor modalities that had been used for the 
fall risk assessment, such as decision trees, support vector machines 
(SVM), neural networks, random forests, and logistic regression 
algorithms, as well as wearable sensors such as accelerometers, 
gyroscopes, magnetometers, and pressure sensors. Several datasets 
were collected through the fall risk assessment using wearable sensors, 
including FARSEEING, UP-Fall, WISDM, UVA-Fall, and MobiAct. 
Those datasets contained the details of gait characteristics, daily 
activities, and falls. Overall, the results of the study indicated the 
effectiveness of machine learning approaches for fall prediction 
assessments according to the accuracy score they achieved. The study 
also identified the difficulties and constraints of wearable sensors for 
fall risk, including sensor positioning and dependability.

In 2022, an analysis was conducted to predict the risk of falls in 
the elderly using a single inertial measurement unit on the lower back 
by estimating spatio-temporal gait parameters (Aqueveque et  al., 
2022). The process included feature selection, characterization, and 
machine training. The analysis focused on the gait cycle parameters of 
fallers and non-fallers. Then, the dataset consisted of mobility data 
from 69 subjects, 31 of them were fallers and 38 were non-fallers. The 
gait parameters contained the data of participants’ initial foot contact 
(IC), last foot contact (FC), cadence, step time, and stride time. The 
classification algorithms used were SVM with a polynomial kernel, 
Random Forest, and the F1-Score for performance comparison. The 
results showed that the SVM classifier with a third-degree polynomial 
kernel had an accuracy of 59%, recall of 91%, and F1-score of 71% in 
identifying subjects at risk of falling. On the other hand, the RF 
classifier also showed promising results (accuracy = 81–98%, 
F1-score = 70%) but did not exceed the performance of the SVM 
classifier (F1-score). The study’s shortcomings included a small sample 
size that prevented generalization to the entire elderly population and 
the use of an external database.
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Besides, research (Ta and Jin, 2023) performed fall risk prediction 
using multiple machine learning approaches such as logistic 
regression, KNN, RF, SVM, and K-means cluster. The study used 354 
datasets from tests on the Berg Balance Scale, which is one of the 
clinical fall risk assessment tools. The Berg Balance Scale consists of 
three risk categories: low risk (score range: 41–56), medium risk (score 
range: 21–40), and high risk (score range: 0–20). The tests included 
sitting to standing, standing unsupported, sitting unsupported, 
standing to sit, transfers, standing eyes closed, standing feet together, 
reaching forward, retrieving objects, turning to look, turning 360, foot 
on stool, standing tandem, and stand on one leg. In the end, the results 
of the ML models able to achieve impressive accuracy ranged between 
92.33% and 97.89% for each subset tested. However, there is a 
limitation mentioned in the study, which is the limited patient dataset, 
which leads to bias.

Apart from that, a study was performed on fall risk prediction in 
Parkinson’s disease using real-world inertial sensor gait data (Ullrich 
et al., 2023), to compare different data aggregation approaches and 
machine learning models for the prospective prediction of fall risk 
using gait parameters derived either from continuous real-world 
recordings or from unsupervised gait tests. The dataset contained real-
world gait and unsupervised 4×10-Meter-Walking-Tests from 40 PD 
patients. Different classifier methods were used, including SVM, RF, 
and GB. The Random Forest classifier reported the highest balanced 
accuracy of 74.0% (sensitivity: 60.0%, specificity: 88.0%) when 
aggregating all walking bouts and days of each participant. However, 
due to the study’s unsupervised nature, several limitations arise. These 
include differences in the amount of data provided by participants, 
differences in the number of recordings and gait test executions per 
day, and missing recordings due to technical and usability difficulties 
encountered by participants when handling the recording.

Another study (Lockhart et al., 2021) was conducted involving fall 
risk detection among community-dwelling older adults using an IMU 
sensor. The study used 58 gait parameters as the dataset, including 
linear and nonlinear parameters, collected by 171 community-
dwelling older adults during 10-meter walking tests at their normal 
speed. While 127 participants’ gait data was used for training the 
classification model, the rest will be used for testing. In this study, 3 
different experiments were using an RF classifier. Experiment 
I covered the random forest base model development, validation, and 
blind testing, while Experiment II involved the development, 
validation, and blind testing of the random forest model with feature 
engineering. The use of linear gait variables vs. nonlinear gait variables 
was compared. Finally, Experiment III applied a random forest model 
with feature engineering and both linear and nonlinear variables. The 
results showed that Experiment III achieved the highest accuracy of 
81.6 ± 0.7%. The study also pointed out a weakness that was related to 
the limited generalizability of the model due to the lack of patient-
specific training data sets at the beginning of the data collection phase, 
which limited the model’s applicability to different populations.

In 2024, a study was conducted utilizing accelerometer data as 
well as a machine learning approach for fall risk prediction (Angsuwan 
et  al., 2024). The dataset comprises accelerometer gait data and 
demographic information collected from 160 elderly people aged 60 
to 86 years. The study also uses k-fold cross-validation to address the 
restricted dataset issue. In the data collection process, participants 
were given instructions to wear a 3-axis accelerometer sensor on their 
anterior waist and complete the TUG test twice. Overall, after deleting 

the noise sample, there were a total of 319 samples. The TUG 
evaluation then labeled each sample with its fall risk, classifying those 
with completion times of 13.5 s or more as fallers and the remaining 
ones as non-fallers. During the implementation phase, the 
accelerometer data is preprocessed using the moving average method. 
Next, model enhancement techniques like feature selection, PCA, and 
SMOTE oversampling are used. Overall, the RF model outperformed 
others in the experiment using the top 10 features and demographic 
data, scoring 0.98 on the AUC score.

Apart from that, a study (Nishiyama et  al., 2024) proposed 
utilizing single gait cycle data and machine learning in elderly fall risk 
prediction. The dataset includes acceleration and rotational velocity 
data from an IMU collected from 44 participants (22 fallers) using a 
smartphone to record their process of walking for 6 s under a 10-meter 
walking path four times. The modeling method includes using inner 
and outer cross-validation to optimize hyperparameters. Finally, the 
gradient-boosting decision tree algorithm achieved an amazing mean 
accuracy of 0.936 in five-fold cross-validation, with age being the most 
important feature. The study also emphasizes the benefits of this new 
method, which only requires a gait cycle.

Another study (Kou et al., 2024) proposed the use of IMUs and 
machine learning approaches for fall risk assessment. The dataset 
contains 28 kinematic data collected from 28 workers aged 60 to 80 
performing tasks such as walking, squatting, bending, standing, 
sitting, and rising from bed while wearing IMU sensors. Then, FGA 
was used to categorize individuals into the high and low fall risk 
group. Then a feature selection is applied to the data. During the 
classification process, multiple ML classifiers were used, and a 
CNN-LSTM hybrid model was created to identify the gait pattern 
from kinematic data in order to feed it into the model. Overall, all 
models showed positive outcomes, with RF surpassing others with a 
91.3% accuracy score.

In 2023, a study was undertaken to identify older persons who are 
at high risk of falling using machine learning and multifactor analysis 
(Lyu et al., 2022). The dataset utilized 126 sets of motion trajectories 
from 42 markers in the sagittal, coronal, and transverse planes. These 
trajectories were gathered from 46 subjects in Beijing, all of whom 
were aged 60 or older. The process involves using a Wilcoxon rank 
sum test to determine any disparities between their age and BMI. The 
subjects were categorized into two groups: fallers and non-fallers. Fall 
was identified based on the codes MB46.3 and MB47.C from the 
ICD-11. The subjects participated in TUG tests in which 15 cameras 
and a calibration model recorded their motion trajectory. The final 
results indicated that the instability of the faller group was considerably 
higher than that of the no-faller group in both the male and female 
cohorts (p < 0.005). This emphasizes the importance of hip joint 
position in influencing human falls. Furthermore, the GBDT classifier 
surpasses the others with a perfect accuracy score of 100%.

The study (Kausar et al., 2023) proposed an approach that utilizes 
ADLS data and a wearable fall detection device to differentiate falls in 
elderly individuals. The study employed the SisFall dataset, a publicly 
available dataset consisting of 4,510 15-s signal segments, containing 
1,789 falls and 2,707 ADLs. The study utilized unique processing 
techniques and feature extraction methods to extract features from 
accelerometry data. The method of feature extraction relied on a time 
window that moved continuously. Various window sizes have been 
examined to determine the optimal window size in terms of detection 
accuracy and computing efficiency. SVM, KNN, RF, and ANN are 
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subsequently utilized for classification. The result demonstrates that 
SVM and RF exhibit outstanding performance with a 99% 
accuracy rate.

2.2 Deep learning methods

A One–One–One Deep Neural Networks algorithm was proposed 
for human fall risk prediction (Savadkoohi et al., 2021). The study 
used an open-source force-plate dataset to quantify human balance 
from a wide range of demographics of human participants as well as 
different standing situations, such as different surfaces and eye 
conditions. In the study, the proposed One–One–One Neural 
Networks classifier outperformed the other models by achieving a 
maximum accuracy of 99.9%. However, the model might have an issue 
with overfitting.

On the other hand, a group of researchers (Tunca et al., 2020) 
proposed a method for fall risk assessment with the use of inertial 
sensors. The dataset consisted of gait data that was collected by an 
IMU device from 90 elderly patients who were suffering from 
different neurological illnesses. The patients were separated into 
two groups depending on their history of falls, including high-risk 
and low-risk subjects. The study utilized different classifiers for fall 
risk detection, including LSTM, MLP, RF, HMM, and SVM. The 
overall accuracy was promising, while LSTM outperformed the 
other classifiers by achieving an accuracy of 92.1% on a separate test 
dataset collected from 16 patients. However, a limited dataset was 
deployed in this study, which might affect the model generalization.

A Deep Learning Enabled Fall Detection (DLFD) approach 
(Anwary et al., 2022) was introduced with the use of gait analysis. 
The method consisted of several steps, including data acquisition, 
edge communication, fall detection, gait extraction from pose 
estimation, post-processing, and normalization, fall and no-fall 
labeling, and model evaluation. The method deployed the pose 
estimation (MediaPipe) framework to extract gait information from 
real-time video taken by cameras positioned at different spots. After 
that, the retrieved gait data were processed, normalized, and labeled 
in preparation for bi-LSTM model training and testing. Lastly, the 
performance of the LSTM model achieved an impressive result for 
classifying falls and no-falls, with an accuracy of 96.35%, precision 
of 95.21%, and recall of 95.08%. However, the small number of 
vision-based real-life fall video datasets made it difficult to evaluate 
and train the DLFD approach.

Besides, a group of researchers (Choi et al., 2022) proposed a 
deep learning-based near-fall detection algorithm for a fall risk 
monitoring system. The algorithm used in the study was a modified 
directed acyclic graph convolutional neural network (DAG-CNN) 
architecture that extracted multi-level features from the input data. 
The dataset was collected with a single IMU device. The data were 
collected from 34 young volunteers (21 males and 13 females) with 
a range of ages 21 to 34, body masses ranging from 45 to 81 kg, and 
heights ranging from 1.57 to 1.85 m. There were 36 different 
categories of activities, including 10 different types of falls, 10 
different types of near-falls, and 16 different types of near-falls. In 
the study, the dataset was split into training and testing sets, and a 
leave-one-participant-out cross-validation technique was applied 
for evaluation. Graph convolutional neural networks (DAG-CNN) 
and CNN were used in the classification process. Overall, the 

performance results obtained were favorable, while DAG-CNN had 
the best result with an accuracy of more than 98%. The weakness of 
this research is that the fall simulation experiment was carried out 
in a laboratory setting, which may not exactly represent actual falls.

The use of a CNN-RNN architecture-based approach (Philip 
et  al., 2023) was proposed for fall detection. The experiment 
involved several steps, including data collection, data preprocessing, 
machine training, and performance evaluation. The study used 
ADls (daily living activities) datasets that contained gyroscope and 
acceleration data from 20 people doing various ADLs and 
simulating falls. In the preprocessing phase, the data was divided 
into fixed-length windows and normalized to have a mean and 
variance of zero. Furthermore, data augmentation techniques were 
also applied to account for changes in sensor positioning, such as 
introducing random noise and shifting the data. After that, the 
dataset was split into a ratio of 70:15:15 training, validation, and 
testing sets. In the training phase, the CNN module was trained to 
learn spatial features from the acceleration and gyroscope data, 
while the RNN module learned temporal dependencies and long-
term trends. Overall, the performance was excellent, with an 
accuracy of 95%, precision of 94%, recall of 96%, an F1-score of 
95%, and an AUC-ROC of 0.98. However, the limited dataset may 
affect the model generalization. The model was built and evaluated 
using only simulated falls, it might not accurately represent the 
complexity and diversity of actual falls. A summary of the state-of-
the-art methods is presented in Table 1.

3 Proposed solution

This section presents the methods and system workflow used in 
this study. The procedure consists of seven primary steps depicted in 
Figure 1.

3.1 Dataset collection

This dataset comprises 25 subjects with varied gender, 
ethnicity, and age groups (4 females and 21 males). The age 
distribution includes 19 subjects ranging in age from 20 to 35, 2 
subjects aged around 50 to 59, and 4 subjects aged 60 and above. 
Among these 25 subjects, 4 were fallers, as determined by the 
JHFRAT evaluation. They were requested to undergo the Time Up 
and Go tests, which involved starting from a seated position, 
walking for 3 meters at a normal pace, then returning to the chair 
and sitting down (refer to Figure  2) (Time Up and Go (TUG), 
2024a). During the TUG assessment procedure, two cameras and 
tripods were set up to capture the front and side views at 30 frames 
per second, with a 16:9 ratio of 1080p video resolution. This study 
uses 21 non-faller samples from this dataset as a healthy control 
group for this research. The dataset is known as the MMU Fall Risk 
Prediction (MMU-FRiP) Dataset henceforth.

3.2 Human pose estimation

Human pose estimation is a computer vision approach that can 
track human poses in images and videos. AlphaPose (Fang et al., 
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TABLE 1 Summary of related work.

Authors Methodology 
used

Dataset and input details Performance Pros Cons

Chakraborty and 

Sorwar (2022)

AdaBoost and 

Decision Tree

The study used a publicly available dataset, the long-term 

movement monitoring dataset, which was gathered from 

71 elderly individuals. The participants included both 

fallers and non-fallers.

AdaBoost: 76%

Decision Tree: 96%

 • Use of real fall data: The 

methodology is tested using a 

dataset of long-term 

accelerometer-assisted natural fall 

data, which enhances the validity 

and applicability of the research 

findings.

 • The analysis reveals that certain features did not perform 

well in the fall risk classification. This suggests that further 

improvement in feature selection methods could enhance 

the overall classification performance.

 • The dataset is limited to 71 older adults, which may not 

be representative of the entire population.

Beauchet et al. 

(2018)

MLP, Averaged 

Neural Network 

(avNNET), and 

NEAT

The dataset comprises 848 elderly inpatients and includes 

baseline characteristics of the participants, such as age, 

gender, daily drug intake, usage of psychoactive 

medicines or analgesics, history of previous falls, and 

several measures of mobility and cognitive function.

MLP: 81.44%

avNNET: 17.86%

NEAT: 83.83

 • The study utilized a prospective 

cohort design.

 • Used a hard outcome, 

represented by the occurrence of 

falls, which adds to the reliability 

and validity of the findings.

 • Use of sophisticated 

statistical models.

 • The study only included individuals from one center, which 

may have limited the generalization of the results to other 

contexts or demographics.

 • Limited ability to identify high-risk inpatients.

 • A high rate of missing data, which could lead to bias and 

impair the representativeness of the results.

Velusamy et al. 

(2023)

DT, SVM, Neural 

Networks, RF, and 

Logistic Regression

Several public datasets were used in this study, including 

FARSEEING, UP-Fall, WISDM, UVA-Fall, and MobiAct 

datasets.

The accuracy of fall prediction 

ranges from 84.9 to 98.5%.

 • Real-time prediction.

 • Combine information from a 

different sensor, enable full gait 

analysis.

 • Limited sample sizes.

 • Sensor placement and reliability.

Aqueveque et al. 

(2022)

RF and SVM The dataset utilized consists of mobility data from 71 

elderly people, with two being excluded after feature 

extraction, resulting in a total of 69 subjects. Among 

these subjects, 31 experienced falls whereas 38 did not.

RF

Accuracy: 81–98%

F1-score: 70%

SVM

Accuracy: 59%

Recall: 91%

F1-score: 71%

 • The results showed promising 

potential for identifying subjects 

at risk of falling.

 • Limited dataset size.

 • The use of an external database did not have any control 

over the data that the original researchers had provided 

regarding the classification methodology.

Ta and Jin (2023) Logistic Regression, 

KNN, RF, SVM, and 

K-Mean Cluster

The dataset comprises 354 samples gathered from 23 

patients with neurological disorders and balance 

impairments, as well as 262 patient datasets provided by 

qualified physiotherapists. The 262 patients with a variety 

of medical conditions are all at risk of falling and have a 

BBS score.

LR: 0.965421

KNN: 0.96215

RF: 0.963551

SVM: 0.965888

K-Mean Cluster: 0.90678

 • Comparative evaluation.

 • High accuracy.

 • Limited dataset, which leads to bias.

(Continued)
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TABLE 1 (Continued)

Authors Methodology 
used

Dataset and input details Performance Pros Cons

Ullrich et al. 

(2023)

SVM, RF, and 

Gradient Boosting 

Classifiers

The dataset consisted of 422 days of sensor recordings, 

including 1,059 4x10MWTs, 55,965 real-world walking 

bouts, and 1,444,985 parameterized strides, collected 

from 40 patients with idiopathic PD who participated in 

the FallRiskPD study between March 2019 and June 

2021.

RF Accuracy: 74%

Sensitivity: 60%

Specificity: 88%

SVM-rbf

Accuracy: 64%

Sensitivity: 60%

Specificity: 68%

SVM-linear

Accuracy: 57%

Sensitivity: 50%

Specificity: 64%

 • The study used long-term real-

world data, which has advantages 

over supervised data.

 • The study’s unsupervised nature results in several 

limitations, including the varying amount of data provided 

by participants, differences in the number of recordings 

and gait test executions per day, and missing recordings 

due to technical and usability difficulties encountered by 

participants when handling the recording.

Lockhart et al. 

(2021)

RF The dataset involves 171 community-dwelling older 

adults who participated in a 10-meter walking test while 

wearing an IMU sensor, which has a total of 58 

parameters, including linear and nonlinear gait 

parameters.

RF: 81.6%  • The study provides a useful 

method for assessing and 

quantifying gait abnormalities in 

fall-prone individuals, especially 

older adults. It emphasizes the 

importance of linear and 

nonlinear gait variables in 

identifying gait impairments and 

fall risk.

 • The limited generalizability of the model is due to the lack 

of patient-specific training data sets at the beginning of the 

data collection phase, which affects the model’s 

applicability to different populations.

Savadkoohi et al. 

(2021)

CNN, RNN, LSTM, 

One–One-Three, 

One–One-Two NN, 

and Proposed One–

One–One NN

Open-source force-plate dataset that quantified human 

balance from a wide demographic of human participants 

(163 females and males aged 18–86) for varied standing 

conditions (eyes-open firm surface, eyes-closed firm 

surface, eyes-open, foam surface, eyes-closed foam 

surface) was used. It also used the Falls Efficacy Scale 

(FES), International Physical Activity Questionnaire 

(IPAQ), and Trail Making Test (TMT).

CNN: 99.3%

RNN: 96.9%

LSTM: 98.3%

One–One-Three NN: 99.5%

One–One-Two NN: 99.7%

One–One–One NN: 99.9%

 • One–One–One Neural Networks 

classifier has a simple 

architecture, eliminating the need 

for a more complex model.

 • Capability to extract the 

maximum amount of required 

spatiotemporal information from 

the force-plate using randomized 

sample datasets.

 • Due to the problem of overfitting, the model’s 

generalizability may be limited.

(Continued)
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TABLE 1 (Continued)

Authors Methodology 
used

Dataset and input details Performance Pros Cons

Tunca et al. (2020) Proposed method:

LSTM

Traditional method:

MLP, RF, HMM, 

and SVM

The dataset contains gait data from 90 subjects (patients) 

suffering from various neurological illnesses, such as 

Parkinson’s disease, vascular dementia, frontotemporal 

dementia, dementia with lewy bodies, and normal 

pressure hydrocephalus. The inclusion criteria for the 

individuals were the presence of a neurological disorder 

with gait-related symptoms and the ability to walk 

unassisted for at least 10 strides.

SVM

Accuracy: 0.833

AUC: 0.894

RF

Accuracy: 0.843

AUC: 0.894

MLP

Accuracy: 0.903

AUC: 0.958

HMM

Accuracy: 0.866

AUC: 0.957

LSTM

Accuracy: 0.921

AUC: 0.957

 • The study employed various 

classifiers, including SVM, RF, 

MLP, HMM, and LSTM, for 

comparison. This approach 

allows for a comprehensive 

evaluation of the performance 

and effectiveness of different 

classification methods in fall 

risk assessment.

 • The LSTM classifier showed a 

consistent performance with 

minimal fold-wise change, 

implying its dependability in 

assessing fall risk.

 • Limited availability of data.

Anwary et al. 

(2022)

LSTM The study utilized three publicly accessible datasets, 

including the Fall Detection Dataset (FDD), the MMU 

Fall Detection Dataset, and the Multiple Camera Fall 

(MCF).

Accuracy: 96.35%

Precision: 95.21%

Recall: 95.08%

 • Accurate fall detection.  • A small number of vision-based real-life fall video datasets 

makes it difficult to evaluate and train the DLFD approach. 

This restriction may limit the method’s ability to generalize 

in practical situations.

Choi et al. (2022) DAG-CNN and 

CNN

The dataset used in the research consists of 1,200 samples 

collected from 20 participants, which include both near-

fall and non-fall activities of daily living (ADLs).

DAG-CNN: 98%

CNN: 69.8 and 89.7%

 • High predictive accuracy.  • The fall simulation trials were carried out using a 

laboratory scenario that may not fully represent actual falls.

Philip et al. (2023) CNN-RNN The dataset utilized a publicly available dataset consisting 

of instances of falls and everyday activities. The activities 

of daily living (ADLs) are recorded by a wearable sensor 

device, comprising gyroscope and acceleration data 

collected from 20 individuals performing various ADLs 

and simulating falls.

Accuracy: 95%

Precision: 94%,

Recall: 96%

F1-score: 95%

AUC-ROC: 0.98

 • Accurate and dependable.  • Limited dataset size: The number of people and falls in the 

dataset used for training and testing the model is 

constrained, which may limit the broad applicability of 

the findings.

 • Due to the model being built and evaluated using only 

simulated falls, it might not accurately represent the 

complexity and diversity of actual falls.

 • Lack of consideration for contextual factors: The model did 

not consider the context and environmental aspects that 

can affect fall risk and detection.

Angsuwan et al. 

(2024)

RF and Naïve Bayes The dataset consists of 160 accelerometer gait data and 

demographic data. Each participant involves wearing the 

device and performing the TUG assessment twice.

AUC score

RF: 0.98

NB: 0.8

 • The effectiveness of Random 

Forest in fall risk prediction.

 • Limited dataset size.

(Continued)
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TABLE 1 (Continued)

Authors Methodology 
used

Dataset and input details Performance Pros Cons

Nishiyama et al. 

(2024)

GBDT The dataset contains acceleration and rotational velocity 

data from an IMU acquired from 44 elderly people (22 

fallers) using a smartphone to record their process of 

walking for 6 s under a 10-meter walking path four 

times.

GBDT: 0.936  • The novel method requires only a 

single gait cycle.

 • Constraints preventing frequent or long-distance walking 

or for usage in settings with limited walking areas.

Kou et al. (2024) SVM, LR, RF, KNN, 

and NB

The data includes 28 kinematic data from 28 workers 

aged 60 to 80 who wore IMU sensors while doing 

various tasks like walking, squatting, bending, standing, 

sitting, and rising from bed.

SVM: 87.5%

RF: 91.3%

LR: 86.96%

KNN: 87.5%

NB: 85.71%

 • The effectiveness of the ML 

approach and the use of a 

single IMU.

 • The small dataset size affects the model’s generalizability.

Lyu et al. (2022) L1/2 sparse 

iteration, SVM, 

GBDT, RF, DNN, 

and RNN

The dataset included 126 sets of motion trajectories from 

42 markers in the sagittal, coronal, and transverse planes, 

collected from 46 subjects aged 60 or older.

L1/2 sparse iteration: 60.87%

SVM: 97.83%

GBDT: 100%

RF: 93.48%

DNN: 56.52%

RNN: 19.57%

 • The effectiveness of multifractal 

algorithms and machine learning 

approaches.

 • The small size of the dataset, which may result in model 

overfitting.

Kausar et al. 

(2023)

SVM, KNN, RF, and 

ANN

The SisFall dataset comprises 1,789 instances of falls and 

2,707 ADLs collected from a group of 23 young adults 

aged between 19 and 30. The dataset contains 15 

different kinds of falls, including falls while walking, falls 

forward, and falls backward while sitting. Furthermore, 

it has 19 labeled ADLs, such as walking upstairs and 

downstairs, as well as walking and jogging.

SVM: 99.75%

RF: 99.73%

KNN: 96.34%

ANN: 99.05%

 • The efficacy and cost-

effectiveness of the proposal, 

which can attain promising 

outcomes.

 • The dataset exhibits inadequate diversity since it only 

includes a young age demographic.
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2023) is one of the well-known frameworks known for its high 
performance in human pose estimation tasks in images and videos. 
It comes with several features like multi-person pose estimation, 
real-time performance, and multi-camera pose tracking. It can 
be used to analyze the image input or video input frame by frame and 
detect human body parts. In this study, it is employed to extract 
landmark body joint positions from the video input.

Halpe Full Body model is used as a posture-tracking model for 
video processing frame by frame. The generated output includes 26 key 
points, such as nose, left eye, right eye, left ear, right ear, left shoulder, 
right shoulder, left elbow, right elbow, left wrist, right wrist, left hip, right 
hip, left knee, right knee, left ankle, right ankle, head, neck, hip, left big 
toe, right big toe, left small toe, right small toe, left heel, and right heel. 
The extracted body key points are shown in Figure 3.

3.3 Signal smoothing

Savitzky–Golay (SG) filter is a popular signal processing technique 
for reducing noise and improving signal smoothness (Pelliccia, 2019). 
The concept of SG smoothing is straightforward. The SG algorithm 
first selects a window around each data point in the spectrum, then 
fits a polynomial to the points in the selected window, and finally 
replaces the data point in question with the appropriate value of the 

fitted polynomial (Pelliccia, 2019). The user can specify the window 
size and the order of the polynomial to be fitted to the input. The 
window size refers to the filter window’s length, which corresponds to 
the number of coefficients. The polynomial parameters refer to the 
order of the polynomial used for fitting the samples into the window. 
This order affects the degree of the polynomial used in the smoothing 
process. The formula to obtain the smoothed data is presented below:

 

y c yi
j k

k
j i j �

��
�� . .

 
(1)

 • yi  represents the smoothed value at the i  index position in the 
data series.

 • c j referring to the filter coefficients
 • yi j+  are the data points in the neighborhood of the central point 

𝑖 (Pelliccia, 2019).

In this study, the SG filter was employed to smoothen the heel 
strikes and toe-offs signals based on the y-coordinate of frames, shown 
in Figure 4, respectively. The reason for using the y-coordinate for the 
heel and toe frames is that walking involves the vertical motion of 
lifting and lowering the feet. Therefore, using vertical frames provides 
more accurate results and comprehensible visualization for heel strike 
and toe-off detection. The heel strikes and toe-offs locations are 
required to calculate the relevant gait features.

3.4 Turning detection

The goal of recognizing the turning frames is to prevent it from 
being included in gait feature extraction. The rationale behind this is 
that the turning action forces the participants to change their 
movement, which is not their normal walking pace. As a result, gait 
events detected during turning actions such as heel strikes, and toe 
offs may result in incorrect data within the gait feature extraction 
process. Therefore, frames containing turning motion are excluded to 
ensure the integrity of gait analysis.

Turning detection involves several logics and steps. To 
identify turning, we find the lowest value from the local maxima 
observed in the data. The underlying idea is that the deepest 

FIGURE 1

System workflow: gait analysis and classification process.

FIGURE 2

Data acquisition via TUG procedure.
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FIGURE 4

Signal smoothing on heel strikes events over time.

points identified on the right and left feet correspond to moments 
where the subject momentarily stops to adjust both feet to 
facilitate the turning process. After that, a comparison is 
performed to ascertain which foot exhibits the deepest and the 
second deepest points. The rationale is that the deepest point is 
likely to indicate that the next point will be the initial heel strikes 
following the completion of the turning motion. The second 
deepest point might indicate the final heel strike before the turn. 
With this, we can determine the last heel strike before the turn 
and the first heel strike after the turn. A median operation is 
performed to calculate the starting and ending frames of the 

turning movement. The steps for turning frames detection are 
summarized as follows:

 1 Local Maxima Identification: Detect local maxima within the data 
to locate the heel strikes events, i.e., local_maxima_r and local_
maxima_r. During the process of identifying local maxima, the 
Savitzky–Golay filtering parameters are set at 11 window lengths 
and 3 polynomial orders. These parameter values were chosen 
because they generate a generalized output that can be used to 
different age groups’ toe off and heel strike signals. The 
determination is evident in the individual keypoints’ signal 

FIGURE 3

Halpe Full Body model output and keypoint illustration.
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evaluation through visualization and video analysis. On the other 
hand, the parameter min_distance in the find peak function is 
used to determine the minimum distance between neighboring 
peaks in the peak detection algorithm.

 2 Deepest Points Determination: Identify the deepest points (lowest 
value) among the local maxima for both heels. These points are 
likely corresponded to instances within the turning motion, 
signifying moments where the path requires a directional change, 
thereby indicating the last heel strikes in a turning position, i.e., 
deepest_maxima_r_index and deepest_maxima_l_index.

 3 Heel Strike Frame Analysis: After acquiring the deepest points 
from both heels, the next steps involve distinguishing the frames 
indicative of the starting and ending of the turn. Toward this end, 
the deepest points are compared to find the deepest and second 
deepest points, i.e., deepest_index and deepest_index2. The frame 
preceding the deepest point is considered the last heel strike before 
turning. Conversely, the frame following the second deepest point 
is regarded as the subsequent heel strike post-turn. Before moving 
on to the next phase, we must determine whether deepest_index 
and deepest_index2 belong to the left or right feet, i.e., first_
deepest_is_in_r or first_deepest_is_in_l and second_deepest_is_in_r 
or second_deepest_is_in_l. This can be achieved by determining 
whether the index is found in local_maxima_r or local_maxima_r. 
After that, we can obtain the index_before_deepest and index_
after_deepest. The index_before_deepest relates to the last heel 
strike before turning, which is the index of local maxima before 
deepest_index2. While index_after_deepest relates to the initial heel 
strike after the turn, it is the index of local maxima after 
deepest_index.

 4 Median Calculation for Turning Frames: Median operation is 
performed to find frames marking the beginning and end of 
the turn:

 

start Median index deepes end tturning before indexdeepest
� � �, 2 , _ uurning

Median index after deepest deepest index� � �_ _ _,  (2)

The processes involved in finding turning frames are summarized 
in Algorithm 1.

ALGORITHM 1 : Pseudocode for Finding Turning 
Frames

INPUT: keypoint_df - A dataframe containing keypoint information.
OUTPUT: start_turning, end_turning  - The keypoint indexes 

denoting the beginning and ending of turning actions.

FUNCTION find_turning_points(keypoint_df)

// Step 1: Smooth the x-coordinate data for right and left heel 
using Savitzky-Golay filter.
smoothed_RHeel_x = ApplySavitzkyGolayFilter(keypoint_
df['RHeel_x'], window_length=11, polyorder=3)
smoothed_LHeel_x = ApplySavitzkyGolayFilter(keypoint_
df['LHeel_x'], window_length=11, polyorder=3)

// Step  2: Find local maxima for right and left heel with a 
specified minimum distance between peaks.

local_maxima_r = FindLocalPeaks(smoothed_RHeel_x, 
min_distance=25)
local_maxima_l = FindLocalPeaks(smoothed_LHeel_x, 
min_distance=25)

// Step 3: Find the index of the deepest (lowest) point among 
local maxima for both heels.
deepest_maxima_r_index = IndexOfMin(smoothed_RHeel_x, 
local_maxima_r)
deepest_maxima_l_index = IndexOfMin(smoothed_LHeel_x, 
local_maxima_l)

// Step 4: Identify the deepest heel based on the comparison of 
y-coordinates.
if smoothed_RHeel_x[deepest_maxima_r_index] < 
smoothed_LHeel_x[deepest_maxima_l_index]

deepest_index = deepest_maxima_r_index
second_deepest_index = deepest_maxima_l_index

else
deepest_index = deepest_maxima_l_index
second_deepest_index = deepest_maxima_r_index

// Step 5 & 6: Check if the deepest indices exist in the local 
maxima lists and find their positions.
first_deepest_is_in_r = FindIndex(deepest_index, 
local_maxima_r)
first_deepest_is_in_= FindIndex(deepest_index, 
local_maxima_l)
second_deepest_is_in_r = FindIndex(second_deepest_index, 
local_maxima_r)
second_deepest_is_in_l = FindIndex(second_deepest_index, 
local_maxima_l)

// Step 7 & 8: Determine the previous index to the deepest and 
the next index to the second deepest.
index_before_deepest = DeterminePreviousIndex(first_deepest_
is_in_r, first_deepest_is_in_l, local_maxima_r, 
local_maxima_l)
index_after_second_deepest = DetermineNextIndex(second_
deepest_is_in_r, second_deepest_is_in_l, local_maxima_r, 
local_maxima_l)

// Step 9 & 10: Calculate the median indices for the start and 
end of the turning action.
start_turning = CalculateMedianIndex(index_before_deepest, 
second_deepest_index)
end_turning = CalculateMedianIndex(deepest_index, 
index_after_second_deepest)
RETURN start_turning, end_turning

END FUNCTION

3.5 Gait feature extraction

This study focuses on the analysis of two specific key 
points, namely the Heel and the Big Toe. These key points are utilized 
to identify frames and detect relevant events. Table 2 provides some 
explanation for the heel strikes and toe-off features.
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Building upon features extraction, the formula and frame index 
that reflect the occurrence of heel strike and toe-off are used to 
calculate gait features such as stride length, step length, stance time, 
swing time, step times, stride time, cadence, and speed.

3.5.1 Stance time
Stance time (StanceT ) refers to the time one foot spends on the 

ground during a gait cycle. The formula used for the toe off (Toe off ) 
events subtracted with heel strike (Heel Strike ) and divides with the 
frame per second (FPS) to obtain the duration of stance.

 
Stance

Toe off Heel Strike
FPST �
�� � 

 
(3)

3.5.2 Stride time
Stride time (StrideT ) refers to the time it takes to complete a 

stride. The formula is the next heel strike (Heel Strikei +1) minus with 
current heel strike (Heel Strikei ) and dividing with fps (FPS).

 
Stride Heel Strike Heel Strike

FPST
i i�

��  1

 
(4)

3.5.3 Step time
Step time (StepT) refers to the time it takes to complete a step. The 

formula is the opposite of the toe off (OppositeToeOffi) minus with 
heel strike (Heel Strikei ) divide with fps (FPS).

 
Step OppositeToeOff Heel Strike

FPST
i i�
�  

 
(5)

3.5.4 Cadence
Cadence (Cadence) refers to how many steps you  take in a 

minute. The formula is the total step (Number of step  ) divided by the 
total duration in minutes [Total duration minute � �].

 
Cadence Number of step

Total duration minute
�

� �
  

  
(6)

3.6 Feature engineering and class 
balancing

This section covers the methods that help to enhance the model 
performance in classification tasks, which involve class balancing and 
feature engineering.

Imbalanced datasets can result in biased predictions and inaccurate 
accuracy. To resolve this issue, the solutions would be undersampling 
and oversampling. Undersampling is the process of reducing the 
number of instances in the majority class to achieve a balanced dataset. 
Nevertheless, this may not be suitable for tiny datasets. Oversampling 
is another method, but random oversampling might result in 
overfitting due to redundant data. SMOTE oversampling, which stands 
for Synthetic Minority Oversampling Technique, is beneficial in this 
scenario. The SMOTES implementation processes are given as follows:

 • Step 1: Identifying the feature vector and its nearest neighbors.
 • Step 2: Find the difference between both of them.
 • Step 3: Multiply the difference by a random number between 

0 and 1.
 • Step 4: Generate a novel synthetic instance by incorporating the 

random number into the feature vector.
 • The process will be  repeated until the desired balanced 

level is met.

Standard Scaler is a feature scaling approach that helps to standardize 
feature values, which can be helpful for continuous variables that have a 
high-ranking difference. Furthermore, feature scaling could speed up 
convergence and improve machine-learning model performance. The 
formula to scale the feature vectors in this study is given by:

 
z

x

s
�

� �

 
(7)

3.7 LightGBM

LightGBM, or Light Gradient Boosting Machine, is a gradient-
boosting technology developed by Microsoft to enhance speed and 
efficiency (Ke et  al., 2017). LightGBM is a gradient-boosting 
framework that prioritizes leaf-wise tree growth, leading to a reduced 
number of nodes in the tree. It is well-known for its rapid pace and 
effectiveness, making it well-suited for handling extensive datasets and 
complex feature spaces.

LightGBM constructs trees using a histogram-based approach to 
learning. It categorizes continuous features into bins and creates 
histograms to efficiently determine the best splits. The approach builds 
trees by selecting the leaf with the highest delta loss during the process, 
rather than constructing them level by level. It utilizes techniques such 
as Gradient-based One-Side Sampling (GOSS) and Exclusive Feature 
Bundling (EFB) to improve training speed (Ke et al., 2017).

LightGBM is rapid and scalable, making it appropriate for large 
datasets and numerous feature spaces. It effectively manages 
categorical characteristics, reducing the need for one-hot encoding. 
This method is more memory-efficient and achieves higher accuracy 

TABLE 2 Heel strikes and toe offs details.

Gait events Description Identification

Heel strikes Heel Strike � � Heel strikes occur when the foot makes contact with the 

ground after the swing phase is over
Local Maximum of ( &LHeel RHeel) in y-coordinates

Toe offs Toeoff� � Toe offs occur when the toe begins to leave the ground. Local Maximum of (LBigToe RBigToe& ) in y-coordinates
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than traditional gradient boosting methods. LightGBM may not be as 
effective with small datasets compared to other methods due to its less 
apparent efficiency improvements. Overfitting is more likely to occur 
when the dataset is limited. Complex models have less interpretability 
compared to simpler models.

4 Experiment results

4.1 Datasets

The experiments were performed using the 21 non-fallers 
group from MMU-FRiP dataset and Mendeley public datasets to 
predict fall risk. The reason for needing the public dataset is due 
to the challenges of recruiting participants with the risk of falling. 
The MMU-FRiP dataset used in this study consists of 21 samples, 
comprising 3 females and 18 males. Among these samples, 18 
subjects are aged between 20 and 35, while 1 subject is aged 
around 50, and 2 participants are aged 60 and older. The Mendeley 
public datasets (Caicedo Rodríguez et al., 2020) contain 44 elderly 
individuals, averaging 69.98 years in age (standard deviation of 
8.57 years), comprising 37 women and 7 men, assessed using the 
Performance-Oriented Mobility Assessment (POMA). In contrast, 
the public dataset was categorized under fallers, given that all 
included participants scored below 19 on the POMA scale, 
signifying a heightened fall risk.

In the process of merging the datasets, attribute mapping is 
required due to the limited number of features in the MMU-FRiP 
dataset and the incomparability of some feature values. Therefore, 
most spatial features were omitted, retaining primarily the 
temporal features for analysis. The following process involved two 
datasets put together to form a new dataset. The details are shown 
as follows:

 • left_stride_time: Left_Stride_Time (Mendeley dataset) is aligned 
with left_stride_time (MMU-FRip dataset).

 • right_stride_time: Right_Stride_Time (Mendeley dataset) is 
aligned with right_stride_time (MMU-FRiP dataset).

 • left_step_time: Left_Step_Time (Mendeley dataset) is aligned 
with left_step_time (MMU-FRiP dataset).

 • right_step_time: Right_Step_Time (Mendeley dataset) is aligned 
with right_step_time (MMU-FRiP dataset).

 • left_stance_time: Left_Single_Support (Mendeley dataset) is 
aligned with left_stance_time (MMU-FRiP dataset).

 • right_stance_time: Right_Single_Support (Mendeley dataset) is 
aligned with right_stance_time (MMU-FRiP dataset).

 • Cadence: The average of Left_Cadence and Right_Cadence 
(Mendeley dataset) is aligned with cadence (MMU-FRiP dataset).

 • The label is aligned with the label.

This study conducted two distinct experiments: (1) Experiment 1 
used gait features separately for the right and left feet, and (2) 
Experiment 2 used the average of the right and left feet’s gait features. 
Experiment 2 was carried out to facilitate a more generalized 
understanding of gait dynamics, which may be  more suitable for 
certain gait analysis contexts. Table  3 illustrates the dataset after 
attribute mapping, as well as the dataset that will be  used for 
experiments 1 and 2.

4.2 Toe-offs, heel strikes, and turning 
detection analysis

Firstly, an analysis is conducted to ensure that the gait events 
detection is working appropriately, to present the keypoint 
occurrence time as well as the signal to show that events occur. 
In Figure 5, the red dot represents the toe-off occurrence, and the 
blue dot indicates the heel strike event. The turning detection 
analysis is also carried out to remove the non-normally paced gait 
cycle, the square appears to highlight the foot when it is in the 
turning process, and the text also appears to display the turning 
frames. The following figure shows the event occurrence 
detection outcome, and the results are promising, indicating that 
the human pose estimation framework and signal smoothing 
work effectively.

4.3 Gait features analysis

Figure 6 displays the extracted gait features and how they 
correlate with one another. The values in each cell show how the 
feature values are related to one another. Positive correlations 
indicate a positive relationship in which an increase in one 
feature value will lead to an increase in the other. Conversely, 
negative correlations show the opposite relationship, where an 
increase in one feature value would lead to a decrease in the 
other, and a 0 value denotes no correlation at all. Based on the 
observation, cadence appears to have a strong negative 

TABLE 3 Dataset combinations.

Mendeley dataset MMU-FRiP Dataset Experiment 1 dataset Experiment 2 dataset

Left_Stride_Time left_stride_time left_stride_time average_stride_time

Right_Stride_Time right_stride_time right_stride_time

Left_Step_Time left_step_time left_step_time average_stride_time

Right_Step_Time right_step_time right_step_time

Left_Single_Support left_stance_time left_stance_time average_stance_time

Right_Single_Support right_stance_time right_stance_time

Mean (Left_Cadence + Right_Cadence) Cadence Cadence Cadence

Label Label Label Label
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FIGURE 5

Toe offs, heel strike turning detection in gait analysis.

relationship with stride and step time, but a weak correlation with 
stance time. It indicates that when cadence increases, these 
negative correlation features tend to decrease, whereas low 
correlation may have no effect on the value, which appears to 
be usual because a quicker walking pace results in shorter step 
and stride durations. Stride time, stance time, and step time all 
correlated positively. Indicating an increase in one’s feature value 
may cause others to increase, which is common because longer 
strides require longer step and stance times.

4.4 Evaluation of individual gait feature

This section outlines each feature distribution, as well as the 
information that could be obtained from the analysis.

According to Figure  7, the distribution of stance time for 
fallers appears to be shifting to the right. This implies that fallers 

may have a greater stance time than non-fallers. However, there is 
some overlap between the fallers and non-fallers, therefore not 
everyone with a longer stance duration is more likely to fall, as 
some fallers may have a similar stance duration. In terms of 
variability, non-fallers appear to have a wider range of stance time 
variability, whereas fallers exhibit sharp peaks, indicating that 
they have a more consistent stance time.

Based on Figure 8, the distribution of left and right stride 
times for fallers appears to be  wider than for non-fallers. 
Furthermore, the fallers appear to be  skewed to the left, 
suggesting that most fallers have shorter stride times. When it 
comes to observing differences in peaks in both distributions, the 
faller peaks around 1.1 on the left stride time, slightly right of the 
non-faller, while having similar peaks on the right side, 
indicating that the faller may have a slightly longer stride 
duration than the non-fallers. However, there is a significant 
overlap between the two distributions, implying that not all 
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individuals with longer stride durations will fall. While, in 
variability comparison, fallers may have more variability in their 
stride time than non-fallers.

We observe from Figure 9 that the fallers’ step time distribution 
appears to be shifted to the left side of the graph. This suggests that 
most fallers may have shorter step times than non-fallers. However, 
this does not determine that slower step time causes falls, because 
there is some overlap between the two distributions, implying that 
some non-fallers also have a shorter step time. In variability 
observations, non-fallers show a wide range of step time variability, 
whereas variable step time for fallers displays sharp peaks in their step 
time distribution, showing that those who fall most likely would have 
consistent step durations.

On the other hand, Figure 10 shows the cadence distribution for 
fallers and non-fallers, with fallers appearing to be shifted to the right 
side of the graph. This implies that fallers may have a higher cadence 
than non-fallers. Nonetheless, there is considerable overlap between 
the two distributions, suggesting that some fallers and non-fallers may 
have similar cadences. While in terms of variability, the fallers show 
greater variability in cadences compared with non-fallers.

4.5 Evaluating the effect of class balancing

This section presents the effectiveness of the SMOTE methods in 
handling imbalanced data. The dataset contains a total of 65 subjects, 

FIGURE 6

Dendrogram heatmap visualizing clustering of features based on correlation coefficients.

FIGURE 7

Distribution of stance times for fallers and non-fallers.
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and 44 of them were fallers, indicating a serious class imbalance issue. 
The SMOTE resampling method is used to deal with the class 
imbalance problem.

Table 4 shows a significant improvement in all models after 
applying SMOTE in terms of model generalization. The noticeable 
impact of SMOTE demonstrates its efficacy in addressing the 
overfitting issue. The result reveals that the accuracy scores of the 
models have fallen. However, the drop in accuracy is irrelevant in 
this case, as the dataset contains 68% fallers and 32% non-fallers. 
When dividing them into training and testing sets, the majority of 
the train and predicted classes will be fallers, since the non-fallers 
have only a few data points. As a result, accuracy will naturally 
be high because the most trained and predicted set is a faller.

Figure  11 represents the before and after applying SMOTE 
sampling method, where the feature space of the non-faller data has 
increased significantly. SMOTE has allowed the model to be trained 
and evaluated evenly, while also having balanced and larger data that 
can help in achieving a better generalization of the model.

FIGURE 8

Distribution of stride times for fallers and non-fallers.

FIGURE 9

Distribution of step times for fallers and non-fallers.

FIGURE 10

Distribution of cadence for fallers and non-fallers.

https://doi.org/10.3389/frai.2024.1425713
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Lim et al. 10.3389/frai.2024.1425713

Frontiers in Artificial Intelligence 17 frontiersin.org

4.6 Assessing the impact of feature scaling

Figure 12 illustrates the effect of applying a standard scaler to the 
dataset. The x-axis displays the feature value, while the y-axis displays 
the density of the feature value. Each feature represents a different 
color bar. The original data distribution contains a wide range of 
feature values, ranging from 0 to 160, as well as a density value of 
around 0 to 0.5. After applying the standard scaler, the ranging value 
from both decreases noticeably, with the feature value scaled between 
−2 and 6 and a density value of 0 to 0.08.

Table 4 demonstrates a significant impact of accuracies before and 
after feature scaling. However, some algorithms exhibit sensitivity to 
feature scale due to their distance-based nature, resulting in an increase 
or decrease in performance. Nonetheless, we intend to use feature 
scaling to prevent any bias in our algorithm toward a particular feature.

4.7 Classification and performance 
evaluation

In the classification phase, the entire size of the dataset was 
88, including 65 of the actual data and 23 oversampled data from 
the minority class (non-fallers). The dataset was then shuffled, 
divided into training and testing sets with a 70:30 ratio, and 
stratified to ensure equal proportions in each class, resulting in 61 
instances for training and 27 instances for testing (13 non-faller, 
14 fallers). Twelve classifiers, namely SVM, DT, RF, LightGBM, 
XGBoost, CatBoost, AdaBoost, KNN, Voting, NB, MLP, and 
Bagging were used. To obtain the best set of model parameters, 
hyperparameter tuning was performed using the sklearn 
library’s ParameterGrid.

4.7.1 Experiment 1
In the first experiment, classifiers were achieved in the range 

between 81% to 96% accuracy. However, the remarkable 96% accuracy 
was attained by the LightGBM, MLP and KNN classifiers (Figure 13).

4.7.2 Experiment 2
In Experiment 2, which used the average gait features, the 

classifiers were able to reach 81% to 96% accuracy. However, the 
remarkable 96% accuracy was attained by the MLP and LightGBM 
classifiers (Figure  14). Figure  15 depicts the feature importance 
analysis, with step time and cadence receiving high importance scores, 
indicating a significant impact on the model’s predictions.

In summary, the machine learning models achieved good 
performances of 81 to 96% accuracy, demonstrating a promising 
performance of the machine learning models in the fall’s prediction. 
In terms of performance and computational time, the proposed 
classifier, LightGBM, surpassed the others by having the fastest 
computing time and the greatest accuracy score in classification task. 
Furthermore, the two most important factors, step time and cadence, 
appear to be closely related to the risk of falling.

5 Discussion

This section summarizes some interesting findings discovered in 
the study:T
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 • Effectiveness of machine learning approaches: Machine learning 
algorithms demonstrate high performance in classification tasks, 
with accuracies of 81% or higher. Notably, the LightGBM 
classifier shows superior results with 96% accuracy in both 
experiments and takes less computational time.

 • Risk Factor Identification: The study reveals that longer cadence, as 
well as shorter step times, may raise the risk of falls in individuals.

 • Distinctive Gait Features of Faller and Non-Faller: This study has 
shown that gait characteristics are useful for predicting falls. 
According to the statistics, fallers appear to have a longer stance 
time, stride time, and cadence, but a shorter step time. However, 
we cannot just decide if people with longer stance times will fall. 
Similar to a puzzle, every feature has a connection with others 
which helps to produce the final output.

FIGURE 11

Comparison of original data and SMOTE sampled data.

FIGURE 12

Comparison of original data distributions and scaled data distributions.
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FIGURE 13

Confusion matrix and accuracy comparison for Experiment 1.
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FIGURE 14

Confusion matrix and accuracy comparison for Experiment 2.
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6 Conclusion

In conclusion, this study has made significant strides in the 
realm of fall risk prediction by harnessing the power of artificial 
intelligence and gait analysis. The dual-experimental approach, 
analyzing both individual and averaged gait features, has 
underscored the versatility and robustness of AI methodologies 
in capturing the nuances of human gait dynamics. The suggested 
machine learning model, LightGBM demonstrates remarkable 
efficacy and performance in classification, attaining 96% 
accuracy in both experiments. Moreover, several significant 
discoveries were made during the classification phase, such as the 
possibility that longer cadence as well as shorter step times could 
increase an individual’s risk of falling. Despite the model showing 
promising performance in prediction tasks, its potential to 
be applied to real-world scenarios is limited due to overfitting 
issue caused by the limited dataset, reliance on synthetic data, 
and lack of diversity in the dataset. Therefore, future research 
should focus on expanding the diversity of datasets, exploring 
deeper machine learning and deep learning models, and 
investigating the real-world applicability of these predictive tools 
in clinical settings. Another aspiring approach for future research 
is to implement SHAP values into the experiment to gain an 
in-depth understanding of how these features contribute to the 
model’s prediction.
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FIGURE 15

Feature importances in LightGBM model.
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