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Lung cancer is a predominant cause of cancer-related mortality worldwide,

necessitating precise tumor segmentation of medical images for accurate

diagnosis and treatment. However, the intrinsic complexity and variability

of tumor morphology pose substantial challenges to segmentation tasks.

To address this issue, we propose a multitask connected U-Net model with

a teacher-student framework to enhance the e�ectiveness of lung tumor

segmentation. The proposed model and framework integrate PET knowledge

into the segmentation process, leveraging complementary information

from both CT and PET modalities to improve segmentation performance.

Additionally, we implemented a tumor area detection method to enhance tumor

segmentation performance. In extensive experiments on four datasets, the

average Dice coe�cient of 0.56, obtained using our model, surpassed those of

existing methods such as Segformer (0.51), Transformer (0.50), and UctransNet

(0.43). These findings validate the e�cacy of the proposed method in lung

tumor segmentation tasks.
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1 Introduction

Despite significant advancements in diagnosing and treating lung cancer in recent

decades, it remains the leading cause of cancer-related mortality globally, particularly

among males (Sung et al., 2021). The introduction of low-dose computed tomography

(CT) based lung cancer screening has notably reduced the mortality in clinical settings

Leiter et al. (2023). This is mainly due to the advantages of CT’s high spatial resolution and

acceptable economic burden, making it widely used in the clinical setting. However, the

limited contrast betweenmalignant and non-malignant lesions in lung tissue, makes timely

detection and accurate segmentation of cancer boundaries on CT images a challenge.

This difficulty is further compounded by variations in tumor locations, intensities, shapes,

and attachments to adjacent structures, necessitating accurate lung tumor segmentation

(Mercieca et al., 2021). The use of positron emission tomography/computed tomography

(PET/CT) imaging has become essential in the diagnosis and staging of cancer, as it

provides both functional information from PET images and anatomical localization from

CT images (Baek et al., 2019). PET/CT has become integral in tumor management,

aiding in diagnosis, staging, and follow-up (Bianconi et al., 2020). In particular,

PET/CT is crucial for early differentiation of benign and malignant tumors as well as
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disease severity assessment and progression. While CT images

provide excellent spatial resolution, PET adds metabolic insights,

allowing for superior tumor characterization. This further

optimizes the screening and evaluation strategy for lung cancer;

however, the high cost of PET and greater radioactive harm, limits

its use compared to CT.

In the segmentation strategy for lung cancer, traditional manual

contouring of boundaries on CT images is a time-consuming

task prone to interobserver variability and misinterpretation. With

the development and application of artificial intelligence (AI)

technology, realizing the automatic segmentation of lung cancer

based on CT images has become possible under the guidance of

PET. Automatic tumor segmentation based on PET/CT images

performs better than CT images alone (Ju et al., 2015). These

automated segmentation methods largely focus on fusing the

information extracted separately from the PET and CT modalities,

under the assumption that each modality contains complementary

information (Li et al., 2019; Bourigault et al., 2021; Cai et al., 2023).

While acknowledging the advancements in PET/CT for lung cancer

segmentation, addressing the associated drawbacks, such as the

higher cost and increased radiation exposure to patients compared

to CT alone has become crucial (Sheikhbahaei et al., 2017).

In this context, we explore the current status and challenges

in lung cancer segmentation and highlight the evolving role of AI,

particularly in the integration of PET and CT modalities for more

accurate and comprehensive tumor segmentation. To mitigate

the PET/CT concerns of higher cost and increased radiation

exposure to patients compared with CT alone (Sheikhbahaei

et al., 2017) and enhance the economic viability of lung cancer

segmentation, we propose a novel deep learning-based connected

U-Net model. This model aims to automatically fuse multimodal

information by generating pseudo-PET images from CT images.

The motivation behind this approach is to retain the benefits of

PET-guided segmentation while minimizing the economic burden

and radiation damage associated with PET examinations. Our

contributions include:

1. Multitask modeling framework: A connected U-Net

model and teacher-student framework are presented. In

this framework, the model can learn two tasks: PET generation

and tumor segmentation. This modeling approach allows

for lung tumor segmentation guided by learned PET

knowledge, eliminating the requirement for actual PET

images. This simplifies the process of tumor segmentation,

making it more practical and effective in the delineation of

tumor boundary.

2. Tumor area detection method: To enhance the precision of

tumor area delineation, we propose a tumor area detection

method that enables more accurate segmentation by focusing on

the area of the tumor.

This study mainly consists of six parts. Part 1, covers

related work, presents a literature review of the field, and has

been the inspiration for our research. Part 2, introduces the

datasets and catalogs the public data sources utilized for training

and validation. Part 3 focuses on the methods, elucidating the

architecture of multitask connected U-Net model and the semi-

supervised learning based on our teacher-student framework and

the proposed tumor area detection method. Part 4, provides the

experimental settings and details of the technical environment and

hyperparameters. Part 5, summarizes the results and presents a

discussion on the model’s performance across various metrics and

datasets. Part 6, is the conclusion, providing a synthesis of the

findings and suggesting future directions.

2 Related work

In recent years, significant advancements have been made in

the field of medical image segmentation. These advancements have

been primarily driven by the development of novel architectures

and methodologies, which have significantly improved the

performance of medical image segmentation, providing valuable

tools for screening, clinical diagnosis, and treatment planning of

lung cancer.

2.1 U-Net architecture

The U-Net architecture, presented by Ronneberger et al.

(2015), has been a cornerstone in medical image segmentation.

The architecture, consisting of a contracting path to capture

context and a symmetric expanding path to enable precise

localization, can be trained end-to-end on very few images and

has demonstrated superior performance on several benchmarks.

Several extensions and improvements to the U-Net architecture

have been proposed. For instance, nnU-Net, a deep learning-

based segmentation method, automatically configures itself for

any new task, reducing the need for manual hyperparameter

tuning (Isensee et al., 2021; Ferrante et al., 2022). Unet 3+

extends the U-Net architecture by incorporating full-scale skip

connections, allowing better feature representation and more

accurate segmentation results (Huang et al., 2020). UNeXt, a novel

medical image segmentation network based on a convolutional

multilayer perceptron (MLP), significantly reduces the number of

parameters and decreases computational complexity compared to

existing methods (Valanarasu and Patel, 2022). Zhang G. et al.

(2022) proposed an improved 3D dense connected UNet (I-3D

DenseUNet) for lung cancer segmentation from CT images. The

nested dense skip connection adopted in the I-3D DenseUNet aims

to contribute similar feature maps to the encoder and decoder

sub-networks, encouraging feature propagation and reuse. U-

Net’s advantages include efficient biomedical image processing, an

encoder-decoder structure for capturing context and details, skip

connections for enhanced spatial coherence, strong performance

with limited data, and adaptability to various medical imaging

tasks, achieving state-of-the-art results.

2.2 Based on transformer architecture

The transformer architecture, originally proposed for natural

language processing tasks, has also been widely adapted for medical

image segmentation. UCTransNet presents a new segmentation

framework, which uses a CTrans module to replace the original

U-Net skip connection and conducts multiscale channel-wise

fusion using the Transformer (Wang et al., 2022). TransUNet
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combines the strengths of the Transformer and U-Net, with

the Transformer component encoding tokenized image patches

from a convolutional neural network (CNN) feature map as

the input sequence for extracting global contexts (Chen et al.,

2021). SegFormer unifies the Transformer with the lightweight

MLP decoder and includes a novel hierarchically structured

Transformer encoder that outputs multiscale features (Xie et al.,

2021). Recently, Tyagi et al. (2023) proposed an approach for

lung cancer segmentation using an amalgamation of the vision

transformer and CNN, demonstrating strong performance in lung

cancer segmentation.

2.3 Cross-modality and teacher-student
framework

Cross-modality learning, where information from onemodality

(e.g., PET) is used to enhance another modality (e.g., CT), has

received increasing attention in recent years. The complementarity

between PET and CT images allows the two modality images

to be fused for automatic lung tumor segmentation. Zhang

X. et al. (2022) proposed a network, based on two modality-

specific encoders and two modality-specific decoders, that can fuse

the complementary information and preserve modality-specific

features of PET and CT images. In a similar vein, Bi et al. (2021)

introduced a recurrent fusion network for multimodality PET/CT

tumor segmentation, which iteratively fuses complementary image

features from PET and CT images to refine segmentation results.

These studies emphasize the simultaneous use of CT and PET

medical images as input, to achieve information integration.

However, there are some common concerns in PET scans, such as

the high cost and usage of radioactive tracers among others, leading

to a lack of PET data.

The teacher-student framework has been widely used in

various fields and encompasses two design concepts, namely,

knowledge distillation and semi-supervised learning. In the context

of knowledge distillation, Hinton et al. (2015) demonstrated its

effectiveness in compressing largemodels into smaller ones without

significant loss of accuracy. For semi-supervised learning, Yu

et al. (2019) presented a novel uncertainty-aware semi-supervised

framework for left atrium segmentation from MR images. This

framework consists of a student model and a teacher model,

whereby the student model learns from the teacher model by

minimizing segmentation and consistency losses with respect to the

targets of the teacher model.

In this study, inspired by tumor segmentation using combined

PET and CT images as well as the teacher-student framework

in semi-supervised learning, we designed our teacher-student

framework and proposed a connected U-Net model to integrate

PET and CT knowledge. Utilizing the teacher-student framework,

our model simultaneously learns the PET generation and tumor

segmentation tasks, thereby leveraging the learned PET knowledge

to generate pseudo-PET information, which is used in the

segmentation process to eliminate the requirement for actual PET

images and enhance segmentation performance.

TABLE 1 Description of datasets.

Dataset Total
studies

Inclusion
studies

Inclusion
studies and
used

NSCLC+Rad 211 126 Training (100)/

Validation (13)/

Test (13)

NSCLC-Rad 422 421 External Test

(421)

MSD Task06 127 63 External Test (63)

NSCLC-Rad-Int 22 22 External Test (22)

3 Datasets

In this study, we used datasets from four public sources as

shown in Table 1. These sources were: (1) NSCLC+Radiomics

(NSCLC+Rad, updated 2021/06/01) (Bakr et al., 2018), (2)

NSCLC-Radiomics (NSCLC-Rad, updated 2020/10/22), (3)

NSCLC-Radiomics-Interobserver1 (NSCLC-Rad-Int, updated

2020/08/13), (4) Medical Segmentation Decathlon Task06

(MSD Task06) (Simpson et al., 2019; Antonelli et al., 2022).

Among these four datasets, NSCLC + Rad has PET and CT

images along with CT images with lung cancer segmentation

labels; however, the segmentation labels do not correspond

to PET images. The data of NSCLC-Rad comprise the largest

number of CT images with lung cancer segmentation labels,

but do not include PET images. The NSCLC-Rad-Int dataset

also only includes CT images and segmentation labels, but

each image contains multiple segmentation labels from

different experts, whereby the regions that they collectively

agree upon have been characterized as tumorous. The MSD

Task06 is a well-known NSCLC segmentation competition

dataset that includes CT images and tumor segmentation

labels, specifically used to evaluate the performance of

models in lung cancer segmentation. The production of

these datasets involved the participation of domain experts

and underwent rigorous proofreading, ensuring their high

data quality.

In this study, only the NSCLC+Rad dataset was used for model

training. We chose studies with CT images and corresponding

PET images (Data A) or CT images with segmentation mask

labels (Data B). After cleaning the data, 126 studies out of

the original 211 in the NSCLC+Rad dataset were retained.

These studies were divided as follows: 80% (100 studies) for

training the model, 10% (13 studies) for validation, and the

remaining 10% (13 studies) for testing the model. For external

validation, we used three additional datasets with lung cancer mask

labels, namely, NSCLC-Rad, NSCLC-Rad-Int, and MSD Task06,

totaling 506 studies. To standardize the CT images across all

datasets, we resized them to 512 × 512 with a pixel spacing

of 1 mm using trilinear interpolation. Each image was further

cropped to a size of 288 × 288 pixels to facilitate training on

our devices.
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FIGURE 1

The connected U-Net architecture. TSI, tumor segmentation images.

4 Methods

4.1 Connected U-Net architecture

The connected U-Net architecture is illustrated in Figure 1.

In this dual U-Net model, the first U-Net generates pseudo-PET

images, whereas the second U-Net produces tumor segmentation

images (TSI). For the segmentation process, the features that are

used to generate pseudo-PET images are obtained by upsampling

the first U-Net and connected with the features obtained by

downsampling the second U-Net, thereby incorporating the PET

information into the segmentation process. As illustrated in

Figure 2, we employ the teacher-student framework, which enables

the proposed model to simultaneously learn the PET generation

and tumor segmentation tasks, whereby the model can use the

learned PET knowledge to generate pseudo-PET information,

using it in the segmentation process, as shown in Figure 1.

In the teacher-student framework, Data A’s CT images were

fed into the student U-Net, resulting in the production of pseudo-

PETSA images. The quality of the pseudo-PET effects was assessed

using mean-squared-error (MSE) loss. Concurrently, Data B’s CT

images were input into the student U-Net. This process yields

pseudo-PETSB from the first U-Net, whereas the second U-Net

outputs a TSI. Additionally, the teacher U-Net processes the

randomly rotated the Data B’s CT images to generate pseudo-

PETTB. The similarity between pseudo-PETSB and pseudo-PETTB

was measured using consistency loss to evaluate the consistency

of the model output. The tumor segmentation model performance

was evaluated through focal and dice losses, to assess tumor

identification and segmentation efficiency.

First U-Net: Each U-Net consisted of an input layer, an

architecture of four downsampling (encoder) layers and four

upsampling (decoder) layers. Each encoder architecture consisted

of two 3 × 3 convolutions (each followed by a leaky rectified

linear unit LeakyReLU and instance normalization operation) with

padding set to 1. We define this convolution-based operation as

Conv. After the convolutions, a 2 × 2 max pooling operation with

a stride of 1 was employed for each downsampling step, which

we define as maxPool. The decoder architecture consisted of a

convolution operation and an upsampling operation followed by a

2× 2 convolution, which we define as UpSampling. For the output

of the first U-Net, a 1×1 convolution was used to map each feature

vector to the pixel value of the PET, which we define as outConv.

The down-sampling and up-sampling processes of the first U-Net

can be represented as follows:

The input layer:

x̂1 = Conv(LeakyReLU(x1)) (1)

q1 = Conv(LeakyReLU(x̂1)) (2)

Each down-sampling (encoder) layer:

xi = maxPool(qi) (3)

x̂i = Conv(LeakyReLU(xi)) (4)

qi+1 = Conv(LeakyReLU(x̂i)) (5)

Each up-sampling (decoder) layer:

uj = skipConnect(qi, ej) (6)

ûj = UpSampling(uj) (7)

êj = Conv(LeakyReLU(ûj)) (8)

ej+1 = Conv(LeakyReLU(êj)) (9)

The output layer:

êlast = Conv(LeakyReLU(elast)) (10)
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FIGURE 2

The multitask connected U-Net model with teacher-student framework. Data A are solely utilized for model construction, with the first U-Net in

student U-Net generating pseudo PETSA, optimizing parameters through MSE loss, and updating parameters of teacher U-Net via EMA. Data B are fed

into both student U-Net and teacher U-Net, with the first U-Net of the student U-Net generating pseudo PETSB and the pseudo PETTB produced by

the teacher U-Net. Based on pseudo PETSB and PETTB, consistency loss is obtained. Additionally, TSI is generated by the second U-Net of the student

U-Net, with parameters optimized through focal, dice, and consistency losses. Through the above framework, the proposed segmentation model

can simultaneously learn tumor segmentation and corresponding pseudo-PET generation, thereby integrating PET knowledge into the segmentation

model.

ypet = OutputConv(Conv(LeakyReLU(êlast))) (11)

In the Equations 1–11, xi is the input of the i-th downsampling

process. x1 is the CT image, and uj is the input of the j-

th upsampling process. The function skipConnect represents the

concatenation of the corresponding feature map from upsampling

to that from downsampling in the same U-Net.

SecondU-Net: The second U-Net introduces a skip connection

skipUnetConnect from the first U-Net’s upsampling to its

downsampling. This connection is defined as:

xi = skipUnetConnect(ej, qi) (12)

In the Equation 12, skipUnetConnect represents the

concatenation of the corresponding feature map from the

upsampling of the first U-Net to the downsampling of the second

U-Net. qi is the i-th downsampling feature of the second U-Net. ej
is the j-th upsampling feature of the first U-Net.

4.2 Semi-supervised multitask learning
with teacher-student framework

PET images are more difficult to obtain than CT images. In our

collected datasets, there were CT scans with segmentation labels

but no PET images, and there were CT scans with PET images.

To address this, we constructed a teacher-student framework to

learn tumor segmentation and simultaneously learn pseudo-PET

generation by semi-supervised learning, as illustrated in Figure 2.

We denote Data A as Dl and Data B as Du. The training loss L is

defined as follows:

L = w
1

|Dl|

∑

x∈Dl

C
(

fθ (x), fθ ′ (x)
)

+
1

|Du|

∑

x,ypet∈Du

H
(

ypet , fθ (x)
)

+
1

|Dl|

∑

x,yseg∈Dl

F
(

yseg , fθ (x)
)

(13)
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FIGURE 3

Tumor area detection. The tumor area detector consists of three steps: rotated CT slices, clustering-based tumor area detection, and filtering of

non-critical regions.

FIGURE 4

Tumor segmentation visualization. The red line represents the segmentation result of TSI, whereas the green line represents the mask label. TSI refers

to the tumor segmentation image. (A, E) represent a lung cancer PET image and its corresponding CT image segmentation example from the

NSCLC+Rad dataset, respectively. (B, F) represent a lung cancer PET image and its corresponding CT image segmentation example from the

MSD-TASK06 dataset, respectively. (C, G) represent a lung cancer PET image and its corresponding CT image segmentation example from the

NSCLC-Rad dataset, respectively. (D, H) represent a lung cancer PET image and its corresponding CT image segmentation example from the

NSCLC-Rad-Int dataset, respectively.

In the Equation 13, fθ represents the connected U-Net model,

and the θ represent the model weights. C
(

fθ (x); fθ ′ (x)
)

denotes

the consistency loss, with w as the loss coefficient. H
(

ypet , fθ (x)
)

represents the consistency loss of the actual PET and pseudo PET,

with the consistency loss computed by MSE. F
(

yseg; fθ (x)
)

denotes

the sum of the focal and dice losses of the segmentation mask label
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TABLE 2 DSC for di�erent models on di�erent datasets (mean ± SD).

Model Param Flops NSCLC + Rad NSCLC-Rad-Int MSD Task06

Unet3+; Huang et al. (2020) 26.974M 199.856G 0.38± 0.31 0.29± 0.23 0.32± 0.30

UNeXt; Valanarasu and Patel (2022) 1.472M 0.554G 0.44± 0.30 0.25± 0.24 0.30± 0.30

UctransNet; Wang et al. (2022) 66.241M 54.386G 0.63± 0.29 0.32± 0.32 0.57± 0.32

TransUnet; Chen et al. (2021) 93.232M 40.812G 0.59± 0.30 0.43± 0.33 0.60± 0.31

Segformer; Xie et al. (2021) 84.595M 31.563G 0.64 ± 0.29 0.46± 0.32 0.64± 0.29

Ours 36.605M 50.716G 0.64 ± 0.27 0.57 ± 0.29 0.66 ± 0.27

DSC, Dice Similarity Coefficient. The bolded values represent the optimal evaluation metrics for different modeling strategies within the same dataset.

and TSI; fθ ′ represents the teacher U-Net. After training for t steps,

θ
′ is updated by exponential moving average (EMA):

θ
′
t = αθ(t − 1)′ + (1− α)θt (14)

In the Equations 13, 14, both w and α are dynamically adjusted

according to:

α = min(1−
1

step+ 1
, 0.99) (15)

The w is specified in Laine and Aila (2017) and expressed as:

w = 0.1× exp(−5× (1− T)2) (16)

In the Equations 15, 16, T = 1- step/80 (Laine and Aila, 2017),

where step refers to the number of training steps.

4.3 Tumor area detection preprocessing

Tumor area detection aims to filter out areas without tumors

from CT images, enabling our model to concentrate on the

segmentation of tumor areas. As shown in Figure 3, the process

consists of three stages: rotating CT slices, clustering-based tumor

area detection, and filtering non-critical regions.

4.3.1 CT slices rotation
Defining CT as the sequence of CT slices, where Ci is the i-th

slice, each slice was rotated by α degrees (90, 180, and 270) to obtain

three additional rotated slices. These were then inserted after the

original slice, to form a new sequence CR, as shown in Equation 17:

CR = (C0,C
90
0 ,C180

0 ,C270
0 ,C1,C

90
1 ,C180

1 ,C270
1 , . . . ,Cα

i ) (17)

4.3.2 Clustering-based tumor area detection
The input of our model was CR and the output TSI. In the

multiple continuous TSI depicting the tumor boundary, the middle

slice was selected as SN and the 10 TSIs before and after it, together

with themiddle one, add up to 21 TSIs. On each selected TSI, points

pi and pj can be represented as pi(xi, yi) and pj(xj, yj). The Euclidean

distance between pixels is calculated as Equation 18:

TABLE 3 IOU and HD95% of di�erent models on di�erent datasets.

Dataset Model IOU
(mean ± SD)

HD95%
(mean ±

SD)

NSCLC+Rad

Unet3+ 0.29± 0.26 116.21± 67.90

UNeXt 0.33± 0.26 112.36± 74.89

UctransNet 0.52± 0.27 57.60± 74.29

TransUnet 0.48± 0.27 50.31± 59.95

Segformer 0.53 ± 0.27 36.14± 54.57

Ours 0.52± 0.25 18.23 ± 32.25

NSCLC-Rad-Int

Unet3+ 0.19± 0.17 116.62± 49.44

UNeXt 0.16± 0.18 112.29± 54.79

UctransNet 0.24± 0.26 63.34± 54.06

TransUnet 0.33± 0.28 63.79± 60.28

Segformer 0.36± 0.28 37.94± 46.23

Ours 0.45 ± 0.26 21.46 ± 27.81

MSD Task06

Unet3+ 0.23± 0.25 133.64± 68.43

UNeXt 0.22± 0.24 133.59± 73.64

UctransNet 0.46± 0.29 38.83± 59.06

TransUnet 0.50± 0.28 41.74± 58.51

Segformer 0.53± 0.27 23.88± 45.08

Ours 0.55 ± 0.26 13.05 ± 23.27

IOU, intersection over union; HD, Hausdorff distance. The bolded values represent the

optimal evaluation metrics for different modeling strategies within the same dataset.

d(pi, pj) =
√

(xi − xj)2 + (yi − yj)2 (18)

We then find the two farthest points on each TSI: Pa(xl, yl) and

Pb(xr , yr), and form a quadruple, as shown in Equation 19:

quadruple = (xl, yl, xr , yr) (19)

All quadruples from TSIs are input into the K-means algorithm

to obtain two cluster centers: K1 and K2.

4.3.3 Non-critical area filtering
To compare the number of quadruples in K1 and K2, we

selected the group with more quadruples, calculating the mean

values of each column in the quadruplets to obtain two points P0
and P′0, thereby extending λ pixels (λ was set to 50 in our study)
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TABLE 4 Performance of di�erent models on NSCLC-Rad.

Model Dice (mean
± SD)

IOU (mean ±
SD)

HD95%
(mean ± SD)

Unet3+ 0.23± 0.26 0.16± 0.20 105.02± 57.40

UNeXt 0.21± 0.27 0.15± 0.21 82.30± 61.12

UctransNet 0.23± 0.29 0.17± 0.23 75.52± 58.58

TransUnet 0.38 ± 0.33 0.29 ± 0.27 59.17± 55.07

Segformer 0.31± 0.32 0.23± 0.26 51.62± 49.76

Ours 0.38 ± 0.32 0.29 ± 0.27 42.26 ± 41.20

DSC, Dice similarity coefficient; IOU, intersection over union; HD, Hausdorff distance. The

bolded values represent the optimal evaluation metrics for different modeling strategies

within the same dataset.

from the points obtained to create a rectangular region. A mask U

was created, with the region set to 1 and the rest to 0. The critical

region of each CT slice was found by applying the mask U to Ci,

and the masked image was re-predicted using the connected U-Net

model, as shown in Equation 20:

yseg = fθ (Ci × U) (20)

5 Experimental settings

The connected U-Net model was constructed using Pytorch

1.13 and trained on an NVIDIA GeForce RTX 3080 Ti GPU 12

GB, Intel(R) Core(TM) i7-12700KF, RAM 16 GB. Throughout

training, data augmentation techniques such as random rotation,

random flipping, and random cropping were applied. The main

hyperparameters were batch size, learning rate, and optimizer.

Considering our hardware capability, the hyperparameter of batch

size was set to 8. The learning rate of the hyperparameter was set to

1e-4, utilizing the Adam optimizer and employing a cosine learning

rate control scheme (the change in learning rate for each epoch was

from 1e-4 to 1e-5), to avoid the problem of falling into saddle points

through the periodic change in the learning rate. The model that

yielded the best evaluation results was selected for testing.

The model was evaluated using the dice similarity coefficient

(DSC), intersection over union (IOU), and Hausdorff 95% (HD

95%) as test metrics. Thesemetrics were calculated using theMedpy

package. Additionally, we analyzed the number of parameters and

the speed of our model using the thop package, comparing these

values with those of other models such as Unet3+ (Huang et al.,

2020), UNeXt (Valanarasu and Patel, 2022), UctransNet (Wang

et al., 2022), TransUnet (Chen et al., 2021), and SegFormer (Xie

et al., 2021).

6 Results and discussion

The integration of PET and CT modalities has revolutionized

lung cancer segmentation, by providing more anatomical

information for superior tumor location. Some studies emphasize

the significance of leveraging PET and CT images as inputs for

tumor segmentation, highlighting that integration of multimodal

imaging can enhance performance outcomes (Alshmrani et al.,

2023; Marinov et al., 2023; Zhou et al., 2023). However, drawbacks

such as higher costs and increased radiation exposure compared to

CT alone preclude the need for innovative solutions (Sheikhbahaei

et al., 2017; Edelman Saul et al., 2020). In this context, our

proposed connected U-Net model, combined with teacher-student

semi-supervised multitask framework, emerges as a promising

method, aiming to fuse pseudo-PET features for segmentation

processing without the need for actual PET images.

6.1 Examples of model performance on
di�erent datasets

Our model underwent testing on diverse datasets,

demonstrating effective generalization capabilities. Guided by

pseudo-PET and tumor area detection, the model excels in

accurately pinpointing tumor growth areas. The model delivers

impressive performance across various datasets, as illustrated

in Figure 4. This result shows that the proposed model and

framework do not mandate a correspondence between PET

images and segmentation labels during training. Furthermore,

the prediction stage also does not require PET images, suggesting

promising avenues for practical applications and flexibility in

real-world scenarios.

6.2 DSC of di�erent models on di�erent
datasets

This study includes a series of experiments conducted on three

public datasets, demonstrating the effectiveness of the proposed

methods. Our model stands out among the evaluated models,

showcasing remarkable adaptability across datasets. Notably, on

the challenging MSD Task06 dataset, our model achieved a high

DSC score of 0.66, surpassing competitor models, as detailed

in Table 2. On the NSCLC+Rad dataset, our model achieved a

DSC of 0.64, highlighting its effectiveness in the context of lung

cancer segmentation. Moreover, on the NSCLC+Rad and NSCLC-

Rad-Int datasets, our model achieved DSC of 0.64 and 0.57,

respectively, highlighting its effectiveness in the context of lung

cancer segmentation. While Segformer excels on the NSCLC+Rad

dataset, our model matches and even surpasses its performance

on the MSD Task06 dataset. These results indicate the proposed

model’s ability to adapt to diverse datasets, positioning it as a

promising solution for a wide array of medical image segmentation

tasks. Overall, ourmodel not only competes effectively with existing

models but also showcases reliability across varied medical imaging

scenarios. The efficiency of the proposed model is evident in

its moderate parameter count (36.605M) and FLOPs (50.716G),

striking a balance between model complexity and segmentation

accuracy. This underscores the practical applicability of our model

in real-world medical image segmentation applications, offering

a compelling blend of high performance and computational

efficiency.

6.3 IOU and HD 95% of di�erent models on
di�erent datasets

The proposed model stands out with outstanding segmentation

performance across different datasets, particularly on the MSD
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FIGURE 5

E�ects of slice number and distance. (A) Represents the Dice similarity coe�cient (DSC) performance within a specific subgroup of a slice. (B)

Denotes the intersection over union (IOU) performance within the same subgroup of a slice. (C) Indicates the Hausdor� distance (HD) at 95%

performance within the subgroup of a slice. (D) Signifies the DSC performance within a specific subgroup of a distance. (E) Represents the IOU

performance within the same subgroup of a distance. (F) Denotes the HD at 95% performance within the subgroup of a distance.

TABLE 5 Performance of multitask connected U-Net based on di�erent components.

Dataset Model Dice (mean ± SD) IOU (mean ± SD) HD95% (mean ± SD)

NSCLC+Rad

Only based on CT images 0.59± 0.29 0.48± 0.27 44.79± 57.82

PET guide 0.64 ± 0.29 0.53 ± 0.26 28.57± 49.11

PET guide and area detection 0.64 ± 0.27 0.52± 0.25 18.23 ± 32.25

NSCLC-Rad

Only based on CT images 0.35± 0.33 0.27± 0.28 54.74± 54.15

PET guide 0.24± 0.28 0.17± 0.22 62.21± 57.18

PET guide and area detection 0.38 ± 0.32 0.29 ± 0.27 42.26 ± 41.20

NSCLC-Rad-Int

Only based on CT images 0.51± 0.33 0.40± 0.29 44.40± 52.61

PET guide 0.51± 0.32 0.40± 0.28 32.99± 47.15

PET guide and area detection 0.57 ± 0.29 0.45 ± 0.27 21.46 ± 27.81

MSD Task06

Only based on CT images 0.65± 0.30 0.54± 0.28 30.28± 53.86

PET guide 0.63± 0.30 0.52± 0.28 26.83± 49.49

PET guide and area detection 0.66 ± 0.27 0.55 ± 0.26 13.05 ± 23.27

Average

Only based on CT images 0.53± 0.31 0.42± 0.28 43.55± 54.61

PET guide 0.51± 0.30 0.41± 0.26 37.65± 50.73

PET guide and area detection 0.56 ± 0.29 0.45 ± 0.26 23.75 ± 31.13

DSC, Dice similarity coefficient; IOU, intersection over union; HD, Hausdorff distance. The bolded values represent the optimal evaluation metrics for modeling models based on different.

Task06 dataset, as shown in Table 3. It achieves the highest

IOU score of 0.55, showcasing superior accuracy in delineating

segmented structures compared to other models. This result

highlights the effectiveness of our model in capturing the

intricate details of medical images. Furthermore, in terms of

95% HD, our model also excels with a notable score of 13.05,

demonstrating its ability to precisely capture the boundaries of

segmented regions. The performance of the proposed model
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surpasses or closely rivals other state-of-the-art models such

as Segformer.

6.4 External validation on the challenge
dataset

The NSCLC-Rad dataset has a larger sample size. On this

dataset, all the models we used performed poorly. The performance

of the model depends on various factors such as the quality of the

images as well as the size and shape of the tumors (Tyagi et al.,

2023). The poor performance is likely the result of distributional

differences between this dataset and the training data. Nevertheless,

our segmentation model, based on connected U-Net and tumor

area detection, exhibits notable performance compared to other

models, as shown in Table 4.

6.5 Subgroup analysis by slice and distance

Identifying small lesions in their early stages remains a

challenging task. The size of the tumor significantly affects the

performance of segmentation models. Coronal CT images allow

the measurement of the long and short diameters of tumors and

evaluation of their area. Additionally, continuous CT scans enable

the calculation of tumor height in the sagittal plane based on layer

thickness and the number of scanned layers, which can estimate

tumor volume.

In our investigation, subgroup analyses were conducted using

slice thickness and distance to explore the impact of tumor size

on model segmentation across various datasets, as shown in

Figure 5. Unexpectedly, the slice number was found to have no

significant impact on tumor segmentation. In further analysis, the

intermediate CT section yielded the best segmentation results when

dealing with multiple slices containing tumor CT. Notably, patient

chest CT scans from different sources may exhibit varying slice

thicknesses, leading to potential errors in estimating tumor height

based on slice number.

Furthermore, the long diameter of the tumor can be

represented by the pixel value distance. As the tumor pixel

value distance increases, the model’ s segmentation performance

improves significantly. However, beyond a certain threshold,

further expansion of the tumor pixel value may lead to a decline in

segmentation effectiveness. This phenomenon could be attributed

to limited modeling data and a lack of training samples for giant

tumors.

6.6 Ablation experiment

The teacher-student framework allows our proposed model to

concurrently learn PET generation and tumor segmentation tasks.

Through this approach, our proposed model can use the learned

PET knowledge to generate pseudo-PET information, subsequently

integrating the information into segmentation process. To verify

the effectiveness of integrating pseudo-PET information, we

tested it on four datasets through ablation experiments, as

outlined in Table 5. The results showed that our model, when

integrating pseudo-PET images, achieved better Dice values on the

NSCLC+Rad dataset (0.64 vs 0.59) than the model based solely on

CT images. In addition, the average of the HD 95% results on the

four datasets (37.65 vs 43.55) also indicates that the model based on

guidance from learned PET knowledge exhibits better performance

in the processing of edge details for tumor boundaries.

Tumor area detection aims to filter out areas without

tumors from CT images, enabling the established model to

further focus on segmenting only the areas where tumors

are present. The results showed that this approach further

enhanced the model’s performance on the NSCLC-Rad and

NSCLC-Rad-Int datasets, reaffirming the generalizability and

effectiveness of the proposed enhancements. The MSD Task06

dataset similarly reflects consistent improvement, culminating in

the best overall performance when our model utilizes learned PET

knowledge and applies tumor area detection. These shared trends

underscore the efficacy of the proposed methods across various

datasets, reinforcing their potential for enhancing medical image

segmentation tasks.

7 Limitation

Although, our model aimed to alleviate the economic burden

and radiation risks associated with PET examinations, extensive

research is required to evaluate the long-term cost-effectiveness

and safety implications of this approach. Continued investigations

will be crucial in assessing the viability and sustainability of

implementing our proposed methodology. Moreover, the tumor

area detection in this study is constrained to single tumors,

warranting validation for its effectiveness in localizing multiple

tumors. This aspect requires further verification to ensure

the model’s applicability to scenarios involving multiple tumor

instances.

8 Conclusion

In this study, we proposed a multitask connected U-Net model

and a teacher-student framework. The framework can make the

model learn the PET knowledge, whereby the model performs

tumor segmentation using the learned PET knowledge without the

need for real PET images. This method facilitates a more detailed

delineation of the tumor boundaries. In addition to incorporating

PET knowledge, our tumor area detection method is also beneficial

in enhancing overall performance. Future work will focus on

further refining the model and validating its performance on larger

and more diverse datasets.
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